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Abstract |

Mechanical properties of extracellular matrices (ECMs) regulate essential cell behaviours, including
differentiation, migration and proliferation, through mechanotransduction. Studies of cell-ECM
mechanotransduction have largely focused on cells cultured in 2-dimensions (2D), on top of elastic substrates
with a range of stiffness. However, cells often interact with ECMs in vivo in a 3-dimensional (3D) context, and
cell-ECM interactions and mechanisms of mechanotransduction can differ in 3D. The ECM exhibits various
structural features as well as complex mechanical properties. In 3D, mechanical confinement by the
surrounding ECM restricts changes in cell volume and shape but allows cells to generate force on the matrix
through extending protrusions and regulating cell volume as well as through actomyosin-based contractility.
Furthermore, cell-matrix interactions are dynamic owing to matrix remodelling. Accordingly, ECM stiffness,
viscoelasticity and degradability, often play a critical role in regulating cell behaviours in 3D. Mechanisms of
3D mechanotransduction include traditional integrin-mediated pathways that sense mechanical properties and
more recently described mechanosensitive ion channel-mediated pathways that sense 3D confinement, with
both converging on the nucleus for downstream control of transcription and phenotype. Mechanotransduction
is involved in tissues from development to cancer and is being increasingly harnessed towards mechanotherapy.
Here, we discuss recent progress in our understanding of cell-ECM mechanotransduction in 3D.

[H1] Introduction

Over the last several decades, it has been established that cell intrinsic mechanisms are not sufficient
to explain cell behaviours, with the microenvironment playing a critical role in many, if not all, cellular
functions. Tissues consist of cells and extracellular matrix (ECM). The ECM is a scaffolding that provides
mechanical support and drives biological signalling in cells in tissues and has been recognized as a key aspect
of the microenvironment that regulates cell behaviours and phenotype. As cells push and pull on ECM during
various biological processes, the ECM initially resists these actions, as governed by ECM stiffness [G].
Stiffness is usually described by the elastic modulus, which ranges from 100s of Pascals (Pa) to several
kilopascals (kPa) in soft tissues such as brain, adipose and breast tissue, and up to 10s of kPa in muscle' (Fig.
la). As cells increase the magnitude of their pushing and pulling, the ECM resistance often increases
nonlinearly or the ECM becomes stiffer, a behaviour described as nonlinear elasticity [G] *. As cells sustain
their pushing and pulling over time, the resistance of the ECM to cell-induced deformation relaxes due to stress
relaxation [G], and the ECM undergoes creep [G] under loading, as defined by the ECM viscoelasticity [G].
Finally, permanent deformations can set in following release of forces by the cell due to ECM mechanical
plasticity [G]. These various mechanical properties of the cells impact intracellular signalling, transcription and
phenotype through feedback from the ECM, whereby cells sense and respond to mechanical cues provided by
the ECM — a process known as cell-ECM mechanotransduction.

Early studies of mechanotransduction focused on the impact of stiffness in 2D culture models on
various processes such as cell migration, proliferation, malignancy and differentiation*®. These established the
concept of mechanotransduction and have proven to be relevant to various in vivo contexts. However, a 3D
culture microenvironment is required for promoting biologically relevant behaviours in many contexts”'’. For
example, a 3D microenvironment maintains a chondrogenic phenotype'', distinguishes normal mammary
epithelial cells from breast cancer cells with only the normal cells forming growth arrested organotypic acinar
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structures'?, supports fibrillar adhesions in fibroblasts that are observed in vivo’, boosts pluripotency of human
embryonic stem cells'’, and regulates cancer cell angiogenic capability'*. Importantly, an emerging body of
evidence indicates that mechanotransduction in 3D can differ from mechanotransduction in 2D. In this Review,
we discuss recent advances in our understanding of cell—ECM mechanotransduction in 3D. First, we start by
reviewing the mechanics of various ECMs followed by the impact of ECM mechanics on various cell
behaviours such as cell spreading, migration, differentiation and other fundamental biological processes. Then,
we describe the nature of cell-ECM mechanical interactions in 3D, and the corresponding mechanotransduction
mechanisms mediated through cell membrane receptor proteins and the nucleus. Lastly, we end the Review by
describing the role of mechanotransduction in tissue development, disease and repair as well as the potential
use of these findings towards mechanotherapy.

[H1] Mechanics of ECM Components
In this section, we discuss major ECM components (Fig. 1b-c) that are implicated in tissue mechanics
and cell-ECM mechanotransduction.

[H2] Collagen-1

Type-1 collagen (col-1) is ubiquitously expressed and represents the most abundant protein in
humans'®. Col-1 forms fibrils and then fibres that range from 50 to a few hundred nanometers in thickness and
can be many microns in length. These fibres crosslink together to form col-1 networks, and reconstituted col-
1 gels are often used in 3D culture studies. Architecture and crosslinking of these networks vary substantially
based on tissue type. As cells bind to col-1 fibres through integrin membrane receptors, heterodimers consisting
of a and P subunits, with a2B1 and a1B1 integrins particularly implicated'®'”, these networks are central to
many cell-matrix interactions.

Col-1 mechanical properties are complex and often exhibit varying levels of stiffness, nonlinear
elasticity, viscoelasticity and plasticity. Individual col-1 fibrils exhibit a stiffness range of 300 MPa to 1.2 GPa,
with the increase resulting from straightening and uncoiling of triple helical structures of col-1(ref. '®).
Reconstituted col-1 gels are microporous and exhibit elastic moduli on the order of 10s to 100s of Pa at the
micro to macro scale. Col-1 networks initially resist external mechanical loading or deformation in shear or
tension through resistance of individual fibres to bending, at low strain [G] values, and then stretching of rotated
and aligned fibres, at higher strains"'® (Fig. 1d). This results in strain stiffening (nonlinear elasticity) with an
almost order of magnitude increase in stiffness with strain (Fig. 1d), which depends sensitively on the length
of fibres comprising the network®?°. Like most natural ECMs, col-1 networks are susceptible to degradation by
proteases, particularly matrix metalloproteinases [G] (MMPs)*.

Col-1 networks are formed from a combination of weak crosslinks within fibres and between fibres,
physical entanglements, and covalent crosslinks****. Enzymes such as lysyl oxidase [G] and advanced glycation
end products [G] facilitate covalent crosslinks between col-1 fibres. Increased crosslinking density restricts
bending deformation of the fibres leading to increased stiffness. Under an applied mechanical stress or strain,
unbinding of weak crosslinks within fibres or between fibres can lead to fibre lengthening or fibre reorientation
and flow, respectively, giving rise to time-dependent viscoelastic responses such as creep or stress relaxation,
and dissipating mechanical energy?*>*. Unbinding of the crosslinks leads to fibre lengthening and matrix flow,
corresponding to translational movement of the fibres, which are irreversible and stabilized by reformation of
weak crosslinks and therefore associated with plastic or permanent deformation (Fig. 1d). Thus, in col-1, weak
bonds whose breakage allows viscoelastic creep and stress relaxation also lead to plastic deformation, thereby
linking viscoelasticity to plasticity.

[H2] Fibrin

Fibrin is the major constituent of blood clots. Fibrinogen is the precursor of fibrin, which is converted
to fibrin fibres in the presence of thrombin and calcium during a blood clot. Fibrin forms a 3D branched fibrous
network with the network exhibiting weak physical crosslinks and covalent crosslinks, facilitated by factor
XIII**%, Cells bind to fibrin through integrin receptors, a3f2 specifically. Fibrin gels typically exhibit elastic
moduli on the range of 100s of Pa to the low kPas*?°. At the macroscale, col-1 and fibrin networks show
similar mechanisms for stiffness, viscoelasticity, strain stiffening and plasticity owin to structural
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similarities™**. Fibrin gels are relevant for studying mechanotransduction in wound healing and also for various
clinical applications.

[H2] Basement membrane

The basement membrane (BM) is a thin layer of ECM that separates epithelial and endothelial cells
from the surrounding connective tissue, and also surrounds muscle and fat cells?’2. It is nanoporous and the
major constituents are typically laminins, found in a layer facing cells, and type IV collagen (or col-IV), found
in a layer facing the stroma, with the two layers linked by entactin. The BM has a thickness on the order of
hundreds of nanometers to several microns. Curvature of the BM surrounding the epithelial cells may give rise
to interesting 3D cell-ECM interactions (epithelial structures are typically 3D). Cells bind to laminins through
various 1 containing integrins and a6f4 integrin. Stiffness measurements of different BMs vary from 100s
of Pa to 10s of kPa, and BM exhibits nonlinear elasticity”. In tissues, cells may sense some combination of
BM and col-1-rich stromal matrix mechanical properties, given the thickness of the BM™. Nonetheless,
increased expression of laminin-crosslinking proteins such as Netrin-4 are associated with metastasis
formation, thus indicating the role of stiffness of the BM in metastasis®'. Reconstituted BM (rBM) matrices
[G] comprise a homogenous nanoporous network formed from a mix of matrix proteins including laminin-111
and col-IV that is often used in 3D culture models of epithelia®>.

[H2] Hyaluronic acid

Hyaluronic acid (HA) is a linear polysaccharide that is present in almost every tissue. HA forms
connected or interpenetrating networks with other ECM components such as col-1, as in skin or breast, or type-
II collagen and aggrecan [G], as in cartilage. Functionally, HA is a hydration molecule because of the large
negative charge on its polymer chain that draws in water, and provides strong compression resistance. Cells
bind to HA through CD44 [G] and RHAMM [G] receptors. While HA does not engage integrin receptors, it is
implicated in mechanotransduction® and inducing specialized microtubule rich protrusive structures known as
microtentacles [G] **. Ageing and disease conditions, such as osteoarthritis or cancer, have been shown to
correlate with changes in molecular weight of HA, with higher molecular weight HA corresponding to
pathology™. However, the links of molecular weight of HA to tissue mechanics and mechanotransduction are
unclear. While naturally extracted HA does not form a gel, HA can be chemically modified with various
crosslinking groups to form elastic or viscoelastic gels*®.

[H2] Fibronectin

Fibronectin is a glycoprotein that is found in connective tissues, and often implicated in
mechanotransduction®”. Each fibronectin protein has two Arginine-Glycine-Aspartate (RGD) sequences [G]
which bind to several 1 and B3 containing integrins'’. The RGD cell adhesion peptide motif is used in many
synthetic-ECM-based cell culture studies***. In addition to the RGD domain which binds to cells, fibronectin
also has col-1 binding domains which leads to formation of fibronectin—col-1 composite networks*. Unlike
col-1 and fibrin, fibronectin does not form a fibrous network by itself or in the presence of any external chemical
factors. Instead, it relies on cells to mediate fibronectin assembly of individual fibronectin molecules into
insoluble elastic fibres. In this case, cellular forces open up the cryptic domains in fibronectin molecules that
mediate crosslinking, leading to network formation®. Fibronectin coatings are used for 2D culture studies while
fibronectin-rich matrices can be formed by fibroblasts’. The RGD cell adhesion peptide motif is used in many
synthetic-ECM-based cell culture studies.

[H2] Other ECM proteins implicated in mechanotransduction

Beyond the components described above, ECM consists of various other proteins, often referred to as
the matrisome, with some of these components implicated in mechanotransduction. For example, tenascin-C
[G] is implicated in mechanotransduction in the context of glioblastoma brain cancer’. Proteomics of breast
cancer tissues revealed the novel role of other types of collagens such as col-VI and col-XII in breast cancer
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progression *"**, Specifically, col-VI has been shown to enhance cancer cell invasion, while col-XII is indicated
in reorganization in col-1 which may be associated with col-1 remodelling during metastases.

[H2] ECM in tissues as composite networks

While the mechanics of individual ECM components are important, tissues typically consist of multiple
interacting ECM proteins, networks and cells with properties emerging from the interactions between the
different components. Indeed, reconstituted col-1, fibrin, and rBM have an elastic modulus ranging from ~10s
to 100s of Pa, which are much softer than many soft tissues (~kPa). Recent studies have demonstrated that
composites of HA and col-1 gels exhibited enhanced stiffness and delayed strain stiffening compared to col-1-
only gels*®. Further, the presence of elastin fibres, which are linearly elastic and highly resistant to
degradation®', is thought to drive elastic recovery of many tissues following bulk deformation®. Additionally,
chemical interactions of proteoglycans [G] such as small leucine-rich proteoglycans and versican [G] affect
col-1 organization®. However, clear mechanistic insights into the design rules by which various matrisomal
proteins impact col-1 organization and mechanics remains largely unclear.

In addition to the contribution of ECM components to ECM mechanics, cell interactions with ECMs
can also lead to emergent mechanical properties. For example, fibroblast contraction of nonlinear elastic col-1
gels leads to a stiffer matrix>*. Alternatively, a composite of closely packed cells and col-1 exhibits compression
stiffening similar to liver tissues, in contrast to compression softening of col-1 gels™. Taken together, these
studies indicate the importance of understanding how ECM components interact together and with cells, as
would occur in tissues, to govern the mechanical properties sensed by cells in mechanotransduction.

[H2] Tissue mimicking artificial ECMs for 3D culture

Reconstituted ECMs based on the natural ECM materials described above have several limitations in
terms of their use for 3D culture studies of mechanotransduction. Many of these are much softer than soft
tissues, with elastic moduli much less than 1 kPa (Fig. 1a; Supplementary Table 1). Further, stiffness,
viscoelasticity, ligand density, and matrix pore size and architecture cannot be modulated independently,
making it challenging to obtain definitive mechanistic insights into how these different properties influence
cell biology. To address these shortcomings, engineered hydrogels with biologically relevant mechanics and
signalling, and, importantly, independently tunable features, have emerged as powerful experimental platforms
for 3D culture studies of mechanotransduction and led to key insights into mechanotransduction as described
in the subsequent sections. Box 1 describes some of these platforms in more detail.

[H1] Impact of ECM mechanics on cells
In this section, we survey some key trends between variation in specific ECM properties and their
impact on various biological processes, focusing on adherent cells (Table 1 ).

[H2] Cell spreading

Mesenchymal and epithelial cells spread in 2D and 3D by taking different morphologies such as
spherical, spindle-like, or irregular shapes with different protrusions such as lamellopodia [G], filipodia [G],
and invadopodia [G]. In 2D culture, increased stiffness generally promotes cell spreading®. In 3D, cell
spreading proceeds in microporous ECM that are sufficiently stiff °’, but is restricted in nanoporous ECM.
Covalently crosslinked elastic hydrogels typically restrict cell spreading in 3D****°_ Contrastingly, viscoelastic
hydrogels with sufficient stress relaxation or plasticity***"* or hydrogels that undergo degradation due to
hydrolytic or protease activity*, allow cell spreading. Cell-adhesion ligands, such as RGD cell adhesion peptide
motifs, are required for cell spreading in both 2D and 3D, though very high ligand density diminishes cell
spreading®. Finally, ECM geometry, or structural features at the scale of tens to hundreds of microns such as
curvature and patterning of celllECM adhesion ligands, also impact cell spreading in both 2D* and 3D
contexts®*%,

[H2] Cell migration



204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Cell migration occurs during development, wound healing, immune trafficking, and cancer
metastasis®®®’. On 2D substrates of increasing stiffnesses, migration often follows a biphasic pattern with higher
levels of migration at intermediate stiffness values®® . Further, different cells sense and migrate along positive
and negative gradients of substrate stiffness — a process termed durotaxis®’'’?. In 3D ECMs, various
properties have been implicated in regulating cell migration. If pore size of the ECM is above roughly 3 um in
diameter, cells can migrate robustly by squeezing through the pores®”’*’*, and migration can be guided by
matrix architecture and alignment of fibres’”. In ECMs with smaller pore sizes, cells can generate channels to
migrate either using proteases to degrade the ECM**">7® or forces to mechanically open channels to migrate
through, if the ECM exhibits sufficient matrix mechanical plasticity, a property often linked to viscoelasticity’”
7 Notably, interstitial fluid flow, which is dependent on matrix porosity, has also been shown enhance cell
migration in 3D®,

[H2] Matrix secretion

Cells not only degrade the ECM but also secrete nascent ECM®* in 3D culture. Hydrogel
viscoelasticity regulates ECM production by chondrocytes®® and MSCs®, with cells forming a more
interconnected cartilage-like or bone-like ECM in fast relaxing hydrogels. Similarly, ECM degradability allows
chondrocytes to form a cartilage-like matrix®®. Overall, cells respond to ECM properties by secreting
endogenous ECMs, resulting in a feedback mechanism that fine tunes cell-ECM interactions.

[H2] Stem cell differentiation

Stem cell differentiation occurs during development and homeostasis, and controlling stem cell
differentiation is a critical goal in many applications in regenerative medicine®’. Early 2D cultures studies
showed that substrate stiffness regulates stem cell differentiation and illustrated the concept that matching
native tissue stiffness promotes differentiation down that tissue-specific pathway in vitro in some stem cell
types*®*®. For example, culture of mesenchymal stem or stromal cells [G] (MSCs)*® on stiff substrates, with a
modulus approaching that of pre-mineralized bone, promotes osteogenic differentiation whereas culture on soft
substrates, with a modulus approaching adipose tissue, promotes adipogenic differentiation®**°. Similar
findings hold for differentiation of neural stem cells’'. In other contexts, such as skeletal muscle stem cells,
substrates with physiological stiffness can promote self-renewal®®. Differentiation is also mediated by cell
adhesion ligand density and type and viscoelasticity in 2D°***7, Finally, 2D ECM geometry has been shown
to influence MSC differentiation® as well as embryonic stem cell differentiation into mesoderm * via
regulation of cell shape and cytoskeletal tension.

In 3D, some similar trends emerge, with viscoelasticity and degradation playing a more prominent role.
In viscoelastic ECMs, soft substrates promote adipogenic differentiation and stiff substrates promote
osteogenic differentiation of MSCs, similar to the findings from 2D***’. Osteogenesis is enhanced with faster
stress relaxation®, and stress stiffening of soft substrates can support osteogenic differentiation'®. In covalently
crosslinked hydrogels, degradability is required for osteogenesis®’. Mechanical cues have been shown to impact
fate in other stem cells populations in 3D, as well as monocyte differentiation'”'™. Additionally, ECM
architectural features such as fibre diameter and alignment have been shown to influence MSC differentiation®.

[H2] Cell division

Every cell arises from a cell division event, and cell division underlies development and tumour growth.
In 2D, increased stiffness promotes cell proliferation®*!%, In 3D, covalently crosslinked elastic matrices that
are nanoporous restrict cell division, while faster stress relaxation in viscoelastic matrices, or increased matrix
degradability, allows cell division and proliferation in nanoporous matrices**'%*!%

[H2] Apoptosis

Apoptosis, or programmed cell death, is necessary for proper tissue homeostasis and aberrant
regulation of apoptosis is a hallmark of cancer. In 2D, soft substrates or confining geometries that limited spread
area led to higher levels of apoptosis®®*. In 3D, apoptosis is triggered during cell migration through confining
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pores™ or through cell volume restriction in microwells in a stiffness dependent manner'®’, and is also
modulated by matrix viscoelasticity®'.

[H2] Morphogenesis

Morphogenesis is a complex multi-cellular process wherein cells self-organize to form 3D structures
with specialized form and function'®. While collective cell interactions are often emphasized in
morphogenesis, there is increasing research emphasizing the role of 3D microenvironment, including matrix
degradability and viscoelasticity as central factors regulating morphogenesis in organoid models. Organoids
are multicellular structures that capture specific features of organs. rBM matrices, which are widely used for
organoid culture are inherently viscoelastic and enzymatically degradable'®. Degradable gels promote
apicobasal polarization and lumen formation in MDCK cysts''?, support viability and formation of budded
intestinal organoids containing differentiated cell types via symmetry breaking mechanisms,''""!'? but restrict
progenitor cell phenotype in neural tubes cultures in vitro and in intestinal organoids'''"'"*. Viscoelasticity
modulates lumen formation in organoid cultures of human pluripotent stem cells (hPSCs)*!, in endothelial
vasculogenesis'' and during crypt budding in intestinal organoids''®. Further, adhesion ligand density and type
affect formation of intestinal organoids''' and lumens in MDCK cysts''® and hPSCs*'. ECM geometry has
recently been shown to guide intestinal organoid formation and improve reproducibility of organoids formed®.

Finally, stiffness controls cell survival''' and tissue budding''” in intestinal organoids, and mimicking stiffness

of native tissues enhances liver organoid formation'®.

[H2] Cancer progression

ECM mechanics regulate emergence of a tumour phenotype''’. In 2D and 3D, increasing substrate
stiffness over the range detected during breast cancer progression promotes induction of a malignant phenotype
in models of normal mammary epithelium''*'>2, This same impact has been shown in other cancers as well, as
we will describe later. ECM geometry also influences cancer progression and collective invasion by controlling
cell shape and subsequently, cell phenotype in both 2D'* and 3D microenvironments®*'*,

[H1]Cell-matrix interactions in 3D
Here we describe key features of cell-ECM interactions and force generation in 3D (Fig. 2), which
ultimately underlie 3D mechanotransduction.

[H2] Cell-ECM adhesions

Cell adhesion signalling in 3D varies from that observed in 2D in several ways. Cells on 2D substrates
form adhesions with ECM only on one surface, whereas cells can form adhesions in all directions in 3D, which
impacts cell signalling. For example, mammary epithelial cells grow rapidly on 2D tissue culture plastic
substrates, but form growth-arrested, organotypic acinar structures in 3D culture in rBM matrix'%.
Establishment of 3D matrix protein interactions, and not matrix per se, is sufficient for acinar morphogenesis
as even on 2D rBM substrates cultured in media with the addition of soluble rBM proteins, thereby allowing
cells to bind to these proteins in all directions, acini formation is observed'*. How signalling activation across
the entire cell surface leads to a different outcome than signalling across one bottom surface remains unclear.

Further, the structure of adhesions differ in 3D relative to 2D. Cells in most currently used 3D hydrogels
(with some exceptions) typically do not form large focal adhesions [G] that are connected to robust actin stress
fibres'?*'>®. In nanoporous hydrogels, which unlike fibrillar hydrogels are more homogeneous and have
nanometer-sized pores, distinct adhesive complexes are often not observed, whereas in fibrillar matrices,
fibrillar adhesions [G] often form that co-localize with matrix fibres, and exhibit distinct phosphorylation of
adhesion complex proteins such as paxillin and focal adhesion kinase [G] (FAK) relative to canonical focal
adhesions™'?*'%. By contrast, while adhesion complex formation also varies in 2D culture, substrates with
sufficient stiffness and ligand density typically lead to formation of focal adhesions. Further, in 3D, cells
typically lack the thick contractile actomyosin stress fibres spanning the cell length that are characteristic of
2D cell culture on stiff ligand-dense substrates'?®. Cells in 3D typically have an actin shell cortex at the cell
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membrane, however, the molecular architecture of the actin meshwork and actomyosin machinery in the cell
cortex remains unclear owing to limitations in the spatial resolution of microscopy for 3D culture.

[H2] Confinement

In 2D, cells can spread out on the substrate or change their volume unrestricted, whereas in 3D, changes
in volume and shape are physically resisted, or confined, by the surrounding ECM (in addition, the ECM can
restrict nutrient transport)'®. Level of confinement is determined by ECM pore size'*’ and properties such as
viscoelasticity*” and degradability®. A pore size of around 3 um in elastic gels or structures with rigid pores
serves as a barrier to cell migration because the relatively stiff nucleus cannot be deformed through smaller
pores” . However, physiological matrices are not elastic with rigid pores, but are typically viscoelastic™,
exhibit mechanical plasticity’>"*' and are degradable'*?, allowing expansion of pores by cellular forces and
protease mediated degradation. For example, degradation of ECM can convert even an elastic matrix to a
viscoelastic fluid-like matrix'**, opening up pores for cell migration**”*'** and promoting MSC spreading, force
generation and differentiation®. Viscoelastic and viscoplastic matrices dissipate mechanical stresses, undergo
matrix creep under loading, and exhibit irreversible deformations in response to force, allowing cells to generate
space in the ECM, reducing confinement. As such, viscoelasticity and viscoplasticity enable cell spreading'??,
cell volume expansion®', cell growth for division'*, proliferation of multicellular structures'®, deposition of
matrix extracellularly®, and cell migration independent of proteases’’. Thus, in 3D, cell confinement is
governed by ECM pore size, viscoelasticity and plasticity, and degradability. Natural ECMs exhibit all these
properties including viscoelasticity, plasticity and degradability, allowing cells in vivo to remodel the matrix
and potentially alter confinement.

[H2] Cell-ECM forces

In 2D and 3D, contractile or pulling forces generated by actomyosin machinery represent a major
modality of force generation, but several additional modalities of force generation become accessible to cells
in 3D. 3D traction force microscopy [G] techniques have enabled quantification of cell generated forces by
measuring matrix deformations and estimating stresses using theoretical models of matrix properties'>’'.
These studies, and other studies using these techniques, show that cells exert contractile forces on ECMs
through integrin-based adhesions in 3D. Indeed, it has long been known that fibroblasts cultured in a collagen
gel will continuously contract the gel'*’. Owing to the differing structure of both the adhesions and the
contractile actomyosin machinery, the capabilities of contractile force generation in 3D likely differ from 2D,
though the precise differences remain unclear.

In 3D, cells also generate protrusive forces. Polymerization of branched actin networks generates
protrusive forces'*!. In 3D, using adhesions or steric support of the matrix, cells apply these protrusive forces
onto the ECM, in the form of structures such as invadopodia [G] , filopodia [G], or lamellipodia [G]*®7714%!143,
Alternatively, extension of the microtubule-based spindle generates outward protrusive forces during
mitosis'**!'**. Any process resulting in shape change in confining 3D ECMs must necessarily generate some
combination of protrusive and contractile forces.

Similarly, any process involving increased cell volume in confining 3D matrices necessarily requires
force generation. Cell volume is a tightly controlled parameter that is crucial for cell survival and function'*>'%6,
Cell volume is governed by the combination of osmotic pressure and hydrostatic pressure differentials between
the intracellular and extracellular space. To increase volume, cells generate osmotic pressure by increasing the
concentration of ions inside the cells via activity of ion pumps and channels'**'*’. This draws water into cells
both by diffusion across the cell membrane and transport via water channels such as aquaporins, thereby
causing volume expansion'®. Cell volume expansion can occur both globally and locally. For example, in 3D
confining matrices, nuclear entry into thin protrusions acts as a piston'* to pressurize protrusions by opening
ion channels which subsequently generates osmotic and hydrostatic pressure to expand the protrusion and
expand the ECM pore to create a track allowing cell migration”. Water flux however does not necessarily
indicate volume changes as directed water flow across the cell can drive cell migration'*’. Overall, cells
generate localized contractile and protrusive forces on ECM, as well as global outward forces during cell
volume expansion, in 3D.
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[H2] ECM stresses in 3D

Cellular forces on ECMs in 3D result in complex mechanical stress fields, which in turn act upon other
cells as well as trigger feedback mechanisms in cells applying these forces. These force fields in the matrix can
be interpreted in the form of a combination of hydrostatic and deviatoric components. Hydrostatic stresses [G]
are dilational in nature or act to change ECM volume, or from the cellular perspective, oppose or promote cell
volume changes. For example, as tumour cells proliferate in spheroids in 3D, hydrostatic stresses are generated
which mechanically oppose tumour growth'>*!*!, Deviatoric stresses [G] , on the other hand, are distortional in
nature and act to change morphology while preserving volume. Such distortional stresses are necessary for
matrix remodelling and fibre alignment, which in turn promote cell spreading and migration'***. The extent of
cell deformation and morphology change due to these stresses are dependent on cell mechanical properties.
Cells actively regulate their cytoskeletal and nucleoskeletal proteins as well as fixed charges (the net electric
charge of all intercellular components that cannot freely diffuse out of the cell) and concentration of
macromolecules, determining the viscoelasticity, poroelasticity, [G] and non-linearly elasticity of the cell**',
Such emergent mechanical properties of a cell result in a net bulk modulus which determines to what extent
the cell is able to resist a change in volume and a shear modulus which determines the cell’s resistance to
distortion. The cell bulk modulus is on the order of MPa to GPa, whereas the shear moduli are on the order of
kPa'>*. Thus, volume changes in cells must be regulated actively, since the bulk modulus is so much higher
than typical physiological stresses in soft tissues resulting from cell generated or externally applied forces.
These moduli determine a cell’s ability to change volume and navigate confining environments. For example,
nuclear stiffness governs cell migration through confining spaces’*'>>'*’. Overall, cell mechanical properties
in conjunction with matrix stresses dictate cell morphology and behaviours such as migration and
differentiation in 3D.

[H2] Cell-ECM mechanical feedback

As cells interact with physiological ECMs in 3D, the interactions are dynamic as matrix properties
change over time due to matrix viscoelasticity (relaxation, creep), plasticity, degradation and matrix deposition.
Natural ECMs dissipate forces and flow over time due to viscoelasticity and degradability, and undergo
permanent deformation due to plasticity. Further, these interactions depend on force or deformation scales (or
magnitudes) due to nonlinear elasticity of the ECM, whereby matrix resistance increases with increased
magnitude of force or deformation, thereby supporting the generation of higher cellular forces and forming a
positive feedback loop. Thus, timescales and magnitudes of cellular forces exerted on their 3D
microenvironment are critical. For example, actomyosin contractile forces applied on ECM fibres generate
distortional stress and locally align fibres'*®. In non-linear, elastic ECMs such as collagen, this fibre alignment
increases local stiffness of the matrix which in turn promotes higher force generation and increases cell stiffness
revealing a positive mechanical feedback loop between cells and matrix'®. Interestingly, fibroblasts exploit
non-linear elasticity of the ECM and mechanical feedback loops to migrate by generating fibre alignment and
higher forces at the front of a migrating cell as compared to the rear'®. By contrast, in linear elastic ECMs such
feedback loops are absent which prevent higher force generation and lamellipodia formation®”'*!. Similar
feedback loops are observed between cellular pushing forces and matrix viscoelasticity or plasticity®>’"162163,
In confining nanoporous ECMs, cancer cells apply protrusive forces to deform the ECM and in sufficiently
plastic ECMs, such forces lead to permanent matrix deformations, which in turn promote growth of protrusions
and result in larger pores for cell migration. In addition, deposition of matrix by cells, for example MSCs
secreting matrix proteins such as fibronectin, laminin and collagen, leads to formation of an endogenous ECM
that the cell interacts with, and can mediate mechanotransduction®*'**. Thus, dynamic cell-ECM interactions
and positive cell-ECM feedback loops orchestrate cell behaviours in 3D.

[H1]Mechanisms of 3D mechanotransduction

In this section, we discuss mechanisms of 3D mechanotransduction mediated through two major
classes of membrane proteins, integrins and mechanosensitive ion channels [G], and how these two pathways
converge on the nucleus (Fig. 3). Many of these 3D studies were performed in hydrogels with independently
tunable stiffness, stress relaxation and degradability (see Box 1).
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[H2] Integrin-mediated mechanotransduction

Similar to their role in 2D (Box 2), integrins have been identified as central regulators of
mechanotransduction in 3D, often through integrin clustering. For example, increasing stiffness of col-1 rich
gels used to culture mammary epithelial cells in 3D from 100s of Pa to kPa (as is observed during breast cancer
progression) — through either increased col-1 density or crosslinking, — promotes a malignant phenotype
characterized by elevated proliferation and invasion into the surrounding matrix through o5 and 1 integrins
and integrin clustering''>'?’. Integrin binding to stiff ECM in dense col-1 gels leads to activation of FAK,
activated Rho signalling [G] , and increased cell contractility, causing integrin clustering''>1?%!%_ These events
lead to downstream activation of the Ras-mitogen-activated protein kinase (MAPK) and phosphatidylinositol
3-kinase (PI3K) pathways, both activated during breast cancer progression, which promote the growth of a
tumour and invasion'®. Interestingly, an opposite trend was observed when mammary epithelial cells were
cultured in interpenetrating networks of rBM and alginate, used to mimic pre-invasive breast cancer where cells
are surrounded by BM; in this scenario, increased stiffness inhibited formation of clustered a6B4 integrin-
containing adhesions, thereby promoting an invasive phenotype through activating Rac1 and PI3K '*?. Together
these data indicate that stiffness- and ligand-mediated clustering of multiple integrin types plays a critical role
in 3D mechanotransduction in cancer cells and cancer progression.

Integrin-mediated mechanotransduction also plays a central role in how stiffness, degradability, stress
relaxation and stress stiffening regulate differentiation of stem cells. MSCs encapsulated in ionically
crosslinked RGD-coupled viscoelastic alginate hydrogels with an elastic modulus in the range of 11-30 kPa
differentiated into osteoblasts, in an integrin-mediated manner, whereas those cultured in lower stiffness gels
underwent adipogenesis. The differentiation state was associated with integrin clustering, with maximum levels
of integrin clustering associated with optimal osteogenic differentiation. Integrin clustering was driven by
contractility mediated forces. Interestingly, in covalently crosslinked non-degradable HA-hydrogels, hydrogel
stiffness did not impact differentiation, with adipogenesis observed from 1 kPa to 100 kPa. Instead,
degradability of the HA hydrogels was required for osteogenesis, with MSCs able to exert larger integrin-
mediated tractions with increasing degradability®. Further, in another study, increased rate of stress relaxation
in RGD-coupled alginate hydrogels with a 20 kPa modulus promoted enhanced osteogenic differentiation of
MSCs, and differentiation was associated with integrin clustering®’. Importantly, cell morphology was
decoupled from osteogenic differentiation in all of these studies, in contrast to the result in 2D where 2D
morphologies are distinct for adipogenic, and osteogenic differentiation *°. Finally, stress stiffening in 0.2-0.4
kPa polyisocyanate hydrogels also led to integrin clustering in MSCs and shift of differentiation from
adipogenesis to osteogenesis'®. These studies are consistent with the concept that the extent to which the matrix
can be remodelled, facilitated by either viscoelasticity or degradability, and some minimum level of tension
across the integrins, mediated by the stiffness and nonlinear elasticity, are required for osteogenesis. In
vasculogenesis of endothelial progenitor cells (EPCs), ECM viscoelasticity along with hypoxic environment
promote the aggregation of EPCs through contractility-mediated integrin clustering''*!¢,

While there are similarities between 2D and 3D integrin-mediated mechanotransduction pathways, key
differences have been implicated. This is suggested by the differences in adhesion structures and the actin
cytoskeleton, with cells not exhibiting focal adhesions or stress fibres in most 3D conditions, as described in
the previous section. Indeed, cell morphology was decoupled from osteogenic differentiation of MSCs in 3D
394060 in contrast to the result in 2D°%, and some studies have even demonstrated integrin-mediated osteogenic
differentiation in 3D is independent of contractility'°*'®’. However, in contrast to the well-known pathways and
events following integrin—ECM binding in 2D culture, there is limited available information on downstream
molecular events following integrin engagement in 3D. Further, the application of the molecular clutch
mechanism, broadly implicated in 2D mechanotransduction (Box 2), towards 3D contexts remains to be tested.
These highlight the gaps in our understanding of integrin-mediated mechanotransduction in 3D.

[H2] Confinement sensing by cell volume regulation

Recent work has pointed towards the role of active regulation of cell volume and activation of
mechanosensitive ion channels in 3D mechanotransduction, particularly in the context of sensing mechanical
confinement. For example, chondrocytes increase their overall volume with increased stress relaxation of
alginate hydrogels without integrin-binding ligands, and increased cell volume promoted enhanced cartilage
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matrix deposition and the chondrogenic phenotype™. Similarly, cell volume is shown to regulate various
intracellular events such as actin organization, nuclear accumulation of histones, YAP/TAZ [G] localization,
nuclear shape, and focal adhesions for MSCs cultured in 3D PDMS microwells'®. Cell volume expansion is
possible in degradable hydrogels or hydrogels with fast stress relaxation, but necessarily restricted in more
confining elastic hydrogels. Hence, cell volume regulation has been recognized as an important mediator of 3D
mechanotransduction.

Mechanosensitive ion channels, particularly TRPV4 channels, have emerged as key sensors of changes in
cell volume. In MSCs cultured in RGD-coupled alginate hydrogels of different time scales of stress relaxation
with same initial stiffness, faster stress relaxation leads to increased cell volumes associated with activation
of TRPV4 ion channels®'. Increased calcium influx through TRPV4 activation drives nuclear localization of
RUNX2, a transcription factor involved in osteogenic differentiation. Similarly, in the context of cancer cell
proliferation in confining alginate hydrogels, cell growth during the G1 phase of the cell cycle activated a
TRPV4-PI3K-AKT-p27 signalling axis that drove S-phase progression and proliferation'®. However,
increased confinement in more elastic gels blocked cell growth and activation of this pathway. Further, TRPV4
was linked to cell volume expansion and mechanical confinement-sensing in chondrocytes, and controlled
phosphorylation of GSK3pB (glycogen synthase kinase 3B), an enzyme associated with osteoarthritis'®. In
myofibroblast activation, increased stiffness induces TRPV4 activation and YAP nuclear localization
suggesting a regulatory role of TRPV4 in mediating YAP nuclear shuttling and signalling'”. Connecting cell
volume to activation of mechanosensitive ion channels is membrane tension'’. Piezo1, a mechanosensitive ion
channel central to force-sensing in many contexts'’?, has also been implicated in some of these studies'**'”!,
but its role in responses to ECM-mediated confinement remains less clear. Together these studies indicate that
confinement regulates cell volume expansion, and as cell volume expands, membrane tension increases,
activating mechanosensitive ion channels, allowing the passage of ions across the membrane, which in turn
activate various signalling pathways to drive mechanotransduction.

Several key questions remain regarding this mode of mechanotransduction. For example, it is unclear what
initiates cell volume expansion in many of the aforementioned studies. Moreover, it has been observed that
integrins are also implicated in mechanotransduction in parallel with mechanosensitive ion channel mediated
mechanotransduction. For example during MSC differentiation**, cells utilize integrin-binding and clustering
in addition to TRPV4-mediated volume expansion to regulate their differentiation pathways, suggesting the
possibility of interactions or crosstalk between integrin-mediated and ion channel-mediated pathways. In
another connection, the findings on the role of mechanosensitive ion channels in cell-ECM
mechanotransduction complement findings on the role of these channels in force-mediated
mechanotransduction, including application of stretch and shear, indicating the potential for crosstalk between
these distinct modes of mechanotransduction'”'7*,

[H2] Nuclear mechanotransduction

As the center of transcription, the nucleus is a key element of mechanotransduction pathways
downstream of both integrin and mechanosensitive ion channel mediated routes. The membrane of the nucleus
is mechanically linked to the actin cytoskeleton through linker of nucleoskeleton and cytoskeleton (LINC)
complexes comprising of nesprins and SUN (also known as Salp in yeast and UNC-84 in C. elegans). Forces
from actomyosin based contractility, which acts extracellularly on ECM in both 2D and 3D environments, also
can be transmitted to the nucleus through LINC complexes leading to mechanical deformations of the
nucleus'”. However, a clear mechanism associating cellular forces to nuclear deformation in 3D is still unclear,
in part due to lack of clarity over the actin cytoskeletal structure for cells in 3D. Below we discuss key nuclear
changes observed in cells cultured in 3D and linked to mechanotransduction.

[H3] Nuclear morphologies. 2D studies have demonstrated change of nuclear morphology as a clear
indicator of mechanotransduction associated with various outcomes, such as epigenetic remodelling, shuttling
of transcription factors such as YAP/TAZ and cell fate changes'”®. However, nuclear morphologies in 3D differ
significantly from those observed in 2D cell culture models. For example, projected nuclear areas and
circularity are similar for mammary epithelial cells and pluripotent stem cells in vivo and in 3D culture
models*!"'?°, but significantly higher in 2D'**. Further, both increased stiffness and increased degradability leads
to increased nuclear wrinkling in 3D'?”'"®, whereas increased stiffness has opposite effect on nuclear wrinkling
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in 2D'®, Mechanosensitive ion channels in the nucleus, recently implicated in cell migration in confining
microenvironments'>>'>%, could potentially play a role in responding to morphological changes in the nucleus
in 3D. Together these indicate that nuclear mechanotransduction mechanisms in 3D are likely different from
2D.

[H3] Regulation of transcription factors. RNA-seq studies show that changes in hydrogel stiffness,
stress relaxation and ligand type and density each are associated with large changes in gene expression in
different cell types'**'””. Whereas YAP/TAZ coregulators have been described as universal
mechanotransducers in 2D culture studies, their role in 3D mechanotransduction is context dependent.
Increased stiffness, faster stress relaxation, and increased degradability promote enhanced YAP/TAZ nuclear
localization in MSCs in 3D**'7%. However, YAP localization was decoupled from osteogenesis induced by
stiffness ““°!. Further, in a 3D culture model of pre-invasive breast cancer, YAP was not required for
mechanotransduction, consistent with in vivo observations'?®. Instead, transcription factors such as STAT3,
p300, and Sp1 were implicated'?*'?’. Contrastingly, YAP is found to play a role in 3D mechanotransduction in
gastric cancer. Moreover, in 2D, YAP/TAZ localization was observed in the absence of nuclear wrinkling176,
while in 3D'”®, nuclear wrinkling is correlated with YAP/TAZ localization. In neural stem cell differentiation,
stiff ECM is associated with nuclear localization of transcription factor EGR1 in 3D but not in 2D, and this
occurs in the absence of integrin-based adhesions'”. In MSCs, soft ECM increases the clustering of
inflammatory receptor, tumor necrosis factor-a (TNF-a), which further activates nuclear factor kB (NF-kB)
and expression of chemokines and cytokines that promote monocyte recruitment and differentiation'®. These
set of studies highlight the role of transcription factors in mediating mechanotransduction in 3D. However, how
these different transcription factors are regulated by mechanical properties of the ECM, remains a key open
question.

[H3] Epigenetic regulation of chromatin accessibility. Several recent studies have pointed to a key
role of chromatin accessibility in mediating mechanotransduction. In the 3D culture model of pre-invasive
breast cancer, increased ECM stiffness induced broad changes in chromatin accessibility mediated by histone
deacetylases 3 and 8, with chromatin becoming much more open'?’. Increased chromatin accessibility then
allowed binding of the Spl transcription factor, which led to downstream changes in gene expression that
functionally mediated the malignant phenotype. In a gastric cancer study, increased ECM stiftness led to YAP
translocation into the nucleus in coordination with DNA demethylation and increased chromatin accessibility
of YAP promoter region, together inducing the tumorigenic phenotype'”®. Interestingly, this is in contrast to
recent 2D studies where chromatin accessibility in fibroblasts decreased with increased stiffness, which led to
compaction of chromatin promoting persistent activation of fibroblasts'®'. In addition to stiffness, matrix
degradability affected chromatin organization in neural progenitor cells, where chromatin accessibility was
increased with enhanced degradability'®?. Thus, chromatin accessibility has emerged as a key regulator of 3D
mechanotransduction, though how this is regulated and functions in different contexts , and why effects may
be different from 2D studies, remain to be determined.

[H1] Mechanotransduction in tissues

In this section, we describe some selected examples of how cell-ECM mechanotransduction is thought to
play arole in tissue physiology (Fig. 4, 5), highlighting the ubiquity and importance of 3Dmechanotransduction
in vivo.

[H2] Development

Cell-ECM interactions and mechanotransduction are implicated in multiple stages of
development'®*!'®*, During peri-implantation development, BM secretion enables apicobasal polarization and
formation of epiblast cavity'®. During gastrulation, localized degradation of the BM mediates migration of
primitive streak, establishing the body axes in mice'*® (Fig. 4), whereas differences in cell stiffness drive flow
of cells and internalization of the gastrulating furrow'®’. Fluidization and rigidity transition of tissues —
whereby tissues switch from being solid-like to fluid-like and vice versa — are recurring themes for processes
that shape tissues during development and have recently been linked to changes in ECM-dependent
confinement '"**'%_ Further, migrating neural crest cells generate a stiffness gradient via N-cadherin mediated
cell-cell interactions that they then follow using durotaxis'®!. At later stages of development, compaction of
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col-1-rich ECM by cell intercalation and contractility enables budding and branching of epithelia in salivary
glands'? and in mesenchymal condensates (densified mesenchymal structures that deform during epithelial

morphogenesis)'®.

[H2] Homeostasis and regeneration

In adults, mechanotransduction-regulated behaviours maintain homeostasis and normal activity.
Fibroblasts in stromal tissues maintain or modulate a state of tensional force by contracting against their
surrounding col-1-rich stromal ECM to maintain mechanical homeostasis, a state of mechanical
equilibrium'*'%. Differentiation or maintenance of stemness in stem cells, or maintenance of normal
phenotypes in differentiated cells, are often supported by stiffness, and in some cases viscoelasticity, of the
niche’**#2 When mechanisms maintaining normal tissue function become disrupted, diseases such as
fibrosis and cancer, both discussed in the following sub-sections, can occur'®®, as can other diseases such as
osteoarthritis'®, polycystic kidney disease'®” and aneurysms'*®.

Mechanotransduction is also implicated in regenerative processes. For example, the hematoma that
follows a bone fracture is highly viscoelastic, and such viscoelasticity has been found to be necessary for
infiltration of MSCs and promoting osteogenesis of the MSCs in vivo*"’®!® (Fig. 5b).

[H2] Ageing and fibrosis

Ageing disrupts tissue properties and alters homeostatic mechanosensation further reinforcing disease
phenotypes®®. Skin BM exhibits characteristic thinning with increasing age®”’, whereas BMs in the retina and
blood-brain barrier thicken *°'. In stromal matrices that fill up soft tissues and are rich in type-1 collagen,
buildup of advanced glycation end products and increased non-enzymatic crosslinking of col-1 results in
pockets of stiff matrix while matrix metalloproteinase-driven matrix degradation softens other regions of the
stroma, resulting in highly heterogeneous collagen networks with low solubility*® resulting in fibroblast
senescence’” and reduced motility?”. These changes alter epithelial and mesenchymal cell phenotypes, and
result in positive feedback between changes in cell phenotype and ECM structure which increase the risk of
diseases such as fibrosis and cancer***2*42%

Tissue fibrosis involving excessive deposition of ECM and aberrant tissue mechanics and is implicated
in many deaths®®. Persistent activation of fibroblasts to a myofibroblast phenotype is responsible for poor
prognosis of fibrotic diseases, and is driven by altered mechanosensing'®'. As opposed to regenerative wound
healing, fibrosis leads to scar formation wherein excess secretion’’ and alteration of collagen architecture®”’
leads to differentiation of fibroblasts to myofibroblasts, which in turn reinforce the fibrotic niche’® (Fig. 5c).
Fibrosis of the bone marrow, or myelofibrosis, increases marrow stiffness and reduces stress relaxation,
promoting monocyte differentiation towards dendritic cells, thus promoting a pro-inflammatory

microenvironment and disease progression'*.

[H2] Cancer

Although at the root of cancer are mutations that activate oncogenes and inactivate tumour suppressor
genes, as well as changes in gene copy number resulting from genomic instability, there has been increased
recognition that the tumour microenvironment, including ECM mechanics, plays a key role in restraining or
promoting tumour progression'’*”. In breast cancer, enhanced mammographic density, associated with
increased ECM stiffness, has been a well-known risk factor for disease progression®'®?!!. Increased ECM
stiffness is associated with increased col-1 density and elevated crosslinking of the col-1, and likely results
from the activity of cancer associated fibroblasts and tumor associated macrophages®'*?!*. Increased ECM
stiffness promotes a more proliferative and invasive phenotype in breast cancer''®'?*'* (Fig. 5d). Matrix
mechanical plasticity and degradation of the stromal matrix mediate formation of collagen tracks that
carcinoma cells utilize to migrate away from the tumour’”*"*, Similarly, increased stiffness and more fibrillar
col-1 has been linked to other cancers including pancreatic ductal adenocarcinoma?'>*', glioma brain cancer*,
colorectal cancer’!’, lung cancer®'®, hepatocellular carcinoma?"’ and cutaneous squamous cell carcinoma®’.
Changes in viscoelasticity are also associated with breast cancer progression®!, brain cancer’??, and liver
cancer’”, and likely other cancers, and also regulate tumour spheroid growth in vitro'*®; however the functional
significance of these changes in viscoelasticity to disease progression in vivo are unclear.
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[H1] Conclusions and perspectives

Mechanotransduction of cells in 3D impacts various cellular behaviors, which play a key role in many
aspects of tissue physiology from development to disease. 2D culture models are sufficient for capturing critical
aspects of mechanotransduction in vivo in some contexts; in other contexts, 3D culture is required. In 3D
culture, it has become clear that stiffness, viscoelasticity, plasticity, and degradability are key parameters
regulating cell behaviours (Table 1). Confinement has emerged as a key aspect of the mechanical
microenvironment in 3D. Mechanosensitive ion channel-mediated sensing of confinement can, at least in some
cases, complement integrin-mediated mechanotransduction pathways to regulate nuclear morphologies,
chromatin accessibility and transcription factor activity, which in turn regulate gene expression and cell
phenotype.

Despite these major insights, key gaps in our knowledge of cell-matrix mechanotransduction in 3D
remain, as we have highlighted throughout the Review. Beyond integrins and mechanosensitive ion channels,
it remains relatively unclear how mechanical cues are transduced in the 3D context. Specifically, subcellular
cytoskeletal structures, downstream mechanotransduction molecules, the specific pathways, chromatin
remodelling enzymes and events and set of transcription factors that mediate mechanotransduction remain to
be uncovered. Promisingly, there are a large set of tools emerging that can potentially be applied to 3D culture.
Spatiotemporal control of local hydrogel properties®** and single cell microencapsulations®*® provide more
tailored control of local cell microenvironments in 3D. Super resolution imaging techniques®*® suitable for 3D
can reveal the structure of integrin-based adhesions, the actin cytoskeleton, and the actomyosin machinery of
cells in 3D, as well as actin adaptor proteins such as talin and vinculin, and the spatiotemporal dynamics of
Rho GTPase activation as indicated by FRET [G] based sensors??’. Further, genome-wide assays such as RNA-
seq and single-cell RNA-seq for gene expression or ATAC-seq [G] for chromatin accessibility, and genome-
wide CRISPR screens tailored for 3D assays**® can identify mechanotransduction regulators unique to 3D.

In addition to the need for deeper mechanistic insights, there is also a critical requirement for studies
on in vivo relevance. This has been done in a number of contexts often by associating measured tissue
mechanics with biological signatures (i.e. gene expression or transcription factor activation) predicted from 3D
culture studies, or by perturbing key mechanotransduction regulators in vivo, such as FAK or YAP, and
examining the downstream effect. Clever approaches to directly modulate stiffness and viscoelasticity in vivo,
or perturb novel downstream regulators, could further increase confidence in the relevance of the causal,
mechanistic insights reported in in vitro studies. Furthermore, although the role of mechanotransduction
pathways in development and cancer have been studied heavily and are becoming increasingly clear, the role
of mechanotransduction behaviours in other contexts including homeostasis, regenerative processes, ageing,
various other diseases, and in immune cell activity require significant additional effort.

These future efforts in mechanotransduction are likely to be very impactful. Beyond providing a
fundamental understanding of cell and tissue physiology, these studies can advance the rapidly emerging area
of mechanotherapy, which holds great promise for medicine. In a recent mice study**’, fibrosis induced by stiff
(~MPa) silicone implants, which are used in breast mastectomy, was reduced by encapsuling the stiff implants
in soft silicone implants (~kPa). Relatedly, another study®® had the objective to reduce fibrosis associated with
skin grafting . Targeting mechanotransduction using a small molecule FAK inhibitor, the fibrotic nature of the
skin was substantially reduced with increased healing of wounds. In the context of ovarian fibrosis, targeting
fibrotic col-1 using antifibrosis drugs restored ovulation in mice®'.

ECM stiffness and degradability have been the clinical targets in the context of cancer”*. However,
results have been mixed. In the context of stiffness, inhibition of lysyl oxidases (NCT00195091), B, integrin
mediated mechanotransduction (NCT02683824), and FAK (NCT03727880) are undergoing clinical trials. In
the context of ECM degradation, MMP inhibition was not effective in preventing cancer progression,
potentially owing to off target effects as well as alternative mechanisms of invasion of cancer cells, not relying
on ECM proteolysis. MMP inhibition also has severe side effects’*?. Future efforts could potentially target other
downstream effectors of mechanotransduction as well as viscoelasticity and viscoplasticity in combination with
degradation.

Injecting cells within biomaterial carriers into injured or diseased tissues is a common approach in
regenerative medicine®”. Varying stiffness, degradability and viscoelasticity have shown to optimize the in
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670  vivo healing response. For example, promoting viscoelasticity of ECM in vivo was shown to increase bone
671  formation by MSCs'”. Interestingly, most biomaterials used in translational applications tend to be

672  viscoelastic or degradable®®. These highlight the importance of mechanotransduction in guiding the selection
673  and use of biomaterials in these applications.
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Table: Impact of ECM mechanics on cells.

ECM Stiffness Viscoelasticity Degradability Non-linear Pore size Ligand type Geometry
property elasticity & density
Cellular
process
Spreading 2D63’69’2342 + 2D95’96’237’238: + ZDZ ? 2DZ ? 2DZ n/a 2D63’97’241: 2D64’89’242:
# #
3D39’6O’235’236Z 3D40,6l,62,135: + 3D42’60’103Z + 3D57Z + 3D239’2402
# + 3D40’24]Z # 3D65’243Z #
Migration | 2DO8-7L191.244- | Hy248: 4 2D: ? 2D: ? 2D: n/a 2D#L20: ¢ | 2D #
246: #
3D77’782 + 3D42’73’249Z + 3D158’1592 + 3D73’74Z + 3D2412 # 3D2522 #
3D245’247Z #
Differentiati | 2D368590-92; [ 2 D939; 2D:? 2D:? 2D:n/a | 2D":# 2D® 4
on
3D39’401 # 3D39’4O'6]Z # 3D60’]03"253: # 3D]001 # 3D239: # 3Dlll: # 3D65’254Z #
Division 2D105255; + 2D + 2D: ? 2D: ? 2D: n/a 2D: ? 2DO4257: #
3D + 3D'S; + 3D + | 3D:? 3D: ? 3D # | 3D #
Apoptosis 2D382%9; . 2D:? 2D:? 2D:? 2D: n/a 2D:? 2D%*: #
3D'07: - 3D4: - 3D:? 3D:? 3D7: - 3D%0: # 3D:?
Tumour 2D?61:262; 4 2D: ? 2D:? 2D%%5: + 2D: n/a 2D: ? 2123266
phenotype #
3D + 3D:? 3D¥3264: + | 3D:? 3D # | 3D #
3D124‘214’2
66, #
Morphogen | 21): ? 2D:? 2D:? 2D:? 2D: n/a 2D:? 2D:?
esis
3D“1’“5’“62 # 3D41’“4’“52 + 3D110-112,267: 3DZ ? 3D2682 # 3D41’“0’1“2 3D652 #
+ #
Matrix 2D:? 2D:? 2D:? 2D:? 2D: n/a 2D:? 2D:?
secretion
3D + 3DA08485, 4 3D3283.86. 4 3D:? 3D¥: # 3D:? 3D:?

Table 1: Impact of ECM mechanics on cells. ECM properties such as stiffness, viscoelasticity, degradability,
non-linear elasticity, pore size, ligand type, density and geometry regulate various cell behaviors. n/a: not
applicable (ECM pore size is an important consideration in 3D but is not meaningful in 2D). “+” indicates

positive correlation,

[I3RE]

indicates negative correlation, “#” indicates a complex relationship and “?” indicates

an unknown relationship, that is yet to be thoroughly investigated. Selected references for known impacts are

included.
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Figure 1. Tissue mechanics, ECM components, and cell-ECM mechanical interactions. (a) Stiffness and
half time of stress relaxation for various soft tissues, and the range of those properties accessible with
reconstituted ECMs or synthetic ECMs (i.e. hydrogels). Data were taken from refs, '40-284122:135.199.269 " Qtreqq
relaxation half times, which provide a measure of viscoelasticity, are defined as the time for the stress to relax
to half its original value in response to a constant deformation. Synthetic ECMs, including alginate hydrogels
and PEG hydrogels, can be modified to mimic the physiological mechanics of soft tissues (check Box 1). (b)
Schematics of structural components of major polymeric (left) and non-polymeric (right) ECMs in tissues. (c)
Schematic of an epithelial monolayer with basement membrane underneath, and a stromal cell surrounded by
fibrous ECMs such as col-1 and elastin in the underlying connective tissue. (d) As cells interact with ECM,
these interactions are mediated by mechanical properties of the ECM including stiffness, nonlinear elasticity,
viscoelasticity, and plasticity. As the cell push/pull on the ECM, the ECM may resist the cellular force through
bending and stretching of the ECM fibers (left top). With increased forces from the cell, the ECM may stiffen
(i.e. exhibit greater resistance) due to local alignment in fibers (right top). Over the time of force application,
the ECM may undergo creep and stresses may relax due to detachment of weak crosslinks and fiber
rearrangements (bottom right). Once the cell detaches from the ECM, the ECM may retain permanent
deformations resulting from reformation of weak crosslinks that lock in changes in fibre position and alignment
(bottom left).

Figure 2. Cell-matrix interactions in 3D. Cells in 3D are confined in all directions due to restrictions
imposed by the matrix and can form cell-matrix adhesions on all surfaces contacting ECM. Cells exert
contractile, protrusive, and volumetric forces on the matrix, generating dilational and distortional stresses in
the ECM, which in turn regulate various cell behaviours (Table 1). Hydrostatic stress is volumetric or dilational
stress that acts to increase or decrease the volume of an object on which it acts, without changing its shape.
Deviatoric stress is distortional stress that acts to change the shape of an object on which it acts, without
changing its volume. Hydrostatic and deviatoric stresses combine to produce net 3D stress fields which cells
perceive. These stress fields directly deform cells and influence their behaviour including proliferation,
migration and differentiation. In addition to this, such stresses change over time depending on ECM properties
such as viscoelasticity, degradability and plasticity, and form a positive feedback loop with the cell-generated
forces.
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Figure 3. 2D and 3D Mechanotransduction. A) Cells sense substrate stiffness by exerting contractile forces
on 2D substrates with stress fibres through focal adhesions, which activates various proteins such as FAK, talin,
Rho and ROCK at the adhesion site. Activation of these proteins leads to adhesion maturation and stress fibre
formation and contractility, which in turn transmits forces to the nucleus via the linker of nucleoskeleton and
cytoskeleton (LINC) complex, resulting in changes in nuclear envelope tension and nuclear pore opening. This
allows the nuclear entry of proteins such as YAP transcriptional regulator leading to downstream impact on
cell phenotype . Moreover, in 2D, a cell can spread laterally without encountering any mechanical confinement.
B) Cells embedded in the ECM sense stiffness and viscoelastic properties of the matrix through integrin
binding, activation, and clustering, while sensing confinement, viscoelasticity and plasticity through cell
volume changes and ion channel activation which leads to Ca®* ion influx. Additionally, ECM
stiffness/viscoelasticity and confinement regulate activation of various proteins, such as FAK, ROCK, MLCK,
pathways, such as those involving PI3K, ERK, and Rho, and transcriptional regulators such as YAP, p27, Sp1,
RUNX2, and EGR1. However, clear mechanistic links between the ECM properties and activation of these
proteins, pathways, and transcription regulators remain unclear. Unknown connections in the pathways are
indicated by question marks. Both mechanisms of mechanotransduction converge on the nucleus and regulate
the activation of transcription factors (TFs), which are facilitated by chromatin remodelling and control cell
behaviour .
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738

739

740  Figure 4. Mechanotransduction in development. During development, basement membrane secretion and
741 degradation triggers mouse epiblast lumenogenesis and gastrulation respectively. Post-implantation,

742  trophectoderm cells in the mouse embryo, secrete a basement membrane around the epiblast which triggers
743  polarization and lumen formation in the epiblast. Later during gastrulation, gastrulating cells, also called
744  primitive streak cells, secrete proteases to locally degrade the basement membrane layer and enable

745  migration.
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Figure 5. Mechanotransduction in tissues. (a) In homeostasis, healthy ECM and fibroblasts help maintain
normally functioning epithelium by maintaining optimal ECM mechanical properties such as stiffness and
viscoelasticity. (b) Following a bone fracture, viscoelasticity of fracture hematoma promotes infiltration pf
mesenchymal stem cells (MSCs) and stiff bone surface promotes differentiation of MSCs into bone-producing
osteoblasts. (c) Myofibroblast differentiation and heterogeneous ECM occurring during ageing results in loss
of epithelial integrity and function. As tissue fibrosis proceeds with ageing, normal fibroblasts differentiate into
a myofibroblast phenotype and heterogeneously secrete and deform the ECM. Such a heterogeneous matrix
promotes further myofibroblast differentiation and results in altered ECM mechanical properties. Epithelial
cells sense these altered ECM properties and undergo transcriptional changes causing loss of epithelial integrity
and function. (d) During cancer progression, cancer-associated fibroblasts remodel the ECM into a dense, stiff
matrix. This increase in ECM stiffness, in combination with other cues and genetic changes in the cancer cells,
leads to activation of a malignant phenotype in epithelial cells. These cells then undergo sustained proliferation,
breach the basement membrane during invasion, migrate into the stromal matrix and eventually can
metastasize.
Box 1: In vitro materials for 3D culture: choosing the right system

Here, we provide a brief guide for choosing a 3D culture system for mechanotransduction studies,
focusing on commercially available materials (see figure). Natural matrices such as collagen, reconstituted
basement membrane (rBM) matrix (i.e., Matrigel or Geltrex), and fibrin are easy-to-use and broadly mimic in
vivo stromal matrix, BM, and blood clot environments respectively, and are often used for 3D culture. These
matrices tend to be soft, with an elastic modulus ranging from tens to hundreds of Pa, are inherently viscoelastic
and degradable (Supplementary Table 1), and provide biologically relevant signalling®®. Fibrin and collagen
are micro-porous and have a fibrillar architecture while rBM matrix is nano-porous with a non-fibrillar
architecture. Key limitations are that these materials have limited independent tunability of mechanical
properties such as stiffness, viscoelasticity, fibre length and porosity, limiting their usefulness for studies of
mechanotransduction. Synthetic and chemically modified natural hydrogel systems based on polyethylene
glycol (PEG), alginate, agarose and hyaluronic acid provide much more tunability. Cell adhesion ligand (i.e.,
RGD peptide) density, stiffness, viscoelasticity and degradability can often be modulated independent of other
parameters. These materials are usually nano-porous and nonfibrillar. However, these materials do not present
full physiological signalling ligands and tuning some properties requires more complex chemistries than are
commercially available?’*?”®. Due to their high tunability, however, these materials are especially useful for
translational applications or for mechanotransduction studies . Finally, in applications where tunability is
desired but the engineered material is not sufficient to elicit the desired cell behaviour, interpenetrating
networks of the engineered biomaterial with the relevant ECM matrix of interest can be considered. For
example, interpenetrating networks of collagen and agarose®’, rBM-matrix and alginate’”'*?, and collagen and
alginate’ (in various proportions) offer tunability of stiffness and in some cases viscoelasticity while
promoting biologically relevant behaviours. The reader is directed to various recent references for more
information on choosing hydrogel platforms suitable for their needs'***"**",

Box 2. Mechanotransduction: Lessons from 2D

Many studies of mechanotransduction in 2D have converged upon a central mechanism by which cells
sense stiffness (Fig. 3a). The predominant 2D culture mechanotransduction platform has been cells cultured on
collagen1- or fibronectin-coated elastic polyacrylamide substrates with independently tunable stiffness®".
Cells first bind to the substrate through B1 containing integrins, initiating formation of an adhesion complex,
and activating actomyosin contractility, focal adhesion kinase (FAK), and the Rho pathway''’. As a cell first
spreads on the substrate through actin polymerization, or during processes involving actin polymerization such
as filopodial extension or lamellipodial protrusion, a molecular clutch mechanism responds to stiffness*”®. In
this mechanism, changes in stiffness mediate engagement of the molecular clutch, involving talin®’’, that
connects polymerizing actin filaments to integrin-based adhesions, governing whether there is productive
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extension of the cell membrane versus retrograde flow of actin. Over time, nascent adhesions can mature into
focal adhesions®’®, containing talin, vinculin, and FAK, which connect to clustered integrin binding ligands®®
extracellularly and highly contractile actin stress fibres intracellularly*”. Stress fibres connect to the lamin-
containing nucleus through the linker of nucleoskeleton and cytoskeleton (LINC) complex, with higher
contractile forces typically observed on stiffer substrates''”. Tension across mechanosensitive proteins such as
talin®’, vinculin®®' and lamin? impacts their activation and binding interactions, thereby converting changes in
stiffness to biological signalling. Further, tension from stress fibres causes deformation and stretching of the
nucleus, which opens up pores in the nucleus, allowing translocation of the YAP transcriptional regulator into
the nucleus, and subsequent activation of transcriptional pathways, regulating processes such as proliferation
and differentiation®*2%,

Various other mechanisms and relations have been described in 2D. There is a strong correlation
between cell spreading area and ECM stiffness, and limiting cell spreading area on substrates with high stiffness
can lead to mechanotransduction behaviours observed on soft substrates******?%2_Cell adhesion ligand density,
spacing of the ligands and architecture of ECM ligands can play a key role in mediating
mechanotransduction®?*%?%_ Viscoelastic and viscoplastic substrates are amenable to ligand clustering and
longer timescale of molecular clutch binding, leading to spreading, migration, and differentiation behaviors
similar to that observed on stiffer elastic substrates’®****®, By contrast, viscoelastic substrates that are not
viscoplastic can lead to the opposite trend”>2*®. In one study, increased stiffness reduced cell volume, and
modulating cell volume directly controlled mechanotransduction outcomes'>. In addition to YAP, MRTF-A
[G], which responds to actin polymerization, has been implicated in mediating stiffness sensing at the
transcriptional level*”?*®. Further, stress fibres also affect chromatin accessibility through their contractility
via redistribution of histone deacetylase 3 to the nucleus **°. Finally, recent studies have found distinct
mechanotransduction behaviours in epithelial monolayers, finding for example that monolayers can sense
shallow stiffness gradients more robustly than single cells during durotaxis’', suggesting the role of collective
cell behaviour in mediating 2D cellFECM mechanotransduction. Many excellent reviews cover 2D
mechanotransduction in more detail (e.g. refs. *>%).
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Glossary

Advanced glycation end products (AGEs)
AGEs are proteins or lipids that are glycated when exposed to sugars, and are a biomarker implicated in many
diseases such as diabetes and atherosclerosis.

Aggrecan
Aggrecan is the major proteoglycan in the articular cartilage which provides hydration to the cartilage.

Arginine-Glycine-Aspartate (RGD) sequences
A three peptide cell-matrix adhesion motif derived from ECM proteins such as fibronectin and vitronection
that serves as a binding site for integrins such as avp3, a5p1 and allbp3

ATAC-seq (Assay for Tranposases-Accessible Chromating using Sequencing)
A genome wide assay that identifies accesible DNA regions/genome wide chromatin accessibility.

Biglycan
Biglycan consists of a protein core and two glycosaminoglycan (GAG) chains, and is found in connective
tissues.

Creep
Creep, a behavior of viscoelastic materials, is the time-dependent deformation or strain of a material under
constant force/stress.

Deviatoric stresses
Distortional mechanical stresses that act to change the shape of an object on which they act, without changing
its volume.

FRET

Fluorescent Resonance Energy Transfer (FRET) involves energy transfer between two light-sensitive
molecules, and the efficiency of this energy transfer is inversely proportional to the sixth power of the distance
between the molecules. This can be used to study small changes in distances between molecules.

Fibrillar adhesions
Fibrillar adhesions are cell-ECM adhesions whose shapes are elliptical in nature, often forming along fibrous
ECM.

Filipodia
Actin-rich protrusions that are long and thin, and can be highly dynamic.
Focal adhesion kinase (FAK)

A receptor tyrosine kinase protein that localizes to focal complexes at cell-ECM adhesion sites and plays a
crucial role in the several intergin-dependent mechanotransductive pathways.

Focal adhesions
Large cell-matrix adhesions typically formed by cells cultured on stiff 2D substrates, characterized by clustered

integrin receptors, localization of proteins such as paxilin, talin, vinculin, phosphorylated FAK and thick
actomyosin stress fibres, mediating strong cell-substrate adhesion.

Hpydrostatic stresses
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Volumetric or dilational stresses that act to increase or decrease the volume of an object on which they act,
without changing its shape.

Invadapodia
Actin-rich structures that are present at the basal surface of cells, and thought to degrade and apply forces to
ECM.

Lamellipodia
Thin sheet-like protrusions composedof a branched network of actin filaments. Extension of lamellipodia at
the leading edge is often implicated in driving cell migration.

Lysyl oxidase (LOX)
An enzyme that converts lysine molecules into highly reactive aldehydes that form crosslinks in ECMs such as
col-1 and elastin.

Nonlinear elasticity

Elasticity is the ability of a material to retain its initial shape/configuration following the application and release
of external deformation or loading. In nonlinear elasticity, stress is nonlinearly related to strain even at small
strains. By contrast, in linear elastic materials, stress of a material is linearly related to the strain until the
material starts to yield.

Matrix metalloproteinases (MMPs)
Cell-secreted enzymes that are capable of proteolytically degrading various ECM components.

Mechanical Plasticity
A material property that defines the extent to which it undergoes permanent or irreversible deformation
following the application and release of external deformation or loading.

Mechanosensitive ion channels
Ion channels that open or close in response to cell membrane stretch or tension. TRPV4 and Piezol are
examples of mechanosensitive ion channels implicated in mechanotransduction.

Mesenchymal stem or stromal cells (MSCs)
Multipotent stem or stromal cells that are found in the bone marrow, which have been reported to differentiate
into osteoblasts, adipocytes, chondrocytes, myocytes and neurons.

Microtentacles
Microtubule-based membrane protrusions which are often obseved in detached circulating tumor cells.

MRTF-A
Myocardin related transcription factor A. A transcription factor that plays a key role in mediating smooth
muscle cell differentiation.

Poroelasticity
A material property that describes the interaction between fluid flow and solid deformations within the porous

material. Cells and ECMs are usually poroelastic in nature.

Proteoglycans
Supramolecules that posses protein as a core and a side chain of sugars.
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Reconstituted BM (rBM) matrices

Commercially available matrices such as Matrigel or Geltrex, that are derived from Engelbreth—-Holm—Swarm
(EHS) tumor, a mouse sarcoma, and are commonly used for in vitro cell culture and contain laminin, collagen
IV, entactin, perlecan and other components.

RHAMM
Receptor for hyaluronin-mediated motility (RHAMM) is a protein which bounds to hyaluronan.

Rho signalling
A cell signalling pathway involved in regulation of wide variety of cell processes such as cell morphology,
survival, proliferation, and adhesion.

Stiffness

Stiffness describes the resistance to deformation of a specific structure, which is dependent on the Young’s
modulus and geometry of the structure. Hence, stiffness is regarded as property of a specific structure while
Young’s modulus is an inherent property of the material.

Strain
Strain is a measure of localized deformation in a material, with uniaxial strain typically defined as the ratio of
deformation to the original length of the material.

Stress
A measure of force per unit area, which has units of Pascals (Pa).

Stress relaxation
A behaviour of viscoelastic materials referring to the time-dependent change in stress in a material under
constant deformation.

Tenascin-C
A multimodular ECM glycoprotein which is expressed in various tissues during development, disease, or

injury.

Traction force microscopy

A technique that takes experimentally measured the force-induced displacement field of a substrate with known
mechanical properties and uses these to computationally determine the cell-ECM forces applied to the
substrate.

Versican
A large ECM proteoglycan that is found in various tissues such as blood vessels, and skin.

Viscoelasticity
Describes materials that exhibit some behaviours characteristic of elastic solids and some of viscous liquids,
and is characterized by a time-dependent mechanical response (i.e. creep or stress relaxation).

YAP/TAZ

Transcriptional coactivators that shuttle between the nucleus and cytoplasm and play an important role in
mediating mechanotransduction, particularly in 2D. When translocated to the nucleus, YAP/TAZ do not
directly bind to DNA but regulate gene expression through their binding to transcription factors of the TEAD
family.
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eTOC

Mechanical cues from the extracellular matrix (ECM) regulate cell fate and behaviour through cell-ECM
mechanotransduction. Studies of cell-ECM mechanotransduction have largely focused on cells cultured in 2D,
and only recently have we begun to unravel how these processes occur in 3D — a context native to most cells
in vivo.
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