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Significance

Microbial communities are 
typically studied as part of the 
microbial loop, separately from 
the broader food web. Using a 
two-decade freshwater time 
series, we explored whether two 
species invasions that shifted the 
metazoan food web (spiny water 
flea and zebra mussels) also 
impacted the microbial 
communities. We looked for 
seasonal responses because the 
microbial communities had 
strong seasonal patterns. We 
discovered that Cyanobacteria 
increased early in the year, and 
Cyanobacteria diversity increased 
in the summer. Cyanotoxins also 
increased, along with the 
duration of toxin production. In 
the heterotrophic bacterial 
community, some organisms 
changed consistently within 
lineages and seasons while 
others diverged. These findings 
illustrate the importance of 
seasonal context and highlight 
the interconnectedness of 
bacteria with the broader food 
web.
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Invasive species impart abrupt changes on ecosystems, but their impacts on microbial 
communities are often overlooked. We paired a 20 y freshwater microbial community 
time series with zooplankton and phytoplankton counts, rich environmental data, and 
a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that 
were disrupted by the invasions of spiny water flea (Bythotrephes cederströmii) and zebra 
mussels (Dreissena polymorpha). First, we detected shifts in Cyanobacteria phenology. 
After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwa-
ter; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into 
the diatom-dominated spring. During summer, the spiny water flea invasion sparked a 
cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria 
diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra 
mussel invasion, microcystin increased in early summer and the duration of toxin pro-
duction increased by over a month. Third, we observed shifts in heterotrophic bacteria 
phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage 
were differentially more abundant. The proportion of the bacterial community that 
changed differed by season; spring and clearwater communities changed most fol-
lowing the spiny water flea invasion that lessened clearwater intensity, while summer 
communities changed least following the zebra mussel invasion despite the shifts in 
Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as 
primary drivers of the observed phenological changes. These long-term invasion-me-
diated shifts in microbial phenology demonstrate the interconnectedness of microbes 
with the broader food web and their susceptibility to long-term environmental change.

microbial ecology | invasive species | phenology | limnology | time series

Invasive species have wide-ranging impacts on ecosystems, often rewiring food webs and 
disrupting nutrient cycling, and they can be even more disruptive than anthropogenic 
abiotic changes (1). However, the impact of species invasions on entire microbial com-
munities is rarely considered. Microbes are usually considered separately from metazoan 
lake ecology; bacterial communities are thought to interact with the broader food web as 
part of a microbial loop, where phytoplankton-derived dissolved organic matter is returned 
to higher trophic levels (2, 3). Bacteria that consume organic matter are in turn consumed 
by ciliates and nanoflagellates, which are eaten by microzooplankton, thus linking micro-
bial communities with higher trophic levels. Although this microbial food web is often 
studied separately from the metazoan food web, we hypothesized that metazoan species 
invasions would change the bacterial community.

We collected a 20 y microbial community time series (2000 to 2019, 496-samples) from 
Lake Mendota, a eutrophic temperate lake in WI, USA. This period includes two metazoan 
species invasions: the predatory zooplankton spiny water flea in 2009 (Bythotrephes ceder-
strömii) and zebra mussels in 2015 (Dreissena polymorpha). The spiny water flea invasion 
triggered a food web cascade that resulted in a 1 m loss in water clarity (4), as increased 
zooplankton predation by spiny water flea led to reduced grazing pressure on phytoplankton. 
This impact was particularly strong during the spring clearwater phase, which decreased in 
intensity and duration (5). The invasion of zebra mussels triggered a 300% increase in benthic 
zooplankton and phytoplankton abundance, and they themselves became abundant enough 
to filter the epilimnion volume every 45 d (6). Zebra mussels increase filtration, but they can 
also worsen Cyanobacteria blooms via selective retention of eukaryotic algae and release of 
Cyanobacteria back into the lake (7), and by altering nutrient stoichiometry (8). In Lake 
Mendota, zebra mussels did not impact the pelagic water clarity in either direction (6). These 
mid-time series disturbances set up a natural experiment with which we explored the impact 
of metazoan species invasions on the bacterial community.

Lake Mendota is a temperate, dimictic lake, and its ecology follows consistent seasonal 
patterns (phenology). The lake freezes in the winter, and ice-off is followed by spring 
mixing and a diatom bloom. As the water warms, zooplankton grazing increases and D
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results in a short-lived period of high water clarity, which ends 
when planktivorous fish begin eating zooplankton (5). After this 
clearwater phase, diatoms give way to Cyanobacteria which per-
sist throughout the summer (9). During the summer, the water 
column is thermally stratified, and anoxia develops in the bottom 
layer, while nutrient draw-down occurs in the upper layer. When 
temperatures drop in the fall, Lake Mendota mixes and remains 
mixed until ice-on. Seasonal patterns have also been observed in 
microbial community composition (10), and these seasonal 
cycles can mask long-term changes (11). Therefore, we split our 
time series into seasons and looked for changes in bacterial 
phenology.

Here we identify seasons that described the bacterial phenology 
and then identify phenological change in Cyanobacteria, cyano-
toxins, and heterotrophic bacteria. These observed phenological 
shifts are a direct observation of multi-decadal microbial change 
in response to invasive species.

Results

We characterized the microbial community composition via 16S 
ribosomal RNA gene amplicon sequencing performed on dupli-
cate water grabs (961 total samples, 496 sample dates) (Fig. 1). 
The water grabs integrated the top 12 m of the water column, 
which approximates the mixed upper layer. In addition to the 
sequencing-based relative abundances, we obtained environmental 
data available from the North Temperate Lakes Long Term 
Ecological Research program (NTL-LTER), including water phys-
ical and chemical measurements and microscopy-based counts of 
zooplankton and phytoplankton.

Microbial Phenology. To compare across years, we defined lake 
seasons using environmental variables and compared samples 
within the same season. We compared across multiple years 
by season instead of by Julian date to discriminate shifts in 
each season’s community composition from shifts in seasonal 
timing. We created multiple potential season definitions based 
on environmental data and then selected the definitions that 
were most representative of the microbial phenology. We 

applied non-metric multidimensional scaling (NMDS) (12) to  
sample distance matrices calculated with the phi distance metric 
for centered log ratio (CLR)-transformed relative abundances 
(13). To select the season definitions most relevant to the 
microbial community, we chose definitions that resulted in 
clear separation between season boundaries in NMDS plots 
(Fig.  1). Samples grouped by our selected season definitions 
were significantly less variable within groups than between groups 
for every season boundary (analysis of similarities (ANOSIM) 
significance ≤ 0.001).

The season definitions that best described the microbial phe-
nology were ice-on, spring, clearwater, early summer, late summer, 
and fall (Fig. 1 and SI Appendix, Table S1). The ice-on season was 
determined by the onset and break-up of continuous ice cover 
across a central lake transect. Spring began with ice-off and ended 
with clearwater onset, spanning a period that includes the spring 
diatom bloom (9). Clearwater was defined based on water clarity 
measurements and is an annual phase driven by high zooplankton 
grazing pressure (5). Early summer was a period of growing strat-
ification, bounded by clearwater, and the point at which hypolim-
netic anoxia extended above 12 m. Late summer was a period of 
strong stratification and anoxia, which ended with fall mixing. 
We defined mixing as a difference in average epilimnion and 
hypolimnion temperatures <3 °C. Fall began with mixing and 
ended with ice-on.

Shifts in Cyanobacteria Phenology. Given spiny water flea’s marked 
disruption of clearwater phenology, i.e., shortened duration and 
intensity, we first looked for changes in spring phytoplankton 
phenology. Historically, the end of clearwater phase marks the 
transition from a diatom-dominated system to a Cyanobacteria-
dominated system (9). We found that after the spiny water flea 
invasion, Cyanobacteria began appearing during clearwater phase 
(Fig. 2A). We did not see a similar increase in chloroplast relative 
abundance or diatom counts during clearwater phase, indicating 
that the transition to Cyanobacteria dominance shifted earlier. We 
further found that after the zebra mussel invasion, Cyanobacteria 
began appearing even before the start of clearwater phase (Fig. 2A). 
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Fig. 1. Sample dates and microbial phenology. (A) Sample dates are represented by points, and season durations are represented by shading. (B) Non-metric 
multidimensional scaling of CLR-transformed bacterial community compositions. Points represent sample dates, and colors indicate seasons. Three seasons 
are compared in each NMDS plot to highlight season boundaries. All NMDS stress values are ≤0.1.D
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Count data confirmed that the biovolume of Cyanobacteria 
increased twofold, growing to over 10% of total phytoplankton 
(SI Appendix, Fig. S1). This earlier onset of Cyanobacteria describes 
a kingdom-level regime shift from a eukaryotic algae-dominated 
period to one that includes Cyanobacteria.

After identifying these changes in the spring phenology, we next 
looked for spiny water flea invasion impacts on the summer cyano-
bacterial phenology. Cyanobacteria abundance (relative to the 
microbial community) during summer and fall did not change 
with the spiny water flea invasion. However, Cyanobacteria diver-
sity during the late summer season increased (Fig. 2B). This 
increase in cyanobacterial diversity was observed at fine and 
coarse-resolution taxonomic levels, including levels as coarse as 
order (Fig. 2B). It is possible that the shift in summer diversity 
could be explained by the earlier onset of the Cyanobacteria-
dominated season resulting in an earlier onset of high Cyanobacteria 
diversity. However, the spring cyanobacterial incursion was com-
prised of a single amplicon sequence assigned to Aphanizomenon, 
not to a more complex community typical of early summer. 
Additionally, we observed a concurrent late summer change in 
zooplankton diversity; after the spiny water flea invasion, zoo-
plankton diversity decreased (Fig. 2B and SI Appendix, Table S2). 
Therefore, we attribute the shift in cyanobacterial summer diver-
sity to a cascade of shifting diversity originating in the zooplankton 
community. The lower diversity of zooplankton may have resulted 
in narrower grazing pressure, allowing a wider range of Cyanobacteria 
to flourish.

Next, we looked for changes in the summer cyanobacterial 
community stemming from the zebra mussel invasion. We first 
compared total Cyanobacteria abundance before and after zebra 
mussels but did not see strong and consistent changes in relative 
abundance or biovolume (SI Appendix, Fig. S1). We also did not 
observe strong shifts in cyanobacterial community composition. 
Cyanobacteria can produce potent toxins, but Cyanobacteria abun-
dance does not always correlate with cyanotoxin concentrations 
(14, 15), suggesting that toxin concentrations could yet have 
changed as a result of the invasion.

Shifts in Cyanotoxin Phenology. To examine the impact of 
zebra mussels on cyanobacterial toxicity, we collected a 6 y, 
246-sample toxin time series spanning the 3 y preceding and 
following the zebra mussel invasion. We measured the hepatotoxin 
microcystin (MC) and the bioactive peptide anabaenopeptin 
(Apt) using high-performance liquid chromatography coupled 
with tandem mass spectrometry (HPLC-MS/MS) (Dataset S1) 
(16). We observed a threefold decrease in anabaenopeptin and a 
concurrent threefold increase in microcystin during early summer 
(P < 0.05) (Fig. 3A). The family Microcystaceae is considered the 
main microcystin producer in Lake Mendota, although it is also 
capable of producing anabaenopeptin (14). However, the relative 
abundance of Microcystaceae did not change. This suggests that 
the switch from anabaenopeptin to microcystin is due to more 
complex ecological drivers than the abundance of Microcystaceae 
and illustrates the complexity of invasion impacts. This shift in 
toxin concentrations has implications for human health, because 
microcystin is a more potent toxin than anabaenopeptin (17).

After observing this increase in early summer microcystin, we 
next explored the phenology of microcystin production (Fig. 3B). 
Total toxin concentrations were variable between years, so for each 
year we normalized total microcystin by the maximum measured 
concentration within that year. We found that the duration of 
toxin production, defined as the period during which toxins were 
at least 15% of maximum annual toxicity, increased after the zebra 
mussel invasion by 53 ± 9 d, or 170 ± 10%. (P < 0.001) (Fig. 3C). 
This increase was due to a longer late summer season, as well as 
toxin production extending further into the early summer and fall 
seasons. We observed these increases in toxicity despite the lack 
of change in Cyanobacteria abundance and diversity. This might 
be explained by changes in gene expression, which can be variable 
enough that the abundance of microcystin mcy genes is a poor 
predictor of microcystin concentrations (14). Another possible 
explanation is preferential retention of non-toxic strains or indi-
vidual cells, with toxic cells released back into the water column. 
Zebra mussels were previously found to preferentially retain a 
non-toxic Microcystis strain over a toxic one (18).
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Fig. 2. Shifts in Cyanobacteria phenology. (A) Spring relative abundance of Cyanobacteria aligned as days since clearwater. Average and SD duration of clearwater 
is indicated by gray bars. Blue represents the pre-invasion period of 2000 to 2009, orange the post-spiny water flea period of 2010 to 2015, and red the post-
zebra mussel period of 2016 to 2018. (B) Summer diversity of zooplankton and Cyanobacteria. Thick lines represent the mean Shannon diversity, and shading 
represents the SD. Thin lines represent individual years. Here the orange post-spiny water flea period includes years 2010 to 2018. Gray starred regions 
indicate the period of significant difference in mean diversity (P < 0.05). Cyanobacteria diversity is shown at the order level, and zooplankton diversity is shown 
at ecologically relevant groupings with spiny water flea counts removed.D
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In summary, cyanobacterial phenology shifted in response to 
the two metazoan invasions, with changes in timing, diversity, and 
toxicity.

Shifts in Heterotrophic Bacteria Phenology. To explore whether 
invasion impacts extended further, into the heterotrophic bacterial 
community, we compared each season’s heterotrophic community 
before and after invasion using NMDS analyses of their CLR-
transformed phi dissimilarities (13). We observed modest grouping 

based on invasion status (SI Appendix, Fig. S2), and an ANOSIM 
analysis confirmed that within-group differences were smaller 
than between-group differences in all seasons for both invasions 
(ANOSIM significance = 0.001).

To identify which bacteria were responsible for the shift in com-
munity composition, we performed a differential abundance analysis 
after applying a CLR transformation to account for the relativized 
nature of sequencing data (19). We used a generalized linear model 
to test for organisms that were differentially abundant before and 
after each invasion (20), and we looked for changes within each 
season. We considered an operational taxonomic unit (OTU) differ-
entially abundant when it had an effect size >0.5, and we manually 
confirmed the ecological significance of this effect size cutoff by 
inspecting relative abundance over time (examples in Fig. 4).

To assess which seasonal communities were most susceptible to 
change, we looked at the proportion of OTUs within the commu-
nity that were differentially abundant. To better reflect the ecological 
impact of the differentially abundant OTUs, we normalized the 
OTUs by their mean relative abundance. The invasions impacted 
seasonal community composition to different degrees. For example, 
spiny water flea had the largest impact on the proportion of the 
community that changed during spring and clearwater, with 38% 
of the average community becoming differentially abundant 
(Fig. 4 C, Left). This means that in addition to changing the seasonal 
timing of clearwater (5), spiny water flea also changed the hetero-
trophic bacteria community. Meanwhile, zebra mussels had the 
smallest impact on the late summer microbial community, with 
only 4% of the average community becoming differentially abun-
dant (Fig. 4 C, Right). The late summer microbial community had 
the smallest proportion of differentially abundant organisms and 
also the fewest overall differentially abundant OTUs (Fig. 4). The 
late summer community also has the highest alpha diversity, and 
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high biodiversity has been linked to ecosystem stability (21). It is 
possible that this high diversity makes the late summer ecosystem 
more robust. The seasonal differences in invasion impacts emphasize 
the importance of a phenological context.

Among the organisms that were differentially abundant, OTUs 
in the phylum Bacteroidota were zebra mussel invasion “winners” 
broadly (Fig. 4A and Dataset S2). These winners included abun-
dant OTUs from the bacI, bacII, bacIII, and bacIV lineages 
(Chitinophagales, Flavobacteriales, and Cytophagales orders, lineage 
nomenclature from refs. 22 and 23). However, most changes in 
differential abundance were not consistent within taxonomic lin-
eages or across seasons. For example, within the abundant lineages 
of order Frankiales, Nanopelagicaceae (acI) tended to win while 
acTH1 and acSTL tended to lose (Fig. 4B and Dataset S2).

The Bacteroidota phylum is often particle-associated (23, 24), 
and Bacteroidota OTUs were broadly differentially abundant after 
both the spiny water flea invasion and the zebra mussel invasion. 
In contrast, the Frankiales order is comprised of small, free-living 
bacteria, and contained both winner and loser OTUs. The 
non-uniform response of the Frankiales order suggests that they 
occupy divergent niche spaces. Further, it appears that the niche 
spaces for acI may be seasonally dependent. The acI lineage is 
oligotrophs (25), and acI-A and acI-B tended to win during clear-
water and early summer even though they are abundant through-
out the year, while acI-C is abundant during fall and also tended 
to win during fall. AcTH1 and acSTL are also small, free-living 
Frankiales, but little is known about their ecology and metabolism. 
They comprised many of the abundant invasion losers in all sea-
sons after both invasions, which suggests that their niche is less 
seasonally dependent and different from their close relatives.

In summary, heterotrophic bacteria phenology was shifted by 
metazoan species invasions. Some organisms showed consistent 
responses within phyla and across seasons, and some organisms 
showed divergent responses within orders and between seasons, sug-
gesting that some niche spaces were changing broadly while others 
experienced seasonally dependent changes. Overall, the amount of 
change bacterial communities experienced was seasonal, and some 
seasonally defined communities were more robust to change than 
others.

Species Invasions are Drivers of Change. To compare the 
importance of species invasions to other environmental drivers, 
we evaluated metrics related to invasion status, landscape change, 
and climate change in a modeling framework. We predicted the 
lag between Cyanobacteria onset and clearwater onset (Fig. 2A) 
and the CLR-transformed abundance of the winner acI-B 
OTU 1 (Fig. 4B) using invasion status, phosphorus loading, ice 
duration, and hot summer days. We used Akaike Information 
Criterion (AIC) to identify which drivers were included in the 
best-performing models (SI Appendix, Tables S3 and S4). Spiny 
water flea and zebra mussel invasion status were included in all the 
best models, which emphasizes the importance of species invasions 
as drivers of changing microbial phenology. The number of hot 
summer days and mean phosphorus loading was also included 
in some of the best-performing models. This suggests that even 
though species invasions were a strong driver of microbial change 
during the 19 y time frame of our dataset, climate and landscape 
are interacting drivers of microbial change.

Discussion

Over century-long time frames, climate change is shifting the 
phenology of northern hemisphere lakes. Winters are shortening 
(26), summer stratification and anoxia is increasing (27), and 

extreme weather is becoming more common (28). In Lake 
Mendota specifically, ice duration (29) and clearwater (5) are 
shortening, while the stratified (29) and anoxic (30) periods are 
lengthening. We posit that lake microbial communities will also 
change in response to climate change because the lake microbial 
community has phenological patterns that track these shifting 
seasons. Further, we directly observed that food web-mediated 
shifts in seasonal timing can change microbial community timing, 
composition, and toxicity. It follows that the interacting driver of 
climate change shifting seasons over longer time frames will likely 
shift microbial phenology too.

Moreover, the spiny water flea invasion itself was driven by a 
climate anomaly. Previous work on Lake Mendota found that an 
unusually cool year allowed a sleeper population of spiny water 
flea to irrupt (31), and weather extremes like this are expected to 
increase with climate change (28). It is possible that the spiny 
water flea-mediated food web shift also paved the way for the zebra 
mussel invasion. Zebra mussels likely had multiple introductions to 
Lake Mendota based on the large amount of recreational boat traffic 
on the lake, so it is plausible that they were introduced prior to 2015 
and existed as a low abundance sleeper population. The establish-
ment of one invasive species can destabilize an ecosystem in a way 
that primes it for additional invasions (32), or that triggers the 
population irruption of existing sleeper populations (33). A cli-
mate anomaly triggered a population irruption of the invasive 
spiny water flea sleeper population, and the resulting food web 
disruptions may have paved the way for the establishment of zebra 
mussels. The impact of these invasions reached all the way into 
the bacterial community, illustrating how the interacting drivers 
of species invasions and climate change can have complex and 
far-reaching impacts.

Harmful cyanobacterial blooms are predicted to increase with 
warmer temperatures, higher CO2, and increasingly intense rain 
events (34). We observed an earlier onset of Cyanobacteria into 
the clearwater and spring seasons. In other lakes, regime changes 
have been observed as oligotrophic systems switch to a new stable 
state dominated by Cyanobacteria (35). It is possible that we may 
be observing the beginning of a transition to a new stable state at 
a seasonal level. In the summer seasons already dominated by 
Cyanobacteria, we found the fewest differentially abundant organ-
isms. This suggests that even if tipping points are reached in other 
seasons, the community is less likely to shift when it would be 
most desired: during the summer months plagued by toxic cyano-
bacterial blooms.

Long-term change is difficult to distinguish from short-term 
variability and seasonal cycles, a phenomenon termed the “invisible 
present” (11). Observations of the microbial community for 
almost 20 y have allowed us to distinguish consistent phenological 
patterns and to identify separate decadal, invasion-mediated shifts. 
The establishment and continuation of time series like ours are 
the only way to directly observe the long-term impacts of envi-
ronmental change. Our study found that microbial communities 
are sensitive to long-term, decadal changes, specifically to the 
cascading impacts of invasive species. These impacts included 
many aspects of phenology, from timing and abundance, to diver-
sity and community composition, to human health and cyano-
bacterial toxicity.

Materials and Methods

Bacterial Community Data. Microbial sampling, sequencing, and data process-
ing were performed as described in detail in Rohwer and McMahon (36). Briefly, 
integrated epilimnion samples were collected from the central deep hole of Lake 
Mendota (WI, USA) using a 12 m tube, and water was well mixed before filtering D
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onto a 0.22 um polyethersulfone filter (Pall Corporation). Filters were stored in a 
−80 °C freezer until DNA extraction in 2018 to 2019. DNA was extracted using a 
FastDNA Spin Kit (MP Biomedicals) after sample order was randomized. Samples 
were sent to Argonne National lab for amplification of the 16S rRNA gene V4-V5 
region (515F-Y GTGYCAGCMGCCGCGGTAA, 926R CCGYCAATTYMTTTRAGTTT) and 
sequencing on an Illumina MiSeq instrument.

After sequencing, data was processed using custom R scripts available at 
https://github.com/rrohwer/limony and described in Rohwer and McMahon (36). 
Microbial relative abundances from replicate samples were averaged, and a SD 
was calculated. This processed data is available as part of an R package at https://
github.com/rrohwer/limony. The raw sequencing data is available through the 
NCBI Sequence Read Archive under accession number PRJNA846788 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA846788).

Environmental Data. We collected lake physical and chemical data alongside 
microbial samples, including water temperature and dissolved oxygen measured 
with a ProPlus multiparameter sonde (Yellow Springs Instruments) and water clar-
ity measured with a Secchi disk. This data is available through the Environmental 
Data Initiative (EDI) portal under identifiers knb-lter-ntl.415.2 (37) and knb-lter-
ntl.416.1 (38). We combined our measurements with additional water tempera-
ture, dissolved oxygen, water clarity, and ice cover datasets made available by the 
North Temperate Lakes Long-Term Ecological Research program (NTL-LTER) under 
EDI identifiers knb-lter-ntl.29.29 (39), knb-lter-ntl.130.29 (40), knb-lter-ntl.335.1 
(41), knb-lter-ntl.400.2 (42), knb-lter-ntl.31.30 (43), and knb-lter-ntl.33.35 (44). 
We obtained mean annual phosphorus loading at the Yahara River Windsor site 
from the US Geological Survey surface water annual statistics (45).

We defined lake seasons using metrics calculated from this environmental 
data. We identified the epilimnion, metalimnion, and hypolimnion depths by 
identifying the inflection points of temperature profile vectors, calculated the 
average epilimnion and hypolimnion temperatures for all complete profiles, and 
smoothed these values with a 7 d moving average. We defined mixing as the 
day when the linearly interpolated difference in epilimnion and hypolimnion 
temperature fell below 3 °C. We considered depths with <1 mg/L dissolved 
oxygen anoxic, and we applied a 7 d moving average to the depth of the anoxic 
layer. We defined the start of the late summer season as the day when the linearly 
interpolated anoxic layer depth reached 12 m. We defined the clearwater season’s 
start and end for each year by manually identifying the edges of the abrupt drop 
in Secchi depth measurements that occurs after ice-off, and we refined the edge 
dates based on chloroplast and Cyanobacteria abundance when sequencing data 
existed without a paired Secchi depth measurement.

We obtained absolute abundance and biovolume of large Cyanobacteria and 
eukaryotic algae using microscopy-based phytoplankton counts from the NTL-
LTER, and we used microscopy-based zooplankton counts to calculate zooplankton 
diversity. This data is available under EDI identifiers knb-lter-ntl.88.30 (46) and 
knb.lter.ntl.90.31 (47).

Cyanotoxin Data. We measured toxins in 246 whole-water samples spanning 
6 y (2013 to 2018). These samples were taken from the same water grabs used 
to characterize the microbial community. We quantified cyanotoxins using meth-
ods described in detail by Miller et al. (16). Briefly, lyophilized samples were 
resuspended in formic acid, subjected to three freeze-thaw cycles, and extracted 
in methanol and formic acid in a sonicating water bath. The extract supernatant 
was analyzed by targeted high-performance liquid chromatography coupled with 
tandem mass spectrometry (HPLC-MS/MS).

Eleven microcystin (MC) congeners and three anabaenopeptin (Apt) congeners 
were analyzed. Certified reference standards of MC-LR, [Dha7]MC-LR and nodu-
larin were purchased from the National Research Council of Canada Biotoxins 
program (Halifax, Nova Scotia). MC-LA, MC-RR, MC-LF, MC-YR, MC-WR, MC-LY, 
MC-LW, MC-HtyR, and MC-HilR (all >95%) were purchased from Enzo Life Sciences 
(Farmingdale, NY). Anabaenopeptin A (Apt-A) (>95%), Apt-B (>95%), and Apt-F 
(>95%) were purchased from MARBIONC (Wilmington, NC). To calculate total 
concentrations, we summed nanomolar measurements of the congeners. 99 ± 
4% of total microcystin was comprised of the congeners MC-LA and MC-LR. Toxin 
totals are available in a tabular format as Dataset S1.

Analysis. We defined microbially relevant seasons (Fig. 1A) based on the environ-
mental data. Ice extent, mixing, and clearwater were phenological markers that 
corresponded well with the microbial community. To divide the summer months, 

we explored multiple seasonal cutoffs based on stratification extent, epilimnion 
temperature, and anoxia extent. We visualized each season option with non-met-
ric multidimensional scaling (NMDS) analysis and manually chose the most rele-
vant definitions based on visual inspection of the NMDS plots. To account for the 
proportional nature of sequencing data, we performed a centered log ratio (CLR) 
transformation on our data before the NMDS analysis (Fig. 1B and SI Appendix, 
Fig. S2). Following the guidance provided by Quinn et al. (19), we filtered each 
three-season group to contain only OTUs that occurred in at least 10% of the 
samples, assigned small values to zeros using the zCompositions R package (48), 
and performed a CLR-transform and calculated the phi distance metric using 
the propr R package (13). We performed NMDS and confirmed the significance 
of our season choices by calculating the ANOSIM significance using the vegan 
R package (12). The season start dates are listed in SI Appendix, Table S1. We 
used season start dates to align samples in our subsequent analyses; instead of 
aligning samples in different years by Julian date, we aligned samples by the 
days since the start of a given season. Comparisons across Julian dates do not 
account for shifts in seasonal timing across years, but aligning samples by season 
start dates enables comparison of phenologically similar microbial communities.

We observed changes in spring Cyanobacteria relative abundance (Fig. 2A) by 
aligning samples by the start of clearwater phase and grouping years into invasion 
periods. Both invasions were discovered in fall, so we considered the subsequent 
years the start of the invasion period. The seven 2019 samples were excluded 
from this analysis because they did not span the entire spring-clearwater-early 
summer period. We compared the summer diversity before and after the spiny 
water flea invasion (Fig. 2B) by aligning samples by the start of the early summer 
season and calculating the Shannon diversity index using the vegan R package 
(12). We observed no significant difference in diversity between the spiny water 
flea-only period and the zebra mussel period, so we grouped these two periods 
together as a single post-spiny water flea group. Before calculating Cyanobacteria 
diversity, we excluded samples from 2000 to 2003 that had been prefiltered with 
a 10 µm filter instead of filtered directly onto a 0.22 µm filter. Before calculating 
zooplankton community diversity (Fig. 2B), we excluded spiny water flea and juve-
nile copepods from the zooplankton count data and grouped zooplankton based 
on ecological relevance and our confidence in the identifications (SI Appendix, 
Table S2). We calculated the mean and SD of linearly interpolated daily diversity 
values and performed a t test to compare between invasion groups.

We calculated the concentration of toxins before and after the zebra mussel 
invasion (Fig. 3A) by separating toxin measurement dates by season and splitting 
the years into invasion groups. For each season and year group, we calculated 
the mean and SD of all toxin measurements within it. We performed a t test 
on each seasonal block to identify significant change between invasion groups. 
We calculated the duration of toxin production (Fig. 3 B and C) by normalizing 
microcystin concentrations in each year by the yearly maximum concentration. 
We applied a linear interpolation to the 7 d moving average of measurements 
(lines in Fig. 3B). We defined days as toxin-producing if their interpolated daily 
toxin concentration was >15% of the yearly maximum value.

We identified differentially abundant bacteria (Fig. 4) using the ALDEx2 pack-
age (49) following the guidance provided by Quinn et al. (19). For each season 
group, we removed OTUs present in fewer than 10% of samples and added small 
numbers to remaining zeros using zCompositions (48). We identified differen-
tially abundant organisms and their effect sizes using a generalized linear model 
with the aldex.glm and aldex.glm.effect functions from the ALDEx2 package (49). 
We manually chose an effect size cutoff of 0.5 by examining plots of OTU abun-
dance over time for OTUs with varying effect sizes (examples in Fig.  4 A and 
B). We identified which seasons were most susceptible to microbial community 
change (Fig. 4C) by calculating the proportion of the community that was differ-
entially abundant. We defined this proportion as the average abundance of all 
differentially abundant OTUs divided by the average abundance of all OTUs. All 
differentially abundant bacteria are listed in Dataset S2.

We created generalized linear models to predict microbial phenology from 
invasion status, Yahara River phosphorus loading into the lake, ice duration, and 
hot summer days (SI Appendix, Tables S3 and S4). We used the glm function in 
R to create models and the dredge function in the MuMIn R package to com-
pute the corrected AIC for each combination of predictors. For a Cyanobacteria 
phenology response variable, we modeled the lag between clearwater season 
start and the first day with Cyanobacteria abundance ≥3%. For a heterotroph phe-
nology response variable, we modeled the average CLR-transformed clearwater D
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abundance of OTU 1, a Frankiales acI-B that was a spiny water flea and zebra 
mussel clearwater winner and is also the most abundant OTU in the dataset. As 
predictor variables, we used the previous-winter ice duration as a climate metric 
(44), the mean annual Yahara River phosphorus loading as a landscape metric 
(45), and the number of days with an average epilimnion temperature ≥23 °C 
as a climate metric related to the initial spiny water flea invasion (31).

Data, Materials, and Software Availability. 1) 16S rRNA gene amplicon 
sequencing data—raw. 2) 16S rRNA gene amplicon sequencing data—processed. 3) 
Temperature and dissolved oxygen measurements. 4) Secchi Disk measurements. 
Note that a data announcement with additional details for 1 and 2 is under review 
at Scientific Data. The EDI publications for 3 and 4 also include additional dataset 
details. These citations are refs. 37 and 38. Data have been deposited in 1) NCBI SRA, 
2) GitHub, 3) Environmental Data Initiative, and 4) Environmental Data Initiative. 
1) PRJNA846788, 2) https://github.com/rrohwer/limony, 3) knb-lter-ntl.415.2, and 
4) knb-lter-ntl.416.1. Previously published data were used for this work (39–47).
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