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Abstract .  Parcellations used in resting-state fMRI (rs-fMRI) analyses
are derived from group-level information, and thus ignore both subject-
level functional differences and the downstream task. In this paper, we
introduce RefineNet, a Bayesian-inspired deep network architecture that
adjusts region boundaries based on individual functional connectivity
profiles. RefineNet uses an iterative voxel reassignment procedure that
considers neighborhood information while balancing temporal coherence
of the refined parcellation. We validate RefineNet on rs-fMRI data from
three different datasets, each one geared towards a different predictive
task: (1) cognitive fluid intelligence prediction using the H C P  dataset
(regression), (2) autism versus control diagnosis using the A B I D E  I I
dataset (classification), and (3) language localization using an rs-fMRI
brain tumor dataset (segmentation). We demonstrate that RefineNet im-
proves the performance of existing deep networks from the literature on
each of these tasks. We also show that RefineNet produces anatomically
meaningful subject-level parcellations with higher temporal coherence.
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1 Introduction

Resting-state fMRI (rs-fMRI) captures intrinsic neural synchrony, which pro-
vides insight into the functional organization of the brain [1]. Due to voxel-level
variability, rs-fMRI data is often analyzed at the region level based on a prede-
fined brain parcellation [2, 3]. Most parcellation schemes are based on group-level
averages [4, 5]; however, it is well known that functional landmarks vary from
person to person [6, 7], particularly for clinical populations [8].

Over the past decade, several methods have been proposed to obtain subject-
specific functional boundaries from rs-fMRI data. The popular technique is inde-
pendent component analysis ( ICA) ,  which estimates a set of spatially indepen-
dent maps based on a linear decomposition of the voxel-wise rs-fMRI time se-
ries [9–12]. While I C A  provides valuable subject-level information, the user can-
not control the number or spatial compactness of the estimated components. For
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this reason, it may not be possible to match region boundaries across subjects to
draw group-level inferences. The more recent work of [13] uses a spatio-temporal
deep residual network and I C A  template priors to obtain subject-specific parcel-
lations. While this method goes beyond traditional I C A  to encode time-varying
dynamics into network extraction, it has only been validated on a cohort of
three subjects and might not generalize. The authors of [6] take a different ap-
proach by casting the problem as one of refining an existing parcellation, rather
than creating a new parcellation from scratch. The proposed method iteratively
reassigns the voxel memberships based on the maximum Pearson’s correlation
between the voxel time series and the mean time series of the current regions.
The method in [8] builds upon this work by using a Markov random field prior to
encourage spatial continuity during the iterative reassignment procedure. How-
ever, this method was only evaluated on a coarse initial parcellation (17 regions).
Finally, the work of [7] uses a group sparsity prior as well as Markov Random
Fields to generate subject-specific parcellations using an iterative graph parti-
tioning approach. However, the authors do not show that the method improves
performance on downstream tasks such as regression or classification.

In this paper we introduce RefineNet, the first deep learning approach for
subject-specific and task-aware parcellation refinement using rs-fMRI data. Re-
fineNet encodes both spatial and temporal information via a weight matrix that
learns relationships between neighboring voxels and a coherence module that
compares the voxel- and region-level time series. Importantly, RefineNet is de-
signed as an all-purpose module that can be attached to existing neural networks
to optimize task performance. We validate RefineNet on rs-fMRI data from three
different datasets, each one designed to perform a different task: (1) cognitive
fluid intelligence prediction (regression) on HC P  [14], (2) autism spectrum dis-
order ( A S D )  versus neurotypical control (NC) classification on A B I D E  [15], and
(3) language localization using an rs-fMRI dataset of brain tumor patients. In
each case, we attach RefineNet to an existing deep network from the literature
designed for the given task. Overall, RefineNet improves the temporal cohesion of
the learned region boundaries and the downstream task performance.

2 Methods

Fig. 1 illustrates our RefineNet strategy. The inputs to RefineNet are the 4D
rs-fMRI data Z  and the original brain parcellation X ( 0 ) .  We formulate a pseudo-
prior, pseudo-likelihood and MAP style inference model to obtain the refined
parcellation X ( e ) .  Following this procedure, RefineNet can be attached to an
existing deep network to fine-tune X ( e )  for downstream task performance.

2.1 Spatial and Temporal Coherence Terms

Let V be the number of voxels in the rs-fMRI scan, and P  be the number of
regions in the original parcellation. We define X  � RV  × P  to RefineNet as a one-hot
encoded label matrix, where X v , p  =  1 when voxel v is assigned to region
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F i g .  1: Inputs: rs-fMRI Z ,  existing parcellation X ( 0 )  and neighbor mask M.
Top:  We show a six neighbor model for clarity. Our network parameter A  learns
voxel neighbor weights while the product ( A X )  multiplies these weights with
the labels of the neighboring voxels. Bottom: The coherence term S  uses the
pearson correlation coeficient with each mean time series µp. R i g ht :  We obtain
intermediate labels X ( i )  I  times before taking the mode and producing the next
epoch’s parcellation X ( e ) ,  which is used during backpropagation to obtain A( e ) .

p and X v , p  =  0 otherwise. The core assumption of RefineNet is that voxels in
close spatial proximity to each other are likely to belong to the same region [6, 8].
We encode this information via the intermediate activation W  � RV  × P

W  =  ReLU
 

A X , (1)

where the matrix A  � RV  × V  enforces the local structure of the data. Formally, we
obtain A  as the Hadamard product of a sparse binary adjacency matrix M  �
RV  × V  that is nonzero only when the voxels are spatial neighbors and a learnable
weight matrix A  � RV  × V  to encode spatially varying dependencies. Fig. 1 shows
the nonzero weights in A v  being multiplied by the current labels of the neighbors
of voxel v, where ne(v) denotes neighbors of voxel v.

At a high level, Eq. (1) acts as a proxy for the prior probability that voxel v
belongs to region p based on the contribution of its neighbors currently assigned to
region p, as governed by the spatially varying weights in A .  Thus, our pseudo-prior
term is designed to identify which neighbors are more important for voxel
reassignment, which is important for boundary areas. Note that A  is sparse by
construction, which reduces both memory and computational overhead.

It is generally accepted that highly correlated voxels are more likely to be
involved in similar functional processes, and if near each other, should be grouped
into the same region [6, 7]. Let Z  � RV  × T  denote the voxel-wise time series, where
T is the duration of rs-fMRI scan. Thus, our pseudo-likelihood matrix S  � RV  × P

that captures the un-normalized probability of voxel v being assigned to region
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p is simply a shifted and scaled version of the Pearson’s correlation coeficient
between the voxel and mean region-wise time series, i.e., Sv ,p  =  ρ z v , µ p  + 1 .

Mathematically, given the voxel-to-region membership captured in X ,  we can
compute the region-wise mean time series µp as follows:

µp =  P  
Z  · X v , p  . (2)

v = 1 v,p

The correlation coeficient ρz , µ       can also be obtained via matrix operations,
allowing us to integrate the pseudo-likelihood term directly into a deep network.

2.2 Ref ineNet Tra i n i n g  and Optimization

We adopt an iterative max product approach to derive our assignment updates.
For convenience, let the index e denote the main epochs and the index i  denote
the refinement iterate. For each epoch e, we initialize the intermediate variable
X ( 1 )  with the assignment matrix X ( e − 1 )  from the previous iterate and compute
the pseudo-likelihood matrix S ( e )  via the mean time series defined in Eq. (2).
We then iteratively update X ( i )  based on neighborhood information as follows:

X ( i + 1 )  =  
�1     argmaxp       S

( e )  � W ( i )

(3)
0     else,

where W ( i )  =  ReLU
 

A X ( i )
 
as in Eq. (1), and � is the Hadamard product. The

term S( e )  remains constant throughout this iterative process from i  =  {1 · · · I } to
act as the previous stationary point. The refined parcellation X ( e )  for epoch e is

given by the majority vote over the intermediate region assignments { X
( i )

} I        .
We employ this iterative approach over the pseudo-prior term to explore the
space of intermediate label distributions for a robust assignment. We fix I  =  20
in this work, as we empirically observed that this was large enough to provide
robust reassignment.

We optimize the weights A  in RefineNet via stochastic gradient descent to
maximize the average temporal coherence with the newly assigned regions. Let
Vp be the set of voxels assigned to region p. Our loss for backpropagation is

1 X  1 X  (1 +  ρz , µ  )
R N P  

v = 1  
|Vp| 

v�Vp
2

For clarity, our full training procedure is described in Algorithm 1.

(4)

2.3 Creat ing  Task-Aware Parcellations with Ref ineNet

Once pretrained using Eq. (4), RefineNet can be attached to existing deep neu-
ral networks and re-optimized for performance on the downstream task. Our



ˆ

1 P

b

b
b

b i

1 P

1 P

RefineNet: A  Neural Network Parcellation Refinement Module 5

Algor i thm 1 RefineNet Training Procedure
1: procedure R e f i n e N e t ( X , Z , M , E , I  =  20)
2: X ( 0 )  ← X
3: A ( 0 )  ← A , M � Random initialization of weights in nonzero entries
4: µ( 0 )  · · · µ(0)     , S ( 0 )  ← Z , X ( 0 ) � Eq.(2)
5:          for e =  1 : E  do
6: X ( 1 )  ← X ( e − 1 )

7: for i  =  1 : I  do
8:                       W ( i )  ← A ( e − 1 ) , X ( i )                                                                                                                                 � Eq.(1)
9:                       X ( i + 1 )  ← S ( e − 1 ) , W ( i )                                                                                                                            � Eq.(3)

10: X ( e )  ← m o d e ( { X } I= 1 )
11: µ(e) · · · µ(e)     , S ( e )  ← Z , X ( e ) � Eq.(2)
12: L R N  ← X ( e ) ,  µ(e) · · · µ(e) � Eq.(4)
13: A ( e )  ← L R N  , S G D                                  � Backpropagation and gradient update
14:          return  X ( E )

strategy is to pre-train RefineNet for 50 epochs using a learning rate of 0.001
before jointly training RefineNet with the network of interest. Here, we alternate
between training just the network of interest for task performance and training
both RefineNet and the network of interest in an end-to-end fashion. Empir-
ically, we observed this strategy provides a good balance of task-optimization
and preserving functional cohesion. Our second-stage loss function is a weighted
sum of the downstream task and the RefineNet loss in Eq. (4):

L t o t a l  =  L n e t  +  λ L R N  , (5)

where the hyperparameter λ  can be chosen via a grid search or cross validation.

3 Experimental Results

We validate RefineNet on three different rs-fMRI datasets and prediction tasks.
In each case, we select an existing deep network architecture from the literature to
be combined with RefineNet. These networks take as input a P  ×  P  rs-fMRI
correlation matrix. Fig. 2 illustrates the combined network architectures for each
prediction task. We implement each network in Pytorch and use the
hyperparameters and training strategy specified in the respective paper.

Our task-aware optimization (Section 2.3) alternates between by training
the network of interest for ea epochs while keeping RefineNet (and the input
correlation matrices) fixed. We then jointly train both networks for ea epochs
while refining the parcellation, and thus, the correlation inputs between epochs.

3.1 Description of Networks and Data

M - G C N  for Regression using H C P :  We use the M-GCN model (rs-fMRI
only) from [16] to predict the cognitive fluid intelligence score (CF IS) .  The
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F i g .  2: Top:  The M-GCN uses a graph convolution network applied to the
connectivity matrix to predict fluid intelligence in HC P  subjects. Middle: The
A E C  couples an autoencoder and a single layer perceptron to classify A S D  vs.
NC on A B I D E  data. Bottom: The GNN uses graph convolutions to segment
the language areas of eloquent cortex on a tumor dataset.

dataset contains 300 healthy subjects from the publicly available Human Con-
nectome Project (HCP)  S1200 release [14]. Standard rs-fMRI preprocessing was
done according to [17], which handles motion, physiological artifacts, and regis-
tration to the MNI template. For simplicity, the C F I S  values are scaled between
(0 −  10) based on the training data of each fold. We report the mean absolute
error (MAE)  and correlation coeficient between the predicted and true scores.

A E C  for Classification using A B I D E :  We use the autoencoder/classifier
( A E C )  framework from [18] to predict subject diagnosis. The dataset contains
233 subjects (131 ASD,  102 NC) from the Autism Brain Imaging Data Exchange
( A B I D E )  I I  dataset [15]. The data was acquired across six different sites and pre-
processed using the Configurable Pipeline for Analysis of Connectomes ( C PA C )
toolbox [19]. As per [18], the A E C  network performs A S D  vs. NC (neurotypical
control) classification using the upper triangle portion of the rs-fMRI correlation
matrix. We report the accuracy and area under the curve (AUC).

G N N  for Language Localization in  Tumor  Patients: We use the GNN
proposed by [20] to localize language areas of the brain in a lesional cohort. The
dataset contains rs-fMRI and task fMRI data from 60 brain tumor patients. The
data was acquired on a 3 T  Siemens Trio Tim system (EPI ;  T R  =  2000 ms, T E
=  30 ms, res =  1 mm3 isotropic). The rs-fMRI was scrubbed using ArtRepair,
followed by CompCorr for nuisance regression [21], bandpass filtering, and spatial
smoothing. The task fMRI was used to derive “ground-truth" language labels
for training and evaluation [22]. The tumor boundaries were obtained via expert
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Table 1: Results across all experiments considered. Metric 1 represents M A E  for
regression and AUC  for classification and localization while metric 2 represents
correlation for regression and overall accuracy for classification and localization.

Task

C F I S  P r e d i c t i o n

A S D  v s .  N C

L o c a l i z a t i o n

Model Atlas
Original                 BNA246

CC200
A A L 9 0

RefineNet Only BNA246
CC200
A A L 9 0

Combined BNA246
CC200
A A L 9 0

Original BNA246
CC200
A A L 9 0

RefineNet Only BNA246
CC200
A A L 9 0

Combined BNA246
CC200
A A L 9 0

Original BNA246
CC200
A A L 9 0

RefineNet Only BNA246
CC200
A A L 9 0

Combined BNA246
CC200
A A L 9 0

Metric 1
2.20 ±  0.13
2.24 ±  0.14
2.22 ±  0.16
2.22 ±  0.13
2.22 ±  0.18
2.15 ±  0.14

1.73 ±  0.14
1.84 ±  0.12
1.91 ±  0.11
0.65 ±  0.017
0.66 ±  0.024
0.66 ±  0.029
0.63 ±  0.021
0.69 ±  0.016
0.70 ±  0.021

0.69 ±  0.013
0.72 ±  0.029
0.74 ±  0.023
0.74 ±  0.022
0.75 ±  0.021
0.67 ±  0.023
0.75 ±  0.023
0.75 ±  0.018
0.65 ±  0.021

0.77 ±  0.021
0.78 ±  0.017
0.68 ±  0.019

Metric 2
0.24 ±  0.029
0.27 ±  0.045
0.23 ±  0.048
0.19 ±  0.026
0.22 ±  0.036
0.25 ±  0.032
0.3 ±  0.039

0.34 ±  0.046
0.36 ±  0.04
65.5 ±  1.57
64.9 ±  2.12
64.5 ±  2.49
63.8 ±  1.78
66.6 ±  1.80
67.5 ±  1.94

67.8 ±  1.60
69.8 ±  1.76
71.8 ±  1.84
84.6 ±  0.09
85.9 ±  0.92

82.32 ±  1.21
84.95 ±  0.91
84.6 ±  0.71
81.8 ±  1.34

85.9 ±  0.91
86.9 ±  1.01
82.63 ±  1.09

P-value

0.64
0.293
0.121

0.016��

0.045��

0.078�

0.74
0.22

0.08�

0.062�

0.022��

0.006��

0.261
0.531
0.834

0.065�

0.047��

0.312

segmentation. The GNN outputs a label (language, tumor, or neither) for each
region. We report the overall accuracy and AUC  for detecting the language class.

3.2 Task  Performance

We compare three model configurations: (1) no refinement (original), (2) using
just RefineNet to maximize temporal coherence (RefineNet only), and integrat-
ing RefineNet into the network as described in Section 2.3 (combined). We also
apply three parcellations to each task: the Brainnetome atlas (BNA246) [23], the
Craddocks 200 atlas (CC200) [24], and the Automated Anatomical Labelling
(AAL90)  atlas [25]. To  prevent data leakage, we tune the hyperparameters λ
in Eq. (5) and alternating training epoch for regression on 100 additional HC P
subjects, yielding λ  =  0.2 and ea =  5.

Table 1 reports the quantitative performance for each model/atlas configura-
tion. Metrics 1/2 refer to MAE/correlation for the regression task and AUC/ac-
curary for the classification and localization tasks, respectively. We employ a
ten repeated 10-fold cross validation ( C V )  evaluation strategy to quantify per-
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F i g .  3: Boxplots for region cohesion across the nine experiments. Yellow refers to
the original model, blue refers to RefineNet only and green refers to combined. (**)
denotes a significant increase from the original to combined parcellation.

formance variability. We report mean± standard deviation for each metric along
with the F D R  corrected p-value to indicate statistically improved performance in
Metric 1 over the original model using the same parcellation [26]. As seen, the
combined model provides statistically significant performance gains in eight out
of nine experiments. In contrast, using RefineNet alone to strengthen func-tional
coherence does not necessarily improve performance. Thus, our task-aware
optimization procedure is crucial when considering downstream applications. Fi-
nally, we note that the AAL90  parcellation is likely too coarse for the language
localization task, as reflected in the drastically lower performance metrics.

3.3 Parcellation Cohesion

Fig. 3 illustrates the average temporal cohesion of regions in the final parcella-
tion, as computed on the testing data in each repeated C V  fold. Once again, let µp

denote the mean time series in each region p. We define the cohesion C  as

V

C  =  
P  

v = 1  
|Vp| 

v�Vp 

ρ z v , µ p  . (6)

Unsurprisingly, the parcellations recovered from just using RefineNet (with no
downstream task awareness) achieve the highest cohesion. However, as shown in
Table 1, these parcellations are not always suited to the prediction task. In
contrast, the combined model produces more cohesive parcellations than the
original atlas with statistically significant improvement denoted by (��). Taken
together, attaching RefineNet to an existing model achieves a good balance be-
tween functionally-cohesive grouping and task performance.
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4 Conclusion

We present RefineNet, a flexible neural network module capable of obtaining
meaningful subject-specific and task-aware parcellations. Our Bayesian-inspired
approach considers both spatial contiguity and temporal coherence in reassign-
ment. We show significant performance gains across three different datasets and
prediction tasks when RefineNet is appended to existing networks from the liter-
ature. Finally, we show that even the task-driven refinement procedure produces
more functionally cohesive parcellations than the origial atlas. Our work is a first of
its kind, as other parcellation refinement methods are not able to be jointly
trained with existing deep networks for task-awareness. In summary, our results
show that RefineNet can be a promising tool for rs-fMRI analysis.
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