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Abstract 

Event boundaries and temporal context shape the organization of episodic memories. We 

hypothesized that attentional fluctuations during encoding serve as “events” that affect temporal 

context representations and recall organization. Individuals encoded trial-unique objects during a 

modified sustained attention task. Memory was tested with free recall. Response time variability 

during the encoding tasks was used to characterize “in the zone” and "out of the zone" attentional 

states. We predicted that: 1) “in the zone”, vs. “out of the zone”, attentional states should be more 

conducive to maintaining temporal context representations that can cue temporally organized 

recall; and 2) temporally distant “in the zone” states may enable more recall “leaps” across 

intervening items. We replicated several important findings in the sustained attention and memory 

fields, including more online errors during “out of the zone” vs. “in the zone” attentional states and 

recall that was temporally structured. Yet, across four studies, we found no evidence for either of 

our main hypotheses. Recall was robustly temporally organized, and there was no difference in 

recall organization for items encoded “in the zone” vs. “out of the zone”. We conclude that temporal 

context serves as a strong scaffold for episodic memory, one that can support organized recall 

even for items encoded during relatively poor attentional states. We also highlight the numerous 

challenges in striking a balance between sustained attention tasks (long blocks of a repetitive task) 

and memory recall tasks (short lists of unique items) and describe strategies for researchers 

interested in uniting these two fields. 

 

Key words: long-term memory, episodic memory, temporal context, event segmentation, 

sustained attention  
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Introduction 

Episodic memories are temporally organized. Recall of a given event acts as a cue that can lead to 

recall of other events that were encoded close to it in time (Kahana, 1996; Howard & Kahana, 

2002b; Healey et al., 2019). This is thought to occur because events encoded close to one another 

in time have similar internal “temporal context” representations (Howard & Kahana, 2002b). 

Although temporal contexts powerfully shape recall, the factors that drive how those temporal 

contexts form during encoding are relatively underexplored. A better understanding of those 

mechanisms can help individuals promote factors that create strong temporal contexts at encoding 

and thus enhance memory retrieval. Here, we test the hypothesis that natural fluctuations in 

attention during encoding contribute to temporal context representations. 

 

The Temporal Context Model (TCM) was proposed to explain the temporal organization of episodic 

memory (Howard & Kahana, 2002b). According to this model, at encoding, item representations 

are linked to a slowly changing but ever-present temporal context. When an item is recalled, the 

temporal context from encoding is also retrieved. Using the retrieved temporal context as a cue, 

other items studied with an overlapping temporal context can then be recalled (Howard & Kahana, 

2002b; Polyn & Kahana, 2008).  

 

Free recall studies examining these effects typically use lag-Conditional Response Probability (lag-

CRP) curves to characterize the temporal organization of recall (Kahana, 1996; Howard & Kahana, 

2002b; Healey et al., 2019; Palombo et al., 2019; Diamond & Levine, 2020). These lag-CRP curves 

exemplify two characteristic features of temporally structured recall: the temporal contiguity effect 

and the forward asymmetry bias. The temporal contiguity effect refers to the tendency for items 

encoded close in time to be recalled close together (Howard & Kahana, 1999; Healey et al., 2019). 

The forward asymmetry bias refers to the higher probability of successively recalling items in a 

forward vs. backward direction. That is, for a given recalled item, subsequently recalled items are 

more likely to have been encoded after (rather than before) the first-recalled item (Polyn & Kahana, 

2008; Polyn et al., 2009). This forward asymmetry bias is thought to arise because a given item 

becomes part of the temporal context for succeeding items, and can thus serve as a memory cue. 

 

This research has largely proposed that temporal contexts are ever-present and slowly drift during 

an encoding experience, as newly encountered items and thoughts are incorporated into the 

temporal context representation. Whether certain cognitive and environmental factors can affect 
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the drift of temporal context is an important question, because such factors may promote (or 

hinder) memory retrieval (DuBrow et al., 2017). Recent research has shown that event 

segmentation can serve as one such factor that impacts the temporal organization of memory. 

Event segmentation theory hypothesizes that our ongoing experience is parsed into “segments” 

with the transition between segments acting as an event boundary (Zacks et al., 2007; Clewett & 

Davachi, 2017; Heusser et al., 2018). Memory retrieval is strongly shaped by such event 

boundaries: the order of events is remembered better, and events are more likely to be 

remembered as being closer together, if they were experienced within the same event segment 

vs. different event segments (DuBrow & Davachi, 2013, 2016; Heusser et al., 2018; also see Ezzyat 

& Davachi, 2010; DuBrow & Davachi, 2014; Ezzyat & Davachi, 2014).  

 

We propose that similar to event boundaries, natural fluctuations in attention may contribute to 

how temporal contexts form during encoding. Fluctuations in attention are inherent aspects of 

human nature (Killingsworth & Gilbert, 2010). People tend to experience times when attention 

peaks, leading to intense focus on the task at hand, while at other times, attention wanes and 

focus is broken by intrusive thoughts, distractions, or fatigue (Smallwood et al., 2008). Despite the 

ubiquity of such attentional fluctuations, past work examining how attention affects memory has 

typically focused on experimental manipulations of attention rather than spontaneous fluctuations. 

Such work has shown that experimental manipulations (such as directing participants’ external 

attention towards a specific object, color, or spatial location) improve later memory for the attended 

event, but hurt memory for unattended events (Anderson et al., 1998; Craik et al., 1996, 2018; 

Naveh-Benjamin et al., 1998; Troyer et al., 1999; Troyer & Craik, 2000; Yi & Chun, 2005; Chun & 

Turk-Browne, 2007; Chun et al., 2010; Uncapher et al., 2011; Turk-Browne et al., 2013; LaRocque 

et al., 2015; see Aly & Turk-Browne, 2017).  

 

A different body of work, on mind-wandering, has examined natural fluctuations of attention 

(Smallwood & Schooler, 2006; Christoff et al., 2016; also see Smallwood & Schooler, 2015). In 

these studies, participants are asked, with intermittent probes, to self-report whether they were 

“on task” or “mind-wandering” (e.g., Metcalfe & Xu, 2016; Xu & Metcalfe, 2016; Xu et al., 2018; 

Garlitch & Wahlheim, 2020) or asked to describe their thoughts at the time of the probe (Smallwood 

et al., 2003). These fluctuations in attention impact subsequent memory, such that mind wandering 

is related to worse memory (Smallwood et al., 2003; Risko et al., 2012; Garlitch & Wahlheim, 2020; 
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Martarelli & Ovalle-Fresa, 2021). However, these studies are limited in that they only capture 

participants’ attentional state at a few discrete time points and cannot precisely characterize the 

temporal dynamics of intrinsic fluctuations in attention. Furthermore, such studies have not 

determined how mind wandering may affect the temporal structure of memory. 

 

Sustained attention research offers a way to measure moment-by-moment fluctuations in attention 

(Robertson et al., 1997; Sarter et al., 2001; Smallwood & Schooler, 2006; Esterman et al., 2013; 

Rosenberg et al., 2013; deBettencourt et al., 2015; Rosenberg et al., 2017; deBettencourt et al., 

2018; Fortenbaugh et al., 2018; Esterman & Rothlein, 2019; Decker et al., 2020; Elshiekh & Rajah, 

2021; Wakeland-Hart et al., 2022). One type of task, the gradual onset continuous performance 

task (gradCPT), uses reaction time (RT) variability to index moment-by-moment fluctuations: trials 

with higher RT variability constitute “out of the zone” attentional states, while trials with lower RT 

variability reflect “in the zone” attentional states. Online task performance differs based on these 

attentional states: participants make more errors in the task during an “out of the zone” attentional 

state (Esterman et al., 2013, 2014; Rosenberg et al., 2013, 2017; Fortenbaugh et al., 2018). These 

studies, however, do not relate attentional fluctuations during the task to subsequent memory (see 

Madore et al., 2020 for a trait-level analysis). A related approach to characterizing attentional 

fluctuations based on RT showed that being in a good attentional state results in better recognition 

memory later on (deBettencourt et al., 2018; Wakeland-Hart et al., 2022), but these studies did 

not examine the temporal organization of memory. Building on these studies, in the current work, 

we use response time variability to characterize “in the zone” and “out of the zone” attentional 

states. We employed a modified version of the gradCPT, in which participants encoded trial-unique 

objects in the study phase (i.e., the sustained attention phase) and were later asked to verbally 

recall as many objects as they could in any order they chose. This allowed us to examine how 

moment-by-moment fluctuations in attention during encoding influence the temporal structure of 

recall.  

 

We tested two main hypotheses. First, that recall will be more temporally structured when items 

are encoded “in the zone” vs. “out of the zone”. This may occur because being focused on the task 

at hand leads to a consistent mental state, which can serve to bind and maintain a temporal context 

representation. Such focused attention may also facilitate linking attended events in the 

environment to these internal temporal contexts. Conversely, the reduction of task-focused thought 
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in a “bad” attentional state may result in switches between internally and externally focused 

thoughts that disrupt a consistent temporal context representation, and/or hurt the ability to link 

items in the environment to internal temporal contexts. If this is the case, then the hallmarks of 

temporally organized memory — temporal contiguity and forward asymmetry — may be enhanced 

for items encoded “in the zone” vs “out of the zone”.  

 

Our second hypothesis is motivated by the finding that recall can “leap” between cognitively similar 

but temporally distant events (Chan et al., 2017). This may occur because one’s thoughts become 

integrated into temporal context representations: similar thoughts trigger similar temporal context 

representations, and in that way facilitate successive recall of items associated with cognitively 

similar contexts. We hypothesize that “in the zone” states, even if separated in time, constitute 

cognitively similar events: they consist of a focused mindset and the particular strategies that a 

person brings to mind to succeed in the ongoing task. On the other hand, we hypothesize that 

temporally distant “out of the zone” states are cognitively dissimilar events: every time an individual 

is unfocused, they may be unfocused in a different way, as their attention switches between the 

task and other ongoing, fluctuating thoughts. If this is the case, then recall may be more likely to 

“leap” between different “in the zone states” than different “out of the zone” states, bypassing 

items that were encoded in the other attentional state. 

 

In sum, we aim to examine the behavioral effects of spontaneous attentional fluctuations on the 

temporal organization of recall. We characterize attentional fluctuations based on response time 

variability during an encoding task, classifying trials into relatively good “in the zone” and relatively 

worse “out of the zone” attentional states. To do that, we use a modified version of the gradCPT, 

introducing changes that make the task more suitable for examining subsequent memory. This 

includes using trial-unique nameable objects, slower presentation durations, and fewer trials (see 

Methods for more details). Participants’ memory for the trial-unique objects was then tested with 

free recall. Lag-CRP curves, and analyses of recall based on different “in the zone” and “out of the 

zone” event segments, allowed us to test whether and how attentional fluctuations shape the 

temporal organization of memory.  

It is worth emphasizing that addressing our question requires a synthesis of disparate paradigms 

that are used in the sustained attention and memory recall fields. To foreshadow our results, we 

found that striking the right balance between the opposing needs of these tasks can be a challenge 
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— a challenge we attempted to tackle across 4 Studies. Our approach and results highlight the 

difficulties of studying the effects of attentional lapses on recall organization, and thus a secondary 

aim of our project is to raise awareness of these challenges and offer strategies for future research 

that tackles similar questions. 

 

Study 1 

Methods  

Design  

Participants 

We conducted an a priori power analysis using G* Power (Faul et al., 2007, 2009). Due to the lack 

of prior work involving spontaneous attentional fluctuations and temporal organization of recall, 

we calculated the number of participants required to both a) replicate typical properties of the 

temporal organization of recall, including main effects of, and the interaction between, absolute 

lags and direction (Kahana et al., 2002; Spillers & Unsworth, 2011; Palombo et al., 2019; Diamond 

& Levine, 2020); and b) observe interactions between lag-CRP properties (absolute lag or direction) 

and other independent variables (Palombo et al., 2019; Diamond & Levine, 2020; this was done to 

approximate interactions between lag-CRP properties and attentional state). For 80% power and 

an alpha of 0.05 in a within-participant design, we determined that the minimum required sample 

size was 50 participants. We opted to exceed that to counteract effect size overestimation resulting 

from publication bias (Brand et al., 2008; Bakker et al., 2012). We therefore report data from 65 

participants (Mage = 25.17 ± 6.67 years, Meducation = 14.78 ± 2.23 years; see Table 1 for 

demographics). We do not report data from an additional 15 participants, who were excluded due 

to image loading errors (N = 6), low response rate during the encoding task (<80%, N = 2), outlier 

response accuracy during the encoding task (>3 SD from the group mean; N = 3), recall recording 

issues (N = 3), and incomplete data due to technical problems  (N = 1).  

Of the final sample, 22 participants were recruited from the Columbia University participant pool. 

They completed the study in the lab and were compensated with course credit. Because of the 

COVID-19 pandemic and the related disruption of research activities, the remaining participants (N 

= 43) were recruited through Prolific (www.prolific.co). They participated in an online version of 

the same experiment hosted on the Gorilla platform (www.gorilla.sc; Anwyl-Irvine et al., 2020).  

https://prolific.co/
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 Study 1 Study 2 Study 3 Study 4 

Sample size 65 68 68 124 

Age  
(M ± SD) 

25.17 ± 6.67 22.62 ± 5.15 20.09 ± 2.20 21.42 ± 6.26 

Education   
(M ± SD) 

14.78 ± 2.23 13.99 ± 1.65 14.03 ± 1.46 13.63 ± 1.54 

Recruitment 
Method 

22 CU 
43 Prolific 

48 CU 
20 Prolific 

68 CU 119 CU 
5 Prolific 

Gender 33 F 
28 M 
3 NB  

1 DNS 

44 F 
23 M 
1 NB  

33 F 
35 M 

84 F 
37 M,  
2 NB  

1 DNS 

Race 33 W 
16 A 

8 B/AA 
5 BR 

1 AI/AN 
1 ME 
1 O 

39 W 
15 A 

10 B/AA 
4 BR 

35 W 
19 A 

7 B/AA 
4 BR 

1 AI/AN 
2 O 

67 W 
30 A 

14 B/AA 
4 BR  

3 AI/AN 
3 H/L  
1 ME  
2 DNS 

Ethnicity 59 NH/L 
6 H/L 

60 NH/L 
8 H/L 

54 NH/L 
14 H/L 

98 NH/L 
26 H/L 

Table 1. Summary of participant demographics across studies. For age and education, we report the 

mean ± standard deviation. For recruitment method, CU = Columbia University participant pool. For 

gender, F = female, M = male, NB = non-binary, DNS = did not specify. For race, W = white, A = 

Asian, B/AA = Black or African American, BR = bi-racial, AI/AN = American Indian or Alaskan Native, 

ME = Middle Eastern, O = other. For ethnicity, NH/L = not Hispanic or Latino, and H/L = Hispanic or 

Latino. In Study 4, three participants wrote in Latino for race.  

Participants were 18 to 40 years of age, fluent in English, and resided in the US (inclusion criteria 

were specified in Prolific prior to recruitment). Both groups of participants provided informed 

consent in accordance with the Columbia University Institutional Review Board. No statistically 

significant differences were observed between the in-person and Prolific samples in any measure 

of interest (all ps > 0.14 for all main effects and interactions involving the ‘sample’ variable); thus, 

all data analyses include the combined sample. Nevertheless, for completeness, we report statistics 

to compare the two groups for effects of interest. 
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Stimuli 

We chose 191 images of objects from pre-curated object databases such as SOLID (Frank et al., 

2020), stimuli from the Mnemonic Similarity Task (Yassa et al., 2011; 

https://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/), Interaction Envelope 

(Bainbridge & Oliva, 2015a, 2015b; http://www.wilmabainbridge.com/datasets.html), and the 

Bank of Standardized Stimuli (Brodeur et al., 2014; https://sites.google.com/site/bosstimuli/). 

Color images were converted to grayscale.  

These images were assigned to 5 study blocks using the OptSeg tool (Siegelman, 2019; 

https://github.com/msieg/OptSeg_Reproducible), which pseudo-randomizes the stimuli into lists 

while controlling for semantic similarity between constituent words. Semantic similarity between 

two items was measured as the cosine distance between the 300-dimensional GloVe vectors of the 

object names (Siegelman, 2019). Given a pool of words, the algorithm constructs lists so that items 

within a list are as semantically dissimilar as they can be. This allowed us to focus on temporal 

organization within lists that minimized opportunities for semantic organization given the stimuli 

available (Manning & Kahana, 2012). All 191 images were provided to the algorithm to have some 

leeway in assigning semantically matched and optimized lists. We created 5 lists of 30 images each 

using this procedure. The 5 stimulus lists were then randomized to 5 study blocks with within-block 

randomization of image order. The remaining 41 images were used for the practice block before 

the main task. 

Although this approach attempts to minimize semantic similarity within a list, each list still had 

categorical structure. Specifically, within a list, items typically belonged to one of these categories: 

Musical Instruments, Animals, Plants, Food and Drinks, Tools, Home and Furniture, or Sports and 

Games. Thus, we could not rule out semantic clustering in our task, a topic we return to in the 

General Discussion. 

Procedure 

The experiment was composed of 5 blocks, each of which included a study phase, a distractor 

phase, and a recall phase (Figure 1). 

In each of the 5 study phases, participants viewed a series of 30 trial-unique images of common 

objects. The objects transitioned from one into another over 5 seconds. Each object remained on 

the screen for 1 second before the start of the next transition. Every 0.5 seconds the first object’s 
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opacity decreased by 10% while the succeeding object’s opacity increased by 10%. This slow 

transition ensures that there is no capture of attention by abrupt image onsets, and helps induce 

more fluctuations of attention (Esterman et al., 2013; Rosenberg et al., 2013). For each presented 

image, participants were asked to judge if the depicted object was “smaller or larger than a 

shoebox” using one of two keys. These two keys were counterbalanced across participants. 

Participants could respond at any time once the object had started fading in (Figure 1). 

A distractor phase followed each study phase, to introduce a delay between memory encoding and 

subsequent recall. Participants were presented with a sequence of 2-digit additions and 

subtractions. One solution to each question was provided and participants had to judge if the 

solution was correct or incorrect using one of two keys. Each trial began with a fixation cross 

presented for 2 seconds, followed by the arithmetic question for 5 seconds. 10 arithmetic questions 

were presented in each phase.  

Memory recall immediately followed this distractor task. During each recall phase, participants were 

asked to verbally recall, in any order, as many objects as they could from the preceding study 

phase. This phase was recorded using a microphone. There was a time limit of 2-2.5 minutes (see 

below), and a countdown timer was displayed to indicate the time remaining.  

Before beginning the experimental blocks, participants performed a practice block. The practice 

block was identical to the experimental blocks except that only 15 objects were presented in the 

study phase. 

Both versions of the task (in-person and online) were similar except for two minor modifications. 

The verbal recording for the in-person version was 2.5 minutes long for each recall portion; for the 

online version, it was 2 minutes long (the maximum allowed on Gorilla). Because participants rarely 

used the entire 2.5 minutes for recall in the in-person version, this was a minor change that had 

no measured impact on performance (overall recall was not significantly different between the in-

person and online groups (t48.18 = 1.32, p = 0.19, Cohen’s ds = 0.35, 95% CI [-2.53, 12.16]) nor 

was recall organization different between the groups, all ps > 0.14 for interactions involving sample 

[online vs. in-person] in lag-CRP and event segment analyses discussed below). Additionally, the 

practice items for the in-person version were chosen from the leftover images after the Optseg 

assignment, and different participants were shown a different set of images. However, for the 

online version all participants saw the same 15 images in a randomized order.  
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Figure 1. Schematic of the experimental design for Study 1. Participants were presented with a series of 
grayscale objects in the study phase. They were asked to judge if each object is smaller or larger than a 
shoebox. Object images gradually transitioned from one into another. Following a math distractor task, 
participants were asked to verbally recall objects from the study phase, in any order that they choose. This 
3-phase sequence was repeated in 5 blocks, with 30 images encoded each time. Study 2 was similar except 
that there were 3 blocks of 80 items each and the task was to press a button for non-food items and withhold 
a response for food items. Study 3 had 3 blocks of 60 items each and the task was to press a button for 
color images and withhold a response for grayscale images. In Study 3, there were no gradual transitions 
between items; each image was shown for 3s with a 2s inter-item interval. Study 4 was similar to Study 2, 
except that there were 2 blocks of 120 images each, and the trial duration was reduced from 6s to 4s.  
 

We used 30 items per block — more than many standard list-learning recall studies (see Sederberg 

et al., 2010 for a few examples) because we expected that longer blocks (i.e., longer lists of items) 

would be necessary to reliably induce attentional fluctuations. Indeed, much longer block lengths 

(400 trials or more) are used in studies of sustained attention (Esterman et al., 2013; Rosenberg 

et al., 2013; Decker et al., 2020; Wakeland-Hart et al., 2022). We, therefore, had fewer lists than 

typical list-learning recall studies, because more items were encoded per list. In Studies 2-4, we 

further varied the number of lists and the number of items within them, in the hope of striking a 

good balance between obtaining good recall (which is typically better with shorter lists) and 

inducing attentional fluctuations (which typically occurs with long blocks). 
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Analyses 

Defining attentional states at encoding  

Attentional states were defined using response times (RTs) for the judgements made during the 

study phase. To assign responses to trials, we used a similar procedure as that used by Esterman 

et al. (2013) and Rosenberg et al. (2013). One modification was made to accommodate the slower 

image transitions in our tasks (3s or 5s in our Studies rather than 800ms in prior work). 

Furthermore, in our Studies, images stayed 100% coherent for 1s (rather than no “pause” at 100% 

coherence or a 400ms “pause” at 100% coherence in prior work). Because of these changes, there 

was a large peak in the RT distributions when an image was 90-100% coherent, and the majority 

of responses (~83-93%, across our Studies) came when an image was fading in between 50-100% 

coherence. There were few responses when an image was fading out from 100% coherence 

because of the relatively long 1s “pause” at the 100% coherent image (during which many 

responses were made). We therefore adjusted the image coherence thresholds used in prior work 

to reflect our observed RT distributions. 

RTs were therefore assigned as follows. RTs were calculated relative to the beginning of each 

image transition (i.e., when it was starting to fade in). Responses when an image was fading in 

between 50% and 100% coherence were assigned to that image; this reflected the majority of 

trials. On the rarer trials for which a response occurred when an image was fading in between 0-

50% (i.e., the previous image was fading out from <100% to 50%), an algorithm was applied as 

follows (following Esterman et al., 2013 and Rosenberg et al., 2013). First, the algorithm assigned 

unambiguous correct responses — that is, responses to the “go” category that occurred between 

50% and 100% coherence of the image that was fading in. Second, the remaining, ambiguous 

responses (i.e., those from 0-50% coherence of the image fading in or multiple responses) were 

assigned to an adjacent trial if one of the two had no response. If both adjacent trials had no 

response, ambiguous responses were assigned to the closest trial, unless one was a “no-go” trial, 

in which case participants were given the benefit of the doubt that they had correctly omitted. 

Finally, if there were multiple responses that could be assigned on any one trial, the fastest 

response was selected. The variance time course analyses described below were also run with an 

alternative approach that simply assigned a response to the image that was currently fading in; 

the pattern of results was largely unaffected with this alternative procedure. 
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A variance time course (VTC) analysis was performed on the RT data using the procedure in 

Esterman et al., 2013. This procedure enables the identification of two attentional states (“in the 

zone” and “out of the zone”) based on the variability of RT. Each correct trial was assigned a value 

corresponding to the absolute deviation of the trial RT from the mean within-block RT. Trials 

without a response and trials with an incorrect response were not included in this step. Next, this 

value was linearly interpolated (from the neighboring two trials) for trials without a response and 

trials with an incorrect response. If only one trial was available for interpolation (i.e., because trials 

at the beginning or end of a block do not have two surrounding trials), then RT was not interpolated 

and such trials were not assigned an attentional state. Then, following the procedure used by 

Esterman et al., (2013) and Rosenberg et al., (2013), a Gaussian smoothing kernel was applied. 

We used the smth function in the smoother R package (https://CRAN.R-

project.org/package=smoother), and set the window to 4 trials (full-width at half-maximum) and 

method to Gaussian. This procedure therefore integrated information from the 4 surrounding trials 

(approximately 24 seconds, as in Rosenberg et al., 2013). Finally, a median split was performed 

on these smoothed variance time course values, dividing the trials into those with lower RT 

variability (i.e., RTs closer to the mean; “in the zone” states) and higher RT variability (i.e., RTs 

farther away from the mean; “out of the zone” states).  

This VTC analysis therefore assumes that RTs that are too fast or too slow (with respect to their 

distance from the mean RT) reflect a poor attentional state. The rationale for this is that RTs that 

are too fast reflect habitual responding or being on “autopilot” and RTs that are too slow reflect 

disengagement from, or inefficient processing of, the task at hand (Kane & McVay, 2012; Esterman 

et al., 2013; Yamashita et al., 2021). Indeed, this approach has been successful at predicting 

attentional lapses (e.g. Esterman et al., 2013, 2014; Madore et al., 2020; Rosenberg et al., 2013, 

2015; also see Yamashita et al., 2021). However, it is critical to note that there are other 

approaches to characterizing attentional states based on RT. For example, some studies of 

sustained attention have shown that faster (vs. slower) RTs are linked to more online errors and 

worse subsequent recognition memory (e.g., Robertson et al., 1997; Cheyne et al., 2006, 2009; 

Kane & McVay, 2012; deBettencourt et al., 2018; Wakeland-Hart et al., 2022). Yet, counter to 

these approaches, other studies link longer eye fixations and slower response times to mind 

wandering and attentional lapses (e.g., Smallwood et al., 2003; Weissman et al., 2006; Feng et 

al., 2013; Yanko & Spalek, 2013; Kam & Handy, 2014; Henriquez et al., 2016; Krasich et al., 2018; 

https://cran.r-project.org/package=smoother
https://cran.r-project.org/package=smoother
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H. Zhang et al., 2021). Thus, slower (vs. faster) RTs have sometimes been linked to better 

attentional states and sometimes to worse attentional states, and the VTC analysis considers RTs 

that are either too fast or too slow (relative to the mean) to reflect a bad attentional state.  

To accommodate this diversity in identifying better vs. worse attentional states from RTs, we 

provide a secondary analysis for each study in which we examined attentional states defined by 

faster RTs vs. slower RTs. Although the VTC approach was our a priori analysis of choice, this 

allowed us to examine whether alternative definitions of attentional states lead to different results 

with respect to online errors and subsequent memory. 

Errors at encoding 

In prior studies, “out of the zone” (vs. “in the zone”) attentional states were associated with more 

errors in sustained attention tasks (Rosenberg et al., 2013; Esterman et al., 2013). To determine 

if we could replicate those findings, we examined whether there was a difference between the two 

attentional states in the number of errors made during the encoding task, which was designed to 

be similar to the sustained attention tasks used in prior studies. First, objects depicted by each 

image were classified as being either larger than a shoebox (e.g., helicopter, treadmill), smaller 

than a shoebox (e.g., onion, key), or ambiguous (e.g., cowboy hat, soda bottle). Next, errors were 

calculated as the number of incorrect responses made to the objects that were unambiguously 

classified (i.e., responses to ambiguous objects were never counted as incorrect). (Note that 

accuracy was therefore the percentage of presented items with a correct response, for which 

responses to ambiguous objects were always counted as correct). Finally, we examined whether 

the number of errors made during “out of the zone” attentional states was higher than the number 

of errors made during “in the zone” states. Group-level analyses were conducted with a paired-

samples t-test.  

Recall performance  

We calculated recall performance as the percentage of items that were correctly recalled across all 

blocks. To examine whether recall performance differed by attentional state, we calculated recall 

performance for each attentional state (“in the zone” or “out of the zone”) as the percentage of 

items that were encoded in that particular attentional state that were correctly recalled. Note that 

because these attentional states are defined by a median split of the encoding RTs, the same 
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number of items are encoded in each state. Group-level analyses were conducted with a paired-

samples t-test.   

Temporal organization of recall 

We measured the temporal organization of recall using lag-Conditional Response Probability (lag-

CRP) curves (Kahana, 1996). The lag-CRP curve measures the probability of recalling two items 

successively as a function of their relative position, or lag, at encoding. To plot these curves, we 

first obtain the encoding lag between all pairs of successively recalled items, where the lag is the 

difference between their serial positions at encoding. The lag can be positive or negative, 

depending on whether the subsequent item recalled was encoded after (positive lag) or before 

(negative lag) the preceding item. The observed number of recall transitions at each lag is then 

divided by the number of opportunities to make a recall transition at that lag, e.g., all the times a 

participant could have recalled an item at a +1 lag, regardless of whether or not they did (Kahana, 

1996). This yields the probabilities plotted in the lag-CRP curve, i.e., actual transitions divided by 

possible transitions at each lag. Repetitions and intrusions are masked from this analysis: 

transitions to and from repetitions (recalled items that had also been recalled earlier) and intrusions 

(items recalled from a prior study list) are excluded (Kahana, 1996).  

Lag-CRP curves depict two characteristic features of the temporal organization of recall: forward 

asymmetry and temporal contiguity. Forward asymmetry refers to the higher likelihood of recalling 

in the forward vs. backward direction (i.e., higher conditional probability of recall for positive lags 

vs. negative lags). Temporal contiguity refers to the higher probability of recalling items together 

if they were encoded closer together in time (Kahana, 1996; Healey et al., 2019). This is seen as 

a peak in the lag-CRP curves: recall is more likely for items at ±1 lag, and recall probability 

decreases gradually with increasing lags. 

Our primary hypothesis was that “in the zone”, vs. “out of the zone”, attentional states are more 

conducive to maintaining a temporal context representation. If so, there should be a difference in 

the temporal organization of recall between the attentional states: temporal contiguity and/or 

forward asymmetry should be stronger for “in the zone” vs. “out of the zone” attentional states. 

To test this, we constructed separate lag-CRP curves for the two attentional states. First, individual 

pairs of successively recalled items were labelled as being in the same state (i.e., both encoded 

during an “in the zone” state or both encoded during an “out of the zone” state) or being a 
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transition pair from one state to another. To calculate the lag-CRP curves separately for each state, 

we only considered pairs that were in the same state; transition pairs were excluded from analysis 

(see Recall Transitions by Event Segment for consideration of state transitions). Actual 

transitions were calculated as the lag between two successively recalled items based on their 

encoding position. These actual transitions were divided by the number of times a transition of a 

given lag could have possibly occurred irrespective of attentional states (i.e., all possible 

transitions) to yield the conditional response probability. The conditional response probability for 

each lag was calculated within-block for each attentional state. These values were then averaged 

across blocks, resulting in one CRP value at each lag for each attentional state for each participant.   

To test for a statistical difference in the temporal organization of recall between the two attentional 

states, we performed a three-way repeated-measures ANOVA with attentional state (“in the zone” 

vs. “out of the zone”), absolute lag (1 to 29), and recall direction (forward vs. backward) as factors. 

We tested the sphericity assumption using Mauchly’s test of sphericity and applied the Greenhouse-

Geisser correction when this assumption was not satisfied. This analysis also allowed us to test for 

typical properties of lag-CRP curves, by looking for main effects of absolute lag and direction, and 

the interaction between them. 

Separate lag-CRP curves for each attentional state (and the associated 3-way ANOVA) required us 

to discard some data (recall transitions between “in the zone” and “out of the zone” states and 

participants who did not have any successive recall transitions within “in the zone” states or within 

“out of the zone” states). Because of this, we also show the overall lag-CRP curves for each Study 

(using all the data, irrespective of attentional state at encoding), and report analyses of the overall 

lag-CRP curve with a two-way (direction x lag) ANOVA in Table 2.  

Finally, because there is a possibility that including all lags could mask differences in forward 

asymmetry — which is typically most prominent at nearby lags  — we conducted an additional 

analysis. We examined whether there was a difference between the two attentional states in 

forward asymmetry at the closest lags of ± 1, by performing a two-way repeated-measures ANOVA 

with lag (+1 vs. -1) and attentional state (“in the zone” vs. “out of the zone”) as factors (Diamond 

& Levine, 2020).  

The approach we take in the above analysis — dividing actual transitions within an attentional state 

by all possible transitions at a given lag regardless of attentional state at encoding — effectively 
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asks: of all possible recall transitions available to the participant at lag of X, how many were for 

items encoded "in the zone" vs. "out of the zone"? For example, we divide the number of +1 

transitions between “in the zone” items by the total number of possible +1 transitions regardless 

of attentional state at encoding; because the denominator is therefore the same for the two 

attentional states, we will refer to this as the “same denominator” approach. 

An alternative analysis choice would be to divide actual transitions by the number of times a 

transition of a given lag could have possibly occurred within that same attentional state; e.g., divide 

+1 transitions for "in the zone" items by the number of times a +1 transition to other "in the zone" 

items could have occurred. We will refer to this as the “state-specific denominator” approach.  

In simulated data, we found that these approaches sometimes yield identical differences between 

attentional states, although the absolute value of the CRP will necessarily be higher when the 

denominator is specific to a given attentional state. In other cases, the “state-specific denominator” 

approach underestimated differences in temporal structure between conditions, while in yet other 

cases, it was more accurate than the “same denominator” approach — particularly when recall 

rates differed between conditions but temporal structure did not. Because this “state-specific 

denominator” approach can be argued to be valid in some situations, we repeated all the analyses 

(across all Studies) with this alternative approach — but the pattern of results did not change 

(Table S1). 

Recall Transitions by Event Segment 

The above temporal organization analyses do not differentiate between qualitatively different types 

of transitions that are possible within each attentional state. Because individuals fluctuate between 

“in the zone” and “out of the zone” periods during encoding, each instance of an attentional state 

can be considered its own “event segment” (Figure 2). These different segments are ignored in 

the lag-CRP analysis above, which simply considers each attentional state as a whole. Furthermore, 

our “in the zone” and “out of the zone” lag-CRPs ignored recall transitions between “in the zone” 

and “out of the zone” states. Yet, considering these types of transitions is important: research on 

event boundaries has shown that successive recall of adjacently encoded items is more likely when 

those items are encoded in the same vs. different event (Ezzyat & Davachi, 2010; DuBrow & 

Davachi, 2013, 2016; Heusser et al., 2018; also see DuBrow & Davachi, 2014; Ezzyat & Davachi, 

2014) and recall may “leap” between cognitively similar but temporally distant events (Chan et al., 
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2017). We therefore designed an analysis to test whether fluctuations between attentional states 

can act as event boundaries that reproduce the phenomena observed in research on events. 

This analysis allowed us to test whether 1) recall transitions within an “event segment” are more 

likely for “in the zone” vs. “out of the zone” attentional states; and 2) whether recall for “in the 

zone” states is more likely to “leap” from one event segment to another, bypassing items that were 

encoded in an “out of the zone” attentional state (Chan et al., 2017; also see Heusser et al., 2018). 

To examine these hypotheses, we considered all pairs of successively recalled items, and calculated 

the number of transitions made during recall for each type of transition noted in Figure 2 (same 

state, same event; same state, different event; different state, different event), separately for each 

attentional state (“in the zone” vs. “out of the zone”). We divided the number of actual transitions 

in each bin by the number of opportunities to transition to another item that falls within the same 

transition type regardless of attentional state at encoding. The resulting value is therefore the 

conditional probability of each transition type. For example, we divided the number of “same state, 

same event” transitions for “in the zone” items by the number of opportunities to make “same 

state, same event” transitions to other items, regardless of attentional state at encoding (i.e., the 

total number of possible “same state, same event” transitions between two “in the zone” items 

and between two “out of the zone” items). This analysis therefore asks: of all possible event 

transitions of a specific type (e.g., “same state, same event”), how many were for items encoded 

“in the zone” vs. “out of the zone”? This is analogous to the “same denominator” approach we 

used for the lag-CRPs.  

For completeness, we also re-ran this analysis using the “state-specific” denominator approach, in 

which we divided the number of transitions in each bin by the number of opportunities to transition 

to another item that falls within the same type of transition for that attentional state. For example, 

we divided the number of “same state, same event” transitions for “in the zone” items by the 

number of opportunities to make “same state, same event” transitions to items encoded “in the 

zone”.  
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Figure 2. Types of transitions at recall. Individuals fluctuate between “in the zone” (blue) and “out of the 
zone” (orange) attentional states during encoding. Each instance of each attentional state can be considered 
its own “event segment”. For example, the ball and the recliner are encoded in the same attentional state 
and the same event segment within that state (a: “same state, same event”), whereas the ball and the 
panda are encoded in the same attentional state but during different event segments (b: “same state, 
different event”). The ball and the car are encoded in different attentional states and therefore, by necessity, 
different event segments as well (c: “different state, different event”). In the recall phase, given the recall 
of one object, the transition to the second object can be therefore categorized as one of three types: 1) 
same state, same event; 2) same state, different event;  and 3) different state, different event. 

 

In both the “same denominator” and “state-specific denominator” approaches, these conditional 

probabilities were calculated separately for each block, and then averaged across blocks for each 

participant. We then performed a two-way repeated-measures ANOVA with the type of transition 

(3 levels) and attentional state (2 levels) as factors. The pattern of results was the same for the 

“same denominator” and “state-specific” denominator approaches; here, we report the results for 

the “same denominator” approach to be consistent with the lag-CRP analysis. The results for the 

“state-specific” denominator approach can be found in Table S1. 

Bayes Factors 

We computed Bayes Factors using the BayesFactor package in  R (https://cran.r-

project.org/web/packages/BayesFactor/index.html; Morey & Rouder, 2011; Rouder & Morey, 

2011; Rouder et al., 2012, 2013). Bayes Factors quantify the strength of evidence provided by the 

data for one hypothesis vs. another.  

We report Bayes Factors (BF) in terms of support for the null hypothesis, such that values greater 

than 3 indicate evidence for the null while values less than 1/3 indicate evidence for the alternative 

hypothesis (Kass & Raftery, 1995; Jeffreys, 1961; Wagenmakers et al., 2011). Specifically, Bayes 

Factors between 1/3-3 indicate no evidence for either the null or alternative hypothesis; Bayes 

https://cran.r-project.org/web/packages/BayesFactor/index.html
https://cran.r-project.org/web/packages/BayesFactor/index.html
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Factors between 3-20 or between 1/20-1/3 provide evidence for the null or alternative hypothesis, 

respectively; Bayes Factors between 20-150 or between 1/150-1/20 provide strong evidence for 

the null or alternative hypothesis, respectively; and Bayes Factors greater than 150 or less than 

1/150 indicate very strong evidence in favor of the null or alternative hypothesis, respectively. For 

the sake of completeness and transparency, we report Bayes Factors for all of our main findings 

(in all studies and in Table 3). However, we note that care must be taken when computing and 

interpreting Bayes Factors because they can be subject to many limitations (e.g., sensitivity to prior 

selection), including limitations similar to those of p-values (e.g., binary treatment of a continuous 

measure). For discussions about the limitations of Bayes Factors, see Liu & Aitkin, 2008; 

Simonsohn, 2014; Simmons et al., 2016; Gelman & Carlin, 2017. 

Bayes Factors for paired t-tests were computed with the function ttestBF() with paired set to TRUE, 

and other arguments left as the default; the inverse was then obtained to provide the Bayes Factor 

in terms of support for the null. For main effects and interactions from ANOVAs, we computed 

Bayes Factors using the function lmBF() with default priors and 500,000 iterations. Bayes Factors 

for main effects were computed by dividing the Bayes Factor for the model excluding the main 

effect (and all interactions with the effect of interest) by the Bayes Factor for the model including 

the main effect, but no interactions with the effect of interest. Similarly, to compute the Bayes 

Factor for an interaction effect, we divided the Bayes Factor obtained from a model excluding the 

interaction effect (but including all other main effects and interactions) by the Bayes Factor for a 

model including the interaction of interest (Rouder et al., 2012).  

In addition to Bayes Factors for the effects of interest, we also included Bayesian model 

comparisons for the lag-CRP and event segment analyses. Here, we compared a null model that 

did not include attentional state as a factor (whether as a main effect or interaction term) to a full 

model that included attentional state and its interactions (Liu & Aitkin, 2008; Kruschke, 2011). The 

Bayes Factor for the null model was then divided by the Bayes Factor for the full model (both 

computed using the function lmBF) to obtain evidence for the null (i.e., values larger than 3 indicate 

evidence for the null model). 

We also provide traditional null-hypothesis significance testing throughout the paper (i.e., 

determining whether results are statistically significant or not based on whether p-values are less 

than 0.05). In almost all cases, p-values and Bayes Factors are in agreement. There are, however, 
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some situations in which p-values are less than 0.05 but evidence from Bayes Factors does not 

strongly support the alternative hypothesis; this only happens in rare cases and does not affect 

our main conclusions. In all analyses testing our main hypotheses — with respect to the temporal 

organization of recall based on attentional state at encoding — interpretation of p-values and Bayes 

Factors leads to the same conclusion. 

 

Results  

Defining attentional states at encoding 

In the encoding task, participants viewed images of objects and judged each as being larger or 

smaller than a shoebox. Overall, mean response time (RT; defined from the onset of an image 

fading in; see Methods and Figure 1) was 3.94 (SD = 0.58s). Median RT was 4.00s.  

We defined attentional states by performing a variance time course (VTC) analysis on the encoding 

phase RTs (Esterman et al., 2013). This procedure identifies two attentional states: the good “in 

the zone” attentional state (trials with lower RT variability, i.e., RTs closer to the mean) and the 

worse “out of the zone” attentional state (trials with higher RT variability, i.e., RTs farther away 

from the mean). Figure 3A shows the VTC analysis for one sample participant.  

The mean length of a continuous “in the zone” segment was 3.59 trials (SD = 0.46) and the mean 

length of a continuous “out of the zone” segment was 3.59 trials (SD = 0.53; Note that each trial 

was 6 seconds long). The mean number of fluctuations within a block (i.e., the number of times 

participants transitioned from one state to another) was 7.38 (SD = 1.04). The number of trials 

within a continuous segment ranged from 1 to 14, for both “in the zone” and “out of the zone” 

states, across all blocks and participants. 

As an initial validation check of the VTC approach, we examined whether RT variability changed 

over the course of the experiment, as would be predicted if participants gradually lost focus or 

became fatigued over time. Indeed, RTs became progressively more variable across blocks 

(F3.49,223.21 = 4.91, p = 0.0015, ηp
2 = 0.07), consistent with the idea that more variable RTs may 

index worsening attention and differentiate "in the zone" from "out of the zone" states. 

These attentional states were used to examine accuracy on the encoding task and subsequent 

recall performance, described below. 
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More encoding errors during “out of the zone” attentional states 

Participants generally performed very well on the encoding task (“Is this object smaller or larger 

than a shoebox?”). The mean percentage of trials participants responded to was 97.82% (SD = 

3.11%, Median = 99.33%). Mean accuracy (as defined in Methods) was 88.66% (SD = 7.12%, 

Median = 91.33%).  

We next examined errors in the encoding task as a function of attentional state. Prior studies have 

shown that “out of the zone”, vs. “in the zone”, attentional states are associated with more errors 

(Rosenberg et al., 2013; Esterman et al., 2013). We replicated these findings in the current study. 

A paired samples t-test revealed that participants made significantly more errors in the encoding 

task during an “out of the zone” attentional state (mean ± SD: 10.31 ± 6.67) compared to an “in 

the zone” attentional state (7.15 ± 5.32; t64 = 4.87, p < 0.0001, Cohen’s dz =  0.60, 95% CI [1.86, 

4.45], BF < 1/150, Figure 3B). Thus, the VTC analysis is successful in identifying fluctuations 

between better and worse attentional states, even in our modified procedure.  

As an additional validation check of whether RTs are sensitive to attentional fluctuations in our 

task, we compared RTs before vs. after an error, as done in prior work (e.g., Dutilh et al., 2012; 

Fortenbaugh et al., 2015). To that end, we used a linear mixed-effects model to predict RT from 

trial position (pre vs. post error), with participant-level random effects for the intercept (following 

the procedure used in Decker et al., 2020). We found reliable post-error speeding: RTs after an 

error were significantly faster than those before an error (β = -230.82, S.E. = 74.15, t1955 = -3.11, 

p = 0.0019, 95% CI [-376.15, -85.49]). Although counterintuitive, several other studies have found 

post-error speeding (Notebaert et al., 2009; Purcell & Kiani, 2016; Williams et al., 2016; Damaso 

et al., 2020); this may occur if participants occasionally “zone out” or mind wander, leading to 

inefficient processing of an item on a given trial and subsequent speeding once participants catch 

themselves being off task. Thus, this analysis provides additional evidence that RTs can index 

attention in our task. 
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Figure 3. Encoding task performance and recall performance in Study 1. Encoding errors differ between 
attentional states but recall performance does not.  A. Variance Time Course (VTC) analysis for a sample 
participant. Two attentional states were identified by a median split of smoothed, absolute RT deviations 
from the mean: 1) an “in the zone” attentional state (blue) with lower RT variability, i.e., RTs closer to the 
mean and, 2) an “out of the zone” attentional state (orange) with higher RT variability, i.e., RTs farther 
away from the mean. Horizontal black lines indicate the median absolute RT deviation per block. Gray curves 
indicate raw (unsmoothed) RT deviation per block. B. Individual points show the number of encoding 
judgement errors made by each participant during “in the zone” and “out of the zone” attentional states. 
Participants made significantly more encoding errors during the “out of the zone” state. C. Individual points 
show the percentage of items correctly recalled by each participant as a function of whether items were 
encoded “in the zone” or “out of the zone”. There was no difference in recall performance between the two 
states. Black points in panels B & C indicate the mean of the measure; error bars indicate the standard error 
of the within-participant difference between “in the zone” and “out of the zone”. *** p < .0001. ns = not 
statistically significant. 

Overall recall does not differ between the two attentional states 

We next turned to examining memory for the objects viewed during the encoding task. Mean recall 

accuracy, calculated as the percentage of items correctly recalled across all blocks, was 34.28% 

(SD = 14.68). 
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We then separately examined recall performance based on whether items were encoded “in the 

zone” or “out of the zone”. We hypothesized that recall performance would be superior for “in the 

zone” attentional states. However, we did not find a significant difference in recall performance 

between “in the zone” (Mean ± SD: 34.86% ± 15.70) and “out of the zone” (33.64% ± 15.20) 

attentional states  (t64 = 1.26, p = 0.21, Cohen’s dz = 0.16, 95% CI [-0.72, 3.17], BF = 3.46, 

Figure 3C). Thus, even though these attentional states differed in online task performance, 

subsequent recall was surprisingly not different.  

 Study 1 Study 2 Study 3 Study 4 

Lag  
(1 to 29) 

Nearby > far away 

F12.42, 794.89 = 11.28 

p < 0.0001 

ηp
2 = 0.15 

Nearby > far away 

F11.36, 761.14 = 14.47 

p < 0.0001 

ηp
2 = 0.18 

Nearby > far away 

F11.53,772.73 = 11.49 

p < 0.0001 

ηp
2 = 0.15 

Nearby > far away 

F13.46, 1655.35 = 7.34 

p < 0.0001 

ηp
2 = 0.06 

Direction 
(Forward 

vs. 
Backward) 

F1,64 = 0.33 

p = 0.57 

ηp
2 = 0.005 

Forward > backward 

F1,67 = 15.77 

p = 0.0002 

ηp
2 =  0.19 

F1,67 = 0.002 

p = 0.97 

ηp
2 = 0.00003 

F1,123 = 1.35 

p = 0.25 

ηp
2 = 0.01 

Lag x 
Direction 

F14.79, 946.73 = 1.45 

p = 0.12 

ηp
2 = 0.02 

Forward > backward 
for nearby >  

far away 
F15.85,1062.11 = 1.88 

p = 0.019 

ηp
2 = 0.027 

Forward > 
backward for 

nearby >  
far away 

F15.86,1062.47 = 1.84 
p = 0.023 

ηp
2 = 0.027 

F16.06,1975.52 = 1.27 

p = 0.21 

ηp
2 = 0.01 

+1 vs. -1 
transitions 

t64 = 1.89 

p = 0.063 

Cohen’s dz = 0.23 

95% CI [-

0.002,0.059] 

t67 = 3.59 

p = 0.0006 

Cohen’s dz = 0.44 

95% CI [0.01,0.04] 

t67 = 3.32 

p = 0.002 

Cohen’s dz = 0.40 

95% CI [0.01,0.04] 

t123 = 1.92 

p = 0.06 

Cohen’s dz = 0.17 

95% CI [-

0.0003,0.018] 

Table 2. Summary of two-way ANOVA (direction x absolute lag) results for the overall lag-CRP curves in 

each Study. Green shading indicates statistically significant results (p < 0.05) and gray shading indicates 

results that are not statistically significant. 
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No differences in temporal contiguity or forward asymmetry between the two 

attentional states  

Although overall recall was not different between “in the zone” and “out of the zone” attentional 

states, it is possible that there may be subtle differences in how information is recalled. We 

therefore turned to our main analyses of interest, which explore the temporal organization of recall. 

We hypothesized that “in the zone” attentional states are more conducive to maintaining temporal 

context representations that facilitate temporally organized recall. We therefore used lag-CRP 

curves to test whether temporal contiguity and/or forward asymmetry were stronger for “in the 

zone” vs. “out of the zone” states. 

Figure 4A shows the overall lag-CRP curve, across participants and blocks, regardless of 

attentional state at encoding (see Table 2 for analyses of the overall lag-CRP curve); Figure 4B 

shows the lag-CRP curves, across participants and blocks, separately for items that were encoded 

“in the zone” and “out of the zone”. These curves depict the probability of recalling two items 

successively based on their relative position, or lag, at encoding. Note that, across all of our Studies, 

the CRP values at nearby lags are lower than what is typically observed in many recall studies (e.g., 

Kahana, 1996; Sederberg et al., 2010; Healey & Kahana, 2014). This is likely because the lists used 

in the current set of Studies are longer than those of most list-learning recall studies and, 

concomitantly, more recall transitions are available for each item. Thus, recall transitions could be 

spread across more lags. This is consistent with the finding that lag-CRP values at nearby lags tend 

to be lower for longer lists (Healey et al., 2019). 

We conducted a three-way repeated-measures ANOVA on the lag-CRP measures (i.e., lag-

conditional recall shown in Figure 4B) with attentional state (“in the zone” vs. “out of the zone”), 

absolute lag (1 to 29), and direction (forward vs. backward) as factors (results summarized in 

Table 3). We expected that we might find 1) an interaction between attentional state and absolute 

lag, indicating that nearby recall transitions would be more likely for items encoded “in the zone” 

vs. “out of the zone” and 2) an interaction between attentional state and direction, indicating a 

stronger forward asymmetry bias for items encoded “in the zone”. We found a significant main  
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Table 3. Summary of results across Studies 1-4. Green shading indicates statistically significant results (p 

< 0.05) and gray shading indicates results that are not statistically significant. The interpretation of Bayes 

Factors (BF) is described in the main text. F-values, t-values, degrees of freedom, effect sizes, and 

confidence intervals are reported in the main text. In = “in the zone” attentional state; Out = “out of the 

zone” attentional state, defined with the VTC analysis.  

 

 



27 

effect of absolute lag (F9.07, 580.52 = 9.60, p < 0.0001, ηp
2 = 0.13, BF < 1/150): during recall, 

individuals were more likely to transition to items that were encoded nearby vs. farther away. We 

did not find a significant main effect of direction (F1,64 = 0.074, p = 0.79, ηp² = 0.001, BF = 37.41) 

nor an interaction between direction and absolute lag (F8.44, 540.05 = 1.15, p = 0.33, ηp² = 0.02, BF 

> 150). 

We next examined main effects and interactions involving attentional state. There was no main 

effect of attentional state (F1,64 = 0.11, p = 0.74, ηp² = 0.002, BF = 37.92). Additionally, there was 

no interaction between attentional state and direction (F1,64 = 0.96, p = 0.33, ηp² = 0.015, BF = 

20.99), no interaction between attentional state and absolute lag (F7.66 490.37 = 0.75, p = 0.64, ηp² 

= 0.012, BF > 150), nor a three-way interaction between absolute lag, direction, and attentional 

state (F8.27, 529.45 = 1.21, p = 0.29, ηp² = 0.02, BF > 150). Hence, there was no significant difference 

between the attentional states in temporal contiguity or  forward asymmetry.  

We next examined forward asymmetry differences between the two attentional states at the nearby 

lags of ± 1. This was done to determine whether the lack of a forward asymmetry difference 

between the attentional states was due to inclusion of all lags in the CRP curves: forward symmetry 

is sometimes most pronounced for nearby lags. From a two-way repeated-measures ANOVA with 

lag (+1 vs. -1) and attentional state (“in the zone” vs. “out of the zone”) as factors, we did not 

find an effect of attentional state (F1,64 = 1.51, p = 0.22, ηp² = 0.023, BF = 4.25) nor an interaction 

between attentional state and lag (F1.62 = 0.091, p = 0.76, ηp² = 0.001, BF = 5.09).  

Finally, we conducted a Bayesian model comparison in which we compared the three-way ANOVA 

reported above (lag x direction x attentional state) to a null model without an attentional state 

variable (lag x direction). This analysis revealed very strong evidence in favor of the null model (BF 

> 150).  

All together, across these lag-CRP analyses, we did not find any differences in the temporal 

organization of recall for items encoded “in the zone” vs. “out of the zone”.  
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Figure 4. Lag-CRP curves overall and by attentional state for Study 1. A. Overall lag-CRP curve across 
participants and blocks. B. Lag-CRP curves plotted separately for items encoded “in the zone” (left) and “out 
of the zone” (right). There was no difference between the two attentional states in the temporal contiguity 
or forward asymmetry of recall. Error bars represent the standard error.  
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No differences in event transition types between the two attentional states 

The lag-CRP analyses above examined temporal organization differences between the two 

attentional states, but they do not take into account qualitatively different types of transitions that 

could occur within an attentional state (such as transitions between different event segments) or 

transitions from one state to another (see Figure 2). However, it is possible that attentional 

fluctuations act in a similar way to event boundaries (Ezzyat & Davachi, 2010; DuBrow & Davachi, 

2013, 2016; Heusser et al., 2018), such that recall is more temporally clustered within segments 

than across segments, and may occasionally “leap” between segments of a similar cognitive state 

(Chan et al., 2017).  

We therefore examined recall as a function of the type of transition (Figure 2). If “in the zone” 

(vs. “out of the zone”) attentional states are more conducive to maintaining a temporal context 

representation, and this temporal context representation is reinstated every time an individual is 

"in the zone", two predictions could be made. First, that recall transitions within an “event segment” 

may be more likely for items encoded “in the zone” vs. “out of the zone” (i.e., same state, same 

event transitions; Figure 2), and second, that recall “leaps” to a different event segment in the 

same attentional state may be more likely for items encoded “in the zone” vs. “out of the zone” 

(i.e., same state, different event transitions). 

To test this, for each type of transition (“same state, same event”; “same state, different event”; 

“different state, different event”), we calculated the number of transitions made during recall 

divided by the number of opportunities to make such transitions (see Methods: Recall 

Transitions by Event Segment). We performed a two-way repeated-measures ANOVA with 

transition type (3 levels) and attentional state (“in the zone” vs. “out of the zone”) as factors. We 

expected to find an interaction between attentional state and transition type. Specifically, we 

expected to find more “same state, same event” and “same state, different event” transitions for 

“in the zone” vs. “out of the zone” attentional states. 

We found a main effect of transition type (F1.07, 68.51 = 32.24, p < 0.0001, ηp² = 0.33, BF < 1/150). 

There was no main effect of attentional state (F1,64 = 0.037, p = 0.85, ηp² = 0.0006, BF = 8.87) 

nor a significant interaction between attentional state and transition type (F1.28, 81.66 = 0.086, p = 

0.83, ηp² = 0.001, BF = 19.13).  
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Given the main effect of transition type, we conducted follow-up t-tests to compare them, 

collapsing across the two attentional states. We found that “same state, same event” transitions 

were significantly more likely than “same state, different event” transitions (t64  = 5.77, p < 0.0001, 

Cohen’s dz = 0.72, 95% CI [0.013, 0.027]) and significantly more likely than “different state, 

different event” transitions (t64 = 5.71, p < 0.0001, Cohen’s dz = 0.71, 95% CI [0.012, 0.025]).  

“Different state, different event” transitions were also more likely compared to “same state, 

different event” transitions (t64 = 2.13, p = 0.04, Cohen’s dz = 0.26, 95% CI [0.00010, 0.003]). 

 

 

 

Figure 5. Recall transitions as a function of event type for Study 1. Recall transitions are shown based on 
whether they occurred within an “event segment” of a particular attentional state (same state, same event), 
across event segments of a given attentional state (same state, different event), or between attentional 
states (different state, different event; see Figure 2). There were no significant differences between the 
two attentional states in any transition type. Individual points indicate the conditional probability of each 
transition type (i.e., the number of times each transition type occurred divided by the number of 
opportunities to make a transition of that type) for each individual, separately for items encoded “in the 
zone” and “out of the zone”. Black dots indicate the mean; error bars indicate the standard error of the 
within-participant difference between “in the zone” and “out of the zone”. ns = not statistically significant. 

 

This pattern of results (Figure 5) is consistent with the temporal contiguity effect: participants are 

more likely to make recall transitions to nearby items. In particular, items encoded in the same 

state and same event are the closest to one another (“same state, same event” transitions; e.g., 

recall transitions within Event 1 in Figure 2), and are more likely to be recalled together than 
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items that span events (“same state, different event” and “different state, different event” 

transitions in Figure 2).  

As for the lag-CRP analysis, we conducted a Bayesian model comparison in which we compared 

the two-way ANOVA reported above (transition type x attentional state) to a null model without an 

attentional state variable (one-way ANOVA with transition type). This analysis revealed very strong 

evidence in favor of the null model (BF > 150). Therefore, across these analyses, we found no 

evidence that recall transitions across different event types varied based on attentional state at 

encoding. 

Secondary Analysis: Faster vs. Slower RTs 

In addition to defining attentional states based on the VTC approach (in which RTs that are either 

too fast or too slow are considered to reflect a poor attentional state), we conducted a secondary 

analysis in which we divided attentional states into those characterized by faster vs. slower RTs, in 

line with other research that makes this distinction (e.g., deBettencourt et al., 2018; Decker et al., 

2020; Wakeland-Hart et al., 2022). We therefore analyzed the data the same way as we did for 

the VTC analysis (including, for example, interpolating RTs on incorrect trials), except that trials 

were divided by a median split into those associated with faster vs. slower RTs (rather than RTs 

closer vs. further from the mean). 

There were no differences in online errors during attentional states characterized by faster vs. 

slower RTs (t64 = 1.90, p = 0.06, Cohen’s dz = 0.24, 95% CI [-0.05, 2.05], BF = 1.36). Note that 

the numerical direction of this effect (more errors for attentional states associated with slower vs. 

faster RTs) is the opposite from that expected based on some similar prior work, in which more 

errors were made following faster vs. slower RTs (deBettencourt et al., 2018; Wakeland-Hart et 

al., 2022). It is, however, consistent with findings that longer eye fixations and slower response 

times are associated with mind wandering and attentional lapses (e.g., Smallwood et al., 2003; 

Weissman et al., 2006; Feng et al., 2013; Yanko & Spalek, 2013; Kam & Handy, 2014; Henriquez 

et al., 2016; Krasich et al., 2018; H. Zhang et al., 2021). 

Subsequent recall was not different between attentional states associated with faster vs. slower 

RTs at encoding (t64 = 1.21, p = 0.23, Cohen’s dz = 0.16, 95% CI [-0.77, 3.15], BF = 3.66). The 

lag-CRP analysis revealed only a main effect of absolute lag (nearby > far away; F12.68, 811.72 = 7.96, 
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p < 0.0001, ηp
2 = 0.11, BF < 1/150); all other main effects and interactions were not statistically 

significant (all ps > 0.26; all other BFs > 20.40).  

The event segment analysis revealed a main effect of transition type (F1.04, 66.24 = 35.41, p < 

0.0001, ηp
2 = 0.36, BF < 1/150). Follow-up t-tests showed significantly more “same state, same 

event” transitions compared to “same state, different event” transitions (t64 = 5.90, p < 0.0001, 

Cohen’s dz = 0.73, 95% CI [0.01, 0.03]), and “different state, different event” transitions (t64 = 

6.10, p < 0.0001, Cohen’s dz = 0.76, 95% CI [0.015, 0.029]). “Different state, different event” 

transitions were also more likely  than “same state, different event” transitions (t64 = 2.03, p = 

0.047, Cohen’s dz = 0.25, 95% CI [0.00002, 0.003]). There was no main effect of attentional state 

(F1,64 = 0.25, p = 0.62, ηp
2 = 0.004, BF = 8.50) nor an attentional state by transition type 

interaction (F1.12, 71.44 = 1.24, p = 0.28, ηp
2 = 0.02, BF = 10.35). 

A Bayesian model comparison for the lag-CRP analysis, which compared the above model to a null 

model without an attentional state variable, revealed very strong evidence in favor of the null 

model (BF > 150). The same approach for the event segment analysis revealed strong evidence in 

favor of the null model (BF = 86.32). 

Thus, this alternative characterization of attentional states also failed to reveal differences in the 

temporal organization of recall. This alternative approach is, however, more difficult to interpret 

than the VTC analysis: unlike the VTC analysis, which was successful in detecting differences in 

online performance for “in the zone” vs. “out of the zone” attentional states, this alternative 

approach did not reliably predict online errors. Thus, this alternative approach may not be as 

powerful in identifying fluctuating attentional states. 

Discussion  

We hypothesized that “in the zone” attentional states, vs. “out of the zone” states, are more 

conducive to maintaining temporal context representations that can facilitate temporally organized 

recall. We found no support for this hypothesis. There was no difference between attentional states 

in overall recall; there was also no difference in forward asymmetry or temporal contiguity as 

assessed by the lag-CRP curves; and finally, there was no difference in the types of event 

transitions made in recall.  

We replicated prior results in showing more online errors (in the encoding task) during “out of the 

zone” vs. “in the zone” attentional states. Yet, subsequent recall was not different overall between 
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the two attentional states, and no measures of recall organization showed a difference. One 

possibility is that our task only yielded moderate attentional fluctuations, which were not strong 

enough to produce effects on recall. This may be because our task deviated from the original 

gradCPT in several ways (Esterman et al., 2013; Rosenberg et al., 2013). The original gradCPT 

requires a habitual response to frequent trials and a withheld response to infrequent trials. Here, 

we had participants provide a binary judgement (using one of two keys) on each trial, for which 

the responses were similar in frequency. Thus, the traditional manipulation might be more effective 

in inducing “out of the zone” states because 1) the same response is made most of the time and 

2) the judgement used in the current task might be more difficult and subjective, and thus may 

have required more focused attention.  

Furthermore, the subjectivity of the judgements used in this Study may have made it difficult to 

separate “in the zone” and “out of the zone” states. This may have occurred if RTs to ambiguous 

images (e.g., cowboy hat, soda bottle) were slow, as participants considered how either response 

(bigger or smaller than a shoebox) could be justified. If that was the case, responses to ambiguous 

items may be incorrectly considered “out of the zone”, obscuring true differences between 

attentional states. We conducted two additional analyses to test this possibility. First, we examined 

if RTs to ambiguous items were slower than those to unambiguous items; that was indeed the case 

(t64 = 3.88, p = 0.0003, Cohen’s dz = 0.48, 95% CI [-0.34, -0.11]). We next repeated all of our 

analyses after interpolating RTs for ambiguous items, using the same procedure used for error 

trials. The pattern of results was unchanged: the statistically significant results were in online errors 

(“out of the zone” > “in the zone”; t64 = 3.85, p = 0.0003, Cohen’s dz= 0.48, 95% CI [1.20, 3.79]); 

the main effect of absolute lag in the lag-CRP analysis (nearby transitions > far away transitions; 

F9.87, 631.61 = 8.49, p < 0.0001, ηp
2 = 0.12; all other ps > 0.22); and the main effect of transition 

type in the event segment analysis (same pattern as reported in the main analysis; F1.08,68.92 = 

29.59, p < 0.0001, ηp
2 = 0.32; all other ps > 0.45). Thus, inclusion of ambiguous items had no 

detectable effect on our analyses of interest. 

A final difference between our Study and prior work is that our blocks were relatively short: 3 

minutes relative to 8 minutes in a traditional gradCPT. These short blocks may not have induced 

strong enough attentional fluctuations to see large effects on recall organization. In Study 2, we 

modified our task to address these limitations.  
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Study 2 

Overview 

In Study 2, we sought to address limitations of Study 1 that may have made attentional fluctuations 

relatively weak and thus, limited our chance of seeing strong effects on subsequent recall. First, 

we changed our task to be aligned with the traditional gradCPT by using a go/no-go approach. 

Most trials were “go” trials in which a participant made a response to non-food items. On a minority 

of trials (“no-go”), which occurred 10% of the time, a food item was presented and participants 

had to withhold their response. This approach should make the “go” response habitual, making it 

more likely that individuals will “zone out” due to the repetitive nature of the task. We did not 

include any stimuli for which a “food” vs. “not food” judgment would be ambiguous (e.g., animals); 

this addresses a limitation of Study 1, in which some ambiguous images were used. Second, we 

made our encoding blocks longer (3 blocks of 8 minutes, rather than 5 blocks of 3 minutes in Study 

1). This was done with the hope of encouraging stronger periods of “zoning out”. To that end, we 

increased our block length by adding more items per block: 80 items per block rather than the 30 

in Study 1. A small pilot study indicated that participants recalled fewer words with the longer 

blocks; we therefore added a block beyond what was needed to (roughly) balance the total number 

of items in Study 1 and Study 2 (i.e., 3 blocks, rather than 2, of 80 items each). This allowed us to 

match the average number of words recalled across Study 1 and Study 2. 

 

Methods  

Design  

Participants 

We report data from 68 participants (Mage = 22.62 ± 5.15, Meducation = 13.99 ± 1.65; see Table 1 

for demographics). We do not report data from an additional 15 participants, who were excluded 

due to image loading errors (N = 3), low response rate during the encoding task (<80%, N = 7), 

outlier response accuracy during the encoding task (>3 SD from the group mean; N = 1), and 

recall recording issues (N = 4). Of the final sample, 48 participants were recruited from the 

Columbia University participant pool and the rest (20 participants) were recruited through Prolific 

(www.prolific.co). All participants completed an online version of the task hosted on the Gorilla 

https://prolific.co/
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platform (www.gorilla.sc; Anwyl-Irvine et al., 2020). Informed consent was obtained in accordance 

with the Columbia University Institutional Review Board.  

Stimuli 

Stimuli were identical to Study 1 with the following exceptions. We chose 240 images instead of 

191 from the pre-curated databases. Color images were converted to grayscale. 90% of the images 

(216 images) were non-food (i.e., inedible) items and 10% (24 images) were food items. No 

ambiguous stimuli were included (e.g., animals). The 240 images were divided into 3 lists of 80 

images each (8 food, 72 non-food images). For this and subsequent Studies, the stimulus lists were 

created by manually ensuring there were an equal number of items from a category (e.g., tools, 

furniture) in each list. This manual sorting was used instead of the OptSeg algorithm from Study 1 

because there were fewer lists, and it was thus more tractable to do the balancing manually 

(OptSeg was relatively slow to run and required manual checking of the generated lists; thus, it 

was more efficient to make the lists manually). 

Procedure  

The procedure was identical to Study 1 with the following exceptions. The experiment consisted of 

3 blocks, each of which included a study phase, a distractor phase, and a recall phase (Figure 1). 

In each study phase, participants viewed 80 trial-unique items, which transitioned slowly from one 

into another as in Study 1. For each presented image, participants were asked to judge if the 

depicted object was “a food or non-food item”. Importantly, they were asked to press a button 

when it was a non-food item (the dominant category), but withhold their response when it was a 

food item. This change aligned our task with the traditional gradCPT, such that participants 

habitually pressed one response 90% of the time, which may make it more likely for them to “zone 

out”.  

The distractor phase was identical to that in Study 1. The recall phase was similar to Study 1. 

Participants were initially given 2 minutes to verbally free recall items from the study phase. Unlike 

Study 1, after the initial 2 minutes of recording (the maximum allowed on Gorilla), participants 

were given the option to begin recording for another 2 minutes if they wanted to recall more 

objects. This was done because the blocks in Study 2 were longer than those in Study 1; thus, we 

wanted to give participants more time for free recall if they needed it.  
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Participants did not perform a practice block before beginning the task blocks, but were given video 

instructions on how to perform the task. 

Analyses 

Defining attentional states at encoding  

Attentional states were defined using RTs for the judgements made by participants during the 

study phase, in a procedure similar to Study 1. Unlike Study 1, however, participants were 

supposed to withhold responses on some trials; thus, some correct responses did not have an 

associated RT. Therefore, we first calculated — for correct trials with a response — the absolute 

deviation of the trial RT from the within-block mean, as in Study 1. Next, RT deviations for trials 

without a response (whether correctly withheld on “no-go” food trials or incorrectly withheld on 

“go” non-food trials) and trials with an incorrect response were interpolated from the two 

surrounding trials, as done in other studies employing this method (Esterman et al., 2013; 

Rosenberg et al., 2013). All other steps were performed in an identical manner to Study 1. This 

resulted in trials being divided into two attentional states: “in the zone” states with lower RT 

variability (i.e., RTs closer to the mean) and “out of the zone” states with higher RT variability (i.e., 

RTs farther away from the mean; Figure 6A).     

Errors at encoding 

Similar to Study 1, we first sought to replicate the finding that “out of the zone” (vs. “in the zone”) 

attentional states are associated with more errors (Esterman et al., 2013; Rosenberg et al., 2013). 

Errors in the encoding task were calculated as the sum of the number of incorrect button presses 

to a “no-go” food trial (commission errors) and the number of failures to respond to a “go” non-

food trial (omission errors). We examined whether the number of errors made during “out of the 

zone” attentional states was higher than the number of errors made during “in the zone” states. 

Group-level analyses were conducted with a paired-samples t-test.  

Recall performance  

Recall performance and related analyses were identical to those in Study 1. 

Temporal organization of recall 

Analyses of temporal organization of recall were identical to those in Study 1. Note that in Study 

1, actual and possible transitions ranged from -29 to +29 and the entire range was used in lag-

CRP analyses. In Study 2, the range of actual and possible transitions is -79 to +79, because the 



37 

length of the encoding list is 80 items. However, for the lag-CRP analyses of interest, we only used 

actual and possible transitions between -29 to +29. There were two reasons for this: First, 

transitions at the farther lags were rare (26 trials or fewer, across all 3 blocks for all 68 participants 

combined, for a given lag further away than ± 29), and hence the lag-CRP estimates were 

particularly noisy at those lags. Second, to facilitate comparison across studies, we opted to keep 

our analyses consistent by using the range from Study 1. 

Recall Transitions by Event Segment 

Analyses of recall transitions by event segment were identical to those in Study 1. 

 

Results 

Defining attentional states at encoding 

In the encoding task, participants viewed images of objects and judged each as being a non-food 

item (with a button press) or a food item (by withholding a response). Overall, mean RT (defined 

from the onset of an image fading in; see Methods) was 3.74s (SD = 0.72). Median RT was 3.77s. 

As before, we defined “in the zone” and “out of the zone” attentional states by performing a 

variance time course (VTC) analysis on the encoding phase RTs (see Methods). Figure 6A shows 

the VTC analysis for one sample participant in Study 2.  

The mean length of an “in the zone” segment was 3.95 trials (SD = 0.42) and the mean length of 

an “out of the zone” segment was 3.90 trials (SD = 0.43; Note that each trial was 6 seconds long). 

The mean number of fluctuations within a block (i.e., the number of times participants transitioned 

from one state to another) was 19.47 (SD = 2.25). The number of trials within a segment ranged 

from 1 to 27 for “in the zone” states and from 1 to 23 for “out of the zone” states, across all blocks 

and participants. 

As for Study 1, we sought an initial validation of the VTC approach by testing whether RTs were 

increasingly variable over the experimental session. Once again, RTs became progressively more 

variable over blocks (F1.77,118.34 = 5.66, p = 0.006, ηp
2 = 0.08), as individuals presumably became 

more fatigued and less focused. This lends support to the use of RT variability to differentiate “in 

the zone” and “out of the zone” states.  
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These attentional states were used to examine accuracy on the encoding task and subsequent 

recall performance, described below.  

More encoding errors during “out of the zone” attentional states 

Participants performed very well on the encoding task (“Is this object food or a non-food item?”). 

They responded to 99.41% (SD = 2.57%; Median = 100%) of the “go” non-food trials, which 

required a response. Mean accuracy (including correct responses on “go” trials and withheld 

responses on “no-go” trials) was 96.87% (SD = 2.74%; Median = 97.92%).  

 

Figure 6. Encoding task performance and recall performance in Study 2.  Encoding errors differ between 
attentional states but recall performance does not. A. Variance Time Course (VTC) analysis for a sample 
participant, depicting “in the zone” (blue) and “out of the zone” (orange) attentional states. Horizontal black 
lines indicate the median absolute RT deviation per block. Gray curves indicate raw (unsmoothed) RT 
deviation per block. B. Individual points show the number of encoding judgement errors made by each 
participant during “in the zone” and “out of the zone” attentional states. Participants made significantly more 
encoding errors during the “out of the zone” state. C. Individual points show the percentage of items 
correctly recalled by each participant as a function of whether items were encoded “in the zone”  or “out of 
the zone”. There was no difference in recall performance between the two states. Black points in panels B 
& C indicate the mean of the measure; error bars indicate the standard error of the within-participant 
difference between “in the zone” and “out of the zone”. *** p < .0001. ns = not statistically significant. 
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We next examined errors in the encoding task as a function of attentional state. We replicated 

prior studies (Esterman et al., 2013; Rosenberg et al., 2013) and Study 1:  A paired samples t-test 

revealed that participants made significantly more encoding errors during an “out of the zone” 

attentional state (mean ± SD: 4.28 ± 3.78) compared to an “in the zone” attentional state (2.28 

± 2.43; t67 = 4.83, p < 0.0001, Cohen's dz = 0.59, 95% CI [1.17, 2.83], BF < 1/150, Figure 6B). 

Thus, the VTC analysis remains successful in identifying fluctuations between better and worse 

attentional states.  

As in Study 1, we performed an additional validation check of whether RTs are sensitive to 

attentional fluctuations in our task, by comparing RTs before vs. after an error. Unlike Study 1 (for 

which participants should respond on every trial), there were two types of potential errors in Study 

2: omission errors, for which participants fail to make a button response when they should, and 

commission errors, for which participants make a button response when they should have withheld 

it. We therefore examined RTs before vs. after these error types. 

Participants were faster to respond after vs. before an omission error (β = -1148.6, S.E. = 152.00,  

t310.40 = -7.56, p < 0.0001, 95% CI [-1446.53, -850.60]). This is consistent with participants "zoning 

out" and failing to respond to an image, and subsequently speeding up once they realize that a 

trial was missed. Conversely, participants responded slower after vs. before a commission error (β 

= 392.81, S.E. = 122.39, t330.94 = 3.21, p = 0.002, 95% CI [152.94, 632.70]). This is consistent 

with fast, habitual responses leading to errors, with post-error slowing once an erroneous response 

has been detected. Together, post-error slowing after commission errors and post-error speeding 

after omission errors show that RTs can index attentional fluctuations in our task. 

 

Overall recall does not differ between the two attentional states 

We next turned to examining memory for the objects encoded during the study phase. Mean recall 

was 21.38% (SD = 9.71).   

We then separately examined recall based on whether items were encoded “in the zone” or “out 

of the zone”. As in Study 1, we did not find a significant difference in recall performance between 

“in the zone” (Mean ± SD: 21.19% ± 9.91) and “out of the zone” (21.60% ± 10.18) attentional 

states (t67 = 0.59, p = 0.56, Cohen's dz = 0.072, 95% CI [-0.97, 1.79], BF = 6.35, Figure 6C). 
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Thus, as in Study 1, these states differed in performance during the encoding task but showed no 

differences in subsequent recall.  

No differences in temporal contiguity or forward asymmetry between the two 

attentional states 

As in Study 1, we constructed separate lag-CRP curves for “in the zone” vs. “out of the zone” 

attentional states based on successive recall of items encoded in the same state (Figure 7B; see 

Figure 7A and Table 2 for overall lag-CRP). We conducted a three-way repeated-measures 

ANOVA with attentional state (“in the zone” vs. “out of the zone”), absolute lag (1 to 29), and 

direction (forward vs. backward) as factors (results summarized in Table 3). 

We found a significant main effect of absolute lag (F8.97, 600.97 = 16.22, p < 0.0001, ηp
2 = 0.20, BF 

< 1/150): during recall, individuals were more likely to transition to items that were encoded nearby 

vs. farther away. We also found a significant main effect of direction (F1,67 = 6.24, p = 0.02, ηp² = 

0.09, BF = 1.96) and an interaction between direction and absolute lag (F12.47, 835.32 = 2.49, p = 

0.003, ηp² = 0.04, BF = 0.56). Thus, participants were more likely to recall items in the forward 

vs. backward direction, with this asymmetry being more pronounced for closer vs. farther lags.  

We next examined main effects and interactions involving attentional state. There was no main 

effect of attentional state (F1.67 = 0.32, p = 0.57, ηp² = 0.005, BF = 31.22). There was also no 

interaction between attentional state and direction (F1,67 = 0.08, p = 0.79, ηp² = 0.001, BF = 

26.88), no interaction between attentional state and absolute lag (F12.37, 829.07 = 1.06, p = 0.39, ηp² 

= 0.02, BF > 150), nor a three-way interaction between absolute lag, direction, and attentional 

state (F13.11, 878.44 = 1.33, p = 0.19, ηp² = 0.02, BF > 150). Hence, we did not see any differences 

in temporal contiguity or forward asymmetry bias of recall for items encoded “in the zone” vs. “out 

of the zone”. 
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Figure 7. Lag-CRP curves overall and by attentional state for Study 2. A. Overall lag-CRP curve across 
participants and blocks. B. Lag-CRP curves plotted separately for items encoded “in the zone” (left) and “out 
of the zone” (right). There was no difference between the two attentional states in the temporal organization 
of recall (neither temporal contiguity nor forward asymmetry). Error bars represent the standard error.  
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We conducted a follow-up analysis to compare the two attentional states at the lags of ± 1. This 

was done to examine whether including all lags in our repeated-measures ANOVA masked 

differences between the states that were more specific to close recall transitions. From a two-way 

repeated-measures ANOVA with lag (+1 vs. -1) and attentional state (“in the zone” vs. “out of the 

zone”) as factors, we found only a significant main effect of lag (F1,67 = 12.09, p = 0.0009, ηp² = 

0.15, BF = 0.024). The main effect of attentional state (F1,67 = 0.20, p = 0.66, ηp² = 0.003, BF = 

6.89), and the interaction between attentional state and lag, were not statistically significant (F1,67 

= 1.28, p = 0.26, ηp² = 0.02, BF = 2.86). The significant main effect of lag (+1 vs. -1) indicated 

that individuals are more likely to make forward vs. backward transitions at the closest lag. 

However, this forward asymmetry at the ± 1 lags was not different between the two states. 

As for Study 1, we conducted a Bayesian model comparison in which we compared the three-way 

ANOVA reported above to a null model without an attentional state variable. As before, this analysis 

revealed very strong evidence in favor of the null model (BF > 150).  

All together, across these analyses, we replicated the finding that recall is temporally organized. 

However, this temporal organization was not different between the two attentional states.  

No differences in event transition types between the two attentional states 

As in Study 1, we next examined recall as a function of the type of transition (Figure 2 and Study 

1 Methods: Recall Transitions by Event Segment). We performed a two-way repeated-

measures ANOVA on the conditional probability of recall transitions with transition type (3 levels) 

and attentional state (“in the zone” vs. “out of the zone”) as factors. We found a main effect of 

transition type (F1.04, 69.97 = 46.76, p < 0.0001, ηp² = 0.41, BF < 1/150). The main effect of 

attentional state (F1,67 = 0.37, p = 0.54, ηp² = 0.006, BF = 7.77) and the interaction between 

attentional state and transition type (F1.05, 70.43 = 0.41, p = 0.53, ηp² = 0.006, BF = 15.08) were 

not statistically significant. Thus, each type of recall transition was not different for items encoded 

“in the zone” and “out of the zone” (Figure 8). 

 



43 

 
Figure 8. Recall transitions as a function of event type in Study 2. Recall transitions are shown based on 
whether they occurred within an “event segment’ of a particular attentional state (same state, same event), 
across event segments of a given attentional state (same state, different event), or between attentional 
states (different state, different event; see Figure 2). There were no significant differences between the 
two attentional states in any transition type. Individual points indicate the conditional probability of each 
transition type (i.e., the number of times each transition type occurred divided by the number of 
opportunities to make a transition of that type) for each individual, separately for items encoded “in the 
zone” and “out of the zone”. Black dots indicate the mean; error bars indicate the standard error of the 
within-participant difference between “in the zone” and “out of the zone”. ns = not statistically significant. 

 

Given the main effect of transition type, we conducted follow-up t-tests to compare them, 

collapsing across the two attentional states, as we did for Study 1. We replicated Study 1 in 

observing that “same state, same event” transitions were significantly more likely than “same state, 

different event” transitions (t67 = 7.03, p < 0.0001, Cohen’s dz = 0.85, 95% CI [0.007, 0.013]) 

and “different state, different event” transitions (t67 = 6.72, p < 0.0001, Cohen’s dz = 0.82, 95% 

CI [0.007, 0.012]). “Different state, different event” transitions were also significantly more likely 

than “same state, different event” transitions (t67 = 2.34, p = 0.02, Cohen’s dz = 0.28, 95% CI 

[0.00008, 0.001]). This pattern is consistent with temporally organized recall, in that  “same state, 

same event” items are the closest to one another, while “same state, different event” items are 

necessarily never in contiguous events (Figure 2). As for Study 1, we conducted a Bayesian model 

comparison in which we compared the two-way ANOVA reported above to a null model without an 

attentional state variable. This analysis revealed strong evidence in favor of the null model (BF = 

109.28).  

Thus, across these event transition analyses, we failed to find evidence for our hypotheses 

regarding differences between “in the zone” and “out of the zone” states.  
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Secondary Analysis: Faster vs. Slower RTs 

As for Study 1, we examined task performance and subsequent memory with a secondary analysis 

in which encoding RTs were divided, by a median split, into those that were faster vs. those that 

were slower (see Study 1 for procedural details). This allowed us to determine if this alternative 

characterization of attentional states reveals differences in recall organization that were masked 

by our VTC analysis, which considers RTs that are too fast or too slow to be a poor attentional 

state.  

There was no difference in online errors during attentional states characterized by faster vs. slower 

RTs (t67 = 0.96, p = 0.34, Cohen's dz = 0.12, 95% CI [-0.40, 1.13], BF = 4.84) and recall was also 

not different between these two attentional states (t67 = 1.41, p = 0.16, Cohen’s dz = 0.18, 95% 

CI [-0.35, 2.07], BF = 2.92).  

The lag-CRP analysis revealed only a main effect of absolute lag (F11.94, 799.95 = 9.60, p < 0.0001, 

ηp
2 = 0.13, BF < 1/150); all other main effects and interactions were not statistically significant (all 

ps > 0.088; all other BFs > 10.53).  

The event segment analysis revealed a main effect of transition type (F1.05, 70.17 = 46.80, p < 

0.0001, ηp
2 = 0.41, BF < 1/150), reflecting significantly more “same state, same event” transitions 

compared to “same state, different event” transitions (t67 = 6.91, p < 0.0001, Cohen’s dz = 0.84, 

95% CI [0.007,  0.0134]) and “different state, different event” transitions (t67 = 6.88, p < 0.0001, 

Cohen’s dz = 0.83, 95% CI [0.007, 0.0127]). There was no significant difference between “different 

state, different event” and “same state, different event” transitions (t67 = 1.83, p = 0.07, Cohen’s 

dz = 0.22, 95% CI [-0.00004, 0.001]). There was no main effect of attentional state (F1,67 = 1.59, 

p = 0.21, ηp
2 = 0.023, BF = 4.45) nor an attentional state by transition type interaction (F1.03,68.96 

= 1.62, p = 0.21, ηp
2 = 0.24, BF = 4.90). 

As for Study 1, we performed a Bayesian model comparison for the lag-CRP analysis. We compared 

the model reported above to a null model without an attentional state variable. This comparison 

revealed very strong evidence in favor of the null model (BF > 150). The same approach for the 

event segment analysis revealed strong evidence in favor of the null model (BF = 22.13). 

Thus, like the VTC analysis, this alternative characterization of attentional states also failed to 

reveal the predicted differences in the temporal organization of recall. However, unlike the VTC 
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analysis, this approach was not successful in detecting differences in online performance based on 

attentional state. Thus, this alternative approach may not be as powerful in identifying fluctuating 

attentional states; the null effects on memory are therefore more difficult to interpret.  

 

Discussion 

In Study 2, we made adjustments to our task to try to encourage stronger attentional fluctuations, 

in particular stronger “zoning out”. As before, we hypothesized that “in the zone” attentional states, 

vs. “out of the zone” states, aid in maintenance of temporal context representations, thus 

facilitating temporally organized recall. However, we did not find any evidence to support this 

hypothesis. While we observed differences in encoding task performance, with more errors for “out 

of the zone” states (replicating prior work by Esterman et al., 2013), we did not find any differences 

in our recall measures of interest. There was no statistically significant difference in overall recall 

performance for items encoded during “in the zone” vs. “out of the zone” attentional states. 

Furthermore, while we replicated prior work in showing both temporal contiguity and forward 

asymmetry effects in recall, we did not see any differences between the two attentional states in 

these effects. Finally, we found no differences between the two attentional states in recall 

transitions between different event types (Figure 2).  

Taken together, we failed to find any evidence that “in the zone” vs. “out of the zone” attentional 

states have a differential impact on the temporal organization of recall. This was despite our 

changes to study design that made it more similar to the original gradCPT procedure (see Study 

1: Discussion). 

Why did we fail to find effects of attentional states on recall organization in Study 2? One possibility 

is that, despite longer blocks, making semantic judgments (food vs. non-food item) may have been 

challenging enough to engage participants’ sustained attention and hence, did not produce strong 

periods of “zoning out” as we hoped. In contrast, the traditional gradCPT often has participants 

perform a more perceptual task (e.g., male or female face). The semantic judgement may also 

encourage semantic clustering (Long & Kahana, 2017), which may interfere with our ability to 

detect differences in the temporal structure of recall between the two attentional states. Finally, it 

is possible that the gradual transitions between items — a core part of the gradCPT — have an 

unintended effect of making the task somewhat engaging, in that participants can try to identify 
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objects at lower and lower opacities as the task goes on. Such gradual transitions also make our 

task less similar to standard list-learning recall tasks, which present each item in isolation. We 

address these limitations in Study 3.  

 

Study 3 

Overview 

In Study 3, we made the following changes to address the limitations above.  First, we changed 

the encoding judgement to be a perceptual one (i.e., is the image color or grayscale?) instead of 

a semantic one. This aligned our approach with the traditional gradCPT, which uses perceptual 

judgements (e.g., male or female face?). This judgement is also relatively simple and unambiguous, 

reducing the likelihood that RT variability may be related to task difficulty. We also made this 

change to ensure that the task judgement does not encourage semantic clustering of items (Long 

& Kahana, 2017). For example, if participants in Study 2 attempted to cluster food items together, 

and non-food items together, we may have had less of an opportunity to observe subtle differences 

in temporal clustering between the two attentional states. Second, we removed the gradual 

transitions between items, and replaced this transition with a relatively long presentation duration 

(3s on the screen, with a 2s inter-item interval). This change makes our design more similar to 

standard memory tasks, and may additionally make the task less engaging. Finally, in an attempt 

to improve recall performance, we reduced the length of our study phase (60 items instead of the 

80 in Study 2). 

 

Methods  

Design  

Participants 

We report data from 68 participants (Mage = 20.09 ± 2.20, Meducation = 14.03 ± 1.46; see Table 1 

for demographics). We do not report data from an additional 4 participants, who were excluded 

due to low response rate during the encoding task (<80%, N = 1), age greater than 40 years (N 

= 1), recall recording issues (N = 1) and incomplete participation (N = 1). All participants were 

recruited from the Columbia University participant pool and participated in an online version of the 
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task hosted on the Gorilla platform  (www.gorilla.sc; Anwyl-Irvine et al., 2020). Informed consent 

was obtained in accordance with the Columbia University Institutional Review Board.  

 

Stimuli 

Stimuli were identical to Study 2 with the following exceptions. We chose 180 objects from the 

pre-curated databases. Of these, 10% of the images (18 images) were converted to grayscale. 

90% of the images (162 images) were in color. The 180 images were divided into 3 lists of 60 

images each (6 grayscale images, 54 color images). This was done manually by ensuring there 

were an equal number of items from a category (e.g., tools, furniture) in each list. 

Procedure  

The procedure was identical to Study 2 with the following exceptions. In each study phase, 

participants viewed 60 trial-unique items from the created lists. Each image was presented for 3s 

followed by a fixation cross during the 2s inter-item interval (i.e., there was no gradual fading 

between images). Participants were asked to judge if each image was in color or grayscale: They 

pressed a button when it was in color, but withheld their response when it was in grayscale. 

Participants therefore habitually pressed one response 90% of the time. The distractor and recall 

phases were identical to the ones in Study 2 (Figure 1). 

Analyses 

All analyses were identical to Study 2, except that response times (RTs) were defined from the 

onset of the static image on each trial without any assignment algorithm (because there was no 

fading in).  

Results 

Defining attentional states at encoding 

In the encoding task, participants viewed images and judged each as being in color (with a button 

press) or grayscale (by withholding their response). Overall, mean response time (RT; defined from 

image onset) was 1.33s (SD = 0.20). Median RT was 1.30s. As in Studies 1 and 2, we performed 

a variance time course analysis on the encoding phase RTs. Figure 9A shows the VTC analysis for 

one sample participant in Study 3.  

The mean length of an “in the zone” segment was 3.85 trials (SD = 0.53) and the mean length of 

an “out of the zone” segment was 3.81 trials (SD = 0.47; Note that each trial was 5 seconds long). 
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The mean number of fluctuations within a block (i.e., the number of times participants transitioned 

from one state to another) was 14.84 (SD = 2.10). The number of trials within a segment ranged 

from 1 to 18 for “in the zone” states and from 1 to 20 for “out of the zone” states, across all blocks 

and participants. 

As for prior Studies, we tested whether RT variability changed over blocks. Unlike Studies 1 and 2, 

however, RT variability was not significantly different across blocks (F2,134 = 0.24, p = 0.79, ηp
2 = 

0.004). This suggests that RT variability, and the VTC approach, may not be as meaningful in this 

Study, perhaps because we removed the gradual image transitions that are important in the 

gradCPT. To further test if this is the case, we examined error rates for “in the zone” and “out of 

the zone” states, below. 

No difference in encoding errors during “in the zone” vs “out of the zone” attentional 

states 

Participants performed very well on the encoding task (“Is this image in color or grayscale?”). They 

responded to 98.80% (SD = 2.58%; Median = 100%) of the “go” color image trials, which required 

a response. Mean accuracy (defined as correct responses on “go” trials and withheld responses on 

“no-go” trials) was 97.45% (SD = 2.61%;  Median = 98.34%).  

We next examined errors in the encoding task as a function of attentional state. Surprisingly, we 

failed to replicate Studies 1 and 2:  A paired samples t-test revealed that the number of encoding 

errors during an “out of the zone” attentional state (mean ± SD: 2.03 ± 2.40) was not significantly 

different from that in an “in the zone” attentional state (2.00 ± 2.34; t67 = 0.10, p = 0.92, Cohen’s 

dz = 0.012, 95% CI [-0.54,0.60], BF = 7.47, Figure 9B). Thus, unlike Studies 1 and 2, and unlike 

prior studies (Rosenberg et al., 2011; Esterman et al., 2013), the VTC analysis was unsuccessful 

in identifying fluctuations between better and worse attentional states.  

As in prior Studies, we next examined whether there was post-error slowing or speeding. Unlike 

Studies 1 and 2, we found no difference in RTs before vs. after an error (omission errors: β = 

42.24, S.E. = 78.70, t387.25 = 0.54, p = 0.59, 95% CI [-112.00, 196.49]; commission errors: β = -

57.49, S.E. = 83.22, t138.99 = -0.69, p = 0.49, 95% CI [-220.61, 105.63]). This offers further 

evidence that RTs in this study may not reliably index attentional fluctuations. 
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Figure 9. Encoding task performance and recall performance in Study 3. Neither encoding errors nor recall 
performance differ between attentional states. A. Variance Time Course (VTC) analysis for a sample 
participant depicting “in the zone” (blue) and “out of the zone” (orange) attentional states. Horizontal black 
lines indicate the median absolute RT deviation per block. Gray curves indicate raw (unsmoothed) RT 
deviation per block. B. Individual points show the number of encoding judgement errors made by each 
participant during “in the zone” and “out of the zone” attentional states. The number of encoding errors did 
not differ between “in the zone” vs. “out of the zone” attentional states. C. Individual points show the 
percentage of items correctly recalled by each participant as a function of whether items were encoded “in 
the zone”  or “out of the zone”. There was no difference in recall performance between the two states. Black 
points in panels B & C indicate the mean of the measure; error bars indicate the standard error of the within-
participant difference between “in the zone” and “out of the zone”. ns = not statistically significant. 

 

Thus, although removing gradual transitions made our design more similar to standard memory 

tasks, the abrupt image onsets may have captured attention, reducing “zoning out” (Esterman et 

al., 2013). We return to this issue in the Discussion. Despite this null result, we report the rest of 

Study 3 results for completeness.  
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Overall recall does not differ between the two attentional states 

We next examined recall performance. Mean recall (i.e., the percentage of items correctly recalled 

across all blocks) was 24.32% (SD = 9.78). 

 

We then separately examined recall performance based on whether items were encoded “in the 

zone” or “out of the zone”. As in Studies 1 and 2, we did not find a significant difference between 

“in the zone” (Mean ± SD: 25.09% ± 10.40) and “out of the zone” (23.88% ± 10.10) attentional 

states  (t67 = 1.51, p = 0.14, Cohen’s dz = 0.18, 95% CI [-0.39, 2.81], BF = 2.56, Figure 9C). 

Thus, attentional states in this Study did not differ in either online task performance or in 

subsequent recall.  

No differences in temporal contiguity or forward asymmetry between the two 

attentional states 

As in Studies 1 and 2, we examined lag-CRP curves to explore the temporal organization of recall. 

This allowed us to determine whether the structure of memory differed between the two attentional 

states, even if overall memory performance did not.  

As before, we constructed separate lag-CRP curves for “in the zone” vs. “out of the zone” 

attentional states based on successive recall of items encoded in the same state (Figure 10B; see 

Figure 10A and Table 2 for overall lag-CRP). We conducted a three-way repeated-measures 

ANOVA with attentional state (“in the zone” vs. “out of the zone”), absolute lag (1 to 29), and 

direction (forward vs. backward) as factors (results summarized in Table 3).  

We found a significant main effect of absolute lag (F10.97,735.01 = 9.98, p < 0.0001,  ηp
2 = 0.13, BF 

< 1/150): during recall, individuals were more likely to transition to items that were encoded nearby 

vs. farther away. There was no main effect of direction (F1,67 = 0.066, p = 0.80, ηp
2 = 0.001, BF  
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Figure 10. Lag-CRP curves overall and by attentional state for Study 3. A. Overall lag-CRP curve across 
participants and blocks. B. Lag-CRP curves plotted separately for items encoded “in the zone” (left) and “out 
of the zone” (right). There was no difference between the two attentional states in the temporal organization 
of recall (neither temporal contiguity nor forward asymmetry). Error bars represent the standard error.  
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= 38.88), but there was a significant interaction between direction and absolute lag (F14.01,938.37 = 

2.17, p = 0.007, ηp
2 = 0.03, BF = 18.22): participants were more likely to recall items in the 

forward vs. backward direction, with this asymmetry being larger for closer vs. farther lags. There 

was no main effect of attentional state (F1,67 = 1.68, p = 0.20, ηp
2 = 0.025, BF = 12.39). There 

was also no interaction between attentional state and direction (F1,67 = 0.12, p = 0.73, ηp
2 = 0.002, 

BF = 26.99), no interaction between attentional state and absolute lag (F14.74,987.61 = 0.82, p = 

0.66, ηp
2 = 0.013, BF > 150), nor a three-way interaction between absolute lag, direction, and 

attentional state (F15.20,1018.34 = 0.95, p = 0.51, ηp
2 = 0.014, BF > 150). Hence, we did not see any 

differences in recall organization — neither temporal contiguity nor forward asymmetry bias — 

based on attentional state at encoding. 

As before, we conducted a follow-up analysis to examine differences between the two attentional 

states at the nearby lags of ± 1. From a two-way repeated-measures ANOVA with lag (+1 vs. -1) 

and attentional state (“in the zone” vs. “out of the zone”) as factors, we found only a significant 

main effect of lag (F1,67 = 12.57, p = 0.0007, ηp
2 = 0.16, BF = 0.028). The main effect of attentional 

state (F1,67 = 0.55, p = 0.46, ηp
2 = 0.008, BF = 6.36), and the interaction between attentional state 

and lag, was not statistically significant (F1,67 = 1.32, p = 0.26, ηp
2 = 0.019, BF = 3.08). The 

significant main effect of lag (+1 vs. -1) confirms that individuals are more likely to make forward 

vs. backward transitions at the closest lag. However, forward asymmetry at the ± 1 lags was not 

different between the two states. 

As for prior Studies, we conducted a Bayesian model comparison in which we compared the three-

way ANOVA reported above to a null model without an attentional state variable. Once again, this 

analysis revealed very strong evidence in favor of the null model (BF > 150).  

We therefore once again replicated the finding that recall is temporally organized. However, the 

temporal organization of recall was not different between the two attentional states. This replicates 

the null findings from the lag-CRP analyses in Studies 1 and 2.   

No differences in event transition types between the two attentional states 

As in Studies 1 and 2, we next examined recall transitions as a function of the type of event 

segment (see Figure 2 and Study 1 Methods: Recall Transitions by Event Segment).   



53 

To do this, we performed a two-way repeated-measures ANOVA with transition type (3 levels) and 

attentional state (“in the zone” vs. “out of the zone”) as factors. As before, we hypothesized that 

“same state, same event” and “same state, different event” transitions may be more likely for items 

encoded “in the zone” vs. “out of the zone”. 

We found a main effect of transition type (F1.06,70.93 = 34.19, p < 0.0001, ηp
2 = 0.34, BF < 1/150). 

The main effect of attentional state (F1,67 = 2.30, p = 0.13, ηp
2 = 0.03, BF = 4.41), and the 

interaction between attentional state and transition type (F1.14,76.32 = 1.32, p = 0.26, ηp
2 = 0.02 , 

BF = 10.66), were not statistically significant. Thus, each type of recall transition was not 

differentially likely for items encoded “in the zone” and “out of the zone” (Figure 11). 

 

Figure 11. Recall transitions as a function of event type in Study 3. Recall transitions are shown based on 
whether they occurred within an “event segment’ of a particular attentional state (same state, same event), 
across event segments of a given attentional state (same state, different event), or between attentional 
states (different state, different event; see Figure 2). There were no significant differences in any transition 
type between the two attentional states. Individual points indicate the conditional probability of each 
transition type (i.e., the number of times each transition type occurred divided by the number of 
opportunities to make a transition of that type) for each individual, separately for items encoded “in the 
zone” and “out of the zone”. Black dots indicate the mean; error bars indicate the standard error of the 
within-participant difference between “in the zone” and “out of the zone”. ns = not statistically significant. 

 

As for prior Studies, we conducted follow-up t-tests to understand the main effect of transition 

types, collapsing across the two attentional states. We found that: 1) “same state, same event” 

transitions were significantly more likely compared to “same state, different event” transitions (t67 

= 6.10, p < 0.0001, Cohen’s dz = 0.74, 95% CI [0.008, 0.015]) and “different state, different 

event” transitions (t67 = 5.65, p < 0.0001, Cohen’s dz = 0.69 , 95% CI [0.006, 0.013] ), and 2) 
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“different state, different event” transitions were significantly more likely compared to “same state, 

different event” transitions (t67 = 3.47, p = 0.0009, Cohen’s dz = 0.42, 95% CI [0.0005, 0.002]).  

As for prior Studies we conducted a Bayesian model comparison in which we compared the two-

way ANOVA reported above to a null model without an attentional state variable. This analysis 

again revealed strong evidence in favor of the null model (BF = 44.01). As in prior Studies, 

therefore, we did not find any evidence that recall transition types differed between the two 

attentional states. 

Secondary Analysis: Faster vs. Slower RTs 

As before, we examined task performance and subsequent memory with a secondary analysis. 

Rather than using the VTC analysis to characterize “in the zone” and “out of the zone” states, we 

divided encoding RTs, by a median split, into those that were faster vs. those that were slower. 

We found no difference in error rates during attentional states characterized by faster vs. slower 

RTs (t67 = 0.85, p = 0.40, Cohen’s dz = 0.10, 95% CI [-0.32, 0.79], BF = 5.30). This is consistent 

with Studies 1 and 2, in which this analysis also failed to reliably predict online errors, and also 

consistent with the VTC analysis above, which likewise failed to find differences in error rates for 

“in the zone” vs. “out of the zone” states in this Study.  

This analysis did, however, reveal a difference in subsequent recall performance: attentional states 

associated with slower (vs. faster) RTs at encoding were associated with better subsequent recall 

(t67 = 2.18, p = 0.033, Cohen’s dz = 0.26, 95% CI [0.14, 3.13], BF = 0.82). The lag-CRP analysis 

nevertheless failed to reveal differences in the temporal organization of recall: there was only a 

main effect of absolute lag (F11.90, 797.25 = 9.23, p < 0.0001, ηp
2 = 0.12, BF < 1/150; all other ps > 

0.06; all other BFs > 24.81). 

The event segment analysis revealed a main effect of transition type (F1.04, 69.80 = 29.90, p < 

0.0001, ηp
2 = 0.31, BF < 1/150), reflecting significantly more “same state, same event” transitions 

compared to “same state, different event” transitions (t67 = 5.55, p < 0.0001, Cohen’s dz = 0.67, 

95% CI [0.007, 0.015]) and “different state, different event” transitions (t67 = 5.46, p < 0.0001, 

Cohen’s dz = 0.66, 95% CI [0.007, 0.015]). There was no significant difference between “different 

state, different event” and “same state, different event” transitions (t67 = 1.50, p = 0.14, Cohen’s 

dz = 0.18, 95% CI [-0.0002, 0.001]). There was no main effect of attentional state (F1,67 = 2.55, 

p = 0.11, ηp
2 = 0.04, BF = 3.60) nor an attentional state by transition type interaction (F1.12,74.90 = 
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1.55, p = 0.22, ηp
2 = 0.02, BF =  8.60). 

As for Studies 1 and 2, we performed a Bayesian model comparison for the lag-CRP analysis, in 

which we compared the model reported above to a null model without an attentional state variable. 

This comparison revealed very strong evidence in favor of the null model (BF > 150). The same 

approach for the event segment analysis revealed strong evidence in favor of the null model (BF 

= 31.77). 

Thus, like the VTC analysis, this alternative characterization of attentional states also failed to 

reveal statistically robust differences in the temporal organization of recall. 

 

Discussion 

In Study 3, we made further adjustments to our task to encourage more “zoning out” and to make 

our procedure more similar to standard list-learning recall tasks. We again tested the hypothesis 

that “in the zone”, vs. “out of the zone”, states aid in maintenance of temporal context 

representations, thus encouraging temporally organized recall. However, we did not find any 

evidence to support this hypothesis.  

Contrary to Studies 1 and 2, we did not observe any differences in encoding task performance 

across the two attentional states. Why might this be the case? First, we removed the gradual 

transitions between images. Although this change made our task more similar to standard list-

learning recall tasks, the abrupt image onsets could have captured attention, thus preventing 

participants from “zoning out” (Esterman et al., 2013; Rosenberg et al., 2013). Second, long and 

variable inter-stimulus durations result in more attentional lapses than short, fixed durations 

(Unsworth et al., 2018). Our short and fixed ITI (2 seconds) may therefore have made it less likely 

that participants would zone out. Finally, we changed the encoding judgement to a simple 

perceptual judgement. Although this change made our task more similar to the traditional gradCPT, 

which often uses perceptual judgments, it had the effect of increasing the accuracy of encoding 

judgements. Having such a low error rate (~2 errors, on average, per participant in each attentional 

state) may have hurt our chances of seeing differences between the two states. This low error rate 

may have been due to the saliency of color changes, which might capture attention even if a 

participant had previously been zoning out. The lack of a difference in errors between “in the zone” 

and “out of the zone” states makes it difficult to interpret the lack of differences between them in 
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subsequent recall organization: we may not have adequately captured attentional fluctuations 

based on RT. This prompted us to conduct Study 4, which is similar to Study 2, with some minor 

changes to once again try to induce stronger attentional fluctuations. 

 

Study 4 

Overview 

In Study 3, online task performance was not different between “in the zone” and “out of the zone” 

states. This makes the null effects in recall organization difficult to interpret, because we may not 

have successfully differentiated between better and worse attentional states. We therefore 

conducted another study with the gradual transitions used in Studies 1 and 2, in which we 

successfully replicated prior work showing more errors during “out of the zone” states (Esterman 

et al., 2013; Rosenberg et al., 2013). Study 4 used a similar design as Study 2 (go/no-go procedure, 

with responses for non-food items and withheld responses for food items). Two changes were 

made: first, there were 2 blocks of 120 images each (instead of 3 blocks of 80 images each), and 

second, the trial duration (from the onset of an image fading in until it became 100% clear) was 

reduced from 6s to 4s. Both of these changes were implemented to bring our design closer to the 

traditional gradCPT, which typically uses fast presentation durations and many trials. In this way, 

we hoped to induce stronger attentional fluctuations. The increase in block length, however, means 

that our procedure deviates even more from standard list-learning recall studies, which typically 

use short lists (Murdock Jr., 1962; Cortis et al., 2015; also see Healey et al., 2019). We return to 

this point in the General Discussion. 

 

Methods 

Design  

Participants 

Pilot data using the Study 4 procedure revealed that participants had worse recall performance 

than our earlier studies (likely because Study 4 blocks were longer than those in our prior studies). 

We therefore opted to collect a larger sample size, so that summed recall performance across all 

participants would be comparable to Study 2 (Baker et al., 2020). We report data from 124 

participants (Mage = 21.42 ± 6.26, Meducation = 13.63 ± 1.54; see Table 1 for demographics). We 
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do not report data from an additional 32 participants, who were excluded due to image loading 

errors (N = 1), low response rate during the encoding task (<80%, N = 20), recall recording issues 

(N = 10), and no recall (N = 1). Of the final sample, 5 participants were recruited through Prolific 

(www.prolific.co) and the rest (119 participants) were recruited from the Columbia University 

participant pool. All participants completed an online version of the task hosted on the Gorilla 

platform (www.gorilla.sc; Anwyl-Irvine et al., 2020). Informed consent was obtained in accordance 

with the Columbia University Institutional Review Board. 

Stimuli 

Stimuli were identical to Study 2, except that the 240 images were divided into 2 lists of 120 images 

each (12 food, 108 non-food images).  

Procedure  

The procedure was identical to Study 2 with the following exceptions. The experiment consisted of 

2 blocks, each of which included a study phase, a distractor phase, and a recall phase (Figure 1). 

In each study phase, participants viewed 120 trial-unique items, which transitioned slowly from 

one into another. Trial duration was 4s instead of 6s. 

The distractor phase was identical to that in Study 2. The recall phase was similar to Study 2, 

except that participants were given the option to recall for a longer duration. Participants were 

initially given 4 minutes (broken into 2 recordings of 2 minutes each) to verbally recall items from 

the study phase. After the initial 4 minutes of recording, participants were given the option of 

recording for an additional 2 minutes. This was done because the encoding blocks in Study 4 were 

longer than those in Study 2; thus, we wanted to give participants more time to recall if they 

needed it.  

Analyses 

Analyses were identical to Study 2.  

 

https://prolific.co/
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Results 

Defining attentional states at encoding 

In the encoding task, participants viewed images and judged each as being a non-food item (with 

a button press) or a food item (by withholding their response). Overall, mean response time (RT; 

defined from image onset) was 2.53s (SD = 0.36). Median RT was 2.55s. 

As in Studies 1-3, we performed a variance time course analysis on the encoding phase RTs. Figure 

12A shows the VTC analysis for one sample participant in Study 4.  

The mean length of an “in the zone” segment was 4.97 trials (SD = 0.58) and the mean length of 

an “out of the zone” segment was 4.93 trials (SD = 0.56; Note that each trial was 4 seconds long). 

The mean number of fluctuations within a block (i.e., the number of times participants transitioned 

from one state to another) was 23.45 (SD = 2.67). The number of trials within a segment ranged 

from 1 to 33 for “in the zone” states and from 1 to 27 for “out of the zone” states, across all blocks 

and participants. 

As for prior Studies, we performed an initial validation check for the VTC approach by testing 

whether RT variability changed over blocks. As in Studies 1 and 2, RT variability increased across 

blocks (t123 = 6.79, p < 0.0001, Cohen's dz = 0.61, 95% CI [68.22, 124.34]), which may be 

suggestive of increased fatigue or loss of focus as the experiment continued. This supports the use 

of RT variability to differentiate “in the zone” and “out of the zone” states.  

These attentional states were used to examine accuracy on the encoding task and subsequent 

recall performance, described below.  

More encoding errors during “out of the zone” attentional states 

Participants once again performed very well on the encoding task (“Is this item a food or a non-

food item?”). They responded to 99.16% (SD = 2.10%; Median = 99.54%) of the “go” non-food 

image trials, which required a response. Mean accuracy (defined as correct responses on “go” trials 

and withheld responses on “no-go” trials) was 97.08% (SD = 2.55%; Median = 97.92%).  

We next examined errors in the encoding task as a function of attentional state. We replicated 

Studies 1 and 2 and prior studies (e.g., Esterman et al., 2013, 2014; Rosenberg et al., 2013, 2015; 

Fortenbaugh et al., 2018). Participants made significantly more errors during an “out of the zone” 

attentional state (mean ± SD: 4.39 ± 4.00) compared to an “in the zone” attentional state (2.23 
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± 2.63; t123 = 7.04, p < 0.001, Cohen's dz = 0.63, 95% CI [1.55, 2.76], BF < 1/150, Figure 12B). 

Thus, the VTC analysis was once again successful in identifying fluctuations between better and 

worse attentional states.  

 

Figure 12. Encoding task performance and recall performance in Study 4. Both encoding errors and recall 
performance differ between the two attentional states. A. Variance Time Course (VTC) analysis for a sample 
participant, depicting “in the zone” (blue) and “out of the zone” (orange) attentional states. Horizontal black 
lines indicate the median absolute RT deviation per block. Gray curves indicate raw (unsmoothed) RT 
deviation per block. B. Individual points show the number of encoding judgment errors made by each 
participant during “in the zone” and “out of the zone” attentional states. Participants made significantly more 
encoding errors during the “out of the zone” state. C. Individual points show the percentage of items 
correctly recalled by each participant as a function of whether items were encoded “in the zone”  or “out of 
the zone”. There was a small but statistically significant difference in recall performance: recall was higher 
for items encoded while “in the zone” vs. “out of the zone”. Black points in panels B & C indicate the mean 
of the measure; error bars indicate the standard error of the within-participant difference between “in the 
zone” and “out of the zone”. * p < 0.05, *** p < .0001. 

 

As in prior Studies, we performed an additional validation check of whether RTs are sensitive to 

attentional fluctuations in our task, by comparing RTs before vs. after an error. As in Study 2, 

participants were faster to respond after vs. before an omission error (β = -970.21, S.E. = 67.82, 

t650.25 = -14.31, p < 0.0001, 95% CI [-1103.13, -837.29]). Conversely, participants were slower to 
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respond after vs. before a commission error (β = 210.90, S.E. = 62.80, t461.06 = 3.36, p = 0.0009, 

95% CI [87.82, 333.98]). These results are consistent with participants speeding up after realizing 

they failed to respond to the previous trial, and slowing down after realizing they incorrectly 

responded when they should not have. Thus, post-error slowing after commission errors and post-

error speeding after omission errors show that RTs can index attentional fluctuations in our task. 

 

Recall performance is better for items encoded during “in the zone” states 

We next examined recall performance. Mean recall (i.e., the percentage of items correctly recalled 

across all blocks) was 16.26% (SD = 7.36).   

We then separately examined recall performance based on whether items were encoded “in the 

zone” or “out of the zone”. Unlike Studies 1-3, we found a significant difference between the 

attentional states, such that participants recalled a higher percentage of items that were encoded 

during an “in the zone” (Mean ± SD: 16.72% ± 8.12) vs. “out of the zone” (15.69% ± 7.51) 

attentional state  (t123 = 2.21, p = 0.03, Cohen's dz = 0.20, 95% CI [0.11, 1.95], BF = 0.96, Figure 

12C). Thus, attentional states at encoding were associated with a difference in both online task 

performance and subsequent recall performance, with both being superior for “in the zone” states. 

This suggests that the VTC analysis was successful in identifying better vs worse attentional states.  

No differences in temporal contiguity or forward asymmetry between the two 

attentional states 

As in prior Studies, we examined lag-CRP curves to explore the temporal organization of recall. 

This allowed us to determine whether the structure of memory differed between the two attentional 

states.  

As before, we constructed separate lag-CRP curves for “in the zone” vs. “out of the zone” 

attentional states based on successive recall of items encoded in the same state (Figure 13B; see 

Figure 13A and Table 2 for overall lag-CRP). We conducted a three-way repeated-measures 

ANOVA with attentional state (“in the zone” vs. “out of the zone”), absolute lag (1 to 29), and 

direction (forward vs. backward) as factors (results summarized in Table 3).  
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Figure 13. Lag-CRP curves overall and by attentional state for Study 4. A. Overall lag-CRP curve across 
participants and blocks. B. Lag-CRP curves plotted separately for items encoded “in the zone” (left) and “out 
of the zone” (right). There was no difference between the two attentional states in the temporal organization 
of recall (neither temporal contiguity nor forward asymmetry). Error bars represent the standard error. 
 

 

We found a significant main effect of absolute lag (F10.22,1256.64 = 10.33, p < 0.0001, ηp² = 0.08, BF 

< 1/150): during recall, individuals were more likely to transition to items that were encoded nearby 
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vs. farther away. There was no main effect of direction (F1,123 = 1.69, p = 0.20, ηp² = 0.014, BF = 

24.95). However, there was a significant interaction between direction and absolute lag (F12.59, 

1549.09 = 2.00, p = 0.02, ηp² = 0.016, BF > 150). This interaction arose because forward asymmetry 

(forward > backward recall) was more pronounced for closer vs. farther lags.  

Unlike Studies 1-3, but consistent with the recall difference between attentional states, there was 

a main effect of attentional state (“in the zone” > “out of the zone”; F1,123 = 3.97, p = 0.0485, ηp² 

= 0.03, BF = 2.08). However, as in Studies 1-3, there was no interaction between attentional state 

and direction (F1,123 = 0.52, p = 0.47, ηp² = 0.004, BF = 29.46), no interaction between attentional 

state and absolute lag (F1313, 1615.28 = 0.62, p = 0.84, ηp² = 0.005, BF > 150), nor a three-way 

interaction between absolute lag, direction, and attentional state (F13.16, 1618.76 = 0.55, p = 0.90, 

ηp² = 0.0045, BF > 150). Hence, we did not see any differences in recall organization — neither 

temporal contiguity nor forward asymmetry bias — based on attentional state at encoding.  

As before, we also conducted a follow-up analysis to examine differences between the two 

attentional states at the nearby lags of ± 1. From a two-way repeated-measures ANOVA with lag 

(+1 vs. -1) and attentional state (“in the zone” vs. “out of the zone”) as factors, we found only a 

significant main effect of lag (F1,123 = 9.69, p = 0.002, ηp² = 0.07, BF = 0.043). The main effect of 

attentional state (F1,123 = 0.30, p = 0.59, ηp² = 0.002, BF = 8.96), and the interaction between 

attentional state and lag, was not statistically significant (F1,123 = 0.01, p = 0.92, ηp² = 0.00008, 

BF = 7.20). The significant main effect of lag (+1 vs. -1) confirms that individuals are more likely 

to make forward vs. backward transitions at the closest lag. Nevertheless, forward asymmetry at 

the ± 1 lags was not different between the two states.  

As for prior Studies, we conducted a Bayesian model comparison in which we compared the three-

way ANOVA reported above to a null model without an attentional state variable. Once again, this 

analysis revealed very strong evidence in favor of the null model (BF > 150).  

We therefore once again replicated the finding that recall is temporally organized. However, the 

temporal organization of recall was not different between the two attentional states. This replicates 

the null findings from the lag-CRP analyses in Studies 1-3. This null effect was observed even 

though overall recall was higher for items encoded “in the zone” vs “out of the zone”.  
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No differences in event transition types between the two attentional states 

We next examined recall transitions as a function of the type of event segment (see Figure 2 and 

Study 1 Methods: Recall Transitions by Event Segment).   

To do this, we performed a two-way repeated-measures ANOVA with transition type (3 levels) and 

attentional state (“in the zone” vs. “out of the zone”) as factors. As before, we hypothesized that 

“same state, same event” and “same state, different event” transitions may be more likely for items 

encoded “in the zone” vs. “out of the zone”. 

We found a main effect of transition type (F1.09, 134.05 = 30.45, p < 0.0001, ηp² = 0.20, BF < 1/150 

). The main effect of attentional state (F1,123 = 1.23, p = 0.27, ηp² = 0.01, BF = 6.93), and the 

interaction between attentional state and transition type (F1.14, 140.14 = 0.36, p = 0.58, ηp² = 0.003, 

BF = 25.54), were not statistically significant. This suggests that each type of recall transition is 

not differentially likely for items encoded “in the zone” and “out of the zone” (Figure 14). 

 

Figure 14. Recall transitions as a function of event type in Study 4. Recall transitions are shown based on 
whether they occurred within an “event segment’ of a particular attentional state (same state, same event), 
across event segments of a given attentional state (same state, different event), or between attentional 
states (different state, different event; see Figure 2). There were no significant differences in any transition 
type between the two attentional states. Individual points indicate the conditional probability of each 
transition type (i.e., the number of times each transition type occurred divided by the number of 
opportunities to make a transition of that type) for each individual, separately for items encoded “in the 
zone” and “out of the zone”. Black dots indicate the mean; error bars indicate the standard error of the 
within-participant difference between “in the zone” and “out of the zone”. ns = not statistically significant. 

 

We conducted follow-up t-tests to understand the main effect of transition types, collapsing across 

the two attentional states. As before, we found that “same state, same event” transitions were 

significantly more likely compared to “same state, different event” transitions (t123 = 5.75, p < 
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0.0001, Cohen’s dz = 0.52, 95% CI [0.002, 0.004]) and “different state, different event” transitions 

(t123 = 5.43, p < 0.0001, Cohen’s dz = 0.49, 95% CI [0.002, 0.004]), There was no significant 

difference between “different state, different event” transitions and “same state, different event” 

transitions (t123 = 1.46, p = 0.15, Cohen’s dz = 0.13, 95% CI [-0.00007, 0.0005]).  

As for prior Studies we conducted a Bayesian model comparison in which we compared the two-

way ANOVA reported above to a null model without an attentional state variable. This analysis 

once again revealed very strong evidence in favor of the null model (BF > 150). Thus, as in prior 

Studies, we found no evidence that recall transitions differed between the two attentional states. 

Secondary Analysis: Faster vs. Slower RTs 

As before, we examined task performance and subsequent memory with a secondary analysis in 

which encoding RTs were divided, by a median split, into those that were faster vs. those that 

were slower. Participants made more errors during attentional states characterized by faster vs. 

slower RTs (t123 = 2.04, p = 0.043, Cohen's dz = 0.18, 95% CI [0.02, 1.06], BF = 1.35). They also 

exhibited worse subsequent recall for items associated with faster vs. slower RTs at encoding (t123 

= 2.18, p = 0.03, Cohen's dz = 0.20, 95% CI [0.09, 1.87], BF = 1.02). These results are 

conceptually similar to those with the VTC analysis, in which more errors and worse recall were 

linked to “out of the zone” vs. “in the zone” states.  

The lag-CRP analysis, however, failed to reveal any differences in the temporal organization of 

recall: there was only a main effect of absolute lag (F15.56, 1914.03 = 6.46, p < 0.0001, ηp
2 = 0.049, 

BF < 1/150; all other ps > 0.24; all other BFs > 26.92).  

The event segment analysis revealed a main effect of transition type (F1.03,126.94 = 32.68, p < 

0.0001, ηp
2 = 0.21, BF < 1/150), reflecting significantly more “same state, same event” transitions 

compared to “same state, different event” transitions (t123 = 5.72, p < 0.0001, Cohen’s dz = 0.51 

, 95% CI [0.003, 0.007]) and “different state, different event” transitions (t123 = 5.78, p < 0.0001, 

Cohen’s dz = 0.52, 95% CI [0.003, 0.007]). There was no significant difference between “different 

state, different event” and “same state, different event” transitions (t123 = 0.74, p = 0.46, Cohen’s 

dz = 0.07, 95% CI [-0.0002, 0.0004]). There was no main effect of attentional state (F1,123 = 

0.085, p = 0.77, ηp
2 = 0.0007, BF = 11.26) nor an attentional state by transition type interaction 

(F1.05,129.40 = 0.065, p = 0.81, ηp
2 = 0.0005, BF = 32.97). 

Finally, as for prior Studies, we performed a Bayesian model comparison between the lag-CRP 
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model reported above and a null model without an attentional state variable. This comparison 

revealed very strong evidence in favor of the null model (BF > 150). Likewise, the same approach 

for the event segment analysis revealed very strong evidence in favor of the null model (BF > 150). 

Thus, as for other Studies, there was no statistically significant difference in recall organization 

between attentional states associated with faster vs. slower RTs at encoding. Our main conclusions 

— lack of evidence that attentional states at encoding influence the temporal organization of 

memory — therefore hold with this alternative characterization of attentional states. 

 

Discussion 

In Study 4, we sought to replicate the findings from our prior Studies, particularly the lack of a 

difference in the temporal structure of recall for items encoded “in the zone” vs. “out of the zone”. 

We used a design similar to Study 2 but increased block length and reduced stimulus presentation 

time to make our design more similar to the traditional gradCPT. As in our other Studies, we failed 

to find any evidence for more temporally structured recall for “in the zone” vs “out of the zone” 

encoding states.  

Interestingly though, this was the first Study in which we found an effect of “in the zone” vs. “out 

of the zone” attentional states on subsequent recall: participants recalled more items encoded 

during an “in the zone” state compared to an “out of the zone” state. Thus, although we found 

fewer online errors and better overall recall for items encoded “in the zone” vs. “out of the zone” 

(Figure 12), and although we replicated temporal contiguity effects in overall recall, we still failed 

to find evidence for differences across attentional states in recall organization. This suggests that 

our VTC analysis was able to successfully differentiate between better and worse attentional states, 

but these states were remarkably similar in the temporal organization of recall. We discuss the 

implications of our findings and their relation to prior work in the General Discussion. 

 

 General Discussion 

Summary of findings 

We examined the behavioral effects of endogenous fluctuations in attention on the temporal 

organization of memory. We used response time variability at encoding to characterize two 

attentional states: the relatively good “in the zone” state and the relatively worse “out of the zone” 
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state. We hypothesized that good (vs. bad) attentional states at encoding will be more conducive 

to maintaining temporal context representations, thus promoting more temporally organized recall 

and facilitating “leaps” between temporally distant but cognitively similar attentional states. 

However, across four Studies we failed to find evidence to support either hypothesis. Indeed, 

Bayesian comparisons — between models that included attentional state as a variable and null 

models that did not — consistently revealed strong evidence for the null hypothesis that attentional 

states at encoding do not influence the temporal organization of recall. 

We replicated previous findings that individuals make more errors in online task performance during 

“out of the zone” states (e.g., Esterman et al., 2013, 2014; Rosenberg et al., 2013, 2015; 

Fortenbaugh et al., 2018). In Study 4, we also found that recall was worse when encoding occurred 

in an “out of the zone” state. We also replicated several well-established memory phenomena, 

including temporal contiguity effects and forward asymmetry in recall (Kahana, 1996; Howard & 

Kahana, 2002b; Healey et al., 2019). Despite this, we found no evidence that the temporal 

organization of recall was affected by attentional fluctuations at encoding: recall was robustly 

temporally organized, even when encoding occurred in relatively poor attentional states. 

Furthermore, even when we conducted an analysis that combined Studies 1, 2, and 4 (our 

diagnostic experiments, in which “out of the zone” attentional states were associated with more 

online errors), we found no evidence of differential temporal organization of recall as a function of 

encoding attentional state (all ps > 0.29  for interactions involving attentional state). Yet, there 

was strong evidence for temporally organized recall generally (main effect of lag: F11.21,2871.99 = 

24.78, p < 0.0001, ηp
2 = 0.09; lag by direction interaction: F11.40,2918.07 = 2.49, p = 0.0036, ηp

2= 

0.01). Together, our findings suggest that temporal context serves as a strong scaffold for episodic 

memory, one that can overcome spontaneous fluctuations in attentional states. Furthermore, our 

Studies highlight the difficulty of merging tasks of sustained attention and memory recall, and the 

numerous factors that must be considered when doing so (e.g., list length, trial-unique items, 

repetitive responses). We explore other potential reasons for our findings, their implications, and 

recommendations for future research in the sections below. 
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Exploring reasons for the null effect of attentional states on recall organization 

Why did we not see the hypothesized relationship between attentional states and temporal 

organization of recall? One possibility is that converting our experiments to online studies increased 

the noise in our data, hence obscuring any potential effects. However, data from Study 1 suggests 

this isn’t the case: in control analyses, we found no differences in any measures of interest between 

online and in-person participants. Furthermore, we replicated established in-lab phenomena in our 

online-only studies (Studies 2-4) such as the temporal contiguity effect and forward asymmetry in 

free recall, as well as more errors for “out of the zone” attentional states. Thus, it is unlikely that 

moving to online experiments was the main reason behind the lack of evidence supporting our 

hypothesis.  

A second possibility is that measures of RT variability are not sensitive to spontaneous fluctuations 

in attentional states, and thus, we failed to characterize these states. However, there is strong 

evidence from sustained attention studies that response time variability effectively captures subtle 

fluctuations in attentional states, which can then be related to online task performance (e.g., 

Robertson et al., 1997; Esterman et al., 2013, 2014; Rosenberg et al., 2013). Furthermore, other 

studies have used RT variability-based attentional states as a trait-level measure and related it to 

episodic memory (Madore et al., 2020). Our results were consistent with these effects: compared 

to “in the zone” states, “out of the zone” attentional states were associated with more errors during 

the encoding task and, in Study 4, worse recall. Furthermore, we found that RTs reliably fluctuated 

around errors, and that RT variability tended to increase over the course of the experiment. These 

findings together suggest that RTs, and RT variability, capture important cognitive phenomena in 

our tasks. 

Despite the success of the variance time course (VTC) analysis that we focused on in the current 

study (Esterman et al., 2013, 2014; Rosenberg et al., 2013, 2015; Madore et al., 2020), there are 

alternative ways to quantify better vs worse attentional states. For example, some studies of 

sustained attention have shown that faster (vs. slower) RTs are linked to more online errors and 

worse subsequent recognition memory (e.g., Robertson et al., 1997; Cheyne et al., 2006; McVay 

& Kane, 2012; deBettencourt et al., 2018; Wakeland-Hart et al., 2022). Conversely, other studies 

link longer eye fixations and slower response times to mind wandering and attentional lapses (e.g., 
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Smallwood et al., 2003; Cheyne et al., 2009; Feng et al., 2013; Yanko & Spalek, 2013; Kam & 

Handy, 2014; Henriquez et al., 2016; Krasich et al., 2018; H. Zhang et al., 2021). Thus, some 

studies suggest that slower (vs. faster) RTs are associated with better attentional states; other 

studies suggest the opposite. Both of these approaches can be contrasted to the VTC analysis, in 

which RTs that are too fast or too slow (relative to the mean) are considered to reflect a poor 

attentional state. To test whether an alternative characterization of RT-based attentional states 

yields different results, we performed a secondary analysis for each Study. We compared online 

task performance and subsequent memory as a function of faster RTs vs. slower RTs (from a 

median split) during encoding.  

We found that this approach was generally inferior to the VTC analysis, in that it could not reliably 

detect differences in online errors based on attentional state. The strongest support for this 

approach came in Study 4, for which there was a significant effect for online errors (more errors 

for attentional states associated with faster vs. slower RTs) and a significant effect on recall (worse 

recall for attentional states associated with faster vs. slower RTs). Across all Studies, however, this 

approach — like the VTC analysis — failed to reveal differences in the temporal organization of 

recall based on attentional states at encoding. Thus, our choice of the VTC analysis over this 

alternative approach does not change our main conclusions. Nevertheless, other measures of 

attentional fluctuations, such as pupil diameter changes linked to physiological arousal (Brink et 

al., 2016; Unsworth et al., 2018; Clewett et al., 2020; Decker et al., 2020; Zhang et al., 2020), 

could be used in future studies to link attentional fluctuations to the temporal organization of recall.  

A third possibility is that, in our Studies, attentional fluctuations had a more minor effect on recall 

than other variables did. For example, recall can also be structured by the semantic similarity of 

encoded items (Howard & Kahana, 2002a; Polyn et al., 2009; Healey et al., 2019). Individuals likely 

used semantic information to guide recall in our Studies, but we nevertheless observed consistent 

and reliable temporal structure in recall as well: every Study showed a robust temporal contiguity 

effect in recall. This is in line with prior work demonstrating that, while many variables — such as 

list length, presentation times, incidental vs. intentional encoding, emotional salience, and inter-

item distraction — can influence the the magnitude of the temporal contiguity effect, it tends to be 

reliably present (Healey et al., 2019; Dester et al., 2020; Lazarus et al., 2020; Peris-Yague et al., 

2021).  
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Future studies could determine if semantic clustering differs for items encoded “in the zone” vs. 

“out of the zone”. If so, attentional modulation of semantic but not temporal clustering would 

provide additional evidence for dissociations between these aspects of recall organization (Howard 

& Kahana, 2002a; Polyn et al., 2009; Healey et al., 2019) and provide further constraints for models 

of memory. 

Recall tests only allow assessment of memories that are sufficiently strong as to be brought to 

mind without external cues. Thus, one interesting potential mechanism for the general lack of 

difference in overall recall between attentional states is that the items that were recalled were 

particularly distinctive, memorable, or salient to a given participant. This may make memory for 

those items less susceptible to attentional fluctuations than they otherwise would be. We used lists 

of relatively well-known objects to try to minimize large differences in salience or distinctiveness, 

but this does not rule out that some objects may be more salient or distinctive for any given 

participant or more memorable generally (Isola et al., 2011; Bainbridge et al., 2013; Bainbridge, 

2019, 2020). However, the presence of more vs. less memorable items does not necessarily explain 

similar levels of temporal structure in recall across attentional states. Because items were randomly 

ordered for every participant, particularly memorable items were unlikely to be temporally clustered 

in a similar way across “in the zone” and “out of the zone” states. That said, a compelling hypothesis 

is that items that are more distinctive or otherwise memorable “stick” in memory and can overcome 

periods of low attention to support not only their recall but also access to the surrounding temporal 

context, and thus recall of adjacent items. This mechanism could be explicitly tested in future work 

inspired by our findings. Prior relevant work has shown that item memorability and attentional 

states independently predict recognition memory (Wakeland-Hart et al., 2022), but such work could 

be extended to determine how attentional states and item memorability interact to support overall 

recall and the temporal structure of recall. 

Moreover, other studies could use alternative measures of capturing the temporal structure of 

memory that do not depend on free recall (e.g., recognition or cued recall), and thus allow 

assessment of weaker memories. For instance, a study by Schwartz et al. (2005), used a temporally 

structured recognition memory task to examine the temporal organization of memory. They 

showed that, when individuals recognized a scene with high confidence, the probability that the 

next scene would also be recognized with high confidence decreased as the encoding distance 
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between those scenes increased. Thus, future work can index attentional fluctuations during the 

encoding phase of such a task, and relate these fluctuations to subsequent recognition memory 

and its sensitivity to the temporal structure of the test. This would allow examination of how 

attentional fluctuations influence memories that are too weak to be recalled but can nevertheless 

be recognized. Indeed, other studies have found that attentional fluctuations at encoding influence 

recognition memory overall (deBettencourt et al., 2018; Wakeland-Hart et al., 2022), leaving open 

the possibility that such fluctuations also influence the temporal structure of recognition memory. 

Finally, it is worth noting that our Studies deviated from standard list-learning recall tasks (Kahana, 

1996; Sederberg et al., 2010; Healey & Kahana, 2014) in several ways. For example, we used 

images instead of words; we had longer lists of items and fewer lists, and we used gradual 

transitions between images (in Studies 1, 2, and 4). The changes we made were, however, 

necessary to address our question. Images, and gradual transitions between them, were needed 

to align with the traditional gradCPT approach, which was used to validate the VTC analysis and 

identification of “in the zone” vs. “out of the zone” states (Esterman et al., 2013, 2014, 2015, 2017; 

Rosenberg et al., 2013; Fortenbaugh et al., 2015, 2018; Rothlein et al., 2018; Esterman & Rothlein, 

2019; Yamashita et al., 2021). Images are used in several studies of recall organization (e.g., 

Nguyen & McDaniel, 2015; Clark & Bruno, 2021; Kelly & Beran, 2021; also see Healey et al., 2019); 

other studies have also examined recall organization for naturalistic event memory (e.g., Moreton 

& Ward, 2010; Uitvlugt & Healey, 2019; Diamond & Levine, 2020). As in those studies, we 

replicated typical properties of lag-CRP curves in our experiments. Thus, our use of images is 

unlikely to have led to qualitative differences in how recall operated. We also removed the gradual 

transitions between images in Study 3, but still failed to find a link between attentional states and 

recall organization.  

Our lists were longer than those typically used in list-learning studies because blocks had to be 

long enough to induce attentional fluctuations; attention is unlikely to robustly fluctuate in a shorter 

list of 10-25 items. Likewise, we had fewer lists because individuals encoded more items within 

each list. Despite these departures from list-learning studies, however, we were able to replicate 

typical properties of lag-CRP curves. Even though, in our experiments, absolute lag-CRP values at 

nearby lags were lower than those in other studies (e.g., Kahana, 1996; Sederberg et al., 2010; 

Healey & Kahana, 2014), the typical shape of the lag-CRP curve, and effects of temporal contiguity 
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and forward asymmetry, were observed. Indeed, previous work has noted that, although lag-CRP 

values are lower for longer lists, both short and long lists show clear temporal contiguity effects 

(Healey et al., 2019). This highlights the reliability and robustness of temporal organization in recall 

(Healey et al., 2019). Critically, as noted above, these deviations from standard procedures were 

not random, but were necessary for us to test our hypotheses. Because we were able to replicate 

not only typical lag-CRP findings, but also findings from the sustained attention literature (Esterman 

et al., 2014, 2015, 2017; Rosenberg et al., 2015; Kucyi et al., 2016, 2017; Fortenbaugh et al., 

2018; Rothlein et al., 2018; Esterman & Rothlein, 2019; Yamashita et al., 2021), we believe it is 

unlikely that our design decisions qualitatively altered attention and memory as studied in those 

procedures. 

Suggestions for future research 

An important contribution of this research is that it highlights the difficulty of balancing the 

demands of measuring sustained attention and recall. Taxing sustained attention requires a long, 

boring, and repetitive task — task features that work against robust recall for the encountered 

items. Thus, the ideal task for addressing how attentional fluctuations affect the temporal structure 

of recall must be long enough to induce lapses in attention but not so long that memory 

performance is at floor.  

One key strength of the multiple experimental designs used across our four Studies is in building 

confidence in the null effect of attentional state on the temporal organization of recall: our lists 

lengths varied from 30 to 120 items, our tasks varied the encoding question, and we tested both 

gradual and abrupt image onsets. Thus, our findings should be useful for the field, particularly for 

researchers who are concerned about potential confounds of fluctuating attention during memory 

encoding and how that may affect recall organization. Future research on this topic would also 

benefit from exploring myriad experimental procedures to ensure that the results are not specific 

to any given paradigm. 

Given our null effect of attentional state on recall organization across the many different 

experimental designs we used, we believe it is unlikely that attentional fluctuations in standard list-

learning tasks reliably influence the temporal organization of recall within a list. This is because 

encoding lists in those tasks are likely too short to elicit robust attentional fluctuations. 

Nevertheless, there are multiple alternative ways that future research can assess the relationship 
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between attentional fluctuations and memory organization, which we summarize here. We hope 

these strategies may help researchers address similar questions while avoiding the task 

complexities that we encountered.  

First, our approach focused on assessing attentional fluctuations within long lists of items, in 

keeping with the standard approach in sustained attention research. But it is likely that attention 

also fluctuates slowly over the course of an entire experimental session (indeed, we found that RTs 

became progressively more variable across the session). Slow changes in attentional lapsing may 

influence recall organization from early to late in the experiment. Researchers could capitalize on 

such slower fluctuations by implementing the variance time course (VTC) analysis over RTs from 

the entire experiment rather than within a list, which has the benefit of allowing researchers to use 

many short lists (e.g., 15 lists of 16 items, or similar) as is often done in standard list-learning tasks 

(e.g., Murdock Jr., 1962; Kahana, 1996; Sederberg et al., 2010; Cortis et al., 2015; also see Healey 

et al., 2019). This approach would allow researchers to determine if most “in the zone” states are 

early on in the experimental session rather than later, and whether that is related to more temporal 

organization for lists encoded early vs. late in the experiment. Alternatively, researchers could use 

pupil measures of attentional states (Kang et al., 2014; Brink et al., 2016; Unsworth & Robison, 

2016; Unsworth et al., 2018; Clewett et al., 2020; Decker et al., 2020; Zhang et al., 2020) to 

measure fluctuations in attention across an experimental session, and determine if that is related 

to reduced temporal clustering in later lists vs. earlier lists. 

Researchers could also use tests of cued recall or temporally structured recognition tests, such as 

the recognition approach reviewed earlier (Schwartz et al., 2005). Such tests allow assessments of 

temporal structure in memory while also probing weaker memories that may not be freely recalled. 

For example, researchers could determine the likelihood that, given an encoded item as a cue, the 

participant recalls the next item encoded (lag +1) as opposed to the previous encoded item (lag -

1) or items encoded further away (lags > 1). These approaches overcome the limitation that only 

relatively strongly encoded items are freely recalled, and such items may be salient or interesting 

enough to “survive” periods of low attention. Such approaches could also be combined with 

measures of item distinctiveness or memorability (Wakeland-Hart et al., 2022; see Exploring 

reasons for the null effect of attentional states on recall organization), allowing 

researchers to determine separate and interacting effects of attentional states and memorability. 
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For example, item memorability may increase recall likelihood more for items encountered during 

poor vs. good attentional states. Furthermore, more memorable items may aid in the recovery of 

temporal context and trigger recall of the subsequently encoded item when they are presented as 

a cue in a cued recall task.  

Finally, the goal of our project was to examine how attentional fluctuations influence the temporal 

organization of recall, leaving open the question of how such fluctuations influence the semantic 

clustering of recall. Thus, all of the above approaches could be repeated with semantic rather than 

temporal clustering as the critical output measure. Together, these approaches would yield insight 

into how various measures of attentional fluctuations (response time vs. pupil measures, within-

list vs. across-experiment) influence different types of recall organization (temporal vs. semantic). 

Such work could lead to a mechanistic understanding of how various factors can overcome poor 

attentional states to support structured memories. 

Relation to prior work  

While we did not find evidence supporting our hypothesis that spontaneous fluctuations in attention 

influence the temporal organization of memory, it is likely that stronger manipulations of attention 

would affect recall organization. Indeed, there is ample work showing that attention influences 

memory (see Chun & Turk-Browne, 2007; Aly & Turk-Browne, 2017). Studies involving dual tasks 

show that divided attention at encoding is associated with worse memory at retrieval (for e.g. 

Baddeley et al., 1984; Craik et al., 1996; Uncapher & Rugg, 2005). Other tasks involving 

experimenter-manipulated attention also show robust effects on memory (for example, Yi & Chun, 

2005; Uncapher & Rugg, 2009; Aly & Turk-Browne, 2016). One recent study showed that the type 

of attention at encoding (whether there was a semantic task or no task) influences temporal 

clustering in recall (Long & Kahana, 2017). Another recent study showed that introducing 

distractions during encoding disrupts the temporal contiguity effect (Cutler et al., 2020). Thus, 

experimentally manipulated attention robustly impacts memory performance generally as well as 

the temporal organization of recall.  

There is evidence that spontaneous attentional fluctuations influence memory, but these studies 

do not examine the temporal dynamics of recall. One such body of work is research on mind 

wandering. In these studies, participants are asked to report whether they are “on-task” or “off-

task” at various intervals (for example, Smallwood et al., 2003, 2008; Metcalfe & Xu, 2016; Xu & 
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Metcalfe, 2016; Xu et al., 2018; also see Smallwood & Schooler, 2015; & Christoff et al., 2016). 

These studies have found that more mind wandering is associated with decreased change detection 

in memory (Garlitch & Wahlheim, 2020), less precise cued recall (Martarelli & Ovalle-Fresa, 2021), 

and worse memory performance in general (Smallwood et al., 2003; Risko et al., 2012). 

Furthermore, as mentioned above, there is evidence that worse attentional states at encoding, as 

indexed by RTs, are associated with worse recognition memory  (deBettencourt et al., 2018; Decker 

et al., 2020; Wakeland-Hart et al., 2022) and worse associative memory (Elshiekh & Rajah, 2021) 

in a subsequent test.  

Together, the above-reviewed research shows that experimental manipulations of attention have 

effects on the temporal structure of recall and that spontaneous attentional fluctuations have 

effects on other forms of memory. Our current findings suggest that temporal context may be a 

more powerful driver of memory organization than attentional fluctuations — at least those that 

occur naturally and spontaneously during a task. Determining the conditions in which spontaneous 

attentional fluctuations may influence the temporal structure of memory requires further work; for 

example, future studies using temporally structured recognition tests or alternative measures of 

attentional fluctuations (e.g., pupil diameter) may yield important insights.  

Conclusion 

Across four Studies, we did not find any evidence that attentional fluctuations during encoding, as 

measured by the speed or variability of response times, influenced the temporal organization of 

recall. Temporal organization of recall is robust, even for memories encoded during relatively poor 

attentional states. These findings suggest that temporal context serves as a strong scaffold for 

episodic memory, one that can overcome spontaneous fluctuations in attentional states. Future 

research can assess the generality of these results by examining other measures of attention and 

memory.  

Data Availability Statement 

Deidentified data, materials, and code are available at https://osf.io/hs25k. A self-contained 

computing environment with data and code is also available on Code Ocean at 

https://doi.org/10.24433/CO.3162457.v1 for reproducing the main analyses, results, and figures. 
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Supplementary Materials 

 

  Study 1 Study 2 Study 3 Study 4 

lag-CRP 

Lag 
(1 to 29) Nearby >  

far away 
F10,1640.60 = 29.63  

p < 0.0001 
ηp

2 = 0.32 

BF < 1/150 

Nearby >  
far away 

F11.69,783.11 = 
14.89  

p < 0.0001 
ηp

2 = 0.18 

BF < 1/150 

Nearby >  
far away 

F11.57, 775.09 = 
11.98  

p < 0.0001 
ηp

2 = 0.15 

BF < 1/150 

Nearby >  
far away 

F15.18,1866.65=10.0
6 

p < 0.0001 
ηp

2 = 0.08 

BF < 1/150 

Direction 
(Forward vs. 
Backward) 

 
F1,64 = 3.01  
p = 0.08 

ηp
2 = 0.05 

BF = 8.95 
 

Forward > 
backward 

F1,67 = 11.75  
p = 0.001 
ηp

2 = 0.15 
BF = 0.10 

F1,67 = 3.09  
p = 0.08 

ηp
2 = 0.04 

BF = 7.85 

F1,123 = 0.46 
p = 0.50 

ηp
2 = 0.004 

BF = 43.57 

Attentional State 
(In vs. Out) 

F1,64 = 0.86  
p = 0.36 

ηp
2 = 0.013 

BF = 36.84 

F1,67 = 0.98  
p = 0.33 

ηp
2 = 0.014 

BF  = 29.83 

F1,67 = 0.30  
p = 0.59 

ηp
2 = 0.005 

BF = 36.96 

F1,123 = 1.25  
p = 0.27 

ηp
2 = 0.01 

BF = 36.20 

Lag x Direction 
Forward > 

backward for 
nearby >  
far away 

F11.53,737.65 = 2.59  
p = 0.003 
ηp

2 = 0.04 
BF = 0.017 

Forward > 
backward for 

nearby >  
far away 

F14.11,945 = 2.50  
p = 0.002 

ηp
2 = 0.036 

BF = 0.23 

Forward > 
backward for 

nearby >  
far away 

F16.07,1076.46 = 
1.74  

p = 0.04 
ηp

2 = 0.025 
BF >150  

F14.91,1834.13 = 
1.38  

p = 0.15 
ηp

2 = 0.01 
BF > 150 

Lag x  
Attentional State 

F13.89,888.83 = 0.70  
p = 0.78 

ηp
2 = 0.01 

BF > 150 

F15.39,1031.14 = 
0.92 

p = 0.55 
ηp

2 = 0.014 
BF > 150 

F16.15,1081.96 = 
1.09  

p = 0.36 
ηp

2 = 0.016 
BF > 150  

F17.46,2147.86 = 
0.77  

p = 0.73 
ηp

2 = 0.006 
BF > 150 

 
Direction x 

Attentional State 

F1,64 = 2.33  
p = 0.13 

ηp
2 = 0.04 

BF = 10.97 

F1,67 = 0.05  
p = 0.83 

ηp
2 = 0.0008 

BF = 27.81 

F1,67 = 0.15  
p = 0.70 

ηp
2 = 0.002 

BF = 26.36 

F1,123 = 0.67  
p = 0.42 

ηp
2 = 0.005 

BF = 30.49 

Lag x Direction x 
Attentional State 

F12.52,801.24 = 0.91  
p = 0.54 

ηp
2 = 0.014 

BF > 150 

F14.89,997.60 = 1.31  
p = 0.19 

ηp
2 = 0.02 

BF > 150 

F16.23,1087.49 = 
1.05  

p = 0.39 
ηp

2 = 0.015 
BF > 150  

F17.20,2115.97 = 
0.75  

p = 0.76 
ηp

2 = 0.006 
BF  > 150 
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  Study 1 Study 2 Study 3 Study 4 

lag-CRP  
+/- 1 

Lag 
(+1 vs. -1) 

+1 > -1 
F1,64 = 9.51  
p = 0.003 
ηp

2 = 0.13 
BF = 0.02 

+1 > -1 
F1,67 = 13.11  
p = 0.0006 
ηp

2 = 0.16 
BF = 0.009 

+1 > -1 
F1,67 = 6.48  
p = 0.01 

ηp
2 = 0.09 

BF = 0.23 

+1 > -1 
F1,123 = 4.69  

p = 0.03 
ηp

2 = 0.04 
BF = 0.48 

Attentional State 
(In vs. Out) 

F1,64 = 0.90  
p = 0.35 

ηp
2 = 0.014 

BF = 5.42 

F1,67 = 0.32  
p = 0.57 

ηp
2 = 0.005 

BF = 6.58 

F1,67 = 0.15  
p = 0.70 

ηp
2 = 0.002 

BF = 6.99 

F1,123 = 1.37  
p = 0.24 

ηp
2 = 0.01 

BF = 5.70 

Lag x  
Attentional State 

F1,64 = 0.14  
p = 0.71 

ηp
2 = 0.002 

BF = 4.99 

F1,67 = 0.85   
p = 0.36 

ηp
2 = 0.013 

BF = 3.51 

F1,67 = 1.47  
p = 0.23 

ηp
2 = 0.02 

BF = 2.94 

F1,123 = 0.19  
p = 0.66 

ηp
2 = 0.002 

BF = 6.18 

Event 
Analysis 

Transition Type 
F1.06,67.57 = 26.37  

p < 0.0001 
ηp

2 = 0.29 
BF < 1/150 

F1.07,71.55 = 45.59  
p < 0.001 
ηp

2 = 0.41 
BF < 1/150 

F1.06,70.80 = 26.49  
p < 0.0001 
ηp

2 = 0.28 
BF < 1/150  

F1.04,127.75 = 
14.77   

p = 0.0002 
ηp

2 = 0.11 
BF < 1/150 

Attentional State 
(In vs. Out) 

F1,64 = 1.45  
p = 0.23 

ηp
2 = 0.02 

BF = 7.42 

F1,67 = 0.51  
p = 0.48 

ηp
2 = 0.008 

BF = 7.89 

F1,67 = 1.39  
p = 0.24 

ηp
2 = 0.02 

BF = 7.31 

F1,123 = 0.76  
p = 0.39 

ηp
2 = 0.006 

BF = 9.49 

Transition Type 
x Attentional 

State 

F1.33,85.06 = 0.75  
p = 0.43 

ηp
2 = 0.012 

BF = 14.21 

F1.13,75.40 = 0.64 
p = 0.45 

ηp
2 = 0.01 

BF = 14.21 

F1.24,82.82 = 1.30  
p = 0.27 

ηp
2 = 0.02 

BF = 11.31 

F1.08,132.69 = 0.78  
p = 0.39 

ηp
2 = 0.006 

BF = 18.72 

 

Table S1. Summary of results across Studies 1-4 for the “state-specific denominator approach”. 

Green shading indicates statistically significant results (p < 0.05) and gray shading indicates results 

that are not statistically significant. In = “in the zone” attentional state; Out = “out of the zone” 

attentional state, defined with the VTC analysis.  
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