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Abstract
Inerter-based passive control devices have great potential to efficiently mitigate damage to 
structures subjected to earthquakes as they can provide large added mass effects, while hav-
ing a relatively small physical mass. The added mass effect of inerters is typically achieved 
through the conversion of translational motion to the rotation of a flywheel. In a clutch 
inerter damper (CID), energy transferred to the flywheel cannot transfer back to the struc-
ture. Despite this potentially advantageous behavior, few studies have considered the seis-
mic performance of structures with CIDs. As a result, the effect of the device parameters 
(i.e., effective mass and damping), the ability of the device to delay yielding and collapse 
of the structure, and the relative effectiveness of the device in far-field and near-field earth-
quakes, which more often include a dominant pulse, are uncertain. This paper addresses 
these gaps in knowledge through a numerical study of SDOF structures. The numerical 
model considers the nonlinear behavior of the structure in addition to nonlinear behavior of 
the CID. Incremental dynamic analyses were performed with suites of recorded earthquake 
ground motions. The results of these analyses showed that the CID is typically significantly 
more effective than a comparable viscous damper. Also, while performance differences 
were observed for different earthquake types, the median performance is broadly similar. 
Overall, this work shows the CID is capable of delaying the onset of yielding and collapse 
and otherwise mitigating the effects of a wide range of types of seismic excitation; thus, 
further investigation on its use is warranted.
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1  Introduction

Passive control of structures can mitigate damage and other losses from earthquakes. Con-
ventional passive control strategies include the use of viscous dampers, friction dampers, 
base isolation systems, and tuned mass dampers. Newer devices that include inerters have 
shown great potential in recent research and practical applications. Inerters are two-termi-
nal mechanical elements that can create large mass effects. The motion of the inerter gener-
ates a reaction force that is proportional to the relative acceleration between its terminals 
(Smith 2002). The proportionality constant of the inerter is referred to as inertance. Iner-
tance is often produced by using a rack and pinion or ball screw to transform translational 
motion to the rotational motion of a flywheel. However, inertance can also be produced 
through other means including hydraulic or electro-magnetic-based mechanisms (Ma et al. 
2021; Smith 2020; Wagg 2021). As an example of the potential for large mass effects with 
inerters, Sugimura et al. described a large inerter-based device that is currently in service 
in a building in Japan. The device can produce 5,400,000 kg of effective mass utilizing a 
flywheel with a physical mass of 560 kg, resulting in a mass amplification factor of 9600 
(Sugimura et al. 2012).

Extensive research has been conducted on inerter-based vibration control devices in the 
field of civil engineering. As inerter-based devices have a significant mass amplification 
effect, they have been investigated as a means of enhancing the performance of tuned mass 
dampers (Garrido et al. 2013; Ikago et al. 2012; Javidialesaadi and Wierschem 2019; Lazar 
et  al. 2014). Researchers have also investigated directly integrating devices with inerters 
into systems for the vibration control of structures. Often, the inerter-based devices con-
sidered in structures have configurations featuring the parallel or series connection of a 
spring, damper, and inerter as outlined by Hu and Chen (2015). An example of an inerter-
based device used in an inter-story capacity is provided by Hwang et al. who investigated a 
rotational inertia damper in connection with toggle braces to control the vibration of build-
ing structures (Hwang et  al. 2007). Researchers have also investigated including inerter-
based devices as part of building isolation systems (Wang et al. 2010; Zhao et al. 2021). 
Furthermore, inerter-based devices have been investigated when incorporated into special-
ized structural systems, such as rocking walls (Di Egidio et al. 2021) and outriggers (Asai 
and Watanabe 2017).

A related damping device called a clutch inerter damper (CID) was proposed by Makris 
and Kampas (2016). This device uses two parallel rotational inertia systems with a clutch 
such that the device can mitigate the response of a structure by permanently dissipating 
the stored energy in the rotating flywheels. Makris and Kampas demonstrated that the CID 
effectively reduces the spectral displacements of long period single-degree-of-freedom 
(SDOF) structures (Makris and Kampas 2016).

Wang and Sun made further efforts to understand the damping behavior of the CID 
compared to the inertial mass damper (Wang and Sun 2018). An equivalent lineariza-
tion method was adopted in their analysis to linearize the inherently nonlinear CID sys-
tem, the groundwork for which was established in a previous study by Li et al. (2019). 
Given the benefits of using a CID in a SDOF system, Makris and Moghimi investi-
gated the seismic response of a two-degree-of-freedom (2DOF) structure (Makris and 
Moghimi 2019). Li and Liang conducted work on CIDs in SDOF and multiple-degree-
of-freedom (MDOF) systems for free vibration and harmonic response (Li and Liang 
2020). The benefits of incorporating CIDs were subsequently examined experimen-
tally and numerically in SDOF and MDOF steel structures (Málaga-Chuquitaype et al. 
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2019). Additionally, Thiers-Moggia and Málaga-Chuquitaype proposed the use of CIDs 
to enhance the seismic performance of rigid and flexible rocking structures and post-
tensioned timber structures. They demonstrated that the inclusion of CIDs can effec-
tively reduce seismic rotation demands and improve seismic stability in these structures 
(Thiers-Moggia and Málaga-Chuquitaype 2020, 2021).

Javidialesaadi and Wierschem have also investigated the CID, which they referred 
to as the one-directional rotational inertia viscous damper, attached to a linear underly-
ing SDOF system subjected to base excitation (Javidialesaadi and Wierschem 2019). 
In their study, Javidialesaadi and Wierschem developed a model of the CID dynamics 
that explicitly considers the damped behavior of the CID flywheels after they become 
disengaged as well as a modified set of conditions governing the reengagement of the 
flywheels considering their rotational velocity. The unengaged dynamics of the damped 
CID flywheels is also similarly adapted in the work by Málaga-Chuquitaype et  al. 
(2019). This is in contrast to many other investigations of the CID, which have assumed 
that the energy directed to a flywheel of the CID is completely dissipated or harvested 
after the flywheel stops being engaged (Li and Liang 2020; Makris and Kampas 2016; 
Moghimi and Makris 2021; Thiers-Moggia and Málaga-Chuquitaype 2019; Wang and 
Sun 2018; Zheng et al. 2021). This assumption, which is often not valid, has important 
implications on the system’s dynamics and may unduly increase the apparent effective-
ness of the CID.

Most previous studies featuring inerters have only considered the elastic behavior of the 
structures in which they are incorporated. A more recent study of a 2DOF elastic structure 
with inerters revealed that although the inerters were effective in reducing the first story 
displacements under certain strong ground motions, the displacements were large enough 
to suggest that an inelastic model is more appropriate to understand the contribution of an 
inerter to the deformation of a superstructure (Makris and Moghimi 2019). Based on this, 
Moghimi and Makris examined the nonlinear seismic response of SDOF and 2DOF yield-
ing structures equipped with an inerter in their first story. The study showed that the appar-
ent elastic period of the structure lengthens in association with an inerter. Moreover, the 
inerters do not amplify the second story’s inelastic response compared to when large values 
of supplemental damping are used (Moghimi and Makris 2021). Talley et al. also consid-
ered nonlinear behavior of the base structure, such as yielding, material, and geometric 
nonlinearity, in their investigation of the effectiveness of inerter-based dampers to control 
the seismic response of buildings (Talley et al. 2021).

Although inerter-based dampers have been investigated for the seismic control of struc-
tures, studies considering the seismic response of systems employing CIDs are rare. Fur-
ther work is necessary to assess the response of structures with CIDs when subjected to 
seismic excitations with varying characteristics to understand if their effectiveness changes 
with features such as a dominant pulse. Additionally, as most studies on inerter-based 
devices, including the CID, have considered only the elastic response of structures, the 
effectiveness of CIDs remains uncertain once material nonlinearity of the base structure 
(e.g., yielding) initiates.

This study aims to evaluate the seismic performance of the CID considering the damped 
behavior of the CID flywheels after they become disengaged, inelastic structural behav-
ior, and seismic ground motions with a range of properties. In this numerical study, the 
CID is incorporated into three different SDOF base structures, each with a nonlinear spring 
that models yielding and degradation. Incremental dynamic analyses are performed on the 
structures with a collection of recorded earthquake ground motions until collapse. The col-
lection utilized includes both far-field earthquakes and near-field earthquakes, which more 
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often include a dominant pulse. The effects of using CIDs with multiple differently sized 
flywheels are also explored.

The paper is structured as follows. In sect.  2, the equations of motion for the CID 
installed in a SDOF structure are presented. Section 3 introduces the numerical models of 
the CID and the SDOF structures featuring nonlinear spring elements that are considered 
in this work. The incremental dynamic analyses that are performed on the structures are 
described in Sect. 4 along with the methodology for extracting performance measures from 
these analyses. The impacts of the CID on yielding and collapse performance are discussed 
in Sects. 5 and 6, respectively. The behavior of asymmetric CIDs is investigated in Sect. 7.  
Finally, the observations made in this paper are summarized and conclusions are presented 
in Sect. 8.

2 � Clutch inerter damper (CID)

The CID consists of a passive clutch system, one or more flywheels, and an attachment that 
is surrounded by a viscous material. The passive clutch engages or disengages depending 
on the angular velocity of the flywheels. With this clutch, energy is irreversibly transferred 
away from the main structure to the flywheels.

The concept of the CID is similar to the spinning top toy (see Fig. 1), as described in 
previous studies (Javidialesaadi and Wierschem 2019; Makris and Moghimi 2019). When 
the toy’s plunger is pushed down, it moves a screw that drives the toy’s body, which acts 
like a flywheel, to rotate in one direction. When the plunger is pulled up, the mechanism 
disengages, and the flywheel continues to spin freely. This mechanism allows the flywheel 
to rotate only in one direction, which is similar to ratcheting. When not engaged, the toy’s 
flywheel will spin freely until its motion decays due to the flywheel’s own damping. If the 
plunger is pushed down while the flywheel is spinning, the screw will drive the flywheel 

Fig. 1   Spinning top toy, which 
provides an example of the clutch 
mechanism in the CID
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only if the relative velocity of the plunger is equal to or larger than the linear velocity of the 
surface at the contact point with the toy’s flywheel.

When a flywheel of the CID is engaged, the relative velocity of the structure between 
the attachment points of the CID and the CID flywheel rotational velocity are related as 
follows:

where 𝜃̇ represents the rotational velocity of the flywheel, ρ is the lead of the ball-screw, u̇s 
is the relative velocity of the structure between the attachment points of the CID. When the 
CID is attached between a mass and the ground, u̇s is the velocity of the structure relative to 
the ground velocity 

(
u̇g
)
.

When the CID is engaged, the engaged flywheel adds effective mass and damping to 
the system. Because of the clutch mechanism, energy transferred from the structure to the 
flywheels cannot be transferred back to the structure. Rather, this energy is dissipated via 
rotational motion within the viscous material.

In the model considered in this paper, a CID with two flywheels is attached to a mass, 
as presented in Fig. 2. In this figure, ms denotes the mass of the main structure, cs is the 
assumed inherent viscous damping of the structure, üg is the ground acceleration, ρ1 and ρ2 
are the leads of the ball screw, D1 and D2 are the damping coefficients of the CID device, 
and J1 and J2 are the moments of inertia of the flywheels. Additionally, the mass is attached 
to the ground via a nonlinear spring representing the load-deformation response of the 
structure’s lateral force resisting system.

The rotational velocities of the flywheels shown in Fig. 2 are 𝜃̇
1
 and 𝜃̇

2
 . As each of 

the CID’s flywheels can only be engaged in one direction, one flywheel will be engaged 

(1)𝜃̇ =
2𝜋

𝜌
u̇s

Fig. 2   SDOF main structure with 
attached CID
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with positive velocity of the structure and the other flywheel will be engaged with nega-
tive velocity. The equation of motion for the system in Fig. 2 will vary between three 
different states depending on the kinematics of the system:

State 1: When the structure moves left 
(
u̇s(t) < 0

)
 and the relative velocity of the 

structure is equal to or larger than the linear velocity of the first flywheel at the contact 
point 

(
|u̇s(t)| ≥

𝜌
1

2𝜋
|𝜃̇

1
(t)|

)
 , the first flywheel is engaged, and the second flywheel of the 

CID moves freely. The equations of motion for this state are

In this equation, Fns represents the restoring force from the nonlinear spring in the 
model. Alternatively, these equations of motion can be presented as

where

State 2: As the structure moves to the right 
(
u̇s(t) > 0

)
 and the relative velocity of the 

structure is equal to or larger than the linear velocity of the second flywheel at the con-
tact point 

(
|u̇s(t)| ≥

𝜌
2

2𝜋
|𝜃̇

2
(t)|

)
 , the second flywheel is engaged, and the first flywheel of 

the CID spins freely.

State 3: The structure oscillates without engaging either of the flywheels when none 
of the above conditions are met. In this case, both flywheels of the CID spin freely and 
the system has the following equations of motion.

In most of the previous research related to the CID, the flywheels of the CID are 
assumed to be at rest at the beginning of each new cycle of motion (Li and Liang 2020; 
Makris and Kampas 2016; Moghimi and Makris 2021; Thiers-Moggia and Málaga-
Chuquitaype 2019; Wang and Sun 2018; Zheng et al. 2021). In other words, when one 
flywheel is engaged, the other flywheel is assumed to have zero rotational velocity; thus, 
one of the flywheels of the CID will reengage with the system with any change in the 
sign of the structure velocity, no matter the amplitude. This assumption is not always 

(2)

(
ms + J

1

4𝜋2

𝜌2
1

)
üs +

(
cs + D

1

4𝜋2

𝜌2
1

)
u̇s + Fns = −msüg

J
2

4𝜋2

𝜌2
2

𝜃̈
2
+ D

2

4𝜋2

𝜌2
2

𝜃̇
2
= 0

(3)

(
ms + mr1

)
üs +

(
cr1 + cs

)
u̇s + Fns = −msüg

mr2𝜃̈2 + cr2𝜃̇2 = 0

(4)mr1 = J
1

4�2

�2
1

mr2 = J
2

4�2

�2
2

cr1 = D
1

4�2

�2
1

cr2 = D
2

4�2

�2
2

(5)

(
ms + mr2

)
üs +

(
cr2 + cs

)
u̇s + Fns = −msüg

mr1𝜃̈1 + cr1𝜃̇1 = 0

(6)

msüs + csu̇s + Fns = −msüg

mr1𝜃̈1 + cr1𝜃̇1 = 0

mr2𝜃̈2 + cr2𝜃̇2 = 0
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valid, particularly when considering the rapid changes in motion possible when a sys-
tem is subjected to seismic ground motions; thus, this assumption is not made in this 
paper.

3 � Numerical model

A numerical model of the SDOF structure that is shown schematically in Fig. 2 was devel-
oped to perform the analyses for this study. Variations of the model included cases with the 
base structure alone (without the CID) and with a standard viscous damper (VD) in lieu of 
the CID. The model was created in OpenSees v3.3.0 (McKenna et al. 2021). Standard truss 
elements were used for the nonlinear spring, dashpot, and VD. A custom truss element, 
implementing the equations in Sect. 2, was developed and used for the CID.

The custom truss element for the CID is a 2-node, 4-degree of freedom element that 
represents the behavior of both flywheels. Flywheel properties (J, α, and D) can be speci-
fied separately for each direction. The element has zero stiffness. The mass and damping 
provided by the element are non-zero only when in state 1 or 2, i.e., when a flywheel is 
engaged. Flywheel velocity is tracked using internal state variables; when the flywheels are 
disengaged, their velocity is damped as per equations (3), (5), and (6). The restoring force 
of the element in state 1 is

where ü is the relative acceleration between the nodes and u̇ is the relative velocity between 
the nodes. The restoring force in state 2 is

The Ibarra, Medina, and Krawinkler (IMK) bilinear model (Ibarra et  al. 2005) was 
used for the nonlinear spring. Example hysteresis and backbone curves are shown 
in Fig.  3. The IMK model was chosen because it includes explicit softening of the 

(7)Fr1 = mr1ü + cr1u̇

(8)Fr2 = mr2ü + cr2u̇

Fig. 3   Example hysteresis and backbone curves of the Ibarra, Medina, and Krawinkler bilinear hysteretic 
model. T = 1 s; other parameters are the same as in Table 1
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backbone, stiffness and strength decay in the hysteresis, and has easily evaluable col-
lapse criteria. These features make it ideal for collapse modeling of abstracted SDOF 
systems. The initial elastic stiffness, ke, of the structure was defined by the fundamen-
tal period, T, and the mass, ms. The mass and yield strength, Fy, of the structure were 
selected to be nominal values; normalization of the results, as described later, means 
that the specific value of these parameters does not impact the results. The Bilin mate-
rial (Lignos and Krawinkler 2011) was used to implement the IMK bilinear model. Note 
that the code for the Bilin material was modified in this work to allow output of the 
internal variable “RSE”, which tracks the recoverable strain energy in the material; in 
this work this is used to find the total energy dissipated by the material as part of the 
collapse detection procedure described in Sect. 4.

P-Δ effects are included as described by Ibarra and Krawinkler (2005), where a sta-
bility coefficient θ modifies the strength and stiffness of the structure, while keeping the 
yield displacement, δy, and capping displacement, δc, the same, as shown in Fig. 4. A 
stability coefficient of 0.015 was used for all analyses.

The structural parameters selected for this study are shown in Table 1. The selected 
value of ductility capacity is described as “medium” and the hysteretic energy dissipa-
tion factors are described as associated with “slow” cyclic deterioration by the model 
authors (Ibarra and Krawinkler 2005). Further investigation would be necessary to eval-
uate the variation of the efficacy of the CID with structural parameters other than funda-
mental period, as this falls outside the scope of the present work.

There are two sources of viscous damping in the model: the structure’s inherent damping, 
and either a CID or VD. The structure’s inherent damping, cs, was kept constant, and defined 
by

As described in the previous section, when engaged with negative velocity (i.e., State 1), 
the CID provides an effective mass, mr1, and effective damping, cr1. When engaged with 
positive velocity (i.e., State 2), the CID provides effective mass and damping as mr2 and cr2, 
respectively. The “average” effective mass and damping were defined as

(9)cs = 2�
√
kems

Fig. 4   Backbone curves of the Ibarra, Medina, and Krawinkler model with and without P-Δ effects. Note 
that δy and δc are not affected by P-Δ
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To normalize these average values to the structure, the effective mass ratio was defined by 
the mass ratio to the structure, mr/ms, and the effective damping ratio, ζr, was defined as shown 
below.

For a symmetric CID, the effective mass and damping are the same in both directions 
(mr = mr1 = mr2 and cr = cr1 = cr2). For an asymmetric CID, the level of asymmetry was defined 
by the ratio AR, which is defined as

The damping of the VD, cd, was defined by an effective added damping ratio ζd.

Each of the three base structures (i.e., different fundamental periods, see Table 1) was 
analyzed without modification, with various CIDs, and with various VDs. For the main 
portion of this work investigating symmetric CIDs, the mr/ms values were varied from 0.05 
to 1.0 in increments of 0.05 and the ζr values were varied from 0.005 to 0.1 in increments 
of 0.005, resulting in a total of 400 individual CID configurations for each base structure. 
The value of ζd was also varied from 0.005 to 0.1 in increments of 0.005, resulting in a 
total of 20 individual VD configurations for each base structure. A total of 421 configura-
tions (1 configuration without dampers, 400 with CIDs, and 20 with VDs) were examined 
for each base structure.

(10)mr =
1

2

(
mr1 + mr2

)

(11)cr =
1

2

(
cr1 + cr2

)

(12)cr = 2�r

√
ke
(
ms + mr

)

(13)AR =
mr1

mr1 + mr2

=
cr1

cr1 + cr2

(14)cd = 2�d

√
kems

Table 1   Structure parameters Symbol Description Value(s)

T Fundamental period [s] 0.5, 1.0, 2.0
ms Structure mass [Gg] 1.0
Fy Yield strength [kN] 1.0
δc/δy Ductility capacity 4.0
αs Strain-hardening factor 0.05
αc Strain-softening factor  − 0.10
γ = γs,c,k,a Hysteretic energy dissipation factors 100
c Cyclic deterioration exponent 1.0
λ Residual strength factor 0.0
ζ Structure inherent damping, ratio of 

critical damping
0.01

θ Stability coefficient 0.015
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4 � Analysis

The main analysis results examined in this work are the ground motion intensities at which 
yield of the base structure initiates and the ground motion intensities at which collapse 
occurs. These intensities are computed for each configuration of each base structure using 
incremental dynamic analysis (Vamvatsikos and Cornell 2002).

Each incremental dynamic analysis was run using the 50 ground motion pairs of the 
FEMA P695 far-field and near-field record sets, which are representative of far-from-fault 
and near-fault earthquakes, respectively (FEMA 2009). The near-field record set is divided 
into ground motions with pulse and ground motions without pulse (14 each). For individ-
ual nonlinear response history analyses, ground motions were scaled to a selected relative 
intensity (Sa/g)/η as described by Ibarra et al. (2005), where Sa is the spectral pseudo-accel-
eration of a 5% damped linear oscillator due to the selected ground motion at the period T 
of the underling structure without a CID, g is the standard acceleration due to gravity, and 
η is the yield strength of the structure normalized by the structure’s seismic weight (i.e., 
η = Fy/W). Results are reported normalized by appropriate structural parameters: force in 
the structure is normalized by the yield strength Fy, displacement is normalized by the 
yield displacement δy, and energy is normalized by the hysteretic energy dissipation capac-
ity Et = γFyδy.

When determining the yield intensity for a given ground motion, the relative intensity 
was incremented by 0.25 until yield was detected. Once detected, a bisecting algorithm was 
used to determine the yield intensity with a tolerance of 0.01. Yield is considered to have 
occurred when the absolute displacement of the structure exceeds the yield displacement 
δy.

When determining the collapse intensity for a given ground motion, the relative inten-
sity was incremented by 0.25 until collapse was detected. The intensity at which collapse 
was detected was recorded as the collapse intensity and no further analyses were performed 
with that pair of structure and ground motion. Collapse is considered to have occurred 
when either the reference hysteretic energy dissipation capacity, Et, has been exhausted, or 
the backbone curve has been fully traversed and displacement exceeds δu (Fig. 4). Both of 
these conditions cause the stiffness of the structure to be zero, and no further force is gen-
erated proportional to the displacement of the structure. Force continues to be generated 
by the constant inherent damping and the attached damper if present. Since the models in 
this study have a relatively high energy dissipation capacity (γ = 100), almost all collapses 
occurred due to the maximum displacement criterion.

The ground motion intensity at which yield initiates, Sy, or collapse occurs, Sc, is nor-
malized by the same intensity for the structure without a damper installed—Sy0 and Sc0, 
respectively. These values are termed the normalized yield intensity, Ŝy, and the normalized 
collapse intensity, Ŝc, and are defined by

and

The medians of these normalized intensities, notated S̃y and S̃c, are the primary result 
examined in this work. Also examined is the median absolute deviation, which is analogous 

(15)Ŝy = Sy∕Sy0

(16)Ŝc = Sc∕Sc0
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to the standard deviation, but more appropriate for use with medians and more resistant to 
outliers (Hampel 1974). The computation of these results is shown schematically in Fig. 5.

5 � Initial yield

This section presents the findings of a parametric incremental dynamic analysis to deter-
mine the median normalized yield intensity, S̃y, of the SDOF numerical model subjected 
to the collection of far-field and near-field seismic ground motion sets. Recall that an Sỹ of 
1.5 for a set of CID parameters indicates that half the ground motions show at least a 50% 
increase in yield intensity for that CID parameter set relative to the no control case. The 
model parameters included in this parametric analysis are the effective damping ratio (ζr), 
the effective mass ratio (mr/ms), and the fundamental period of the underlying structure. 
Results in this section only consider symmetric CIDs.

Figure 6 shows Sỹ for the SDOF structure with a CID for a range of effective damp-
ing and effective mass ratios. Sỹ for the structure increases as the effective damping ratio 
increases for any given effective mass ratio. This result is logical given that the flywheel 
motion is damped out more quickly at higher effective damping ratios, which dissipates 
energy faster and allows for the CID to engage with the structure again sooner. In a trend 
similar to the effective damping ratio, a higher earthquake intensity is necessary to yield 
the structure as the effective mass ratio increases. As an example, at an effective damp-
ing ratio of 0.1, S̃y increases from 1.8 for a CID with an effective mass ratio of 0.1 to over 

2. Normalize collapse 
intensity with damper by 
collapse intensity 
without damper 

1. Run response histories at 
increasing intensity until collapse, 
with and without damper

3. Repeat for multiple ground motions 
and obtain the median of the results

5. Interpolate grid 
into contours

4. Repeat for multiple 
damper configurations

Fig. 5   Process for constructing Sc̃ contour plots from individual ground motion results. A similar process is 
used to construct S̃y contour plots
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2.6 for a CID with an effective mass ratio of 1.0. One reason for this increase in efficacy 
with higher effective mass ratios is that a higher effective mass ratio increases the amount 
of energy that can be irreversibly transferred to the CID flywheels at a given structural 
response amplitude.

In order to investigate the effect of the fundamental structural period on S̃y, separate S̃y 
are plotted in Fig. 7 for the structures with periods 0.5, 1, and 2 s. Figure 7 shows that, for 
all structure periods considered, Sỹ increases with the increasing effective mass ratio and 
effective damping ratio of the CID, which aligns with the previous results in Fig. 6. Con-
sequently, the system with the highest effective mass ratio and highest effective damping 
ratio CID yields at a higher median relative earthquake intensity irrespective of the differ-
ent underlying periods considered.

An alternative means of plotting S ̃y of the structures with different fundamental peri-
ods and different CID parameters is shown in Fig. 8. In this figure, three effective mass 
ratios (0.1, 0.5, and 1.0) are considered for the CID and S ̃y is plotted versus the effective 
damping ratio separately for the three underlying structural periods. From this figure 
it is easier to observe that S ̃y is similar for nearly all CID configurations at all of the 

Fig. 6   Contour plot showing Sỹ 
for different CID effective mass 
and damping ratios over all 
fundamental periods and ground 
motion sets

Fig. 7   Contour plots showing effect on S̃y of the CID effective mass ratio, CID effective damping ratio, and 
the period of the underlying structure
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examined fundamental periods. The exception to this is that the 0.5 s structural period 
case outperforms the other cases when the mass ratio is low (0.1). Additionally, the 2 s 
structural period case outperforms the other cases when the mass ratio is high (1.0) and 
the damping ratio is on the high end of the range examined. While some differences in 
S ̃y exist for different effective mass ratios and structure periods, the rate of change of S ̃y 
with increased effective damping remains similar in all cases.

The performance of the structure with a CID can be compared with the performance 
of the structure with a supplemental VD instead. In Fig. 8, S ̃y for the SDOF structure 
equipped with the CID is plotted along with S ̃y of the same structure where the CID is 
replaced with a supplemental VD. It is observed that for all the effective mass ratios 
of the CID considered, S ̃y of the structure with the CID is higher than the structure 
with a VD for the same effective damping ratio. Moreover, S ̃y increases as the effective 
damping ratios increase for the structure with the CID and the VD. For instance, when 
the effective damping ratio increases from 0.01 to 0.1, S ̃y of the structure with the VD 
increases from about 1.2 to 2.0 with the 0.5 s period structure, while for the same period 
structure and over the same range of effective damping ratios, S ̃y of the 1.0 effective 
mass ratio CID increases from about 1.9 to 2.6.

The effects on S ̃y for the different ground motion sets, far-field, near-field no pulse, 
and near-field with pulse are investigated in Fig. 9 for both the CID and the VD. As was 
also the case with Fig. 8, S ̃y is higher for any structure with a CID than with a VD for 
a given effective damping ratio for all of the ground motion sets. Additionally, S ̃y is the 
highest for both the VD and the CID when the far-field seismic motion set is applied 
and lowest for the near-field with pulse set. The superior pre-yield performance when 
considering the far-field ground motion set may be because the characteristics of this 
set make it more broadband and less pulse dominated, which allows for a larger number 
of cycles where the damping devices can be more effective. In the results from all the 
ground motion sets, S ̃y increases with a larger effective damping ratio. Although the dif-
ferent ground motion sets have different characteristics, the rate of increase in S ̃y with 
increasing effective damping ratio is similar for the different ground motion sets.

To investigate the dispersion of the Ŝy results, the median absolute deviation related to 
the results in Figs. 8 and 9 are plotted as vertical bars for the CID and VD. From these 

Fig. 8   Sỹ for different periods of the underlying structure for CID with different effective mass ratios and 
over a range of CID and VD effective damping ratios. Bars on plots indicate the Ŝy median absolute devia-
tion
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Ŝy dispersion results, no discernable trends are evident except that the dispersion of Ŝy 
increases as the amplitude of S̃y increases.

6 � Collapse resistance

In this section, the collapse resistance of structures with CIDs is evaluated based on the 
normalized collapse intensity, Ŝc, and median normalized collapse intensity, Sc̃. Recall, Ŝc 
equals the collapse intensity of the structure with the damper (CID or VD), Sc, divided by 
the collapse intensity of the structure without the damper, Sc0. For this study, the collapse 
capacity of the SDOF structure is estimated for a range of effective damping ratios 

(
�r
)
 , 

effective mass ratios (mr/ms), three fundamental periods (0.5, 1, and 2 s), and three ground 
motion sets as described in Sect. 4. Results in this section only consider symmetric CIDs.

Figure 10 presents S̃c of the SDOF structure for all configurations of the structure and 
earthquake ground motions sets. Each line in the contour plot indicates the effectiveness of 
the CID in collapse resistance in comparison to a no control case where the structure does 
not have a CID or VD attached. For example, a value of 1.5 for a set of CID parameters 
indicates that half the ground motions show at least a 50% increase in collapse intensity 
for that CID parameter set relative to the no control case. Note that all structures analyzed, 
even in the no control case, have some inherent damping. Sc̃ increases with both increases 
in the effective damping and effective mass ratio. However, with lower levels of damp-
ing, the performance gains with increasing effective mass ratio are minor. Similarly, the 
performance gains are less significant with lower effective mass ratios. Nevertheless, the 
maximum Sc̃ with a low effective mass ratio is greater than that with a low effective damp-
ing ratio. When the effective mass ratio is 0.2 and effective damping ratios range from 
about 0.02 to 0.1, Sc̃ increases from about 1.2 to 1.6. Alternatively, Sc̃ increases from about 
1.2 to 1.4 when the effective damping ratio is 0.02 and effective mass ratios range from 0.2 
to 1. This decreased sensitivity to the effective mass ratio at low levels of effective damp-
ing could be because at a low level of effective damping, the device takes a much longer 
time to dissipate enough rotational kinetic energy to become able to effectively engage 
with the structure again. Conversely, with high effective damping and larger effective mass, 
large amounts of energy may be directed to the device’s flywheels at any given time, and 

Fig. 9   Sỹ for different ground motion sets for CID with different effective mass ratios and over a range of 
CID and VD effective damping ratios. Bars on plots indicate the Ŝy median absolute deviation
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this energy is dissipated rapidly allowing the CID to be able to quickly engage with the 
response of the structure again.

The results in Figs. 6 and 10 can be contrasted to compare the yield and collapse perfor-
mance of the CID, as measured by S̃y and S̃c, and the differences in how the performance 
changes when the CID parameters are varied. The minimum and maximum values of S̃y 
observed are about 1.3 and 2.6, while the minimum and maximum values of Sc̃ observed 
are about 1.1 and 2.2. When the effective mass is 0.1, S̃y varies from about 1.3 to 1.8 and 
Sc̃ varies from about 1.1 to 1.5. When the effective damping is 0.01, S̃y varies from about 
1.3 to 1.9 and Sc̃ varies from about 1.1 to 1.3. These results show that the relative per-
formance of the CID decreases when considering collapse rather than yield. Furthermore, 
these results show that the decrease in collapse performance is more prevalent in the low 
effective damping case, compared to the low effective mass ratio case. These results are 
consistent with the fact that before yielding the only damping in the no control case comes 
from a small amount of inherent viscous damping, but after yielding significant energy 
dissipation results from the structures’ hysteresis. As the structure itself contributes more 
to its collapse performance than its yield performance, the change in collapse performance 
due to the CID (which is still significant) is less, particularly when low effective damping 
inhibits the performance of the CID.

The influence of the effective damping ratio on the engagement of the flywheels is illus-
trated in Fig.  11. This figure presents the normalized displacement of the SDOF struc-
ture under a particular earthquake ground motion, the energy in the flywheels, and energy 
dissipated by the flywheels. The applied ground motion time-history is also presented in 
this figure. For this analysis, effective damping ratios of 0.01 and 0.1 are considered as 
low damping and high damping, respectively. The sharp rises in the flywheel energy in 
this plot indicate when the flywheels of the CID are engaged. The decreases in flywheel 
energy occur due to the flywheels’ damping when they are spinning freely. The decrease 
in flywheel energy is faster for the high damping than the low damping case. This faster 
decrease in flywheel energy typically allows the flywheels in the low damping case to reen-
gage at much lower levels of energy and thus reengage with the system at lower response 
velocities. While the decrease in flywheel energy is faster for the high damping case, the 
maximum flywheel energy is higher in the low damping case. The reason for this is that 

Fig. 10   Contour plot showing 
S̃c for different effective mass 
and damping ratios over all 
fundamental periods and ground 
motion sets
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the CID with low damping is less effective at controlling the response of the structure; 
thus, the structure with the CID with low damping has a higher response and at this higher 
response the CID are once again able to be engaged.

S ̃c of structures with different fundamental periods (of the underlying structure) are 
separately plotted in Fig.  12 to investigate the effect of the underlying period of the 
structure on the CID collapse resistance performance relative to the no control case. 
Once again, all three ground motion sets were considered together for this analysis. The 

Fig. 11   Example time-history loading and response of CID-equipped structure for two different damp-
ing levels. a Ground motion time-history; b Normalized displacement of the SDOF structure; c Flywheel 
energy; and d Total energy dissipated by the flywheels in response to the applied ground motion. Analysis 
parameters: T = 1.0 s, η = 0.000102, mr/ms = 0.50, (Sa/g)/η = 5.75

Fig. 12   Contour plots showing effect on Sc̃ of the CID effective mass ratio, CID effective damping ratio, 
and the period of the underlying structure
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overall behavior of collapse resistance remains similar for all the different periods; that 
is, S ̃c increases with increasing effective damping and effective mass ratios. Moreover, a 
general trend to higher S ̃c is observed with growing periods. For instance, when the fun-
damental period of the underlying structure is 0.5 s, S ̃c can reach a maximum of about 
1.9 by varying the CID parameters. In contrast, the maximum S ̃c is about 2.4 with the 
same set of CID parameters when the underlying period of the structure is 2 s.

An alternative means of plotting S ̃c of the structures with different fundamental peri-
ods and different CID parameters is shown in Fig.  13. From this figure it is easier to 
observe that S ̃c is lower for nearly all CID configurations at the shorter fundamental 
period compared to S ̃c with the same CID configurations at relatively longer periods.

Figure 13 can also be utilized to investigate the performance of the CID compared 
to the VD at different damper configurations and with different structure periods. This 
figure shows that, given a level of effective damping, the CID always outperforms the 
VD in terms of S ̃c; however, S ̃c for the CID with effective mass ratio of 0.1 is very simi-
lar to S ̃c for the VD for all of the structure periods considered. Furthermore, this figure 
shows that while S ̃c of both the CID and VD increase with increasing effective damping, 
S ̃c with the CID can increase much more than with the VD. For example, with the 2 s 
period structure, S ̃c for the VD increases from about 1.1 to 1.5 when the effective damp-
ing ratio increases from 0.02 to 0.1, while over the same effective damping ratios S ̃c for 
the 1.0 effective mass ratio CID increases from about 1.5 to 2.5.

Figure  14 compares S ̃c for different damper configurations when the structures are 
subjected to far-field, near-field without pulse, and near-field with pulse ground motion 
sets separately. Data from all three structure periods was combined together for this 
analysis. In general, some of the trends observed before are seen here in the results from 
each ground motion set: S ̃c increases with increasing effective mass ratio and effective 
damping, the CID outperforms the VD at any given level of effective damping, but the 
VD and CID have similar S ̃c when the effective mass ratio is 0.1. This figure shows that, 
in terms of S ̃c, the performance of the CID is similar for the different ground motion sets 
and no clear trends exist that show the CID is able to have consistently better relative 
collapse performance when subjected to one of the ground motion sets. For example, 
the CID with an effective mass ratio of 1 has a generally higher S ̃c for the far-field set, 

Fig. 13   Sc̃ for different periods of the underlying structure for CID with different effective mass ratios and 
over a range of CID and VD effective damping ratios. Bars on plots indicate the Ŝc median absolute devia-
tion
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but the CID with an effective mass ratio of 0.5 has a generally higher S ̃c for the near-
field without pulse set.

To investigate the dispersion of the Sc̃ results, the median absolute deviation of the 
results in Figs.  13 and 14 are plotted as vertical bars for the CID and VD. From these 
Sc̃ dispersion results, no discernable trends are evident except that the dispersion of Sc̃ 
increases as the amplitude of S̃c increases.

7 � Asymmetric CIDs

While previous sections have examined symmetric CIDs where the effective mass and the 
effective damping provided by the CID are the same in both directions, this section consid-
ers the behavior that results when the CID is asymmetric. This asymmetry may be present 
in the CID unintentionally due to malfunctions or manufacturing errors or intentionally 
in order to produce a CID design that has different natural frequencies when the different 
flywheels are engaged. In this section, asymmetry in the effective mass and effective damp-
ing of the CID is investigated considering different levels of asymmetry (Eq. (13)) ranging 
from 0.4 to 0.6 (AR = 0.5 for symmetric CIDs). Sc̃ of the SDOF structure is evaluated for 
this range of AR, effective damping ratios 

(
�r
)
 ranging from 0.01 to 0.10, and different seis-

mic records.
Sc̃ of the SDOF structures with CIDs with an effective mass ratio of 0.5 and having 

various effective damping ratios and values of AR is presented in Fig. 15. Additionally, Sc̃ 
of the SDOF structures with CIDs with an effective damping ratio of 0.05 and having vari-
ous effective mass ratios and values of AR is presented in Fig. 16. In Figs. 15 and 16, Sc̃ 
associated with different AR values for the CIDs is presented, including AR = 0.5; therefore, 
these figures can be used to contrast the effectiveness of the symmetric and the asymmet-
ric CIDs in increasing Sc̃. In these figures, Sc̃ increases with increasing effective mass and 
effective damping ratios for all the AR values. It is evident from Figs. 15 and 16 that, for 
any given total effective mass and effective damping ratio, the symmetric CID (AR = 0.5) is 
more effective in improving Sc̃. Furthermore, the effectiveness of the CID decreases with 
increasing asymmetry. However, for low effective damping ratios, the asymmetry has a 
minor effect on the performance. In all the cases, Sc̃ is greater than unity, indicating that 

Fig. 14   Sc̃ for different ground motion sets for CIDs with different effective mass ratios and over a range of 
CID and VD effective damping ratios. Bars on plots indicate the Ŝc median absolute deviation
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the median of the collapse performance of the structure with the CID exceeds the collapse 
performance of the structure without any damper.

Figure 17 shows S̃c of the SDOF structures equipped with CIDs of various AR values 
and is presented such that the effects on Sc̃ of the effective damping ratio and the ground 
motion set can be investigated. When the effective damping ratio is low, there are only 
minor changes in S̃c between the symmetric and asymmetric CIDs for all the ground 
motion sets. However, the symmetric CIDs have a greater S̃c than the asymmetric CIDs 
in nearly all cases at higher levels of effective damping for all three ground motion sets. 
Furthermore, at any given level of effective damping and AR value, the difference in S̃c for 

Fig. 15   Sc̃ of the SDOF structures equipped with CID for various AR and effective damping ratios given an 
effective mass ratio of 0.5

Fig. 16   Sc̃ of the SDOF structures equipped with CID for various AR and effective mass ratios given an 
effective damping ratio of 0.05
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the different ground motion sets is relatively minor. Note that while some differences in 
S̃c shown in Fig. 17 exist for complimentary AR values (0.4/0.6 or 0.45/0.55), the authors 
expect that with large enough sets of ground motions, the same S̃c would result at these 
complimentary AR values.

8 � Conclusions

The clutch inerter damper (CID) is an innovative device with great potential for passive 
control of structures. Through numerical analysis of SDOF systems, this work explored the 
effectiveness of CIDs to mitigate damage and improve the safety of structures subjected to 
strong earthquake ground motions. The unique features of this study were that this seis-
mic performance was evaluated considering the damped behavior of the CID flywheels 
after they become disengaged, inelastic structural behavior, seismic ground motions with 
a range of properties, and asymmetry in the CID. The following was observed from the 
analyses regarding the performance of CIDs:

•	 The ability of the CID to protect the structure against yield and collapse increased with 
increases in effective mass and effective damping of the CID.

•	 The ability of the CID to protect the structure against yield was greater than its abil-
ity to protect the structure against collapse since the CID was the dominant source of 
energy dissipation in the elastic range while the structure itself contributed significant 
energy dissipation at the collapse level.

•	 CIDs with lower effective damping provided less protection against yield and collapse, 
in part because their flywheels were unable to slow down quickly. With lower damping, 
the CID less frequently engage effectively with the structure.

•	 CIDs outperformed viscous dampers with the same effective damping ratio over the 
entire range of effective masses investigated.

•	 The performance of the CID was largely similar across the sets of earthquake records 
utilized (far-field, near-field no pulse, and near-field with pulse); however, the CID was 
best able to protect the structures against yield for the far-field set.

Fig. 17   Sc̃ of the SDOF structure given CID with a range of AR values and different effective damping 
ratios, comparing response to different ground motion record sets. FF: far-field; NF-NP: near-field, no 
pulse; NF-P: near-field, with pulse
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•	 The performance of the CID was largely similar across the sets of underlying structure 
periods considered (0.5, 1, and 2 s); however, against collapse, the CID was best able to 
protect the structure with 2 s period.

•	 Asymmetric CIDs typically underperform with respect to symmetric CIDs with 
the same total effective mass. The performance decreases as the level of asymmetry 
increases. At lower levels of effective damping, the asymmetry did not change the per-
formance much.

Based on these observations, it is clear that the clutch inerter damper is capable of pro-
tecting structures against yielding and collapse and otherwise mitigating the effects of a 
wide range of types of seismic excitations. Consequently, further investigation on the use 
of the CID, particularly the symmetric CID, for passive control of structures subjected to 
seismic excitation is warranted.
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