
Ocean Engineering 257 (2022) 111669

Available online 6 June 2022
0029-8018/© 2022 Elsevier Ltd. All rights reserved.

Data-driven modeling of wind waves in upper Delaware Bay with 
living shorelines 

Nan Wang a, Qin Chen b,*, Ling Zhu c, Hongqing Wang d 

a Department of Civil and Environmental Engineering, Northeastern University, 400 SN, Boston, MA, 02115, USA 
b Department of Civil and Environmental Engineering, Department of Marine and Environmental Sciences, Northeastern University, 471 SN, Boston, MA, 02115, USA 
c Department of Civil and Environmental Engineering, Northeastern University, 400 SN, 360 Huntington Avenue, Boston, MA, 02115, USA 
d U.S. Geological Survey, Wetland and Aquatic Research Center, Baton Rouge, LA, 70803, USA   

A R T I C L E  I N F O   

Keywords: 
Living shorelines 
Constructed oyster reefs 
Fully connected neural networks 
Long short-term memory 
Wave power reduction 

A B S T R A C T   

Living shoreline projects have been built to preserve coastal ecosystems under future climate change and sea 
level rise. To quantify the wave power variation across living shorelines, the wave characteristics around the 
constructed oyster reefs (CORs) in upper Delaware Bay were investigated in this study. Wave parameters seaward 
and shoreward of CORs were recorded by wave gauges in early 2018. Four winter storms happened in this period 
and induced strong winds and coastal flooding at the study site. To estimate the wind wave characteristics across 
the CORs on a yearly basis, soft computing-based models combining fully connected neural networks and long 
short-term memory were developed to extend the two-month energetic wave measurements. The results show 
that when CORs were emergent or slightly submerged, the averaged wave height attenuation was about 39.8% 
from the offshore gauge to the nearshore gauge (behind CORs) during 2018–2020, owing to the combined effect 
of nearshore bathymetric changes and CORs. Furthermore, it was found that the annually averaged wave power 
reduction from offshore to nearshore at the study site was about 30.0% in 2018, 2019, and 2020. This study 
provides a novel framework to predict long-term wave characteristics based on short-term wave measurements 
using soft computing-based models.   

1. Introduction 

Delaware Bay and its river estuaries sustain one of the most popu
lated regions and rich ecosystems in the world, providing nesting hab
itats for nearshore fish and shellfish communities (e.g., Baker et al., 
2004; Wang et al., 2021). However, due to energetic waves and storm 
surges, Delaware Bay coastlines have suffered chronic erosion with an 
estimated rate ranging from about 0.1 to 1 m/yr (Kukulka et al., 2017). 
Recently, many living shoreline restoration projects have been devel
oped along the Northeast and Mid-Atlantic coasts in the United States to 
restore and protect coastal ecosystems and mitigate the impact of sea 
level rise. Since the global sea level was estimated to increase from about 
0.2 m to over 1.0 m by 2100 (e.g., Schwimmer, 2001; Kopp et al., 2014), 
Delaware Bay shorelines and salt marshes will become even more 
vulnerable. Therefore, an improved understanding of the effectiveness 
of living shoreline structures can help inform the success of future 
restoration projects. 

Living shoreline projects have been constructed globally using 

various materials, such as freshwater plants, mangroves, and oyster reefs 
(Bayraktarov et al., 2016; Besse et al., 2018; Smith et al., 2020). Wiberg 
et al. (2019) monitored waves around the restored intertidal oyster reefs 
in the southern Delmarva Peninsula, USA, in July 2011, February 2012, 
July 2014, and May 2017. They found that the wave energy approaching 
the shoreline can be reduced by oyster reefs when the edge elevations 
are close to the mean sea level (MSL). In contrast, oyster reefs have a 
negligible impact on waves in deeper water, so reefs cannot protect 
marshes with high surface elevations. Zhu et al. (2020) conducted a field 
experiment to study variations in wave characteristics and wave spectra 
across constructed oyster reefs in a small cove in upper Delaware Bay 
from January 31 to April 2, 2018. They demonstrated that the wave 
power attenuation across living shorelines depends on several factors, 
such as the reef crest freeboard, the surrounding bathymetry, and the 
local wave environment. Overall, the success of living shoreline projects 
and the associated long-term (e.g., longer than one year) ecological 
benefits heavily rely on an accurate examination of wave power varia
tion across the living shorelines, since the erosion rates are highly 
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correlated with wave power (e.g., Schwimmer, 2001; Priestas et al., 
2015; McLoughlin et al., 2015; Sanford and Gao, 2018; Everett et al., 
2019). 

Smith et al. (2020) provided a scoping review of living shoreline 
research and found that most projects only offered a short-term snapshot 
of performance with spatially and temporally limited in-situ measure
ments, such as Wiberg et al. (2019) and Zhu et al. (2020) mentioned 
above. However, long-term wave data are essential to thoroughly 
examine wave power changes across living shorelines. Since collecting 
such field measurements is usually costly, different models can be 
employed to simulate long-term wave conditions around living shore
lines, such as numerical (e.g., Booij et al., 1999; Chen et al., 2000; 
Tolman, 1991) and soft computing-based wave models (e.g., Makar
ynskyy, 2006; Parker and Hill, 2017). 

During the past several decades, considerable progress has been 
made in physics-based wave models based on wave action and mo
mentum balance principles. Different wave models can be employed to 
simulate spatial and temporal characteristics of waves in shallow bays 
(e.g., Pareja-Roman et al., 2019; Chen et al., 2018; Mariotti et al., 2010; 
Salatin et al., 2021). For example, Kukulka et al. (2017) combined the 
Regional Ocean Modeling System (ROMS, Shchepetkin and McWilliams, 
2005) and the spectral model of Simulating Waves Nearshore (SWAN, 
Booij et al., 1999) to investigate surface wave dynamics in Delaware 
Bay. They revealed that bathymetric refraction could shelter the bay 
from energetic swell waves originating from the open ocean. Similarly, 
Chen et al. (2018) coupled ROMS and SWAN to simulate waves in the 
Delaware Estuary. They found that during southerly wind conditions, 
wave energy is near equilibrium in the lower bay, and waves in the 
midestuary are attenuated by the combination of whitecapping and 
bottom friction. Mariotti et al. (2010) applied the numerical hydrody
namic model WWTM (Wind Wave Tidal Model, Carniello et al., 2011) to 
the lagoons of the Virginia Coast Reserve. They found that the storm 
surge could significantly influence the marsh edge erosion rate by 
increasing the lagoon water level. Although physics-based numerical 
models generally provide satisfactory results, direct application of these 
models to living shoreline projects can encounter some challenges. For 
instance, physics-based numerical models require a precise description 
of initial and boundary conditions to effectively capture the downstream 
wave and flow fields (Kissas et al., 2020). Thus, nested computational 
domains may be required to provide accurate boundary conditions, 
which are usually time-consuming to apply. Additionally, traditional 
wave models may involve the cumbersome generation of computational 
meshes for complicated geometries. By contrast, soft computing-based 
models can be used as surrogates to simulate wave responses to living 
shorelines without a high demand for computational resources. 

Machine learning methods, such as artificial neural network (ANN), 
support vector machine (SVM), long short term memory (LSTM), 
Bayesian Network (BN), and decision trees (DT) have been widely 
adopted in soft computing-based models for simulating waves in the last 
several decades (e.g., Deo and Naidu, 1998; Deo et al., 2001; Corne
jo-Bueno et al., 2016; Sadeghifar et al., 2017; Oh and Suh, 2018; 
Stringari et al., 2019; Zheng et al., 2020; Chen et al., 2021; Wei, 2021; 
Miky et al., 2021; Jörges et al., 2021; Elbisy and Elbisy, 2021; Bento 
et al., 2021; Mares-Nasarre et al., 2021; Lee et al., 2021; Wei and 
Davison, 2022). For example, James et al. (2018) used ANNs and SVMs 
to surrogate SWAN for predicting significant wave height (Hs) and 
characteristic wave period, respectively. Their model ran over 4,000 
times faster than SWAN and exhibited a similar accuracy for wave 
prediction in the region of interest. Malekmohamadi et al. (2011) 
compared the performance of SVM, BN, ANN, and Adaptive Neuro FIS 
methods for mapping wind data to wave height in Lake Superior, USA, 

and found that all these methods, except BN, provided acceptable pre
dictions for significant wave height, Hs. Wang et al. (2022) proposed a 
hybrid approach integrating the physics-based model with machine 
learning algorithms (i.e., BRT and ANN) to estimate wave parameters 
and identify sources of error in physics-based models (i.e., SWAN). 
Other machine learning applications include applying the LSTM for 
forecasts and reconstructions of Hs and wave power (Pirhooshyaran and 
Snyder, 2020), and using fuzzy systems to predict Hs and wave energy 
flux at one buoy location along the California Coast with observation 
data from nearby buoys as inputs (Cornejo-Bueno et al., 2016). These 
soft computing-based algorithms provide a new tool to solve wave 
prediction and classification problems in coastal and estuarine systems. 

As mentioned above, most existing studies on wave responses to 
living shoreline structures focused on field measurements, which were 
relatively short in duration (i.e., days to months). To better investigate 
the wave power variation across the living shoreline structures, we 
proposed using soft computing-based methods to extend the short-term 
measurement for long-term analysis. To the best of the authors’ 
knowledge, soft computing-based methods have not been applied to 
examine the wave height changes across living shoreline structures. The 
purpose of this study is twofold: (i) to develop a framework for inves
tigating long-term wind wave characteristics based on short-term wave 
measurements with soft computing-based models, and (ii) to examine 
the wave power variation across the constructed oyster reefs (CORs) in 
upper Delaware Bay. A test of the data representativeness is proposed in 
the framework to examine whether the measured wave parameters in a 
short period can be used to predict long-term wave processes. This step 
is crucial to ensure that the predicted long-term wave characteristics are 
reliable (Section 2.3.2). Compared to physics-based numerical models, 
using soft computing-based models can significantly reduce the 
computation cost. Therefore, this framework can be applied as a sur
rogate to estimate long-term wave characteristics based on short-term 
wave measurements without a high demand for computational 
resources. 

2. Methods 

2.1. Study area 

The construction of 3,000 ft (915 m) of living shorelines and 
breakwaters was carried out along the coastline between Money Island 
Marina and Gandys Beach in upper Delaware Bay in 2016. The project 
aimed to rebuild salt marshes and adjacent uplands ruined by Hurricane 
Sandy in 2012 and increase the resistance of shorelines to future storms 
and erosion (Wang et al., 2021). The location of our study site is at a 
small cove close to Money Island in upper Delaware Bay (Fig. 1). The 
CORs were built of prefabricated concrete blocks, with dimensions 
about 2.4–7 m long, 0.5–0.9 m wide, and 0.4–0.8 m tall, and the mean 
distance between neighboring CORs is 3.9 m (Fig. E1). Since the tides 
are predominantly semi-diurnal with a range exceeding 2 m at the study 
site, the CORs are submerged during high tides and completely exposed 
during low tides. More details of the geometry of the CORs and the reef 
setup can be found in Zhu et al. (2020) and Wang et al. (2021). 

2.2. Wave measurements 

Six bottom-mounted OSSI (Ocean Sensor Systems Inc) wave gauges 
(WG) were deployed on Gandys Beach from January 31 to April 2, 2018 
(Fig. 1). The wave gauges were set to record a burst of 20-min every 30 
min (i.e., 48 bursts per day) with a sampling frequency of 10 Hz, so that 
short wind waves could be resolved with a high sampling frequency 
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during this study period. To investigate the wave height variation across 
the living shorelines, we focused on the wave characteristics at WG3, 
WG6, WG5, and WG1 in this study, because they were deployed along a 
transect that crosses the CORs. 

The data processing and analysis applied to the raw time series 
pressure data closely followed the methods outlined in Karimpour and 
Chen (2016). The raw pressure data were first converted to water depth, 
and then a wave spectral analysis was performed to extract the relevant 
wave parameters. The Ocean Wave Analyzing Toolbox (Oceanlyz v1.4) 
was employed for the wave spectral analysis (Karimpour and Chen, 

2017; Wang et al., 2020). Generally, the marsh edge erosion is attributed 
to both remotely generated swell waves and locally generated wind 
waves. However, it was found that swell energy remains nearly un
changed on the seaward and shoreward sides of CORs (Zhu et al., 2020; 
Wang et al., 2021). Moreover, since energetic wave conditions are 
characterized by wind-driven seas at the study site (e.g., Kukulka et al., 
2017; Chen et al., 2018), we only considered the influence of sea waves 
in this study. It is worth mentioning that the proposed framework can 
also be used to predict the swell waves with some adjustments. More 
details can be found in Section 4.2. 

Fig. 1. (a) A map showing the study area (green dot, i.e., Gandys Beach) and nearby NOAA wind stations (red dots) in Delaware Bay. (b) A map showing the location 
of the wave gauges (yellow dots) and the shoreline of the study area. (c) A map showing the locations of wave gauges with the locations of the CORs represented by 
the dashed lines. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The measured significant wave height, peak wave period, and local water depth at WG3 from January 31 to April 2, 2018 (wind sea only). The shaded areas 
represent the four nor’easters in March 2018: Riley, Quinn, Skylar, and Toby. 
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The method in Hwang et al. (2012) was employed to separate sea and 
swell energies. Given that Tp from Oceanlyz v1.4 can be miscalculated 
when Hs is small, small waves with Hs < 7 cm were removed from the 
rest of the analysis. Fig. 2 shows an example of wave parameters and 
water depth measured at WG3. Four nor’easters happened during the 
two months of 2018 (i.e., Riley on March 2, Quinn on March 7, Skylar on 
March 14, and Toby on March 21) and induced strong winds, large 
precipitation, and coastal flooding to the study site, providing an 
informative dataset to design soft-computing based models for predict
ing wind wave parameters. The feasibility of employing the developed 
models to estimate wave parameters around CORs throughout the years 
was further examined in Section 2.3.2. 

2.3. Data-driven models 

In this study, the wave measurements are available for two months in 
2018 (i.e., from January 31 to April 2, 2018). To estimate wave fields 
around the CORs over a longer period (e.g., yearly), artificial neural 
networks (ANN) were designed to study nonlinear and complex re
lationships between wave parameters and forcing functions based on the 
2-month measurements. Specifically, we developed four composite 
ANNs to predict wind wave characteristics at each wave gauge location 
(i.e., WG3, WG6, WG5, and WG1) in 2015, 2016, 2018, 2019, and 2020. 
Since CORs have not been constructed until the summer of 2016, the 
simulated wave field behind CORs (i.e., WG1 and WG5) was unreal in 
2015 and 2016. The composite networks were designed based on prior 
knowledge of wave responses to forcing functions and the relationship 
between wave parameters. Specifically, the wind and water depth data 
were selected as input features to estimate wind seas at the study site 
over the years, because both of them are critical for predicting wind 
waves in a shallow estuary (Karimpour and Chen, 2017). More details 
about the inputs and network structures can be found in Sections 2.3.3 

and 2.3.4. 
It should be noted that a representative test is required to examine 

whether the measured wave parameters during the two months can be 
used for studying long-term wave fields (Section 2.3.2). This step aims at 
ensuring that the predicted long-term wave characteristics are reason
able because ANNs cannot do extrapolation (Willard et al., 2020). The 
methods applied to determine winds and wave fields at the study site are 
shown in the following subsections, providing a framework to investi
gate long-term wind wave characteristics based on short-term wave 
measurements using soft computing-based models. 

2.3.1. Spatial variation of winds in Delaware Bay 
To study the wave height variation across the CORs, the wind field in 

Delaware Bay was examined first because the wind is the main driving 
force of wind seas. Due to the variability in estuarine wind fields 
(Mariotti et al., 2018), the wind data from meteorological stations 
scattered throughout Delaware Bay were used to analyze wind sea 
characteristics at the study site. As a result, the wind data from five 
NOAA (National Oceanic and Atmospheric Administration) stations at 
DELD1, SJSN4, BRND1, LWSD1, and CMAN4 were collected (Fig. 1). 
The wind roses in 2015 and 2016 manifest the significant spatial 

Fig. 3. Wind roses measured at stations DELD1, SJSN4, BRND1, LWSD1, and CMAN4 in 2015 and 2016.  

Table 1 
Wind data availability at DELD1, SJSN4, BRND1, LWSD1, and CMAN4. Numbers 
represent the months when wind data are available.  

NOAA stations 2015 2016 2018 2019 2020 

8551762 DELD1 1–12 1–12 1–12 1–12 1–10 
8537121 SJSN4 1–12 1–12 1, 8-12 1-5, 9-12 1–6 
8555889 BRND1 1–12 1–12 1–11 – 1–10 
8557380 LWSD1 1–12 1–12 1–12 1–12 1–10 
8536110 CMAN4 1–12 1–12 1–12 1–12 1–10  
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variations of wind fields in Delaware Bay (Fig. 3). This finding is 
consistent with the statement in Kukulka et al. (2017), indicating that 
the relationship between the wind forcing and wave responses may not 
be thoroughly explored if the wind data from only one or two stations 
are applied. Additionally, the measured Hs at WG3 exhibited a high 
dependency on the wind speed at all five stations (Fig. B1 (a)). There
fore, we employed the wind data at all five stations from January 2015 
to October 2020 for further analysis in this study. However, there are 
blocks of missing data (about 9%) at the five stations during the study 
period (Table 1). To facilitate the wave climate prediction in 2015, 
2016, 2018, 2019, and 2020, the missing wind data over the five years 
were filled first before quantifying the changes of wave power across the 
CORs over the years (Section 2.3.3). 

2.3.2. Representativeness of the wind field and water level over the 2-month 
deployment 

In this study, a representative test was utilized to examine whether 
the measured wave parameters during the two months can be used to 
predict long-term wave processes. This step is necessary because ANN 
models cannot generalize to estimate scenarios that are unseen in the 
training dataset (Willard et al., 2020). Given that the wind speed, wind 
fetch, and water depth are critical to predicting wind waves in a shallow 
estuary (Karimpour et al., 2017), we investigated whether the wind and 
water depth combinations during the two months of 2018 can represent 
the ones throughout the years (i.e., in 2015, 2016, 2018, 2019, and 
2020). The water level measurement at station SJSN4 (Fig. 1 (a)) was 
used to represent the water depth at the study site since it is closest to the 

CORs. Hereafter, the wind and water depth combination is considered as 
the forcing of wind wave generation in this work. 

The following steps were taken to quantify the representativeness of 
the forcing of wave generation during the two months. First, the hourly 
datasets of wind direction, wind speed, and water level during the two 
months of 2018 and in 2015, 2016, 2018, 2019, and 2020 were uni
formly divided into 36 directional bins (i.e., 0◦-10◦, 10◦-20◦, 20◦-30◦, …, 
350◦-360◦), 60 speed bins (i.e., 0–0.5, 0.5–1, 1–1.5, …, 29.5–30 m/s), 
and 20 water level bins (i.e., − 2~-0.18, − 0.18~-0.16. − 0.16~-0.14, …, 
1.8–2 m), respectively. The three groups of bins were then combined 
into 43,200 cubic divisions (i.e., 36 × 60 × 20 = 43,200). A forcing was 
considered representable by the 2-month forcings if that specific data 
fell into one of the divisions that were also taken by the 2-month data. 
Fig. 4 shows an example of hourly wind direction, wind speed, and water 
level data at DELD1 in 2019 versus the ones in February and March 
2018. To better visualize the dataset, we projected the three- 
dimensional space into two-dimensional spaces (i.e., Fig. 4 (b), Fig. 4 
(c), and Fig. 4 (d)) with meshes representing the bins of wind speed, 
wind direction, and water level. 

Note that the wind fetch plays a significant role in generating wind 
waves in shallow estuaries (Karimpour et al., 2017). The wave height at 
the study site could be exceedingly small when winds were from specific 
directions because of a short fetch. Table 2 presents the wind directions 
at different stations corresponding to small wave height measured at 
WG3 from January 31 to April 2, 2018 (Fig. B1 (b)). In other words, the 
fetch would be so short that winds have very limited influence on the 
wave field at the study site if the wind direction is within the listed range 

Fig. 4. (a) Hourly wind direction, wind speed, and water level data at DELD1 in 2019 versus February and March 2018. (b) wind direction and wind speed at DELD1 
in 2019 versus February and March 2018. (c) wind speed and water level at DELD1 in 2019 versus February and March 2018. (d) wind direction and water level at 
DELD1 in 2019 versus February and March 2018. The black blocks correspond to the wind direction listed in Table 2. 
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in Table 2. Since waves with small energy (e.g., smaller than 0.2 m at 
WG3) are less critical to examining the influence of CORs in this study, 
wind data at different stations were exempt from the representative test 
if the wind direction is within the range listed in Table 2. However, it is 
worth emphasizing that the composite wave models were developed 
using all available wind data (0◦-360◦) to ensure the obtained models 
could be predictive in general scenarios. 

The results indicate that the average percentage of annual forcings 
that could be represented by the 2-month data was 94.2% at the five 
stations in 2015, 2016, 2018, 2019, and 2020 (Table 3). Given that the 
2-month forcings of wave generation could largely represent the ones 
over the five years, the short-term measured wave parameters could be 
applied to develop ANN models to predict wave parameters at the study 
site over the five years. 

2.3.3. Wind data prediction 
To estimate the wave climate in 2015, 2016, 2018, 2019, and 2020, 

the missing wind data over the five years were filled first because it 
significantly affected the wave field at the study site. Thus, two ANN 
wind models were developed to fill gaps in the wind dataset at SJSN4 
and BRND1 in 2018, 2019, and 2020 based on the data in 2015 and 
2016, when the wind data were available almost all the time. Specif
ically, ANN wind models were first trained, validated, and tested with 
the dataset in 2015 and 2016. Then the missing data at the two stations 
in 2018, 2019, and 2020 were filled with the predictions from the 
developed ANN wind models. Table 4 shows the input features and la
bels of ANN models for simulating wind data at SJSN4 and BRND1. The 
input features were selected based on the locations and availability of 
the wind data at different stations. For example, winds at LWSD1 and 
CMAN4 were used to fill the gaps at BRND1, considering both locations 
(Fig. 1 (a)) and the data availability (Table 1) at these two stations. 

The network structure of three hidden layers of 30 nodes was applied 
for estimating the missing wind data at SJSN4 and BRND1 stations. The 
testing and validation data for both ANN models contained continuous 
hourly datasets from January 01, 2016 to 03/15/2016 and January 04, 
2016 to 06/15/2016, respectively. The training data included the rest of 
the dataset in 2015 and 2016. Hyperbolic Tangent was applied as the 
activation function. Levenberg-Marquardt backpropagation (μ =

0.001) was used as the network training function. Normalization was 
applied to keep the input and output between − 1 and 1 so that the 
negative influence of the large difference between different parameters 
could be avoided. The Nguyen-Widrow method was employed for 
initializing the weight and bias values for each layer. Early stopping was 
applied to simulations to prevent overfitting. Specifically, the training 
was terminated when the validation error increased for six iterations, 
and weights and biases were returned at the minimum of the validation 
error. The MATLAB Deep Learning Toolbox was utilized to develop the 
ANN wind models. 

2.3.4. Water depth and wave data prediction 
In this study, four composite wave models were trained and vali

dated to estimate d (local water depth), Hs, and Tp based on the 
measured wave characteristics at WG3, WG6, WG5, and WG1 from 
January 31 to April 2, 2018. Then the developed composite wave models 
were applied to simulate wave parameters at the study site in 2015, 
2016, 2018, 2019, and 2020. The composite networks combining long 
short-term memory (LSTM) and ANN were designed based on prior 
knowledge of wave responses to forcing functions and the relationship 
between wave parameters. Specifically, the hourly u- and v-wind speed 
and water level data measured at the NOAA stations were applied as 
inputs for simulating local water depth (d) at each wave gauge location 
using the LSTM method (Table 5, Fig. 5). Then the network for modeling 
Hs was developed with wind and water depth data as input features. 
Given that the information of Hs is also essential for predicting Tp, Hs 

was further used as the input together with the wind and water depth for 
the Tp prediction (Table 5). As a result, the loss function of the entire 
composite network was defined as the sum of error functions of d, Hs and 
Tp. It is worthwhile to mention that although three independent net
works could also be utilized for predicting d, Hs, and Tp separately, they 
were not applied in this study as the error propagation could occur when 
the predicted d and Hs were taken as inputs for estimating Tp by another 
independent ANN model. The composite networks proposed in this 
study can reduce error propagation by estimating d, Hs, and Tp simul
taneously with a unified network architecture, as shown in Fig. 5. 

Pytorch was employed for developing the composite networks in this 
study. The maximum learning epoch and mean square error (MSE, 
defined in Appendix A) of predicted parameters were used to control the 
training procedure. Specifically, the training procedure was stopped 
once the iteration number reached 1000 or one of the MSEs of d, Hs, or 
Tp ceased to decrease. The sequence length for the LSTM models was set 
to 24. Hyperbolic Tangent was applied as the activation function. The 
initial weights in each layer were set to follow Xavier normal distribu
tion (Glorot and Bengio, 2010), and the initial biases were all set to zero. 
Normalization was employed to keep inputs and outputs between − 1 
and 1 so that the negative influence of the significant difference between 
various parameters could be avoided. The Adam (adaptive moment 
estimation) optimization algorithm was used as the network training 
function (Kingma and Ba, 2014). The initial learning rate was set to 0.01 
and then decreased to 0.001 after 500 iterations. The training was 
performed on an Intel Core i7 with 32 GB memory, and the cost was 
approximately 30 s. 

The network structure can have a crucial influence on the prediction 
skill of ANNs. Therefore, 1,164 ANNs (2–5 hidden layers of 10–300 

Table 2 
The wind directions at different stations that have little influence on the wave 
field at the study site.  

Stations DELD1 SJSN4 BRND1 LWSD1 CMAN4 

Wind direction 0◦- 130◦ 0◦ - 130◦ 0◦ - 150◦ 0◦ - 140◦ 0◦ - 100◦

Table 3 
The percentages of forcings of wave generation in different years that can be 
represented by the 2-month data in 2018.   

DELD1 SJSN4 BRND1 LWSD1 CMAN4 

2015 96.1% 94.5% 95.8% 95.3% 94.2% 
2016 95.1% 92.1% 95.1% 94.8% 93.0% 
2018 95.0% 91.1% 94.5% 93.9% 92.4% 
2019 95.2% 95.3% 95.0% 93.3% 92.2% 
2020 95.1% 94.5% 94.1% 93.6% 92.7%  

Table 4 
The input features and labels of ANN models for predicting wind data at BRND1 
and SJSN4.  

Wind 
models 

Input features Labels 

BRND1 u- and v-wind speed data at LWSD1 & 
CMAN4 

u- and v-wind speed data at 
BRND1 

SJSN4 u- and v-wind speed data at DELD1 & 
BRND1 

u- and v-wind speed data at 
SJSN4  

Table 5 
Input features and labels for predicting d Hs, and Tp using composite networks.  

Prediction Input features Labels 

d u- and v-wind speed data at SJSN4 & BRND1, 
water level data from SJSN4 

Measured d at each 
gauge location 

Hs u- and v-wind speed data at all five stations, 
predicted d at each gauge location 

Measured Hs at each 
gauge location 

Tp u- and v-wind speed data at all five stations, 
predicted d, and Hs at each gauge location 

Measured Tp at each 
gauge location  
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nodes) were created to determine the optimum network structure for 
each composite wave model at different gauge locations. The number of 
hidden layers and nodes for networks to simulate d, Hs and Tp was kept 
the same. To quantify the prediction skills of composite networks with 
different structures, the composite performance score (CPS) was calcu
lated based on error matrices, including bias, SI, and R2 (Appendix A). As 
a result, the structure providing the highest total composite performance 
score (TCPS), which equals the mean value of CPSs for the prediction of 
d, Hs, and Tp, was considered to be the optimal one. 

Given the limited data samples in this study, a 5-fold block cross- 
validation method was used for selecting the optimum network struc
ture for each ANN wave model (Fig. 6). The testing dataset contained 
continuous hourly data from March 10 to March 15, 2018 (dark orange 
part in Fig. 6), which was employed as an independent measurement of 
network ability after training. During this period, large waves were 
observed at the study site due to nor’easter Skylar, so the prediction 
skills of the developed composite models could be well tested. The rest of 
the dataset was then partitioned into five blocked subsamples. For each 
structure, the network was trained five times separately so that every 
subsample was utilized once for validation (Zheng et al., 2020). As a 
result, five TCPSs could be obtained based on the validation results for 
each structure, and the mean value was used to represent the prediction 
performance of the particular structure. The optimal network structure 
was identified by comparing the TCPSs of all structures. 

3. Results 

3.1. Filling the missing wind data using ANN wind models 

As part of the wind data were missing at stations SJSN4 and BRND1 
during the study period (Table 1), ANN wind models were trained to fill 
the gaps so that wave conditions around CORs could be examined 
throughout the years. Fig. 7 shows the comparison between observed 
and predicted easterly and northerly wind components at SJSN4 in 2015 
and 2016. The results show that the prediction ability of the ANN wind 
model at station SJSN4 is high, with the R2 value around 0.87 and RMSE 
around 1.65 m/s. 

To further validate the ANN wind model at SJSN4, the simulated 
wind data were compared with available measurements at SJSN4 in 
2018 (Fig. B2). The small RMSE values of predicted wind components 
indicated that the developed ANN wind model could fill missing wind 
data at SJSN4 with sufficient accuracy. The same procedure was carried 
out to fill data gaps at BRND1 with the data at LWSD1 and CMAN4 as 
inputs (Table 4). The results show that the developed wind ANN model 
at BRND1 also has an excellent prediction ability. Therefore, all missing 
wind data at SJSN4 and BRND1 were filled by the ANN wind models, so 
that the wave power variation across the CORs can be examined 
throughout the years. 

3.2. Wave field simulation by composite networks 

To determine the optimal network structures for composite wave 
models, a total of 1,164 structures (2–5 hidden layers with 10–300 nodes 
per layer) were examined with the 5-fold block cross-validation method 
for simulating wave parameters at each WG location. Fig. 8 shows an 
example of TCPSs generated by selected composite wave models with 
different network structures at WG3 (2–5 hidden layers with 8, 16, 32, 
64, 128, 256 nodes per layer). The results indicate that the simulation 
skills are similar when the networks have 2 or 3 hidden layers. The 
model shows overfitting patterns when the structure has 3 or 4 layers 
with more than 200 nodes per layer, reducing the simulation accuracy. 
The optimal structure for the network at WG3 was identified as 3 hidden 
layers of 12 nodes with the highest TCPS of 0.92. The optimal ANN 
structures for modeling wave parameters at other WG locations are 
shown in Table D1. 

Fig. 5. Schematic architecture of the composite neural networks for predicting d, Hs, and Tp at each gauge location in 2015, 2016, 2018, 2019, and 2020.  

Fig. 6. The dataset separation for the 5-fold block cross-validation.  
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3.2.1. Prediction of local water depth 
Fig. 9 shows the modeled local water depth versus observations at 

each gauge location during the testing phase from March 10 to March 
15, 2018. The results revealed that the prediction skills of all four 

models were very high, with R2 and RMSE values close to 0.96 and 
0.094 m, respectively. The developed composite models were then 
applied to estimate local water depth in 2015, 2016, 2018, 2019, and 
2020 so that the wave field around the CORs could be examined over the 
years. 

3.2.2. Prediction of Hs and Tp 
The comparisons between the simulated and measured Hs and Tp 

during the testing phase are shown in Fig. 10 and Fig. 11. The composite 
wave models showed high prediction skills for simulating Hs at each WG 
location, with R2 values around 0.85 and RMSE around 0.06 m. The 
simulation accuracy of Tp was slightly lower, with R2 values around 0.70 
and RMSE around 0.35 s. Therefore, the four composite models can be 
expected to hindcast wave parameters of Hs and Tp with sufficient ac
curacy during the years of 2015, 2016, 2018, 2019, and 2020. The time 
series of the predicted and observed wave parameters at WG3 and WG5 
in 2018 are presented in Fig. C1. 

Fig. 7. Comparison between the observed and ANN-predicted easterly and northerly wind components at SJSN4 in 2015 and 2016. The positive values of u- and v- 
wind represent the westerly and southerly wind components, respectively. The negative values of u- and v-wind correspond to the easterly and northerly wind 
components, respectively. Different colors correspond to different counts of data points in each bin (50 bins were specified in x and y directions). (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. The TCPSs generated by the composite wave models at WG3 with 
different network structures. 
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Fig. 9. Comparison between the measured and simulated local water depth at each gauge location (only contain the testing data).  

Fig. 10. Comparisons between measured and predicted Hs at different gauge locations in 2018 (only contain the testing data).  

Fig. 11. Comparisons between measured and predicted Tp at different gauge locations in 2018 (only contain the testing data).  
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4. Discussion 

4.1. Spatial variations of wave heights 

To examine the wave height variation across the living structures in 
Gandys Beach, Hs offshore to CORs (WG3) and Hs protected by CORs 
(WG5) were compared during the years 2018, 2019, and 2020 (after the 
construction of oyster reefs). According to Zhu et al. (2020), a significant 
correlation can be observed between the wave height variations and the 
ratio of the crest freeboard (Rc) to offshore wave heights. Therefore, we 
used Rc/Hs, WG3 as an indicator for investigating the wave height 

changes across the CORs, as it could combine wave properties and 
structure characteristics (Wiberg et al., 2019). In this study, Rc was 
defined as the vertical distance from the water surface to the crest of 
CORs. The reef crest was considered as emergent, slightly submerged, 
and fully submerged when Rc/Hs, WG3 > 0, − 1.6 < Rc/Hs, WG3 < 0, and 

Fig. 12. Comparisons between Hs at WG3 and WG5 during the years 2018, 2019, and 2020.  

Fig. 13. The annually averaged wave power at WG3, WG5, and WG1 in 2015, 
2016, 2018, 2019, and 2020. The CORs have not been constructed until the 
summer of 2016, so the wave powers at WG1 and WG5 were not real in 2015 
and 2016 and marked with dashed lines in the plot. 

Table 6 
The annually averaged wave power at WG3, WG5, and WG1 in 2015, 2016, 
2018, 2019, and 2020. The CORs have not been constructed until the summer of 
2016, so the wave powers at WG1 and WG5 were not real in 2015 and 2016.   

Wave power (W/m) Wave power reduction from WG3 to WG5 

WG3 WG5 WG1 

2015 78.9 52.8 40.5 33.1% 
2016 98.1 61.9 48.1 36.9% 
2018 101.0 70.3 49.2 30.4% 
2019 80.4 55.2 45.3 31.3% 
2020 82.0 58.9 48.8 28.1%  

Table 7 
The top 50% wind speed at each station and the percentages of wind data met 
both requirements over the five years.   

DELD1 SJSN4 BRND1 LWSD1 CMAN4 

Top 50% wind speed 2.7 m/s 5.5 m/s 6.7 m/s 4.2 m/s 3.6 m/s   

DELD1 SJSN4 BRND1 LWSD1 CMAN4 Average 

2015 28.2% 33.6% 28.2% 25.0% 30.4% 29.1% 
2016 30.4% 40.5% 31.8% 28.9% 34.6% 33.3% 
2018 31.8% 34.4% 37.3% 29.8% 36.7% 34.0% 
2019 28.8% 24.5% 24.3% 24.9% 30.3% 26.6% 
2020 28.8% 26.9% 28.0% 25.1% 27.0% 27.1%  
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Rc/Hs, WG3 < − 1.6, respectively. 
Fig. 12 compares the predicted Hs at WG3 and WG5 in 2018, 2019, 

and 2020. The results show that during low tides (Rc > − 1.6Hs, WG3), 
an average reduction rate of 39.8% in wave height (reduction rate =
(Hs, WG3 − Hs, WG5)/Hs, WG3) can be observed from the most offshore 
station (WG3) to the nearshore station behind CORs (WG5) over the 
three years. Note that complex nearshore wave transformation occurred 
between WG3 and WG5. The observed wave height changes from WG3 
to WG5 were mainly caused by the combined effect of bathymetric 
changes (e.g., depth-limited wave breaking at low tides) and the CORs 
(Zhu et al., 2020). Also, the Nantuxen point to the northwest of the study 
site could provide a shelter effect and reduce the wave height at WG5. 
While, during high tides, the wave height from WG3 to WG5 had an 
average rate of 19.7% reduction to 19.9% amplification over the three 
years. This can be explained by the fact that the wave shoaling and wave 
breaking could happen simultaneously when the reef crest was fully 
submerged. To validate this finding, we calculated the shoaling coeffi
cient (Ks, WG5) and the ratio between wave height and local water depth 
(wave breaks when Hs, WG5/dWG5 > 0.6) based on Battjes and Janssen 
(1978). The results indicate that shoaling and breaking happen simul
taneously during the high tide conditions with Rc < − 1.6Hs, WG3. 
Moreover, it was found that wave focusing occurred in the leeside area 
behind CORs during high tide conditions due to combined wave 
refraction and diffraction (Zhu et al., 2020). As a result, wave energy 
could easily transmit to the leeside area behind the structures with high 
water levels. 

The above findings of the effectiveness of CORs on wave height 
attenuation in 2018 are consistent with the analysis of Zhu et al. (2020), 
which focused on exploring the wave climate and wave spectral varia
tion at the same study site using measured data from January 31 to April 
2, 2018. They found that an average reduction rate of 41% in wave 
height was observed from WG3 to WG5 at low tide conditions during the 
two months. Also, they demonstrated that the wave height variation 
between WG3 and WG5 ranged from a 35% reduction to a 70% increase 
during high tide conditions, in line with our results. It is worth 
emphasizing that bathymetric refraction and depth-limited wave 
breaking play an important role in the observed wave height reduction 
and amplification across the CORs. 

4.2. Wave power changes across the CORs 

Wave parameters and local water depth data simulated by the data- 
driven models were utilized to calculate wave power P with the 
following equation: 

P=
ρgH2

s

16
cg (1)  

where cg is wave group velocity and ρ is water density. Fig. 13 and 
Table 6 summarize the annually averaged wind sea wave power at WG3, 
WG5, and WG1 in 2015, 2016, 2018, 2019, and 2020. Since CORs have 
not been constructed until the summer of 2016, wave powers at WG1 
and WG5 in 2015 and 2016 were not real and were marked with dashed 
lines in the plots to avoid confusion. The results show that the annually 
averaged wave power reduction rate from WG3 to WG5 was about 
30.0% in 2018, 2019, and 2020 (Table 6). Therefore, the wave power 
offshore could be effectively reduced across the living shoreline project 
area at the study site owing to both the nearshore bathymetric effect and 
the CORs. 

The results show that the annually averaged wave power generally 
increased from 2015 to 2018, then went down in 2019 and went up 

again in 2020 at the study site. To validate this pattern, the wind con
ditions were further investigated over the five years since wind is the 
driving force of wind seas. The percentage of winds with high speed and 
long fetch distance was computed at each station over the five years 
(Table 7). Specifically, the percentage of winds that satisfied both of the 
following requirements were calculated: (a) the wind direction was 
outside the range listed in Table 2, and (b) the wind speed was the top 
50% of data at each station over the five years. As a result, the per
centages of winds (averaged over stations) that met both conditions are 
29.1% in 2015, 33.3% in 2016, 34.0% in 2018, 26.6% in 2018, and 
27.1% in 2020, consistent with the observed variation pattern of the 
annually averaged wave power shown in Fig. 13. 

This study did not include swell wave variation analysis since swell 
energy remains nearly unchanged on the seaward and shoreward sides 
of CORs (Zhu et al., 2020; Wang et al., 2021). However, it is worth 
mentioning that the proposed framework can also be used to estimate 
swell waves with different input features and labels. Specifically, the 
input features include wave boundary conditions (i.e., outside the bay) 
and water levels, and the labels are the swell wave parameters (e.g., Hs 
and Tp). Furthermore, the test of data representativeness is also required 
before using the developed model for predicting swell waves over 
multiple years. In other words, we need to validate if the input features 
for predicting swell waves over the years can be represented by the ones 
during short-term field measurements. 

5. Conclusions 

Recently, many living shoreline projects have been built to restore 
and protect coastal ecosystems along the U.S coasts. A deeper under
standing of the wave power variation around the living shoreline 
structures at different time scales can help to achieve long-term 
ecological benefits. In this study, we investigated the long-term wave 
characteristics across the CORs based on the short-term wave mea
surements in Gandys Beach in upper Delaware Bay. Six wave gauges 
were deployed in Gandys Beach from January 31 to April 2, 2018, 
providing an informative dataset of the wave climate around the CORs 
during winter storms. This study developed a framework to estimate 
long-term wind wave characteristics based on the short-term represen
tative wave measurements using soft computing-based models (i.e., 
ANN and LSTM), which enabled the examination of the wave power 
variation across the CORs over multiple years. 

The wind field in Delaware Bay was investigated first since it is the 
main driving force of wind seas. Due to the significant variability in 
estuarine wind fields, the wind data from five NOAA stations at DELD1, 
SJSN4, BRND1, LWSD1, and CMAN4 were employed in the analysis. 
ANN wind models were developed to fill the missing data at SJSN4 and 
BRND1 during the study period. Then the representativeness of the wind 
and water level during the two months in 2018 was tested to determine 
whether the measured wave parameters could be employed for studying 
the wave field over multiple years. It was found that the average per
centage of annual forcings that could be represented by the 2-month 
data was 94.2% in 2015, 2016, 2018, 2019, and 2020. Given that the 
2-month forcings of wave generation could largely represent the ones 
over the five years, the short-term measured wave parameters were used 
to train ANN models for studying the wave height changes across the 
nearshore with the CORs throughout the years. Thus, based on the 2- 
month wave measurements, four composite ANN networks were 
developed to estimate wave parameters at WG3, WG6, WG5, and WG1 
using the wind and water levels as input features. The composite ANN 
models showed high prediction skills for simulating d, Hs, and Tp at each 
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sensor location, with the values of R2 around 0.96, 0.85, and 0.70, 
respectively. Therefore, the developed models could hindcast the wave 
parameters in 2015, 2016, 2018, 2019, and 2020 with sufficient 
accuracy. 

To examine the wave height variations across the living shoreline 
project area, we compared Hs offshore to the CORs and Hs protected by 
the CORs at the study site. The results show that the wave energy could 
be considerably reduced when the oyster reef crests were emergent or 
slightly submerged, leading to wave height reduction by an average rate 
of 39.8% in 2018, 2019, and 2020. The wave height attenuation at the 
study site was mainly caused by the combined effect of bathymetric 
changes and the CORs. Also, the landmass at the Nantuxen point to the 
northwest of the study site could provide a sheltering effect and reduce 
the wave height at WG5. During high tide conditions, wave shoaling and 
breaking could occur simultaneously, and a significant amount of wave 
energy could transmit to the leeside of the structure. Moreover, it was 
found that the annually averaged wave power reduction from WG3 to 
WG5 was about 30.0% in 2018, 2019, and 2020 owing to both the 
bathymetric effect and CORs. 

In closing, our analysis in this study provides a framework for fore
casting long-term wave characteristics based on long-term wind and 
short-term wave measurements. Although this approach only provides 
the location-specific wave prediction, it can be used as a tool to obtain a 
fast estimation of the long-term wave climates when location-specific 
wave predictions are needed. Furthermore, this approach has an 
advantage over the traditional numerical models as it requires much 
lower computational costs. To predict wave fields with this framework 
robustly, the available wave measurements are required to be repre
sentative of the wave climate over the years, so that ANNs can better 
learn the nonlinear relation between input features and outputs. Thus, it 
is essential to ensure that the deployment period is long enough to re
cord the wave climate when extreme or representative events happen. 

Overall, the data and information about the annual wave power esti
mates in this study are helpful for understanding and predicting wave- 
induced marsh edge erosion and shoreline retreat. The proposed 
framework of developing composite neural networks to estimate long- 
term wave characteristics based on short-term wave measurements 
can be applied to other estuaries and coasts. 
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Appendix A. Error metrics 

Statistical measures given below are utilized to evaluate the performance of the developed models.   

MSE: 
MSE =

∑N
i (yi − ŷi )

2

N 

(A.1) 

RMSE: 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (yi − ŷi )
2

N

√ (A.2) 

SI: SI =
RMSE

y 
(A.3) 

bias: 
bias =

1
N

∑N

i
ŷi − yi 

(A.4) 

R2: 
R2 =

⎛

⎝

∑N
i (yi − ŷi )

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (yi − yi)
2∑N

i (ŷi − ŷi )
2

√

⎞

⎠

2 (A.5) 

Normalized SI performance: S̃I = 1 − SI (A.6) 
Normalized bias performance: 

B̃ias = 1 −
abs(bias)

y 
(A.7) 

Composite Performance Score: 
CPS =

R2 + S̃I + b̃ias
3 

(A.8) 

Total composite performance score: TCPS =
1
3
(CPSd + CPSHs + CPSTp )

(A.9) 

in which N is the number of samples, ŷi is the estimated values, and yi is the true value. 
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Appendix B. Wind data

Fig. B.1. The measured Hs at WG3 versus the measured (a) wind speed and (b) directions at the five stations from January 31 to April 2, 2018.   
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Fig. B.2. Comparison between the observed and ANN-predicted easterly and northerly wind components at SJSN4 in 2018.  
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Appendix C. Wave parameters

Fig. C.1. The time series of measured and predicted Hs and Tp at WG3 and WG5 in 2018.  

Appendix D. ANN wave model structures  

Table D.1 
Optimal structures of ANN models for predicting wave parameters at different wave gauge locations.   

WG1 WG3 WG5 WG6 

Number of hidden layers 3 3 2 2 
Number of nodes in each layer 21 12 40 26  
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Appendix E. Photos of living shoreline structures

Fig. E.1. Photographs of the constructed oyster reefs taken at the study site at 9:00 a.m. on February 5, 2018 (Photo credits: (a) Qin Chen and (b) Hongqing Wang).  
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