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A B S T R A C T   

This paper focuses on utilizing physics-informed neural networks (PINNs) to model nearshore wave trans-
formation. The nearshore wave nets (NWnets), which integrate the prior knowledge of wave mechanics (i.e., the 
wave energy balance equation and dispersion relation) and fully connected neural networks, are developed to 
reconstruct nearshore wave fields with scarce wave measurements. The performance of the NWnets is examined 
by comparing the PINN outputs with numerical solutions from XBeach and experimental data over a two- 
dimensional alongshore uniform barred beach and a three-dimensional circular shoal, respectively. It is found 
that the test errors are reasonably small with wave height measurements at only three locations applied as the 
training data for the alongshore uniform barred beach. Moreover, the NWnets are able to reconstruct the entire 
wave field and capture the focusing and defocusing of wave energy with sufficient accuracy over the circular 
shoal when a small amount of wave height measurements from the laboratory experiment are employed as the 
training data. The influence of network sizes, collocation points, training points, and the resolution of wave 
directional spreading on the performance of the NWnets is investigated. The adaptive learning rate annealing 
algorithm is utilized to calculate weighting coefficients for balancing the interplay between different loss terms in 
the total loss functions. Several illustrative examples of transfer learning are also provided, which can accelerate 
the training of NWnets for modeling waves under different boundary and bathymetric conditions. Our results 
show that the physics-guided deep learning method is a promising tool for studying nearshore processes.   

1. Introduction 

Wave information is required for designing and operating many 
coastal projects. However, in-situ wave measurements are often 
spatiotemporally sparse because of high costs (Malekmohamadi et al., 
2011). Thus, nearshore wave information is usually simulated indirectly 
from wind fields using physics-based numerical models (e.g., Booij et al., 
1999; Tolman, 1991) and soft computing-based models (e.g., James 
et al., 2018; Wei and Davison, 2022). 

Significant progress has been made in physics-based numerical 
modeling based on wave action and momentum balance principles 
during the last several decades. For instance, the WAve Model (WAM, 
Hasselmann et al., 1988; Brown, 2010; Hasselmann et al., 1988) and the 
WAVEWATCH model (Tolman, 1991; Mentaschi et al., 2015) can be 
used to simulate ocean waves. Phase-averaged spectral models such as 
XBeach (Roelvink et al., 2009) and Simulating WAves Nearshore 

(SWAN, Booij et al., 1999) can be utilized to predict wave propagation 
over domains extending thousands of meters from the shoreline. For 
projects with a limited size of hundreds of meters in nearshore regions, 
phase-resolving models based on Boussinesq-type equations or Euler 
equations for fluid motions can be applied (e.g., Chen et al., 2000; Shi 
et al., 2012; Lynett et al., 2002; Ma et al., 2012; Zijlema et al., 2011; 
Sørensen et al., 2004; Salatin et al., 2021). However, these physics-based 
models require a precise description of initial and boundary conditions 
to simulate the wave and flow fields accurately (Kissas et al., 2020). 
Since it can be challenging to resolve real-world physical problems with 
noisy or missing wave boundary conditions (i.e., ill-posed problems) 
through conventional numerical models (e.g., Karniadakis et al., 2021), 
nested computational domains may be required to provide boundary 
conditions, which are usually time-consuming to apply and prone to 
errors. Additionally, traditional wave models involve the cumbersome 
generation of computational meshes for complicated geometries. As an 
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alternative, soft computing-based models could be used as surrogates to 
reduce the computational burden as they can handle strong nonlinearity 
and high dimensionality (e.g., Sun et al., 2020). 

Many data-driven models have been developed to study nonlinear 
relationships between input features and labels for coastal engineering 
applications during the last two decades, such as artificial neural net-
works (ANN), Bayesian networks (BN), support vector machines (SVM), 
decision trees, and fuzzy inference systems (FIS) (e.g., Deo and Naidu, 
1998; Deo et al., 2001; Jain et al., 2011; Peres et al., 2015; Cornejo--
Bueno et al., 2016; Sadeghifar et al., 2017; Parker and Hill 2017; Oh and 
Suh, 2018; Stringari et al., 2019; Zheng et al., 2020; Chen et al., 2021; 
Wei, 2021; Miky et al., 2021; Jörges et al., 2021; Elbisy and Elbisy, 2021; 
Bento et al., 2021; Mares-Nasarre et al., 2021; Lee et al., 2021; Wang 
et al., 2022a; Wang et al., 2022b). For instance, Malekmohamadi et al. 
(2011) compared the performance of ANN, BN, SVM, and Adaptive 
Neuro FIS methods for estimating wave height with wind data in Lake 
Superior, USA. Their results show that all these methods could provide 
acceptable predictions for Hs, except for BN. ANNs and SVMs were 
applied by James et al. (2018) to surrogate SWAN for simulating sig-
nificant wave height (Hs) and characteristic wave period, respectively. 
Their model exhibited a similar level of accuracy for wave prediction 
and ran over 4000 times faster than SWAN. However, the direct appli-
cation of these soft-computing models to scientific domains has some 
challenges. For instance, data availability is often limited in reality, 
while a huge amount of training data is required in traditional machine 
learning (ML) models. Additionally, traditional ML models cannot be 
generalized to predict scenarios that are unseen in the training dataset. 
Most importantly, traditional ML models may produce results incon-
sistent with physical laws because those models do not consider any 
physics (e.g., Karpatne et al., 2017; Jia et al., 2019). 

A considerable amount of prior knowledge can be utilized in ML 
practice for cases related to the modeling of physical systems. To 
combine scientific knowledge and data, the research community is 
beginning to integrate physics with soft-computing learning algorithms 
(e.g., Zhang et al., 2019; Willard et al., 2020; Chen et al., 2021; Chen and 
Sun, 2021; Chen et al., 2022). For instance, Raissi et al. (2019) used the 
physics-informed neural networks (PINNs) to solve multi-dimensional 
partial differential equations. Given potentially noisy and scattered 
data on velocity components, they managed to identify the unknown 
parameters in Navier-Stokes equations and obtain an accurate recon-
struction of the pressure field in the cylinder wake. Jia et al. (2019) 
developed the PGRNN (physics-guided recurrent neural network) model 
to capture lake temperature dynamics by integrating energy conserva-
tion and a density-depth constraint into recurrent neural networks. They 
found that PGRNN can achieve good generalizability and improve pre-
diction accuracy over that of physics-based numerical models. More-
over, Jin et al. (2021) proposed the Navier-Stokes flow nets (NSFnets) to 
reconstruct incompressible turbulent and laminar flows. They overcame 
the ill-posed inverse problems in solving the Navier-Stokes equations by 
integrating the governing equations and deep neural networks through 
automatic differentiation. 

In general, the results from these studies indicate that PINNs can be 
effectively applied to solve forward and inverse problems that are ill- 
posed (Karniadakis et al., 2021). Compared with conventional ML 
models, the advantages of PINNs can be mainly attributed to the fact 
that encoding prior knowledge during the training process can constrain 
learning and compensate for the insufficiency of the data. Thus, such 
models can remain robust even with inaccurate or missing input data 
and give accurate predictions consistent with physical laws (Willard 
et al., 2020; Wang et al., 2020; Chen et al., 2021). It is worth mentioning 
that the mathematical data assimilation method can also be used to 
solve ill-posed inverse problems by minimizing the difference between 
model predictions and observations (e.g., Salim and Wilson, 2021). For 
instance, data assimilation methods have been utilized to identify un-
known model parameters by Wilson et al. (2010), Kurapov et al. (2007), 
and Wilson and Berezhnoy (2018), among others. Even though data 

assimilation methods have been developed for decades, the spatiotem-
poral heterogeneity of available datasets calls for new transformative 
models (Karniadakis et al., 2021). Therefore, this work is aimed at 
generating a novel framework with PINNs for reconstructing wave fields 
by combining the underlying governing equations with available data. 
Unlike the data assimilation method, our proposed method does not 
require simulations from a deterministic forward numerical model or 
knowledge about the uncertainty of observations and the uncertainty of 
the numerical model. 

In this study, a composite PINN model, NWnets (nearshore wave 
nets), was developed to reconstruct wave fields in the nearshore with 
scarce wave measurements. Wave shoaling, refraction, and depth- 
limited breaking were considered in the NWnets. The governing equa-
tions encoded into the fully connected neural networks contain the wave 
energy balance equation and dispersion relation. The simulation accu-
racy of the NWnets was investigated on a two-dimensional alongshore 
uniform barred beach and a three-dimensional circular shoal, where the 
wave data were obtained from the XBeach simulation and laboratory 
experiments, respectively. To the best of our knowledge, the proposed 
NWnets are the first PINN model integrating the wave energy balance 
equation and dispersion relation with limited experimental data to 
reconstruct nearshore wave fields. The rest of the paper is organized as 
follows. Section 2 introduces the governing equations and the laboratory 
experiment of wave propagation over a circular shoal. The details of the 
model setup for PINNs and XBeach are introduced in this section. Sec-
tion 3 examines the performance of PINNs in reconstructing nearshore 
wave fields by comparing the outputs with the XBeach-simulated and 
experimental data. Section 4 discusses the influences of network struc-
tures, the number of collocation points, the location of training data, and 
the resolution of directional spreading on the performance of the 
NWnets. Finally, Section 5 concludes the paper with remarks on this 
study. 

2. Methodology 

2.1. Energy balance equation for wave propagation in nearshore areas 

Models for simulating waves without the influence of currents are 
generally based on the energy balance equation. The wave energy 
density can be regarded as a slowly varying function in space (x, y) and 
time t. In this study, we focused on stationary wave fields without wind 
forcing and ambient currents to examine the performance of the NWnets. 
Similar to the numerical model for hindcasting shallow water waves 
(HISWA), the directional distribution of the energy density was included 
in the model, but the frequency spectrum was represented by a fre-
quency (Holthuijsen et al., 1989). In this study, we only considered wave 
shoaling, refraction, and depth-limited wave breaking. Thus, the wave 
energy balance equation is given by 

∂ecgx

∂x
+

∂ecgy

∂y
+

∂ecgθ

∂θ
+ dw = 0 (1)  

where e is the wave energy density in each directional bin, θ represents 
the angle of incidence with respect to the x-axis, and dw is the dissipation 
of energy density caused by wave breaking. The wave propagation 
speeds in x, y, and directional space are formulated as 

cgx(x, y, θ) = cgcosθ (2)  

cgy(x, y, θ) = cgsinθ (3)  

cθ (x, y, θ) =
ω

sinh 2kh

(
∂h
∂x

sin θ −
∂h
∂y

cos θ
)

(4)  

where h represents the local water depth, k is the wave number, cg is the 
group velocity, and ω is the angular frequency. The dispersion relation 
relates the wave number of a wave to its frequency as 
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ω2 − gktanh(kh) = 0 (5)  

The total wave energy E and the mean wave direction are given by 

E =

∫2π

0

e(θ)dθ (6)  

and 

θm =
1
E

∫2π

0

θe(θ)dθ (7) 

The Janssen and Battjes (2007) formulation for wave breaking was 
applied in this study as 

Dw =
3

̅̅̅
π

√
αf ρgH3

rms

16h
Qb (8)  

Qb = 1+
4

3
̅̅̅
π

√

(

R3 +
3
2

R
)

exp
ʀ
− R2) − erf (R) (9)  

R=
Hb

Hrms
(10)  

Hb =
0.88

k
tanh

[
γkh
0.88

]

(11)  

where Dw denotes the expected value of the power dissipated per unit 
area, Qb is the fraction of breaking waves, Hb represents the breaking 
wave height, γ is the wave breaking parameter, Hrms is the root-mean- 
square wave height, and f is the frequency. α = 1 was applied in this 
study as the wave dissipation coefficient. ρ and g are the water density 
and gravitational acceleration, respectively. The total wave dissipation 
was distributed proportionally over the wave directions using the 
following formulation 

dw(x, y, θ)=
e(x, y, θ)
E(x, y)

Dw(x, y) (12)  

The root-mean-square wave height was calculated based on 

Hrms =

̅̅̅̅̅̅
8E
ρg

√

(13)  

2.2. Physics-informed neural networks 

PINN model is a recently proposed deep learning method, which 
infuses the governing equations into the artificial neural networks and 
enriches the loss function by adding residual terms based on the physical 
laws or equations. It bridges the gap between ML-based methods and 
scientific computations to deduce parameters, solutions, and physical 
laws involving partial differential equations (Kissas et al., 2020). In this 
study, a novel composite PINN model was developed to find the solu-
tions of Eqn (1) and Eqn (5) for reconstructing wave fields in the near-
shore. The corresponding residuals were defined as 

f1(x, y, θ) : =
∂ecgx

∂x
+

∂ecgy

∂y
+

∂ecgθ

∂θ
+ dw (14)  

f2(x, y) : =ω2 − gktanh(kh) (15) 

These residuals were applied as restraints during the training of the 
NWnets to generate physically consistent predictions. Moreover, the 
NWnets were also constrained to fit the available measurements (e.g., 
Hrms and θm) scattered in the computational domain. Since the wave 
energy density depends on (x, y, θ) while wave numbers are only related 
to (x, y), composite neural networks were utilized to model nearshore 
wave propagation in this study. The schematic representation of the 

NWnets algorithm is shown in Fig. 1. 
It is seen in Fig. 1 that the loss function for the NWnets consists of two 

parts. The first part corresponds to the collocation points (i.e., residual 
loss), where the physical constraints were imposed to encourage Eqns 
(14) and (15) to equal zero. In general, the collocation points could be 
grid points or random points inside the computational domain (Lu et al., 
2021), and the former one was applied in this study. The partial de-
rivatives in the residual expression were computed by automatic dif-
ferentiation (e.g., Kissas et al., 2020). The second part encouraged the 
outputs of NWnets to match Hrms, θm, and h obtained from field obser-
vations (using the XBeach simulations in this study for PINN testing) or 
laboratory experiments (i.e., measurement loss). Therefore, the total loss 
function for the NWnets is given as 

L total =L residual + L measurements = L f1 + λf2 × L f2 + λHrms × L Hrms + λθm

× L θm + λh × L h

(16)  

where λf2 , λHrms , λθm , and λh are the weighting coefficients for balancing 
the interplay between different terms in the loss function. It is worth 
emphasizing that only the measurement loss is used in the traditional 
ANN models to reduce modeling errors. In the NWnets, the mean squared 
error (MSE) was employed to represent the loss functions and is given for 
each term by 

L f1 =
1

Nf

∑Nf

i=1

(
f i
1

(
xi

f , y
i
f , θ

i
f

))2
(17)  

L f2 =
1

Nf

∑Nf

i=1

(
f i
2

(
xi

f , y
i
f

))2
(18)  

L Hrms =
1

NHrms

∑NH rms

i=1

(
Hrms

i
(

xi
Hrms

, yi
Hrms

)
− H*

rms
i
)2

(19)  

L θm =
1

Nθm

∑Nθm

i=1

ʀ
θm

iʀ xi
θm
, yi

θm

)
− θ*

m
i)2

(20)  

L h =
1

Nh

∑Nh

i=1

ʀ
hiʀ xi

h, y
i
h

)
− h* i)2

(21)  

where {Hrms
i(xi

Hrms
, yi

Hrms
)}

NHrms

i=1 , {θm
i(xi

θm
, yi

θm
)}

Nθm

i=1 , and {hi(xi
h, y

i
h)}

Nh
i=1 

denote the PINN outputs of Hrms, θm, and h, respectively. H*
rms, θ

*
m, and h* 

are the targets (labels) of Hrms, θm, and h, respectively. {(xi
f , y

i
f , θi

f )}
NHrms

i=1 
represents collocation points that are uniformly placed inside the 
computational domain for minimizing the loss of residuals. 

In this study, two test scenarios were employed to assess the per-
formance of NWnets for solving the energy balance equation and 
dispersion relation, including reconstructing wave fields over a two- 
dimensional alongshore uniform barred beach and a three- 
dimensional circular shoal. We applied relatively simple feedforward 
neural networks throughout this study without additional regularization 
(e.g., dropout or L1/L2 penalties). Hyperbolic tangent was used as the 
activation function. All the networks were initialized with Xavier 
initialization (Glorot and Bengio, 2010). Normalization was carried out 
to keep the input and output between − 1 and 1, and the corresponding 
governing equations were also normalized by the same factors (Jin et al., 
2021). As a result, network weights and biases could have values of 
similar magnitudes, and the negative impact of the large difference 
between various parameters could be avoided. The network structure of 
NWnets was kept identical to four hidden layers of 30 nodes for each test 
case. A discussion about the influence of network structures on the 
performance of NWnets is presented in Section 4.2.1. More details on the 
selected optimizer, learning rates, and settings of the measurements and 
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collocation points for the two test scenarios shall be given in Section 
2.2.1 and 2.2.2. In this study, the training was implemented on an 
NVIDA v100-sxm2 GPU with the TensorFlow platform. 

2.2.1. Alongshore uniform barred beach 
The wave condition offshore of the alongshore uniform barred beach 

was set as Hrms = 1 m and peak wave period (Tp) = 8 s. The peak wave 
period remains constant over the entire computational domain. The 
incident wave angle follows the directional distribution of cosm(θ − θm)

with θm = − 30̊ and m = 8, 20, 32, and 130. Fig. 2 shows the bathymetry 
of the alongshore uniform barred beach. The cross-shore distance from 
the offshore location was set as x, and the entire computational domain 
extended from x = 0 to 1000 m. Since the study area is uniform in the 
longshore direction, the input features to the NWnets only included x 
and θ. It was assumed that the water depth was known at every location, 
meaning that the water depth data over the entire study area were used 
as training data for the model. The training data for Hrms and θm were 
set at the locations listed in Table 1. A total of 1000 collocation points 
were uniformly distributed from x = 0 to 1000 m to constrain learning 
for generating physically consistent predictions. 

Numerical simulations of Hrms and θm from XBeach were employed 
as training and testing data for developing the NWnets to reconstruct 
waves over the alongshore uniform barred beach. The resolution of 
directional spreading of waves (dθ) was set to 1◦ in both XBeach and 
PINN models, and the lower and upper directional limits were defined as 
− 90◦ and 90◦, respectively. Adam (adaptive moment estimation) and L- 
BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shanno with 
boundaries) were used as network training functions (e.g., Kingma and 

Ba, 2014; Liu and Nocedal, 1989). The Adam optimizer was employed to 
produce a better set of initial neural network variables, and L-BFGS-B 
was used to further fine-tune the PINN networks for minimizing test 
errors (Jin et al., 2021). The initial learning rate of Adam was set to 10− 4 

and then decreased to 80% of the previous rate every 5000 iterations. 4 
× 104 Adam iterations were implemented before the L-BFGS-B training, 
which was then automatically terminated based on the increment 
tolerance. More discussions on the influences of locations of training 
points, collocation points, and the resolution of directional spreading on 
the performance of NWnets are presented in Section 4.2. 

2.2.2. Circular shoal 
A series of laboratory experiments on wave propagation over a cir-

cular shoal were carried out by Chawla et al. (1996) in a directional 
wave basin. Several wave models have used this dataset as the testbed, 
such as the spectral wave model based on the mild-slope equation 
(Chawla et al., 1998), the time-domain Boussinesq model (Chen et al., 
2000), and the curvilinear spectral wave model (Chen et al., 2005). In 
this study, test case 4 of the laboratory experiments with the directional 
random wave input was utilized as the testbed to examine the perfor-
mance of NWnets. 

The plan view of the wave basin and the transects of wave gauge 
locations are shown in Fig. 3. The wave basin was 18 m long and 18.2 m 
wide. The center of the shoal was located at x = 5 m and y = 8.98 m. The 
perimeter of the shoal is calculated with 

(x − 5)2
+(y − 8.98)2

= (2.57)2 (22)  

and the water depth is given by 

h= ho + 8.73 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

82.81 − (x − 5)2
− (y − 8.98)2

√

(23)  

where ho is the water depth of the flat bottom. In test case 4, the flat 
bottom of the basin has a water depth of 0.4 m, leading to a minimum 

Fig. 1. A schematic representation of the proposed algorithm for the NWnets.  

Fig. 2. The cross-shore profile of the alongshore uniform barred beach.  

Table 1 
The locations of training points of Hrms and θm for recon-
structing wave fields over the alongshore uniform barred 
beach.   

Locations of training points 

Hrms x  = 100,500,900  m 
θm x  = 500  m  
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water depth of 3 cm on the top of the circular shoal. The incident waves 
at the offshore boundary have Hrms = 1.103 cm and Tp = 0.73 s. The 
angular standard deviation of the directional spreading function is 20◦. 
During the laboratory experiments, a total of 126 measurement points 
were set to record the wave heights in test case 4 (Fig. 3). 

For reconstructing the wave field over the circular shoal, a PINN 
model was developed with input features including x, y, and θ. The 
training data for the model included the measurements of Hrms (or E =
1
8 ρgH2

rms) and h. Because wave directions were not measured in the 
laboratory experiment, they were not employed as training data for 
developing the NWnets to reconstruct the wave field over the circular 
shoal. To examine the influence of training points on the performance of 
the NWnets, we used 50%, 25%, 16.7%, and 12.5% of the 126 Hrms 
measurements as training data to reconstruct the entire wave field, 
leading to 63, 31, 21, and 15 training points of Hrms for each case, 
respectively. Based on Chawla et al. (1996), substantial spatial varia-
tions of the wave field over the circular shoal were observed (Fig. 5). 
Specifically, wave energy focuses on the top of the shoal due to 
depth-induced refraction. Wave breaking occurred over the circular 
shoal (Chen et al., 2005). In the leeside of the shoal, the wave height was 
smaller due to the defocusing of wave energy. Also, wave diffraction and 
wave interference occurred over the domain (Smit et al., 2015). To 
ensure the NWnets capture the wave height variation over the entire 
computational domain, the training points of Hrms were randomly 
placed along the seven transects (Fig. 3). Ten validation points of Hrms 
were selected randomly from the rest of the dataset, and the remaining 
data were utilized as testing points. Similarly, it was assumed that the 
water depth was known at every location, and the wave period was 
constant over the entire computational domain. 

The computational domain extends from x = 0 to x = 15 m and from 
y = 0 to y = 18 m with a resolution of 0.2 m. The corresponding water 
depth data at each computational grid (91 × 76 = 6916 points) were 
calculated using Eqn (23). As mentioned above, the collocation points 
could be grid points or random points inside the computational domain. 
However, if a vast number of collocation points were defined, it would 

be computationally expensive to evaluate the loss and gradient in each 
iteration in this study (e.g., Lu et al., 2021), because the model has three 
input features (i.e., x, y and θ) for simulating wave propagation over the 
circular shoal. By balancing the computational cost with the simulation 
accuracy, the collocation points were set at each computational grid, 
leading to 6916 collocation points. The resolution of directional 
spreading of waves was set to 10◦ in the NWnets, and the lower and 
upper directional limits were defined as − 90◦ and 90◦, respectively. 

Similar to the NWnets for reconstructing wave fields over the 
alongshore uniform barred beach, Adam and L-BFGS-B were used as 
network training functions, with 8 × 104 Adam iterations conducted 
before L-BFGS-B started. To examine the prediction performance of the 
NWnets, the outputs of Hrms were compared to the experimental data 
from Chawla et al. (1996). Since the wave angle was not employed as 
training data for reconstructing the wave field over the circular shoal, 
the term related to the mean wave angle was removed from the total loss 
function during the training (i.e., λθm × L θm was removed from Eqn 
(16)). If the wave angle measurements are available in other test sce-
narios, we will apply the wave angle measurements as one of the 
training data to improve the performance of the NWnets. 

2.3. Adaptive learning rate annealing algorithm 

In Eqn (16), the weighting coefficients λf2 , λHrms , λθm , and λh were 
employed for balancing the interplay between different terms in the loss 
function and increasing the rate of convergence during the training 
process. However, it is time-consuming to tune these weights by trial 
and error. Moreover, the optimal values for different weights are 
problem-dependent, so it is tedious to tune weights manually for 
different test scenarios (Jin et al., 2021). Thus, this study used the 
learning rate annealing algorithm to balance different terms in com-
posite loss functions during the Adam training. The algorithm can 
improve the simulation accuracy by applying gradient statistics to 
determine proper weights adaptively to each term in loss functions (e.g., 
Wang et al., 2020). In this study, the weighting coefficients during 
L-BFGS-B were kept the same as the last ones applied in the Adam 
training. 

In general, the parameters Θ of the NWnets can be formulated as 

Θ(n+1) = Θ(n) − η∇ΘL f1 − ηλf2∇ΘL f2 − ηλHrms∇ΘL Hrms − ηλθm∇ΘL θm

− ηλh∇ΘL h

(24)  

where Θ represents the weights of all fully connected layers, η denotes 
the learning rate, and n is the iteration step. When the adaptive learning 
rate annealing algorithm is applied, the estimates of λf2 , λHrms , λθm , and 
λh at each training step can be expressed by 

λ̂
(n+1)
f2 =

maxΘ
ʀ ⃒
⃒∇ΘL f1

⃒
⃒
)

⃒
⃒
⃒∇Θλ(n)f2 L f2

⃒
⃒
⃒

(25)  

λ̂
(n+1)
Hrms

=
maxΘ

ʀ ⃒
⃒∇ΘL f1

⃒
⃒
)

⃒
⃒
⃒∇Θλ(n)Hrms

L fHrms

⃒
⃒
⃒

(26)  

λ̂
(n+1)
θm

=
maxΘ

ʀ ⃒
⃒∇ΘL f1

⃒
⃒
)

⃒
⃒
⃒∇Θλ(n)θm

L fθm

⃒
⃒
⃒

(27)  

λ̂
(n+1)
h =

maxΘ
ʀ ⃒
⃒∇ΘL f1

⃒
⃒
)

⃒
⃒
⃒∇Θλ(n)h L fh

⃒
⃒
⃒

(28)  

Then, λf2 , λHrms , λθm , and λh for the next iteration are updated with the 
moving average method as 

Fig. 3. Schematic view of the experimental setup and transects of wave gauge 
locations (Chawla et al., 1996). The black dots represent the 126 locations of 
wave height measurements. 
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λ(n+1)
f2 =(1 − β)λ(n)f2 + βλ̂

(n+1)
f2 (29)  

λ(n+1)
Hrms

=(1 − β)λ(n)Hrms
+ βλ̂

(n+1)
Hrms

(30)  

λ(n+1)
θm

=(1 − β)λ(n)θm
+ βλ̂

(n+1)
θm

(31)  

λ(n+1)
h =(1 − β)λ(n)h + βλ̂

(n+1)
h (32)  

where β is a hyperparameter representing how fast the contribution of 
previous weighting coefficients decreases (Wang et al., 2020). In this 
study, β was set to 0.1 to ensure the adaptation to be stable during the 
training process. The initial values for λf2 , λHrms , λθm , and λh were all set 
to 1. 

2.4. Physics-based wave model (XBeach) 

XBeach is a two-dimensional numerical model for simulating near-
shore processes such as wave breaking, dune erosion, overwashing, and 
breaching (Roelvink et al., 2009). The model solves the short wave ac-
tion balance equation given by 

∂N
∂t

+
∂
ʀ
cgxN

)

∂x
+

∂
ʀ
cgyN

)

∂y
+

∂
ʀ
cgθN

)

∂θ
=

S
σ (33)  

where N is the wave action density, (x, y) are the horizontal Cartesian 
coordinates, t is the time, θ is the wave direction taken counterclockwise 
from the geographical east, and σ is the intrinsic radian frequency. cgx, 
cgy, and cgθ represent wave energy propagation speeds in x, y, and 
directional spaces, respectively. On the right-hand side, S denotes the 
source terms of energy dissipation caused by wave breaking, bottom 

Fig. 4. Comparison between the XBeach and NWnets outputs over the alongshore uniform barred beach with incident waves of m = 20 (a) spatial variation of the 
predicted Hrms, θm, and k; (b) scatter plots of the predicted Hrms, θm, and k. The plots only contain testing data. 
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friction, and vegetation. 
This study employed the numerical simulations of Hrms and θm from 

XBeach as training and testing data in the NWnets to reconstruct wave 
fields over the alongshore uniform barred beach for demonstration. 
Field observations should replace the simulation data for training and 
testing in applications. Physical processes of energy dissipation by 
vegetation and bottom friction were deactivated in XBeach because they 
were not included in the NWnets. The stationary mode of XBeach 
(version 5849) was implemented in the present study. Depth-induced 
wave breaking was calculated using the formulation from Battjes and 
Janssen (1978) with a constant breaker parameter γ = 0.63. The res-
olution in directional space (dθ) was set to 1◦ in both XBeach and PINN 
models, covering the directional range from − 90◦ to 90◦. The specific 
wave boundary conditions applied in XBeach models can be found in 
Section 2.2.1. The grid resolution in the cross-shore direction was set to 
1 m, leading to 1000 computational points in the XBeach simulation. 

3. Results 

3.1. Wave field reconstruction over an alongshore uniform barred beach 

In this section, the outputs from XBeach and NWnets were compared 
to investigate the feasibility of using PINNs to reconstruct wave fields 
over an alongshore uniform barred beach. The comparison between the 
NWnets and XBeach outputs with incident waves of m = 20 is shown in 
Fig. 4. It can be observed that the NWnets-predicted Hrms and θm 
correlated well with the ones from XBeach. The error statistics were 
computed to quantify the prediction skills of the NWnets, including 

normalized root mean square error (RMSE) and R2. Table 2 presents the 
relative test errors (Appendix) of the wave parameters simulated by the 
NWnets with different direction spreadings of incident waves. The re-
sults show that the simulation errors of NWnets are small for all test 
cases, indicating that the developed model has a satisfactory perfor-
mance for reconstruction waves over the alongshore uniform barred 
beach. Better agreement can be found between the simulations from 
XBeach and NWnets when the directional spreading of incident waves is 
broader. This can be explained by the fact that a higher resolution of 
directional spreading is required in PINNs for reconstructing wave fields 
with narrow-banded waves, which will be further examined in Section 
4.2.4. More discussions on the influence of the number of collocation 
points on the prediction performance of the NWnets will be presented in 
Section 4.2.2. 

Fig. 5. Comparisons between experimental and PINN-simulated wave heights with (a) half of the wave height measurements used as training data; (b) a quarter of 
the wave height measurements used as training data. 

Table 2 
Relative test errors of the NWnets-simulated Hrms, θm, and k on the alongshore 
uniform barred beach with different directional spreadings of incident waves.  

m Normalized RMSE R2 value 

εHrms εθm εk total ε R2
Hrms 

R2
θm 

R2
k 

8 0.019 0.012 0.031 0.062 0.984 0.995 0.996 
20 0.025 0.012 0.044 0.081 0.980 0.999 0.990 
32 0.025 0.014 0.051 0.090 0.977 0.999 0.989 
130 0.030 0.014 0.089 0.133 0.960 0.998 0.949  
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3.2. Wave field reconstruction over a circular shoal 

Fig. 5 shows the comparisons between the PINN-simulated and 
experimental data over a circular shoal. Solid lines represent the outputs 
from the NWnets, and circles are the measurements in the laboratory. 
The experimental data used for training and validating PINN models are 
shown by the red- and black-filled circles, respectively. The hollow 
circles represent the testing data for the model. When half of the wave 
height measurements were used for training (i.e., 63 training data), a 
good agreement could be found between the experimental and simu-
lated wave heights (Fig. 5 (a) and Fig. 6 (a)). The simulation accuracy 
decreased when a quarter of the wave height measurements (i.e., 31 
training points) were used as training data (Fig. 5 (b) and Fig. 6 (b)), but 
the NWnets could still capture the focusing of wave energy along the 
transects of E-E and F–F and the defocusing of wave energy along the 
transects of C–C and D-D. Table 3 shows the error statistics of the NWnets 
results when different numbers of wave height measurements were 
employed as the training data. Unsurprisingly, a better simulation per-
formance could be obtained with more experimental data employed as 
training points. 

Fig. 7 (a) and (b) present the spatial distributions of wave height 
simulated by the NWnets with 63 and 31 training points, respectively. It 
is seen that more details of wave field variation could be captured when 
more training data were applied in NWnets. However, both models can 
generate reasonable outputs and show the general pattern of wave field 
changes accurately. Specifically, it can be observed that the maximum 
wave height can reach up to 1.5 times the incident wave height along the 
transect A-A, and a decrease in wave height can be observed behind the 
shoal due to the defocusing of wave energy, consistent with the analysis 
of Chen et al. (2005). More testing cases are presented in the discussion 
section to further explore the factors influencing the spatial distribution 

of wave heights simulated by the NWnets. Fig. 8 presents an example of 
weighting coefficients calculated by the adaptive learning rate algo-
rithm with 63 wave height measurements employed as the training data. 
The convergence plot for the total loss function of NWnets shows that the 
training efforts are sufficient with Adam and L-BFGS-B in this study 
(Fig. 9). 

4. Discussion 

4.1. Comparison with conventional ANN 

To examine the effect of physical regularization on the results, we 
generated a simulation using the conventional ANN model with 31 
training points as an example (Fig. 10). The ANN model setup and 
hyperparameter selection were kept the same as the ones used in the 
NWnets, except that the total loss function only contained the mea-
surement loss. The R2 value for the predicted Hrms by the ANN decreased 
to 0.43, indicating that embedding the wave energy balance equation 
and dispersion relation into the networks indeed increases the simula-
tion performance for reconstructing the wave field. It is seen that the 
largest errors of the conventional ANN model prediction appear along 
the transect G-G compared with the measurements (Fig. 10). 

4.2. Training and prediction performance 

Similar to the traditional ANN method, PINN results are achieved by 
solving nonconvex optimization problems, so there is no guarantee that 
PINNs can get unique solutions. In general, to obtain a good level of 
learning performance, some hyperparameters can be tuned by trial and 
error, such as activation functions, network structures, and the number 
of collocation points. In this section, the influence of network structures, 
the number of collocation points, the location of training data, and the 
resolution of directional spreading on simulation errors are discussed 
using the reconstruction of wave fields over the alongshore uniform 
barred beach as an example. 

4.2.1. Influence of neural network sizes on test errors 
The network structure has a crucial influence on the performance of 

PINNs. Based on Occam’s razor theory (Blumer et al., 1987), it is pref-
erable to achieve a network structure with the lowest number of layers 
and nodes and still enable effective training and generalizability. In 
order to determine such a network structure, we compared the results 
from the NWnets trained with different numbers of hidden layers and 
nodes. Table 4 shows the error statistics of the outputs from the NWnets 
for reconstructing the wave field over the alongshore uniform barred 
beach (m = 32) using different network structures (from 1 hidden layer 
of 10 nodes to 5 hidden layers of 40 nodes). It can be observed that the 
test error generally reduces when the model has more hidden layers and 
nodes per layer. Furthermore, there is no significant improvement in 
model accuracy by applying more than 4 layers of 30 nodes in the 
network structure. Considering simulation accuracy and computational 
cost, we employed the network structure of 4 hidden layers of 30 nodes 
to reconstruct both wave fields over the barred beach and circular shoal 
in this study. It is worth mentioning that the optimal network size is 
case-dependent. For example, a deeper and wider network may be 

Fig. 6. Scatter plots of PINN-simulated and experimental data of Hrms and k 
with (a) half of the wave height measurements used as training data; (b) a 
quarter of the wave height measurements used as training data. The plots only 
contain testing data. 

Table 3 
Relative test errors of the NWnets-simulated Hrms and k with different numbers of 
wave height measurements used as training data.  

# Training points RMSE R2 value 

Hrms (m) k (m− 1) R2
Hrms 

R2
k 

63 (50%) 0.0005 0.027 0.902 0.999 
31 (25%) 0.0007 0.026 0.851 0.999 
21 (16.7%) 0.0006 0.032 0.885 0.999 
16 (12.5%) 0.0008 0.035 0.863 0.999  
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required to achieve better accuracy for simulating a stiff system. 
Although the optimal network size can be case-dependent, our results 
indicate that the PINN outputs are not overly sensitive to the network 
sizes in this study. 

4.2.2. Influence of collocation points on test errors 
To determine the influence of collocation points on the learning 

performance of the NWnets, we compared the error statistics of PINN 
outputs with different numbers of collocation points applied during 
training. Fig. 11 shows the total normalized RMSE of PINN outputs 

against different numbers of collocation points over the alongshore 
uniform barred beach. The collocation points were uniformly distrib-
uted over the entire computational domain from x = 1–1000 m. Un-
surprisingly, the total normalized RMSE decreases when the number of 
collocation points increases. However, the computational cost increases 
when more collocation points are employed during training. In this 
study, 1000 collocation points were used in the NWnets for recon-
structing wave fields over the alongshore unformed barred beach, 
considering both simulation accuracy and computational cost. 

Fig. 7. The spatial distribution of wave height simulated by NWnets with (a) half of the wave height measurements used as training data; (b) a quarter of the wave 
height measurements used as training data. 

Fig. 8. The weighting coefficients calculated by the adaptive learning rate annealing algorithm during the training iterations with Adam for reconstructing wave 
fields over the circular shoal with 63 wave height measurements used as training data. 
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4.2.3. Influence of training points on test errors 
The sensitivity of the performance of NWnets regarding the training 

points of Hrms is discussed in this section. On the alongshore uniform 

barred beach, when the offshore wave condition is Hrms = 1 m and Tp =

8 s, the shoaling zone extends from about x = 0–700 m, and the surf zone 
covers the domain from about x = 700–1000 m. Thus, the training data 
of Hrms can be correspondingly classified into two categories based on 
the locations of points (i.e., inside surf zone or outside surf zone). In the 
previous analysis, three training points of Hrms (at x = 100, 500, 900 m. 
i.e., two outside surf zone and one inside surf zone) were employed for 
reconstructing the wave fields over the barred beach, and reasonable 

Fig. 9. The convergence of total loss function when 63 wave height measurements were used as training data.  

Fig. 10. Comparisons between experimental and conventional ANN-simulated wave heights with a quarter of the wave height measurements used as training data.  

Table 4 
Error statistics of the NWnets-simulated Hrms, θm, and k with different network 
structures.  

Neural network size Normalized RMSE R2 value 

εHs εθm εk R2
Hs 

R2
θm 

R2
k 

1 × 10 0.051 0.025 0.156 0.860 0.991 0.910 
1 × 20 0.027 0.060 0.133 0.963 0.995 0.931 
1 × 30 0.027 0.057 0.089 0.974 0.997 0.970 
1 × 40 0.026 0.026 0.111 0.976 0.998 0.951 
2 × 10 0.025 0.023 0.089 0.975 0.998 0.970 
2 × 20 0.026 0.031 0.111 0.972 0.998 0.949 
2 × 30 0.025 0.009 0.067 0.979 0.999 0.982 
2 × 40 0.026 0.010 0.067 0.974 0.999 0.984 
3 × 10 0.023 0.015 0.078 0.981 1.000 0.978 
3 × 20 0.026 0.015 0.078 0.976 0.999 0.979 
3 × 30 0.025 0.010 0.044 0.977 0.999 0.992 
3 × 40 0.029 0.038 0.111 0.967 0.998 0.953 
4 × 10 0.025 0.023 0.089 0.977 0.998 0.967 
4 × 20 0.025 0.015 0.111 0.976 0.999 0.952 
4 × 30 0.025 0.008 0.056 0.977 0.999 0.989 
4 × 40 0.026 0.016 0.067 0.974 0.999 0.983 
5 × 10 0.025 0.016 0.122 0.973 0.997 0.946 
5 × 20 0.024 0.010 0.056 0.979 0.999 0.987 
5 × 30 0.025 0.011 0.078 0.978 0.999 0.978 
5 × 40 0.024 0.017 0.044 0.979 0.998 0.993  

Fig. 11. Total normalized RMSE of PINN outputs against different numbers of 
collocation points applied in the NWnets for reconstructing wave fields over the 
alongshore uniform barred beach. 
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results could be obtained for both broad- and narrow-banded waves. 
Here, the performance of NWnets was examined using different training 
points of Hrms in the model. The training point of the mean wave angle 
was fixed at x = 300 m. Table 5 shows the error statistics of PINN out-
puts when the training data of Hrms were located at (i) x = 100, 300, 600 
m (i.e., all three training points outside surf zone), (ii) x = 300, 900, 950 
m (i.e., two inside surf zone and one outside surf zone), and (iii) x = 300, 
900 m (i.e., one inside surf zone and one outside surf zone). The results 
indicate that the location of Hrms training points has a limited influence 
on the performance of the NWnets. Moreover, even two training points of 
Hrms can be sufficient to reconstruct wave fields with the NWnets when 
m = 8, 20, and 32. 

4.2.4. Influence of directional resolution dθ on test errors 
In the above analysis, the resolution of directional spreading of 

waves was set to 1◦ in both XBeach and PINN models for simulating 
wave propagation over the alongshore uniform barred beach. To 
examine the influence of the width of directional bins on PINN results, 
the wave parameters were simulated using different values of dθ in 
NWnets and XBeach, including dθ = 0.5◦, 3◦, 5◦, 7◦, and 10◦. Table 6 
shows that the resolution of directional spreading has a limited impact 
on the simulation accuracy of NWnets for broad-banded waves (i.e., m =
8). For narrow-banded waves, however, the prediction skill decreases 
when the value of dθ is large. For example, the total normalized RMSE 
goes up to about 0.3 when dθ is 10◦ for narrow-banded waves with m =
32 and 130. When the width of direction bins decreases to 0.5◦, the total 
normalized RMSE drops to about 0.1. Even smaller simulation errors 
could be expected if the resolution of the directional spreading is further 
increased, although it might be computationally expensive to do so with 
the NWnets. Overall, the width of direction bins should be sufficiently 
small so that the directional space can be well resolved for simulating 
narrow-banded waves with PINNs. 

4.3. Strategies for improving simulation accuracy of the NWnets 

Though the current results are encouraging, some potential methods 
can be utilized to increase the simulation accuracy of the NWnets for 
reconstructing wave fields. Firstly, we can integrate more physics in 
PINNs to describe the wave field more realistically. The physical laws 
incorporated into the current version of NWnets may not fully capture 
the physics of the wave field over the circular shoal. For instance, the 
wave interference caused by the combined refraction and diffraction 
was not included in the NWnets. The reason why the model can still 
reconstruct the wave field with high accuracy in this study is that the 
wave interference effect behind the circular shoal was suppressed due to 
the broad-banded incident waves and wave dissipation. However, wave 
interference can be strong behind the shoal for the wave field with 
narrow-banded incident waves. Thus, an additional source term 

regarding quasi-coherent theory needs to be included in the NWnets to 
account for wave interference caused by the combined refraction and 
diffraction (Smit et al., 2015). From another perspective, the simulation 
accuracy can be simply improved by using more training data. The result 
shows that when all available wave height measurements are applied as 
the training points, the outputs from NWnets capture more details of the 
wave field variation behind the shoal (Fig. 12). This indicates that even 
though the wave coherent effects are not included in the model, PINN 
outputs may still present the wave interference feature when more 
training points are applied. Further studies can be conducted to validate 
whether using less training data can achieve a good simulation of wave 
fields when the additional term regarding quasi-coherent theory is 
included in the NWnets. 

4.4. Transfer learning of the NWnets 

Similar to numerical simulations with conventional physics-based 
models, we need to train the NWnets again when wave boundary con-
ditions or bathymetry change. To accelerate the training process of 
PINNs, transfer learning methods can be utilized when the following 
simulation has slightly different wave boundary conditions or bathym-
etry (e.g., Kissas et al., 2020). Specifically, instead of training a new 
network from scratch, the pretrained networks can be used to initialize 
the subsequent simulations (Jin et al., 2021). For example, assuming 
that the NWnets for reconstructing wave fields over the alongshore 
uniform barred beach have been well developed with the boundary 
condition of Hrms = 1 m and Tp = 8 s, then we would like to simulate the 
wave field with a different wave boundary condition of Hrms = 0.8 m 
and Tp = 10 s. What we can do is to initialize the new network weights 
and bias using the parameters of the pretrained NWnets with the 
boundary condition of Hrms = 1 m and Tp = 8 s. Then, the second 
network parameters are further tuned based on the new boundary 
conditions of Hrms = 0.8 m and Tp = 10 s. As a result, the computational 
efficiency of the subsequent simulation can be improved. Only L-BFGS-B 
was employed during the training processes in transfer learning because 
the initialization was already close to the solution. 

In this study, based on the well-trained PINN model with the original 
bathymetry and boundary conditions of Hrms = 1 m and Tp = 8 s, 
transfer learning techniques were applied to reconstruct wave fields 
with (i) a new wave boundary condition of Hrms = 0.8 m and Tp = 10 s; 
and (ii) a new bathymetry with 2 bars over the alongshore uniform 
barred beach (Fig. 13). Table 7 presents the error statistics of the wave 
parameters simulated with and without the transfer learning method. 
The results show that the PINN models with transfer learning have 
higher simulation accuracy and computational efficiency than those 
without using transfer learning techniques. This is because wave fields 
over the alongshore unformed barred beach are similar when the ba-
thymetry or wave boundary conditions are slightly different. As a result, 
improved prediction performance and convergence speed can be ach-
ieved with better-initialized network parameters. 

4.5. PINNs vs. traditional physics-based nearshore models 

Admittedly, PINN models are not expected to replace traditional 
physics-based nearshore models, which have been developed and suc-
cessfully used for decades. For instance, the convergence of PINNs is not 
always guaranteed because of the non-convexity of the neural network 
optimization (Sun et al., 2020), and PINNs may generate less accurate 
results for predicting overly complicated systems when only a few 
training points are available. Also, the training (e.g., architecture) of 
PINNs is case-specific, so the NWnets can be less generically applicable 
than physics-based models. However, the development of NWnets for 
surrogate modeling presents some promising capabilities. For example, 
the NWnets can solve ill-posed problems without accurate wave condi-
tions at the open boundary and avoid generating cumbersome 

Table 5 
Error statistics of the simulated Hrms, θm, and k with different training points of 
Hrms applied in the NWnets.  

Training points 
location for Hrms 

m Normalized RMSE R2 value 

εHrms εθm εk R2
Hrms 

R2
θm 

R2
k 

100, 300, 600 8 0.020 0.053 0.073 0.980 0.981 0.977 
20 0.023 0.030 0.041 0.980 0.998 0.993 
32 0.026 0.049 0.087 0.972 0.996 0.971 
130 0.026 0.049 0.087 0.972 0.996 0.971 

300, 900, 950 8 0.024 0.038 0.039 0.957 0.983 0.994 
20 0.022 0.023 0.063 0.974 0.996 0.984 
32 0.022 0.042 0.087 0.979 0.998 0.968 
130 0.024 0.005 0.068 0.979 1.000 0.981 

300, 900 8 0.029 0.061 0.040 0.947 0.971 0.994 
20 0.027 0.020 0.044 0.973 0.998 0.992 
32 0.027 0.013 0.038 0.976 0.999 0.994 
130 0.042 0.024 0.122 0.945 0.995 0.941  
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computational meshes for complicated geometries, which is highly 
desirable when the rapid prediction of wave fields is needed in many 
applications. For instance, the NWnets could be employed to rapidly 
reconstruct the wave fields in field experiments where a limited number 
of wave gages were deployed nearshore, such as the Scripps Canyon 
Experiment (Gorrell et al., 2011). 

It is worth mentioning that PINNs have the ability to discover 
equations or parametrizations (e.g., Pfister et al., 2019; Huang et al., 
2020; Chen et al., 2021). For example, in coastal engineering applica-
tions, PINNs could be used to determine higher-order dispersive terms in 
Boussinesq-type equations, or discover sub-grid scale turbulence mixing 
terms for large eddy simulation models (e.g., Zanna and Bolton, 2020). 
Another advantage of PINN models is to solve inverse problems, such as 
the depth inversion problem. Unlike the conventional data assimilation 
method, PINNs do not require simulations from deterministic forward 

numerical models or knowledge about the uncertainty of observations 
and the uncertainty of the numerical model (Wilson et al., 2014). Thus, 
applying PINNs to obtain the solution to inverse problems would be 
desirable because PINNs can execute much faster than data assimilation 
algorithms without running thousands or millions of forward model 
simulations for evaluating estimators and characterizing posterior dis-
tributions of parameters. Further analysis should be carried out to 
examine the performance of PINNs for solving equation discovery and 
depth inversion problems. 

Table 6 
Error statistics of NWnets outputs simulated with different values of dθ over the alongshore uniform barred beach.  

dθ (deg)  Normalized RMSE R2 value 

εHrms εθm εk total ε R2
Hrms 

R2
θm 

R2
k 

10 m = 8 0.019 0.022 0.038 0.079 0.982 0.996 0.995 
m = 20 0.118 0.059 0.018 0.195 0.738 0.895 0.999 
m = 32 0.151 0.112 0.044 0.308 0.671 0.634 0.992 
m = 130 0.242 0.071 0.036 0.349 0.405 0.912 0.995 

7 m = 8 0.019 0.020 0.034 0.074 0.982 0.973 0.995 
m = 20 0.024 0.011 0.034 0.069 0.980 0.999 0.995 
m = 32 0.025 0.019 0.062 0.107 0.983 0.996 0.985 
m = 130 0.168 0.171 0.046 0.384 0.652 0.747 0.991 

5 m = 8 0.019 0.013 0.028 0.060 0.983 0.999 0.997 
m = 20 0.023 0.011 0.046 0.079 0.980 0.999 0.992 
m = 32 0.025 0.006 0.032 0.063 0.978 1.000 0.996 
m = 130 0.040 0.059 0.059 0.158 0.959 0.999 0.985 

3 m = 8 0.019 0.022 0.048 0.089 0.984 0.996 0.991 
m = 20 0.025 0.009 0.049 0.083 0.977 0.999 0.990 
m = 32 0.025 0.014 0.078 0.117 0.978 0.999 0.977 
m = 130 0.032 0.009 0.099 0.140 0.963 0.999 0.962 

0.5 m = 8 0.020 0.026 0.039 0.084 0.982 0.993 0.994 
m = 20 0.022 0.014 0.039 0.075 0.981 0.999 0.993 
m = 32 0.025 0.008 0.046 0.078 0.978 1.000 0.992 
m = 130 0.029 0.009 0.098 0.136 0.971 0.999 0.962  

Fig. 12. The spatial distribution of wave height simulated by the NWnets with 
all the wave height measurements applied as training data. 

Fig. 13. Comparison between XBeach and PINN outputs over the alongshore 
uniform beach with 2 bars using transfer learning techniques. 
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5. Summary and conclusions 

In the past two decades, many soft-computing models have been 
proposed to study nonlinear relationships between input features and 
labels in coastal engineering applications. However, the direct use of 
pure data-driven models often encounters difficulties in applications 
because of their enormous data demands, poor generalizability to out-of- 
sample cases, and a lack of the ability to generate physically consistent 
results with limited data. This study proposed a novel composite PINN 
model, the NWnets, to reconstruct wave fields in the nearshore with 
limited wave measurements by incorporating the prior knowledge of 
wave mechanics (i.e., wave energy balance equation and dispersion 
relation) into the soft-computing deep learning algorithm. The equa-
tions were formulated with the fully-connected neural networks, and 
automatic differentiation was employed to represent all the differential 
operators in the energy balance equation. The effectiveness of the 
NWnets was explored by reconstructing wave fields over a two- 
dimensional alongshore uniform barred beach and a three- 
dimensional circular shoal. 

Firstly, the wave fields with narrow- and broad-banded incident 
waves (i.e., m = 8, 20, 32, and 130) were simulated with the NWnets 
over an alongshore uniform barred beach. The results indicate that the 
simulations of Hrms and θm from the NWnets correlated well with those 
from XBeach when only three wave height measurements were applied 
as training data. Moreover, the NWnets can reconstruct the entire wave 
field and capture the focusing and defocusing of wave energy over a 
circular shoal with laboratory measurements of wave height employed 
as training data. Since the simulation errors are small for all test cases, 
the NWnets show a remarkable ability to reconstruct spatial variations of 
wave fields in the nearshore with limited measurements. 

Furthermore, this work investigated the influences of network sizes, 
numbers of collocation points, locations of training points, and the 
resolution of wave directional spreading on the performance of the 
NWnets. It was found that the wave field over the alongshore uniform 
barred beach can be well reconstructed with proper neural network 
architectures. Considering the simulation accuracy and computational 
cost, we used the network structure of 4 hidden layers of 30 nodes to 
reconstruct both wave fields over the barred beach and circular shoal in 
this study. Additionally, we compared the error statistics of the NWnets 
outputs when different numbers of collocation points were applied in 
the model. Unsurprisingly, the total normalized RMSE decreases when 
the number of collocation points increases, while the computational cost 
increases when more collocation points are utilized during training. The 
results indicate that the locations of Hrms training points have a limited 
influence on the simulation accuracy of NWnets. Even two training 

points of Hrms are sufficient to reconstruct wave fields with broad- 
banded incident waves on an alongshore uniform beach by the 
NWnets. Moreover, it was found that the resolution of directional 
spreading has a limited impact on the simulation accuracy of NWnets for 
broad-banded incident waves (i.e., m = 8). While for narrow-banded 
waves, the prediction skill of NWnets decreases when dθ gets larger. 
Thus, the width of direction bins should be sufficiently small so that the 
directional space can be well resolved for simulating narrow-banded 
waves with PINNs. 

Overall, the advantages of PINN models are attributed to the fact that 
encoding prior knowledge during the training process can constrain 
learning and compensate for the insufficiency of observational data. 
Therefore, such models can generalize well and provide reliable results 
even when only limited training data are available. This study is the first 
attempt to investigate the capability of PINNs for reconstructing wave 
fields in the nearshore with scarce wave measurements. Though the 
current results are encouraging, many open questions still exist. For 
example, what is the accuracy of using PINN models to solve inverse 
problems, such as estimating water depth based on measured wave 
parameters in nearshore regions? Can PINN models be utilized to 
determine the friction coefficient or wave breaking parameters in 
nearshore models accurately? More studies will be carried out to answer 
those questions and further test the performance of the NWnets under 
storm conditions. 
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Appendix 

Error metrics 

Statistical measures shown below were used to quantify the skills of the developed models. 
RMSE: 

Table 7 
Error statistics of the simulated wave parameters from the NWnets with and without the transfer learning method over the alongshore uniform barred beach.    

Normalized RMSE R2 value Computational cost (Number of iterations) 

εHrms εθm εk R2
Hrms 

R2
θm 

R2
k 

New wave boundary condition w/transfer learning 0.007 0.016 0.027 0.994 0.999 0.996 20k L-BFGS-B 
w/o transfer learning 0.026 0.024 0.029 0.882 0.996 0.995 40k Adam +

120k L-BFGS-B 
New bathymetry w/transfer learning 0.010 0.022 0.009 0.987 0.996 0.999 50k L-BFGS-B 

w/o transfer learning 0.009 0.021 0.012 0.988 0.996 0.999 40k Adam +
120k L-BFGS-B  
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Normalized RMSE of Hrms: 

εHrms =
RMSEHrms

ΔHrms
(A.3) 

Normalized RMSE of θm: 

εθm =
RMSEθm

Δθm
(A.4) 

Normalized RMSE of k: 

εk =
RMSEk

Δk
(A.5)  

in which N is the number of samples, ŷi is the estimated values and yi is the true value. ΔHrms, Δθm, and Δk were used to normalize the RMSE, equal to 
1 m, 30◦, and 0.09 m-1, respectively. These values correspond to the incident wave condition at the offshore boundary of the longshore uniform barred 
beach. 
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Sørensen, O.R., Schäffer, H.A., Sørensen, L.S., 2004. Boussinesq-type modelling using an 
unstructured finite element technique. Coast. Eng. 50, 181–198. 

Stringari, C.E., Harris, D.L., Power, H.E., 2019. A novel machine learning algorithm for 
tracking remotely sensed waves in the surf zone. Coast. Eng. 147, 149–158. 

Sun, L., Gao, H., Pan, S., Wang, J.-X., 2020. Surrogate modeling for fluid flows based on 
physics-constrained deep learning without simulation data. Comput. Methods Appl. 
Mech. Eng. 361, 112732. 

Tolman, H.L., 1991. A third-generation model for wind waves on slowly varying, 
unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 21 https:// 
doi.org/10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2. 

Wang, N., Chen, Q., Zhu, L., Sun, H., 2022a. Integration of data-driven and physics-based 
modeling of wind waves in a shallow estuary. Ocean Model., 101978 https://doi. 
org/10.1016/j.ocemod.2022.101978. 

Wang, N., Chen, Q., Zhu, L., Wang, H., 2022b. Data-driven modeling of wind waves in 
upper Delaware Bay with living shorelines. Ocean Eng 257, 111669. https://doi.org/ 
10.1016/j.oceaneng.2022.111669. 

Wang, S., Teng, Y., Perdikaris, P., 2020. Understanding and Mitigating Gradient 
Pathologies in Physics-Informed Neural Networks, 04536 arXiv Prepr. arXiv2001.  

Wei, Z., 2021. Forecasting wind waves in the US Atlantic Coast using an artificial neural 
network model: towards an AI-based storm forecast system. Ocean Eng 237, 109646. 

Wei, Z., Davison, A., 2022. A convolutional neural network based model to predict 
nearshore waves and hydrodynamics. Coast. Eng. 171, 104044. 

Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V., 2020. Integrating Physics-Based 
Modeling with Machine Learning: A Survey arXiv Prepr. arXiv2003.04919.  

Wilson, G., Berezhnoy, S., 2018. Surfzone state estimation, with applications to 
quadcopter-based remote sensing data. J. Atmos. Ocean. Technol. 35, 1881–1896. 
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