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Living shoreline projects have been built to preserve coastal ecosystems under future climate change and sea
level rise. To quantify the wave power variation across living shorelines, the wave characteristics around the
constructed oyster reefs (CORs) in upper Delaware Bay were investigated in this study. Wave parameters seaward
and shoreward of CORs were recorded by wave gauges in early 2018. Four winter storms happened in this period
and induced strong winds and coastal flooding at the study site. To estimate the wind wave characteristics across
the CORs on a yearly basis, soft computing-based models combining fully connected neural networks and long
short-term memory were developed to extend the two-month energetic wave measurements. The results show
that when CORs were emergent or slightly submerged, the averaged wave height attenuation was about 39.8%
from the offshore gauge to the nearshore gauge (behind CORs) during 2018-2020, owing to the combined effect
of nearshore bathymetric changes and CORs. Furthermore, it was found that the annually averaged wave power
reduction from offshore to nearshore at the study site was about 30.0% in 2018, 2019, and 2020. This study
provides a novel framework to predict long-term wave characteristics based on short-term wave measurements

using soft computing-based models.

1. Introduction

Delaware Bay and its river estuaries sustain one of the most popu-
lated regions and rich ecosystems in the world, providing nesting hab-
itats for nearshore fish and shellfish communities (e.g., Baker et al.,
2004; Wang et al., 2021). However, due to energetic waves and storm
surges, Delaware Bay coastlines have suffered chronic erosion with an
estimated rate ranging from about 0.1 to 1 m/yr (Kukulka et al., 2017).
Recently, many living shoreline restoration projects have been devel-
oped along the Northeast and Mid-Atlantic coasts in the United States to
restore and protect coastal ecosystems and mitigate the impact of sea
level rise. Since the global sea level was estimated to increase from about
0.2 m to over 1.0 m by 2100 (e.g., Schwimmer, 2001; Kopp et al., 2014),
Delaware Bay shorelines and salt marshes will become even more
vulnerable. Therefore, an improved understanding of the effectiveness
of living shoreline structures can help inform the success of future
restoration projects.

Living shoreline projects have been constructed globally using
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various materials, such as freshwater plants, mangroves, and oyster reefs
(Bayraktarov et al., 2016; Besse et al., 2018; Smith et al., 2020). Wiberg
et al. (2019) monitored waves around the restored intertidal oyster reefs
in the southern Delmarva Peninsula, USA, in July 2011, February 2012,
July 2014, and May 2017. They found that the wave energy approaching
the shoreline can be reduced by oyster reefs when the edge elevations
are close to the mean sea level (MSL). In contrast, oyster reefs have a
negligible impact on waves in deeper water, so reefs cannot protect
marshes with high surface elevations. Zhu et al. (2020) conducted a field
experiment to study variations in wave characteristics and wave spectra
across constructed oyster reefs in a small cove in upper Delaware Bay
from January 31 to April 2, 2018. They demonstrated that the wave
power attenuation across living shorelines depends on several factors,
such as the reef crest freeboard, the surrounding bathymetry, and the
local wave environment. Overall, the success of living shoreline projects
and the associated long-term (e.g., longer than one year) ecological
benefits heavily rely on an accurate examination of wave power varia-
tion across the living shorelines, since the erosion rates are highly
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correlated with wave power (e.g., Schwimmer, 2001; Priestas et al.,
2015; McLoughlin et al., 2015; Sanford and Gao, 2018; Everett et al.,
2019).

Smith et al. (2020) provided a scoping review of living shoreline
research and found that most projects only offered a short-term snapshot
of performance with spatially and temporally limited in-situ measure-
ments, such as Wiberg et al. (2019) and Zhu et al. (2020) mentioned
above. However, long-term wave data are essential to thoroughly
examine wave power changes across living shorelines. Since collecting
such field measurements is usually costly, different models can be
employed to simulate long-term wave conditions around living shore-
lines, such as numerical (e.g., Booij et al., 1999; Chen et al., 2000;
Tolman, 1991) and soft computing-based wave models (e.g., Makar-
ynskyy, 2006; Parker and Hill, 2017).

During the past several decades, considerable progress has been
made in physics-based wave models based on wave action and mo-
mentum balance principles. Different wave models can be employed to
simulate spatial and temporal characteristics of waves in shallow bays
(e.g., Pareja-Roman et al., 2019; Chen et al., 2018; Mariotti et al., 2010;
Salatin et al., 2021). For example, Kukulka et al. (2017) combined the
Regional Ocean Modeling System (ROMS, Shchepetkin and McWilliams,
2005) and the spectral model of Simulating Waves Nearshore (SWAN,
Booij et al., 1999) to investigate surface wave dynamics in Delaware
Bay. They revealed that bathymetric refraction could shelter the bay
from energetic swell waves originating from the open ocean. Similarly,
Chen et al. (2018) coupled ROMS and SWAN to simulate waves in the
Delaware Estuary. They found that during southerly wind conditions,
wave energy is near equilibrium in the lower bay, and waves in the
midestuary are attenuated by the combination of whitecapping and
bottom friction. Mariotti et al. (2010) applied the numerical hydrody-
namic model WWTM (Wind Wave Tidal Model, Carniello et al., 2011) to
the lagoons of the Virginia Coast Reserve. They found that the storm
surge could significantly influence the marsh edge erosion rate by
increasing the lagoon water level. Although physics-based numerical
models generally provide satisfactory results, direct application of these
models to living shoreline projects can encounter some challenges. For
instance, physics-based numerical models require a precise description
of initial and boundary conditions to effectively capture the downstream
wave and flow fields (Kissas et al., 2020). Thus, nested computational
domains may be required to provide accurate boundary conditions,
which are usually time-consuming to apply. Additionally, traditional
wave models may involve the cumbersome generation of computational
meshes for complicated geometries. By contrast, soft computing-based
models can be used as surrogates to simulate wave responses to living
shorelines without a high demand for computational resources.

Machine learning methods, such as artificial neural network (ANN),
support vector machine (SVM), long short term memory (LSTM),
Bayesian Network (BN), and decision trees (DT) have been widely
adopted in soft computing-based models for simulating waves in the last
several decades (e.g., Deo and Naidu, 1998; Deo et al., 2001; Corne-
jo-Bueno et al., 2016; Sadeghifar et al., 2017; Oh and Suh, 2018;
Stringari et al., 2019; Zheng et al., 2020; Chen et al., 2021; Wei, 2021;
Miky et al., 2021; Jorges et al., 2021; Elbisy and Elbisy, 2021; Bento
et al.,, 2021; Mares-Nasarre et al., 2021; Lee et al., 2021; Wei and
Davison, 2022). For example, James et al. (2018) used ANNs and SVMs
to surrogate SWAN for predicting significant wave height (H;) and
characteristic wave period, respectively. Their model ran over 4,000
times faster than SWAN and exhibited a similar accuracy for wave
prediction in the region of interest. Malekmohamadi et al. (2011)
compared the performance of SVM, BN, ANN, and Adaptive Neuro FIS
methods for mapping wind data to wave height in Lake Superior, USA,
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and found that all these methods, except BN, provided acceptable pre-
dictions for significant wave height, H;. Wang et al. (2022) proposed a
hybrid approach integrating the physics-based model with machine
learning algorithms (i.e., BRT and ANN) to estimate wave parameters
and identify sources of error in physics-based models (i.e., SWAN).
Other machine learning applications include applying the LSTM for
forecasts and reconstructions of Hy and wave power (Pirhooshyaran and
Snyder, 2020), and using fuzzy systems to predict H; and wave energy
flux at one buoy location along the California Coast with observation
data from nearby buoys as inputs (Cornejo-Bueno et al., 2016). These
soft computing-based algorithms provide a new tool to solve wave
prediction and classification problems in coastal and estuarine systems.

As mentioned above, most existing studies on wave responses to
living shoreline structures focused on field measurements, which were
relatively short in duration (i.e., days to months). To better investigate
the wave power variation across the living shoreline structures, we
proposed using soft computing-based methods to extend the short-term
measurement for long-term analysis. To the best of the authors’
knowledge, soft computing-based methods have not been applied to
examine the wave height changes across living shoreline structures. The
purpose of this study is twofold: (i) to develop a framework for inves-
tigating long-term wind wave characteristics based on short-term wave
measurements with soft computing-based models, and (ii) to examine
the wave power variation across the constructed oyster reefs (CORs) in
upper Delaware Bay. A test of the data representativeness is proposed in
the framework to examine whether the measured wave parameters in a
short period can be used to predict long-term wave processes. This step
is crucial to ensure that the predicted long-term wave characteristics are
reliable (Section 2.3.2). Compared to physics-based numerical models,
using soft computing-based models can significantly reduce the
computation cost. Therefore, this framework can be applied as a sur-
rogate to estimate long-term wave characteristics based on short-term
wave measurements without a high demand for computational
resources.

2. Methods
2.1. Study area

The construction of 3,000 ft (915 m) of living shorelines and
breakwaters was carried out along the coastline between Money Island
Marina and Gandys Beach in upper Delaware Bay in 2016. The project
aimed to rebuild salt marshes and adjacent uplands ruined by Hurricane
Sandy in 2012 and increase the resistance of shorelines to future storms
and erosion (Wang et al., 2021). The location of our study site is at a
small cove close to Money Island in upper Delaware Bay (Fig. 1). The
CORs were built of prefabricated concrete blocks, with dimensions
about 2.4-7 m long, 0.5-0.9 m wide, and 0.4-0.8 m tall, and the mean
distance between neighboring CORs is 3.9 m (Fig. E1). Since the tides
are predominantly semi-diurnal with a range exceeding 2 m at the study
site, the CORs are submerged during high tides and completely exposed
during low tides. More details of the geometry of the CORs and the reef
setup can be found in Zhu et al. (2020) and Wang et al. (2021).

2.2. Wave measurements

Six bottom-mounted OSSI (Ocean Sensor Systems Inc) wave gauges
(WG) were deployed on Gandys Beach from January 31 to April 2, 2018
(Fig. 1). The wave gauges were set to record a burst of 20-min every 30
min (i.e., 48 bursts per day) with a sampling frequency of 10 Hz, so that
short wind waves could be resolved with a high sampling frequency
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Fig. 1. (a) A map showing the study area (green dot, i.e., Gandys Beach) and nearby NOAA wind stations (red dots) in Delaware Bay. (b) A map showing the location
of the wave gauges (yellow dots) and the shoreline of the study area. (c) A map showing the locations of wave gauges with the locations of the CORs represented by
the dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

during this study period. To investigate the wave height variation across
the living shorelines, we focused on the wave characteristics at WG3,
WG6, WG5, and WG in this study, because they were deployed along a
transect that crosses the CORs.

The data processing and analysis applied to the raw time series
pressure data closely followed the methods outlined in Karimpour and
Chen (2016). The raw pressure data were first converted to water depth,
and then a wave spectral analysis was performed to extract the relevant
wave parameters. The Ocean Wave Analyzing Toolbox (Oceanlyz v1.4)
was employed for the wave spectral analysis (Karimpour and Chen,

2017; Wang et al., 2020). Generally, the marsh edge erosion is attributed
to both remotely generated swell waves and locally generated wind
waves. However, it was found that swell energy remains nearly un-
changed on the seaward and shoreward sides of CORs (Zhu et al., 2020;
Wang et al.,, 2021). Moreover, since energetic wave conditions are
characterized by wind-driven seas at the study site (e.g., Kukulka et al.,
2017; Chen et al., 2018), we only considered the influence of sea waves
in this study. It is worth mentioning that the proposed framework can
also be used to predict the swell waves with some adjustments. More
details can be found in Section 4.2.
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Fig. 2. The measured significant wave height, peak wave period, and local water depth at WG3 from January 31 to April 2, 2018 (wind sea only). The shaded areas

represent the four nor’easters in March 2018: Riley, Quinn, Skylar, and Toby.
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The method in Hwang et al. (2012) was employed to separate sea and
swell energies. Given that T, from Oceanlyz v1.4 can be miscalculated
when Hj is small, small waves with Hy; < 7 cm were removed from the
rest of the analysis. Fig. 2 shows an example of wave parameters and
water depth measured at WG3. Four nor’easters happened during the
two months of 2018 (i.e., Riley on March 2, Quinn on March 7, Skylar on
March 14, and Toby on March 21) and induced strong winds, large
precipitation, and coastal flooding to the study site, providing an
informative dataset to design soft-computing based models for predict-
ing wind wave parameters. The feasibility of employing the developed
models to estimate wave parameters around CORs throughout the years
was further examined in Section 2.3.2.

2.3. Data-driven models

In this study, the wave measurements are available for two months in
2018 (i.e., from January 31 to April 2, 2018). To estimate wave fields
around the CORs over a longer period (e.g., yearly), artificial neural
networks (ANN) were designed to study nonlinear and complex re-
lationships between wave parameters and forcing functions based on the
2-month measurements. Specifically, we developed four composite
ANNSs to predict wind wave characteristics at each wave gauge location
(i.e., WG3, WG6, WG5, and WG1) in 2015, 2016, 2018, 2019, and 2020.
Since CORs have not been constructed until the summer of 2016, the
simulated wave field behind CORs (i.e., WG1 and WG5) was unreal in
2015 and 2016. The composite networks were designed based on prior
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and 2.3.4.

It should be noted that a representative test is required to examine
whether the measured wave parameters during the two months can be
used for studying long-term wave fields (Section 2.3.2). This step aims at
ensuring that the predicted long-term wave characteristics are reason-
able because ANNs cannot do extrapolation (Willard et al., 2020). The
methods applied to determine winds and wave fields at the study site are
shown in the following subsections, providing a framework to investi-
gate long-term wind wave characteristics based on short-term wave
measurements using soft computing-based models.

2.3.1. Spatial variation of winds in Delaware Bay

To study the wave height variation across the CORs, the wind field in
Delaware Bay was examined first because the wind is the main driving
force of wind seas. Due to the variability in estuarine wind fields
(Mariotti et al., 2018), the wind data from meteorological stations
scattered throughout Delaware Bay were used to analyze wind sea
characteristics at the study site. As a result, the wind data from five
NOAA (National Oceanic and Atmospheric Administration) stations at
DELD1, SJSN4, BRND1, LWSD1, and CMAN4 were collected (Fig. 1).
The wind roses in 2015 and 2016 manifest the significant spatial

Table 1
Wind data availability at DELD1, SJSN4, BRND1, LWSD1, and CMAN4. Numbers
represent the months when wind data are available.

: i . ; NOAA stations 2015 2016 2018 2019 2020
knowledge of wave responses to forcing functions and the relationship
between wave parameters. Specifically, the wind and water depth data 8551762 DELD1 1-12 1-12 1-12 112 1-10

lected as input feat to estimate wind ¢ the studv sit 8537121 SJSN4 1-12 1-12 1,812 1-5,9-12 1-6

were selected as input features to estimate wind seas at the study site 8555889 BRND1 112 112 141 - 1-10
over the years, because both of them are critical for predicting wind 8557380 LWSD1 1-12 1-12 1-12 1-12 1-10
waves in a shallow estuary (Karimpour and Chen, 2017). More details 8536110 CMAN4 1-12 1-12 1-12 1-12 1-10
about the inputs and network structures can be found in Sections 2.3.3

N
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Fig. 3. Wind roses measured at stations DELD1, SJSN4, BRND1, LWSD1, and CMAN4 in 2015 and 2016.
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variations of wind fields in Delaware Bay (Fig. 3). This finding is
consistent with the statement in Kukulka et al. (2017), indicating that
the relationship between the wind forcing and wave responses may not
be thoroughly explored if the wind data from only one or two stations
are applied. Additionally, the measured H; at WG3 exhibited a high
dependency on the wind speed at all five stations (Fig. B1 (a)). There-
fore, we employed the wind data at all five stations from January 2015
to October 2020 for further analysis in this study. However, there are
blocks of missing data (about 9%) at the five stations during the study
period (Table 1). To facilitate the wave climate prediction in 2015,
2016, 2018, 2019, and 2020, the missing wind data over the five years
were filled first before quantifying the changes of wave power across the
CORs over the years (Section 2.3.3).

2.3.2. Representativeness of the wind field and water level over the 2-month
deployment

In this study, a representative test was utilized to examine whether
the measured wave parameters during the two months can be used to
predict long-term wave processes. This step is necessary because ANN
models cannot generalize to estimate scenarios that are unseen in the
training dataset (Willard et al., 2020). Given that the wind speed, wind
fetch, and water depth are critical to predicting wind waves in a shallow
estuary (Karimpour et al., 2017), we investigated whether the wind and
water depth combinations during the two months of 2018 can represent
the ones throughout the years (i.e., in 2015, 2016, 2018, 2019, and
2020). The water level measurement at station SJSN4 (Fig. 1 (a)) was
used to represent the water depth at the study site since it is closest to the

(@)

Jan-Dec 2019
Feb-Mar 2018

water level to MSL (m)
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CORs. Hereafter, the wind and water depth combination is considered as
the forcing of wind wave generation in this work.

The following steps were taken to quantify the representativeness of
the forcing of wave generation during the two months. First, the hourly
datasets of wind direction, wind speed, and water level during the two
months of 2018 and in 2015, 2016, 2018, 2019, and 2020 were uni-
formly divided into 36 directional bins (i.e., 0°-10°, 10°-20°, 20°-30°, ...,
350°-360°), 60 speed bins (i.e., 0-0.5, 0.5-1, 1-1.5, ..., 29.5-30 m/s),
and 20 water level bins (i.e., —2~-0.18, —0.18~-0.16. —0.16~-0.14, ...,
1.8-2 m), respectively. The three groups of bins were then combined
into 43,200 cubic divisions (i.e., 36 x 60 x 20 = 43,200). A forcing was
considered representable by the 2-month forcings if that specific data
fell into one of the divisions that were also taken by the 2-month data.
Fig. 4 shows an example of hourly wind direction, wind speed, and water
level data at DELD1 in 2019 versus the ones in February and March
2018. To better visualize the dataset, we projected the three-
dimensional space into two-dimensional spaces (i.e., Fig. 4 (b), Fig. 4
(c), and Fig. 4 (d)) with meshes representing the bins of wind speed,
wind direction, and water level.

Note that the wind fetch plays a significant role in generating wind
waves in shallow estuaries (Karimpour et al., 2017). The wave height at
the study site could be exceedingly small when winds were from specific
directions because of a short fetch. Table 2 presents the wind directions
at different stations corresponding to small wave height measured at
WG3 from January 31 to April 2, 2018 (Fig. B1 (b)). In other words, the
fetch would be so short that winds have very limited influence on the
wave field at the study site if the wind direction is within the listed range

Delaware

10
Wird Spsed (mis) 0 0 wind direction (°)
(b) Delaware Y Delaware (d) Delaware
<3 FEFEEEH 2 (T z T
®  Jan-Dec 2019 TR ;
25 ® Feb-Mar 2018 g
_ E 1 E 1
K I
220 P )
= = : =
215 H 2o 2o
& 52 g
T == 2
€ 10 pa =
(0] [0}
3 T 1 T 1
3= = th Itk = - v
5 S b 3 ekl 1]
I of
0 _o LT 2 1
0 100 200 300 0 10 20 30 0 100 200 300

wind direction (deg)

wind speed (m/s)

wind direction (deg)

Fig. 4. (a) Hourly wind direction, wind speed, and water level data at DELD1 in 2019 versus February and March 2018. (b) wind direction and wind speed at DELD1
in 2019 versus February and March 2018. (c) wind speed and water level at DELD1 in 2019 versus February and March 2018. (d) wind direction and water level at
DELD1 in 2019 versus February and March 2018. The black blocks correspond to the wind direction listed in Table 2.
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Table 2
The wind directions at different stations that have little influence on the wave
field at the study site.

Stations DELD1 SJSN4 BRND1 LWSD1 CMAN4

Wind direction 0°-130° 0° - 130° 0° - 150° 0° - 140° 0° - 100°

Table 3
The percentages of forcings of wave generation in different years that can be
represented by the 2-month data in 2018.

DELD1 SJSN4 BRND1 LWSD1 CMAN4
2015 96.1% 94.5% 95.8% 95.3% 94.2%
2016 95.1% 92.1% 95.1% 94.8% 93.0%
2018 95.0% 91.1% 94.5% 93.9% 92.4%
2019 95.2% 95.3% 95.0% 93.3% 92.2%
2020 95.1% 94.5% 94.1% 93.6% 92.7%

in Table 2. Since waves with small energy (e.g., smaller than 0.2 m at
WG3) are less critical to examining the influence of CORs in this study,
wind data at different stations were exempt from the representative test
if the wind direction is within the range listed in Table 2. However, it is
worth emphasizing that the composite wave models were developed
using all available wind data (0°-360°) to ensure the obtained models
could be predictive in general scenarios.

The results indicate that the average percentage of annual forcings
that could be represented by the 2-month data was 94.2% at the five
stations in 2015, 2016, 2018, 2019, and 2020 (Table 3). Given that the
2-month forcings of wave generation could largely represent the ones
over the five years, the short-term measured wave parameters could be
applied to develop ANN models to predict wave parameters at the study
site over the five years.

2.3.3. Wind data prediction

To estimate the wave climate in 2015, 2016, 2018, 2019, and 2020,
the missing wind data over the five years were filled first because it
significantly affected the wave field at the study site. Thus, two ANN
wind models were developed to fill gaps in the wind dataset at SISN4
and BRND1 in 2018, 2019, and 2020 based on the data in 2015 and
2016, when the wind data were available almost all the time. Specif-
ically, ANN wind models were first trained, validated, and tested with
the dataset in 2015 and 2016. Then the missing data at the two stations
in 2018, 2019, and 2020 were filled with the predictions from the
developed ANN wind models. Table 4 shows the input features and la-
bels of ANN models for simulating wind data at SJSN4 and BRND1. The
input features were selected based on the locations and availability of
the wind data at different stations. For example, winds at LWSD1 and
CMAN4 were used to fill the gaps at BRND1, considering both locations
(Fig. 1 (a)) and the data availability (Table 1) at these two stations.

The network structure of three hidden layers of 30 nodes was applied
for estimating the missing wind data at SJSN4 and BRND1 stations. The
testing and validation data for both ANN models contained continuous
hourly datasets from January 01, 2016 to 03/15/2016 and January 04,
2016 to 06/15/2016, respectively. The training data included the rest of
the dataset in 2015 and 2016. Hyperbolic Tangent was applied as the
activation function. Levenberg-Marquardt backpropagation (u =

Table 4
The input features and labels of ANN models for predicting wind data at BRND1
and SJSN4.

Wind Input features Labels

models

BRND1 u- and v-wind speed data at LWSD1 &  u- and v-wind speed data at
CMAN4 BRND1

SJSN4 u- and v-wind speed data at DELD1 &  u- and v-wind speed data at
BRND1 SJSN4

Ocean Engineering 257 (2022) 111669

0.001) was used as the network training function. Normalization was
applied to keep the input and output between —1 and 1 so that the
negative influence of the large difference between different parameters
could be avoided. The Nguyen-Widrow method was employed for
initializing the weight and bias values for each layer. Early stopping was
applied to simulations to prevent overfitting. Specifically, the training
was terminated when the validation error increased for six iterations,
and weights and biases were returned at the minimum of the validation
error. The MATLAB Deep Learning Toolbox was utilized to develop the
ANN wind models.

2.3.4. Water depth and wave data prediction

In this study, four composite wave models were trained and vali-
dated to estimate d (local water depth), H;, and T, based on the
measured wave characteristics at WG3, WG6, WG5, and WG1 from
January 31 to April 2, 2018. Then the developed composite wave models
were applied to simulate wave parameters at the study site in 2015,
2016, 2018, 2019, and 2020. The composite networks combining long
short-term memory (LSTM) and ANN were designed based on prior
knowledge of wave responses to forcing functions and the relationship
between wave parameters. Specifically, the hourly u- and v-wind speed
and water level data measured at the NOAA stations were applied as
inputs for simulating local water depth (d) at each wave gauge location
using the LSTM method (Table 5, Fig. 5). Then the network for modeling
H; was developed with wind and water depth data as input features.
Given that the information of H; is also essential for predicting T, H,
was further used as the input together with the wind and water depth for
the T, prediction (Table 5). As a result, the loss function of the entire
composite network was defined as the sum of error functions of d, H; and
Tp. It is worthwhile to mention that although three independent net-
works could also be utilized for predicting d, H, and T}, separately, they
were not applied in this study as the error propagation could occur when
the predicted d and H; were taken as inputs for estimating T}, by another
independent ANN model. The composite networks proposed in this
study can reduce error propagation by estimating d, H;, and T, simul-
taneously with a unified network architecture, as shown in Fig. 5.

Pytorch was employed for developing the composite networks in this
study. The maximum learning epoch and mean square error (MSE,
defined in Appendix A) of predicted parameters were used to control the
training procedure. Specifically, the training procedure was stopped
once the iteration number reached 1000 or one of the MSEs of d, Hg, or
T, ceased to decrease. The sequence length for the LSTM models was set
to 24. Hyperbolic Tangent was applied as the activation function. The
initial weights in each layer were set to follow Xavier normal distribu-
tion (Glorot and Bengio, 2010), and the initial biases were all set to zero.
Normalization was employed to keep inputs and outputs between —1
and 1 so that the negative influence of the significant difference between
various parameters could be avoided. The Adam (adaptive moment
estimation) optimization algorithm was used as the network training
function (Kingma and Ba, 2014). The initial learning rate was set to 0.01
and then decreased to 0.001 after 500 iterations. The training was
performed on an Intel Core i7 with 32 GB memory, and the cost was
approximately 30 s.

The network structure can have a crucial influence on the prediction
skill of ANNs. Therefore, 1,164 ANNs (2-5 hidden layers of 10-300

Table 5
Input features and labels for predicting d H;, and T, using composite networks.
Prediction  Input features Labels
d u- and v-wind speed data at SJSN4 & BRND1, Measured d at each
water level data from SJSN4 gauge location
H; u- and v-wind speed data at all five stations, Measured Hs at each
predicted d at each gauge location gauge location
T, u- and v-wind speed data at all five stations, Measured T, at each

predicted d, and H; at each gauge location gauge location
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Fig. 5. Schematic architecture of the composite neural networks for predicting d, Hy, and T, at each gauge location in 2015, 2016, 2018, 2019, and 2020.
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Fig. 6. The dataset separation for the 5-fold block cross-validation.

nodes) were created to determine the optimum network structure for
each composite wave model at different gauge locations. The number of
hidden layers and nodes for networks to simulate d, Hs; and T, was kept
the same. To quantify the prediction skills of composite networks with
different structures, the composite performance score (CPS) was calcu-
lated based on error matrices, including bias, SI, and R? (Appendix A). As
a result, the structure providing the highest total composite performance
score (TCPS), which equals the mean value of CPSs for the prediction of
d, Hs, and T, was considered to be the optimal one.

Given the limited data samples in this study, a 5-fold block cross-
validation method was used for selecting the optimum network struc-
ture for each ANN wave model (Fig. 6). The testing dataset contained
continuous hourly data from March 10 to March 15, 2018 (dark orange
part in Fig. 6), which was employed as an independent measurement of
network ability after training. During this period, large waves were
observed at the study site due to nor’easter Skylar, so the prediction
skills of the developed composite models could be well tested. The rest of
the dataset was then partitioned into five blocked subsamples. For each
structure, the network was trained five times separately so that every
subsample was utilized once for validation (Zheng et al., 2020). As a
result, five TCPSs could be obtained based on the validation results for
each structure, and the mean value was used to represent the prediction
performance of the particular structure. The optimal network structure
was identified by comparing the TCPSs of all structures.

3. Results
3.1. Filling the missing wind data using ANN wind models

As part of the wind data were missing at stations SJSN4 and BRND1
during the study period (Table 1), ANN wind models were trained to fill
the gaps so that wave conditions around CORs could be examined
throughout the years. Fig. 7 shows the comparison between observed
and predicted easterly and northerly wind components at SJISN4 in 2015
and 2016. The results show that the prediction ability of the ANN wind
model at station SJSN4 is high, with the R? value around 0.87 and RMSE
around 1.65 m/s.

To further validate the ANN wind model at SJSN4, the simulated
wind data were compared with available measurements at SJSN4 in
2018 (Fig. B2). The small RMSE values of predicted wind components
indicated that the developed ANN wind model could fill missing wind
data at SISN4 with sufficient accuracy. The same procedure was carried
out to fill data gaps at BRND1 with the data at LWSD1 and CMAN4 as
inputs (Table 4). The results show that the developed wind ANN model
at BRND1 also has an excellent prediction ability. Therefore, all missing
wind data at SISN4 and BRND1 were filled by the ANN wind models, so
that the wave power variation across the CORs can be examined
throughout the years.

3.2. Wave field simulation by composite networks

To determine the optimal network structures for composite wave
models, a total of 1,164 structures (2-5 hidden layers with 10-300 nodes
per layer) were examined with the 5-fold block cross-validation method
for simulating wave parameters at each WG location. Fig. 8 shows an
example of TCPSs generated by selected composite wave models with
different network structures at WG3 (2-5 hidden layers with 8, 16, 32,
64, 128, 256 nodes per layer). The results indicate that the simulation
skills are similar when the networks have 2 or 3 hidden layers. The
model shows overfitting patterns when the structure has 3 or 4 layers
with more than 200 nodes per layer, reducing the simulation accuracy.
The optimal structure for the network at WG3 was identified as 3 hidden
layers of 12 nodes with the highest TCPS of 0.92. The optimal ANN
structures for modeling wave parameters at other WG locations are
shown in Table D1.
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Fig. 7. Comparison between the observed and ANN-predicted easterly and northerly wind components at SJSN4 in 2015 and 2016. The positive values of u- and v-
wind represent the westerly and southerly wind components, respectively. The negative values of u- and v-wind correspond to the easterly and northerly wind
components, respectively. Different colors correspond to different counts of data points in each bin (50 bins were specified in x and y directions). (For interpretation

of the references to color in this figure legend, the reader is referred to the Web version of this article.)

models were very high, with R and RMSE values close to 0.96 and
' ' ' 0.094 m, respectively. The developed composite models were then

1 T
O.QL % % , applied to estimate local water depth in 2015, 2016, 2018, 2019, and
kG % ¥ * ¥ 2020 so that the wave field around the CORs could be examined over the
08r | years.
(%]
Sort .
~ 3.2.2. Prediction of H and T,
06 ) The comparisons between the simulated and measured H; and T,
05l 4 during the testing phase are shown in Fig. 10 and Fig. 11. The composite
S
% 2layer % 3layers 4layers ¥  5layers wave models showed high prediction skills for simulating Hs at each WG
0'48 1I6 3'2 6‘4 12'8 vl location, with R? values around 0.85 and RMSE around 0.06 m. The
simulation accuracy of T, was slightly lower, with R? values around 0.70
number of nodes of each layer P .
and RMSE around 0.35 s. Therefore, the four composite models can be

expected to hindcast wave parameters of H; and T, with sufficient ac-
curacy during the years of 2015, 2016, 2018, 2019, and 2020. The time
series of the predicted and observed wave parameters at WG3 and WG5

in 2018 are presented in Fig. C1.

Fig. 8. The TCPSs generated by the composite wave models at WG3 with
different network structures.

3.2.1. Prediction of local water depth

Fig. 9 shows the modeled local water depth versus observations at
each gauge location during the testing phase from March 10 to March
15, 2018. The results revealed that the prediction skills of all four
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Fig. 12. Comparisons between H; at WG3 and WG5 during the years 2018, 2019, and 2020.

4. Discussion
4.1. Spatial variations of wave heights

To examine the wave height variation across the living structures in
Gandys Beach, H; offshore to CORs (WG3) and H; protected by CORs
(WG5) were compared during the years 2018, 2019, and 2020 (after the
construction of oyster reefs). According to Zhu et al. (2020), a significant
correlation can be observed between the wave height variations and the
ratio of the crest freeboard (R,) to offshore wave heights. Therefore, we
used R./Hs wgs as an indicator for investigating the wave height

Annually averaged wave power (W/m)
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Fig. 13. The annually averaged wave power at WG3, WG5, and WG1 in 2015,
2016, 2018, 2019, and 2020. The CORs have not been constructed until the
summer of 2016, so the wave powers at WG1 and WG5 were not real in 2015
and 2016 and marked with dashed lines in the plot.
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Table 6

The annually averaged wave power at WG3, WG5, and WG1 in 2015, 2016,
2018, 2019, and 2020. The CORs have not been constructed until the summer of
2016, so the wave powers at WG1 and WG5 were not real in 2015 and 2016.

Wave power (W/m)

Wave power reduction from WG3 to WG5

WG3 WG5 WG1
2015 78.9 52.8 40.5 33.1%
2016 98.1 61.9 48.1 36.9%
2018 101.0 70.3 49.2 30.4%
2019 80.4 55.2 45.3 31.3%
2020 82.0 58.9 48.8 28.1%

changes across the CORs, as it could combine wave properties and
structure characteristics (Wiberg et al., 2019). In this study, R, was
defined as the vertical distance from the water surface to the crest of
CORs. The reef crest was considered as emergent, slightly submerged,
and fully submerged when R./H; wgs > 0, — 1.6 < R./Hs w3 < 0, and

Table 7
The top 50% wind speed at each station and the percentages of wind data met
both requirements over the five years.

DELD1 SJSN4 BRND1 LWSD1 CMAN4

Top 50% wind speed 2.7 m/s 5.5 m/s 6.7 m/s 4.2 m/s 3.6 m/s

DELD1 SJSN4 BRND1 LWSD1 CMAN4 Average
2015 28.2% 33.6% 28.2% 25.0% 30.4% 29.1%
2016 30.4% 40.5% 31.8% 28.9% 34.6% 33.3%
2018 31.8% 34.4% 37.3% 29.8% 36.7% 34.0%
2019 28.8% 24.5% 24.3% 24.9% 30.3% 26.6%
2020 28.8% 26.9% 28.0% 25.1% 27.0% 27.1%
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R¢/Hs wes < — 1.6, respectively.

Fig. 12 compares the predicted H; at WG3 and WGS5 in 2018, 2019,
and 2020. The results show that during low tides (R. > — 1.6H; wgs),
an average reduction rate of 39.8% in wave height (reduction rate =
(Hs, wes — Hs, wes)/Hs, wes) can be observed from the most offshore
station (WG3) to the nearshore station behind CORs (WG5) over the
three years. Note that complex nearshore wave transformation occurred
between WG3 and WG5. The observed wave height changes from WG3
to WG5 were mainly caused by the combined effect of bathymetric
changes (e.g., depth-limited wave breaking at low tides) and the CORs
(Zhu et al., 2020). Also, the Nantuxen point to the northwest of the study
site could provide a shelter effect and reduce the wave height at WG5.
While, during high tides, the wave height from WG3 to WG5 had an
average rate of 19.7% reduction to 19.9% amplification over the three
years. This can be explained by the fact that the wave shoaling and wave
breaking could happen simultaneously when the reef crest was fully
submerged. To validate this finding, we calculated the shoaling coeffi-
cient (K;, wgs) and the ratio between wave height and local water depth
(wave breaks when H; wes/dwes > 0.6) based on Battjes and Janssen
(1978). The results indicate that shoaling and breaking happen simul-
taneously during the high tide conditions with R, < — 1.6H; wgs.
Moreover, it was found that wave focusing occurred in the leeside area
behind CORs during high tide conditions due to combined wave
refraction and diffraction (Zhu et al., 2020). As a result, wave energy
could easily transmit to the leeside area behind the structures with high
water levels.

The above findings of the effectiveness of CORs on wave height
attenuation in 2018 are consistent with the analysis of Zhu et al. (2020),
which focused on exploring the wave climate and wave spectral varia-
tion at the same study site using measured data from January 31 to April
2, 2018. They found that an average reduction rate of 41% in wave
height was observed from WG3 to WG5 at low tide conditions during the
two months. Also, they demonstrated that the wave height variation
between WG3 and WG5 ranged from a 35% reduction to a 70% increase
during high tide conditions, in line with our results. It is worth
emphasizing that bathymetric refraction and depth-limited wave
breaking play an important role in the observed wave height reduction
and amplification across the CORs.

4.2. Wave power changes across the CORs

Wave parameters and local water depth data simulated by the data-
driven models were utilized to calculate wave power P with the
following equation:

pgH}

P= 6 Cy

€9)

where ¢, is wave group velocity and p is water density. Fig. 13 and
Table 6 summarize the annually averaged wind sea wave power at WG3,
WG5, and WG1 in 2015, 2016, 2018, 2019, and 2020. Since CORs have
not been constructed until the summer of 2016, wave powers at WG1
and WGS5 in 2015 and 2016 were not real and were marked with dashed
lines in the plots to avoid confusion. The results show that the annually
averaged wave power reduction rate from WG3 to WG5 was about
30.0% in 2018, 2019, and 2020 (Table 6). Therefore, the wave power
offshore could be effectively reduced across the living shoreline project
area at the study site owing to both the nearshore bathymetric effect and
the CORs.

The results show that the annually averaged wave power generally
increased from 2015 to 2018, then went down in 2019 and went up
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again in 2020 at the study site. To validate this pattern, the wind con-
ditions were further investigated over the five years since wind is the
driving force of wind seas. The percentage of winds with high speed and
long fetch distance was computed at each station over the five years
(Table 7). Specifically, the percentage of winds that satisfied both of the
following requirements were calculated: (a) the wind direction was
outside the range listed in Table 2, and (b) the wind speed was the top
50% of data at each station over the five years. As a result, the per-
centages of winds (averaged over stations) that met both conditions are
29.1% in 2015, 33.3% in 2016, 34.0% in 2018, 26.6% in 2018, and
27.1% in 2020, consistent with the observed variation pattern of the
annually averaged wave power shown in Fig. 13.

This study did not include swell wave variation analysis since swell
energy remains nearly unchanged on the seaward and shoreward sides
of CORs (Zhu et al., 2020; Wang et al., 2021). However, it is worth
mentioning that the proposed framework can also be used to estimate
swell waves with different input features and labels. Specifically, the
input features include wave boundary conditions (i.e., outside the bay)
and water levels, and the labels are the swell wave parameters (e.g., Hs
and Tp). Furthermore, the test of data representativeness is also required
before using the developed model for predicting swell waves over
multiple years. In other words, we need to validate if the input features
for predicting swell waves over the years can be represented by the ones
during short-term field measurements.

5. Conclusions

Recently, many living shoreline projects have been built to restore
and protect coastal ecosystems along the U.S coasts. A deeper under-
standing of the wave power variation around the living shoreline
structures at different time scales can help to achieve long-term
ecological benefits. In this study, we investigated the long-term wave
characteristics across the CORs based on the short-term wave mea-
surements in Gandys Beach in upper Delaware Bay. Six wave gauges
were deployed in Gandys Beach from January 31 to April 2, 2018,
providing an informative dataset of the wave climate around the CORs
during winter storms. This study developed a framework to estimate
long-term wind wave characteristics based on the short-term represen-
tative wave measurements using soft computing-based models (i.e.,
ANN and LSTM), which enabled the examination of the wave power
variation across the CORs over multiple years.

The wind field in Delaware Bay was investigated first since it is the
main driving force of wind seas. Due to the significant variability in
estuarine wind fields, the wind data from five NOAA stations at DELDI,
SJSN4, BRND1, LWSD1, and CMAN4 were employed in the analysis.
ANN wind models were developed to fill the missing data at SISN4 and
BRND1 during the study period. Then the representativeness of the wind
and water level during the two months in 2018 was tested to determine
whether the measured wave parameters could be employed for studying
the wave field over multiple years. It was found that the average per-
centage of annual forcings that could be represented by the 2-month
data was 94.2% in 2015, 2016, 2018, 2019, and 2020. Given that the
2-month forcings of wave generation could largely represent the ones
over the five years, the short-term measured wave parameters were used
to train ANN models for studying the wave height changes across the
nearshore with the CORs throughout the years. Thus, based on the 2-
month wave measurements, four composite ANN networks were
developed to estimate wave parameters at WG3, WG6, WG5, and WG1
using the wind and water levels as input features. The composite ANN
models showed high prediction skills for simulating d, H, and T, at each
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sensor location, with the values of R? around 0.96, 0.85, and 0.70,
respectively. Therefore, the developed models could hindcast the wave
parameters in 2015, 2016, 2018, 2019, and 2020 with sufficient
accuracy.

To examine the wave height variations across the living shoreline
project area, we compared H; offshore to the CORs and H; protected by
the CORs at the study site. The results show that the wave energy could
be considerably reduced when the oyster reef crests were emergent or
slightly submerged, leading to wave height reduction by an average rate
of 39.8% in 2018, 2019, and 2020. The wave height attenuation at the
study site was mainly caused by the combined effect of bathymetric
changes and the CORs. Also, the landmass at the Nantuxen point to the
northwest of the study site could provide a sheltering effect and reduce
the wave height at WG5. During high tide conditions, wave shoaling and
breaking could occur simultaneously, and a significant amount of wave
energy could transmit to the leeside of the structure. Moreover, it was
found that the annually averaged wave power reduction from WG3 to
WG5 was about 30.0% in 2018, 2019, and 2020 owing to both the
bathymetric effect and CORs.

In closing, our analysis in this study provides a framework for fore-
casting long-term wave characteristics based on long-term wind and
short-term wave measurements. Although this approach only provides
the location-specific wave prediction, it can be used as a tool to obtain a
fast estimation of the long-term wave climates when location-specific
wave predictions are needed. Furthermore, this approach has an
advantage over the traditional numerical models as it requires much
lower computational costs. To predict wave fields with this framework
robustly, the available wave measurements are required to be repre-
sentative of the wave climate over the years, so that ANNs can better
learn the nonlinear relation between input features and outputs. Thus, it
is essential to ensure that the deployment period is long enough to re-
cord the wave climate when extreme or representative events happen.

Appendix A. Error metrics

Ocean Engineering 257 (2022) 111669

Overall, the data and information about the annual wave power esti-
mates in this study are helpful for understanding and predicting wave-
induced marsh edge erosion and shoreline retreat. The proposed
framework of developing composite neural networks to estimate long-
term wave characteristics based on short-term wave measurements
can be applied to other estuaries and coasts.
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Statistical measures given below are utilized to evaluate the performance of the developed models.

MSE: ms - ZL0=3)" )’ A
RMSE: o2 (A.2)
RMSE — Zi i —)
N
SI: ST — RAiISE (A.3)
)'
bias: b 1 R (A.4)
ias = ITI y -
R%: 2 (A5)
( -5 )
\/Zx i — ) Zx Vi - %)
Normalized SI performance: SI=1-8I (A.6)
Normalized bias performance: Bias =1 abs(l)las) (A7)
Composite Performance Score: R2 + SI + bias (A.8)
CPS = —3
Total composite performance score: TCPS = %(CPSd + CPSy, + CPSr,) (A.9)

in which N is the number of samples, y; is the estimated values, and y; is the true value.
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Appendix B. Wind data
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Fig. B.1. The measured Hs at WG3 versus the measured (a) wind speed and (b) directions at the five stations from January 31 to April 2, 2018.
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Wind speed at SUSN4
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Fig. B.2. Comparison between the observed and ANN-predicted easterly and northerly wind components at SJSN4 in 2018.
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Appendix C. Wave parameters
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Fig. C.1. The time series of measured and predicted H; and T, at WG3 and WG5 in 2018.

Appendix D. ANN wave model structures

Table D.1
Optimal structures of ANN models for predicting wave parameters at different wave gauge locations.
WG1 WG3 WG5 WG6
Number of hidden layers 3 3 2 2
Number of nodes in each layer 21 12 40 26
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Appendix E. Photos of living shoreline structures
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Fig. E.1. Photographs of the constructed oyster reefs taken at the study site at 9:00 a.m. on February 5, 2018 (Photo credits: (a) Qin Chen and (b) Hongqing Wang).
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