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ABSTRACT. We present a modified Lake-Thomas theory that accounts for the molecular details 

of network connectivity upon crack propagation in polymer networks. This theory includes not 

only the energy stored in the breaking network strands (bridging strands) but also the energy stored 

in the tree-like structure of the strands connecting the bridging strands to the network continuum, 

which remains intact as the crack propagates. The energy stored in each of the generations of this 

tree depends non-monotonically on the generation index due to the nonlinear elasticity of the 

stretched network strands. Further, the energy required to break a single bridging strand is not 

necessarily dominated by the energy stored in the bridging strand itself, but in the higher 

generations of the tree. We describe the effect of mechanophores with stored length on the energy 
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stored in the tree-like structure. In comparison with the “strong” mechanophores that can only be 

activated in the bridging strand, “weak” mechanophores that can be activated both in the bridging 

strand and in other generations could provide more energy dissipation due to their larger 

contribution to higher generations of the tree. 

Introduction. The lifetime and the utility of polymer networks are often restricted by their 

fracture, which involves the mechanical scission of covalent polymer strands within the network. 

The fracture of networks is typically discussed in terms of its tearing energy, which quantifies the 

resistance of a network to crack propagation.1–3 The tearing energy has a critical value, which is 

defined by the minimum energy required to create a unit of the new surface.1,2,4 Due to the lack of 

direct characterization of molecular behaviors at the crack tip, the energy required to break each 

bridging strand in the network that enters the critical tearing energy of the network remains 

unclear.5–7 Hence, a quantitative molecular model that can provide physical and chemical insight 

into the molecular behaviors at the crack tip is needed for a detailed description of the fracture of 

polymer networks. The critical tearing energy of polymer networks has been extensively studied 

using the approach of fracture mechanics, in which the network is usually considered as an elastic 

continuum.3 On small length scales, however, the network cannot be described as a continuous 

elastic body since it consists of tree-like structures of polymer chains that are “liquid-like”; the 

relevant length scale of this transition from continuum to molecular behavior is given by the 

topological loop size.8,9 Current molecular models that estimate the network critical tearing energy 

mainly take into account only the energy of ruptured polymer strands (strands that originally bridge 

the crack interface) under crack propagation,1,5,6 but they often ignore the role of the remainder of 

the tree-like structure10 within the characteristic topological loop8,9. In the next few paragraphs, 

we first introduce both the macroscopic viewpoint2 that has been well established in fracture 
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mechanics and review the molecular models that have been developed to estimate the critical 

tearing energy. We then present a new model that takes into account the contributions of the tree-

like structure of a network in the context of topological loop analysis to connect the molecular and 

the macroscopic length scales. 

Consider a thin elastic network infinite in the horizontal direction with a semi-infinite crack 

(Figure 1a). The sample under vertical load can be divided into three zones: two zones that are 

further from the crack than the sample height (shaded in light and dark grey in Figure 1b), and 

the zone in the vicinity of the crack (shaded in red in Figure 1b). The light grey zone on the left 

is already relaxed and does not experience any significant stress, while the dark grey zone on the 

right is almost uniformly deformed and does not yet “feel” the crack. As the crack propagates, 

the energy released from the sample per newly created surface defines the tearing energy Г.  

Assuming that energy is not dissipated during the elastic deformation of the material, the energy 

released is the elastic energy that was originally stored in the material during crack propagation. 

Consider a slice in the dark grey zone that is uniformly deformed. The stress-stretch curve of the 

material is shown in Figure 1c. When the crack propagates, the stretch in the dark grey zone is λ 

= λc. The elastic energy stored per unit volume in this part of the sample is the shaded area under 

the stress-stretch curve ∫ 𝜎
𝜆𝑐

1
𝑑𝜆. During the crack propagation, the red region shifts in an invariant 

way: the dimensions, volume, and distribution of stresses relative to the position of the crack 

remain unchanged. The energy dissipated by the crack is the energy decrease of the dark grey zone 

on the right in Figure 1d due to the decrease in the volume of this zone. The elastic energy released 

when a new surface with area ΔA is created can be written as 𝐻ΔA ∫ 𝜎
𝜆𝑐

1
𝑑𝜆. Hence, the tearing 

energy is 𝛤 = 𝐻 ∫ 𝜎
𝜆𝑐

1
𝑑𝜆 . Under the conditions of the slow displacement of the crack and 
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assuming no hysteresis in the bulk material, elastic energy stored in the material is only released 

in a small process zone (rp ≪ H, see Figure. 1d) near the crack tip,11 where the elastic energy is 

irreversibly dissipated through the damage of the material. Since the tearing energy Г is a 

material’s property, the critical stretch 𝜆𝑐 at which crack propagates varies with sample height H 

in such a way that 𝛤 = 𝐻 ∫ 𝜎
𝜆𝑐

1
𝑑𝜆  does not depend on sample height H. 

 

When it comes to the covalent polymer network with low hysteresis in the bulk, the energy stored 

in the network can only be dissipated (transferred into heat) through the relaxation of polymer 

strands, which is triggered by the scission of chemical bonds. The dissipated energy at the process 

zone in such polymer networks is the critical tearing energy. Therefore, current ideas on the 

molecular nature of the network critical tearing energy are mainly focused on understanding the 

rupture of network strands at the crack tip.  

 

Figure 1. (a) A network plate infinite in the horizontal direction with a semi-infinite crack is (b) 

loaded vertically. The sample can be divided into three zones, two far zones that are far away from 



5 
 

the crack (light grey on the left and dark grey on the right indicate uniformly undeformed and 

deformed, respectively) and the near zone around the crack (red). (c) Engineering stress-stretch 

curve of the material. (d) Stress field of the near zone and the far zone. Process zone rp is 

highlighted with the bright red circle. 

From the molecular perspective, the fracture of the network is caused by the rupture of elastically 

active chains that originally bridge the crack interface (bridging strands).1,12,13 The rupture of 

bridging strands defines a minimum, intrinsic tearing energy because the potential energy that is 

released by the relaxation of the breaking strand is not redistributed to the other strands, but is 

completely dissipated as heat and thus contributes to Г. According to Lake and Thomas,1 the 

critical tearing energy Г (without contribution from bulk dissipation) per unit area of undeformed 

new surface created by the crack (see Figure 1b) is equal to the number of elastically active 

bridging strands per cross-sectional area (𝛽 ≈ 𝜐𝑅0) (Figure 2 inset a), multiplied by the critical 

energy required to break each bridging strand (𝑈̂𝑏𝑟𝑒𝑎𝑘) (Figure 2 inset b): 

𝛤 = 𝛽𝑈̂𝑏𝑟𝑒𝑎𝑘 ≈ 𝜐𝑅0𝑈0(𝑓𝑏𝑟𝑒𝑎𝑘)    (1) 

where 𝜐 is the number density of elastically active strands,  𝑅0 is the average end-to-end distance 

of an elastically active strand in the undeformed network, and 𝑈0(𝑓𝑏𝑟𝑒𝑎𝑘) is the energy stored in 

the bridging strand at the time of fracture.   
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Figure 2. The Lake-Thomas theory predicts that the critical tearing energy 𝛤0  is equal to the 

product of (a) the areal number density of bridging strands 𝛽 and (b) the energy required to break 

one such bridging strand 𝑈̂𝑏𝑟𝑒𝑎𝑘. The original Lake-Thomas theory only takes into account the 

energy stored in the bridging strand when it breaks 𝑈̂𝑏𝑟𝑒𝑎𝑘 = 𝑈0(𝑓𝑏𝑟𝑒𝑎𝑘), which is (c) the area 

under the force-extension curve of the bridging strand up to the breaking extension. To break the 

bridging strand, other (unbroken) strands connected to the bridging strand deform and store elastic 

energy, that dissipates when the bridging strand breaks and this energy must also be taken into 

consideration. The energy 𝑈̂𝑏𝑟𝑒𝑎𝑘  stored at the moment of scission of the bridging strand is 

essentially elastic energy stored in (d) the tree-like structure. The continuum deforms elastically, 

and the energy stored in it is dissipated through the scission of tree-like structures. Different colors 

indicate different generations of the tree. 

The extension of bridging strands is accompanied by the extension of other (unbroken) network 

strands (Figure 2d) that are connected to the bridging strands. Based on this concept, Lin and Zhao 

examined the energy put into multiple generations of a Cayley tree structure with the root at the 

bridging strand.10 Once a bridging strand is broken, unbroken strands of this tree are partially 
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relaxed, and the corresponding part of the elastic energy stored in those strands is dissipated rather 

than transferred within the invariant process zone. Lin and Zhao assumed that the main 

contribution to the energy stored in each chain is made by the enthalpy of its linear stretching. In 

this case, the energy released in each generation of the Cayley tree decays exponentially with 

distance along the tree from the bridging strand (Figure 3a).10 Since the tree is symmetric, it has 

two branches rooted in the bridging strand. The positive and negative generations simply represent 

two directions relative to the bridging strand. Compared to the original Lake-Thomas theory, the 

Lin-Zhao model modified the energy term 𝑈̂𝑏𝑟𝑒𝑎𝑘 by an additional numerical factor of 𝑧/(𝑧 − 2), 

where z is the functionality of the network. 

In this paper, we propose a network fracture model which predicts a non-monotonic dependence 

on energy 𝑈𝑔  stored per generation on the generation index 𝑔 (the number of network strands 

along the tree from the bridging strand) (Figure 3b). We show that depending on the network 

structure, the main contribution to the energy stored in the tree of network strands does not 

necessarily come from the bridging strand. We apply this analysis in the context of the topological 

loop size, which describes the crossover between elastic energy that is transferred within the 

propagating, invariant process zone and elastic energy that is dissipated as heat within a local, 

liquid-like region (Figure 3c). For a network with monodisperse strands between crosslinks and 

without defects and entanglements, the size of this crossover topological loop (circle in Figure 3c) 

is on the order of the size of the process zone mentioned above (red circle in Figure 1d) because 

the energy originally stored in the continuum is assumed to be released exclusively in the process 

of relaxation of tree structures (in an elastically deforming continuum, this energy is redistributed 

between neighboring chains; we treat the case where viscous dissipation in this region is assumed 

to be negligible and can be ignored). On length scales smaller than the loop size (in the red shaded 
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process zone in Figure 3c; the loops are highlighted in red), trees rooted from different bridging 

strands are assumed to be independent, as they have not yet “realized” that they are in the same 

loops with other trees. On scales larger than the loop size, the network can be described by 

continuum mechanics.  

  

Figure 3. (a) Monotonic dependence of energy stored in the tree generations on the absolute value 

of generation index predicted by Lin and Zhao (ref). (b) Non-monotonic dependence of energy 

predicted by the current model (eq. 3, 8). (c) The length scale of the crossover between tree 

structures and the continuum bulk at the crack tip is determined by the average topological loop 
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size in the polymer networks. The topological loops formed by interconnected trees of different 

bridging strands are highlighted by red color.  

As we show below, the non-monotonic dependence of energy 𝑈𝑔 stored in the generation of the 

tree structure with generation index 𝑔 originates from the non-linear entropic elasticity of polymer 

chains. To understand the origin of such non-monotonic dependence, we analyze the condition 

that gives the extremes of the energy per generation. The distribution of the energy per generation 

along the tree structure is discussed for various parameters (functionality, breaking tension, 

entropic elasticity, and energetic elasticity of chain segments). Using the concept of a tree 

structure, we further discuss how to design mechanophores to achieve larger critical tearing energy 

in polymer networks. 

 

Elastic energy stored in a “tree-like” structure (𝑼̂). Imagine a defect-free unentangled polymer 

network that is formed by an end-linking solution or melt of monodisperse polymer chains. In such 

networks, tree structures have at least several generations.8,9,14 As the crack propagates, tension is 

focused onto some strands, that become the bridging strands. Therefore, the bridging strands have 

higher tension than other strands which do not bridge the crack surface. For each bridging strand, 

we can imagine a tree structure shown in Figure 2d. We ignore both viscous energy dissipation 

and chain scission in the continuum by assuming a relatively low deformation rate and small loss 

modulus G” at this rate and chain tension in the continuum being much lower than critical. 

Therefore, during the crack propagation, the energy stored in the continuum is redistributed 

between its chains, transferred to the tree-like structure at the crack surface, and released there 

through the scission of bridging strands, since in this case, the chain scission in the process zone 
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is the only mechanism for energy dissipation. Once a bridging strand is broken, most of the elastic 

energy stored in that tree-like structure is released, and a loop is opened (Figure 3c). The scission 

of the bridging strand determines the energy stored in a tree structure, and as established in polymer 

mechanochemistry, the scission of the bridging strand is controlled by the tension applied to 

it.12,15,16 Hence, it is useful to express the energy stored in a tree 𝑈̂ as a function of the tension in 

the bridging strand 𝑓0. 

The energy stored in the network strand upon its loading is given by the general expression in 

terms of the force 𝑓 (Figure 2c): 

𝑈(𝑓) = ∫ 𝑓′𝑑𝑅
𝑅

0
= 𝑓𝑅(𝑓) − ∫ 𝑅(𝑓′)𝑑𝑓′

𝑓

0
    (2) 

As the strands near the crack tip are highly extended, we assume that the strands in the same 

generation 𝑔 are parallel to each other, and that they share similar displacement 𝑅(𝑓𝑔) and force 

𝑓𝑔 (Figure 4). According to the force balance condition, the sum of all tensions in each 

generation is the same, and it is equal to the tension in the bridging strand 𝑓0. Thus, the tension in 

a strand of the generation 𝑔, is given by 𝑓𝑔 = 𝑓0 (𝑧 − 1)|𝑔|⁄ , where z is the crosslink 

functionality. The energy stored in a network strand located in the generation 𝑔 is given by 

𝑈(𝑓𝑔) = 𝑈(𝑓0 (𝑧 − 1)|𝑔|⁄ ). The combined energy stored in all (𝑧 − 1)|𝑔| chains of generation 𝑔 

is  

𝑈𝑔 = (𝑧 − 1)|𝑔|𝑈(𝑓𝑔) = (𝑧 − 1)|𝑔|𝑈 (
𝑓0

(𝑧−1)|𝑔|)  (3) 

 Therefore, the total energy 𝑈̂ stored in a tree can thus be written as the sum of 𝑈𝑔: 
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𝑈̂(𝑓0) = ∑ 𝑈𝑔𝑔 = ∑ (𝑧 − 1)|𝑔|𝑈 (
𝑓0

(𝑧−1)|𝑔|)𝑔    (4) 

The dependence of 𝑈̂ on 𝑓0 raises a critical issue: in order for strand scission to occur on any 

timescale that is relevant to real crack propagation, the required bridging strand tension  is 

kinetically determined.  Thus, the specific value of 𝑓0 that is relevant to a given network fracture 

problem will depend both on the chemical composition of the strand (mechanism of the scission 

reaction) and on the loading rate of bridging strands at the propagating crack front.  The force 

dependence of mechanochemical reactions has been examined in detail previously,16 and so an 

appropriate value of 𝑓0 can be chosen based on the system and mechanical conditions under 

investigation. We note that, in practice, the scission of conventional polymer strands tends to 

involve tensions on the order of 3-5 nN.  Because the force changes by 0.1 nN per decade of 

variation in timescale, the error introduced by uncertainty in the precise loading-rate dependent 

value of 𝑓0 is typically expected to be quite small. 

 

Figure 4. A schematic illustration of a tree structure with crosslink functionality 𝑧 = 4 at the 

crack tip. Different colors indicate the generation index of strands (red < yellow < gray). All 

strands have the same dependence of extension on applied force 𝑅(𝑓) but they have different 

tensions 𝑓𝑔 depending on their generation. The red dash line indicates the crack path.  
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Energy profile of a tree-like structure. The Lake-Thomas theory considers the energy stored 

only in bridging strands, while the Lin-Zhao model considers the energy stored in a tree-like 

structure, which is equal to the prediction of the Lake-Thomas theory multiplied by a pre-factor 

related to the functionality of the networks.10 This Lin-Zhao prediction is the consequence of 

their assumption that the energy stored in a tree-like structure is dominated by the energetic 

stretching of strands with linear force-extension dependence. This is, however, not necessarily 

true since there could be many strands with higher generation indexes that are not as strongly 

stretched as the bridging strand and network strands with low generation indexes. Since the 

tension 𝑓𝑔 in the tree decreases exponentially with the increasing generation 𝑔, very few 

generations will have their chains in the energetic rather than the entropic stretching regime. 

Below we describe how the energy is distributed in different generations of the tree structure 

with an emphasis on the nonlinear entropic regime. 

For an illustration of our theory, we consider an example of the modified-Freely Jointed Chain 

(m-FJC) model,17,18 which is widely used in fitting the force-extension curves of polymers 

(Figure 3a). This model accounts for both the low-force, entropy-dominated (Langevin function 

ℒ(𝑓 𝑓𝑠⁄ ) part of eq. 5), and the high-force, energy-dominated linear force-extension part (last 

term in eq. 5) with very large characteristic energetic tension 𝑓𝑒. 

𝑅(𝑓)

𝑁𝑏
= ℒ (

𝑓

𝑓𝑠
) +

𝑓

𝑓𝑒
≃ ℒ (

𝑓

𝑓𝑠
) (1 +

𝑓

𝑓𝑒
)   (5) 

where 𝑅(𝑓) is the average of end-to-end distance at force 𝑓, 𝑁 is the number of Kuhn segments, 

𝑏 is the Kuhn Length, ℒ is the Langevin function (ℒ(𝑥) = coth(𝑥) − 𝑥−1). The entropic tension 

𝑓𝑠 = 𝑘𝑇/𝑏 characterizes the crossover between the linear Gaussian and nonlinear deformation 

regimes of a polymer chain, where 𝑘 is the Boltzmann constant, and 𝑇 is the absolute 
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temperature. Although in some previous studies,17 the m-FJC model has also been expressed as 

the right-hand side of eq. 5, it is asymptotically the same as the middle part for characteristic 

entropic tension 𝑓𝑠 significantly smaller than the characteristic energetic tensions 𝑓𝑠 ≪ 𝑓𝑒 .17,18 A 

typical value of 𝑓𝑠 for flexible polymers with Kuhn length 𝑏 ≈ 1 𝑛𝑚 is 𝑓𝑠 = 𝑘𝑇/𝑏 ≈ 4 pN at 

room temperature. The characteristic energetic stretching tension 𝑓𝑒 is typically three orders of 

magnitude higher than 𝑓𝑠 and describes the linear energetic extension of contour length 𝑅/𝐿0 ≅

1 + 𝑓/𝑓𝑒  at 𝑓 ≪ 𝑓𝑒 . Note that the polymer chain breaks at 𝑓𝑏𝑟𝑒𝑎𝑘 ≪ 𝑓𝑒.  

The m-FJC model can be treated as a combined spring which consists of a conformational 

entropic sub-spring and an energetic stretching sub-spring connected in series (Figure 5a, b, c). 

The extensions of the conformational entropic sub-spring 𝑅𝑠 and the energetic sub-spring 𝑅𝑒 are 

additive (𝑅 = 𝑅𝑠 + 𝑅𝑒), while the tension 𝑓 in both sub-springs is the same. The force-extension 

curve of the entropic sub-spring can be expressed by the inverse Langevin function 

 𝑓 = 𝑓𝑠 ∙ ℒ−1 (
𝑅𝑠

𝑁𝑏
) ≈ {

3𝑓𝑠 (
𝑅𝑠

𝑁𝑏
) , 𝑓 𝑓𝑠⁄ ≪ 1

𝑓𝑠

1−𝑅𝑠/(𝑁𝑏)
, 𝑓 𝑓𝑠⁄ ≫ 1

     (6) 

This equation has two limits: for 𝑓 𝑓𝑠⁄ ≪ 1 it predicts linear dependence of force on chain 

extension (upper approximation in eq. 6); for 𝑓 𝑓𝑠⁄ ≫ 1 it predicts the divergence of the tension 

as chain extension approaches the contour length (lower approximation in eq. 6). These two 

limits correspond to the linear and the non-linear regimes in Figure 5b, respectively.19,20  

The energy 𝑈𝑠(𝑓) that is stored in the conformational entropic sub-spring can be obtained by 

integrating eq. 6 and replacing R with f, which is expressed by21,22: 
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𝑈𝑠(𝑓) = 𝑁𝑘𝑇 ∙ [(
𝑓

𝑓𝑠
) ℒ (

𝑓

𝑓𝑠
) + ln (

𝑓/𝑓𝑠

sinh(𝑓/𝑓𝑠)
)] ≈ {

𝑁𝑏 (
𝑓2

6𝑓𝑠
) , 𝑓 𝑓𝑠⁄ ≪ 1

𝑁𝑏𝑓𝑠ln (𝑓/𝑓𝑠), 𝑓 𝑓𝑠⁄ ≫ 1
  (7)  

Note this equation for the entropically-stored energy also has two limits: in the linear elasticity 

regime (𝑓 𝑓𝑠⁄ ≪ 1), the stored energy increases quadratically with the applied force (upper 

approximation in eq. 7); while in the non-linear elasticity regime (𝑓 𝑓𝑠⁄ ≫ 1), the stored energy 

grows logarithmically with the force (lower approximation in eq. 7). The force-extension curve 

of the energetic sub-spring can be described by Hooke’s law 𝑓 = 𝑓𝑒(𝑅𝑒/𝑁𝑏). The energy stored 

per network strand in the energetic sub-spring increases quadratically with the applied tension 

(similar dependence as for the linear entropic regime, but with a much smaller coefficient): 

𝑈𝑒(𝑓) =
𝑓2

2(𝑓𝑒/𝑁𝑏)
= 𝑁𝑘𝑇 (

𝑓2

2𝑓𝑠𝑓𝑒
)    (8) 

These energies stored in entropic and energetic sub-springs are additive (𝑈 = 𝑈𝑠 + 𝑈𝑒), thus the 

energy of a network strand in the m-FJC model can be written as the sum of eq. 7 and eq. 8: 

𝑈(𝑓) = 𝑈𝑆(𝑓) + 𝑈𝑒(𝑓) = 𝑁𝑘𝑇 [(
𝑓

𝑓𝑠
) ℒ (

𝑓

𝑓𝑠
) + ln (

𝑓/𝑓𝑠

sinh(𝑓/𝑓𝑠)
) +

𝑓2

2𝑓𝑠𝑓𝑒
]  (9) 

The separation of the entropic component and the energetic component for each network strand 

allows separate analysis of the three regimes of an m-FJC, which are linear entropic, non-linear 

entropic, and linear energetic regimes.  
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Figure 5. Schematic illustration of (a) force-extension curve 𝑓(𝑅) for the modified Freely Jointed 

Chain model. (a) The m-FJC model can be treated as two sub-springs connected in series: (b) an 

entropic FJC sub-spring and (c) an energetic linear sub-spring. The extension of these two sub-

springs is additive (𝑅 = 𝑅𝑠 + 𝑅𝑒), while the tensions are the same. The blue and red shaded areas 

are the energy that is stored in the entropic sub-spring 𝑈𝑠  and the energetic sub-spring 𝑈𝑒 , 

respectively. The curves are schematic, and the curvature has been exaggerated. 

To illustrate the main results of our model, we first start with a specific example of a typical 

synthetic polymer with 𝑓𝑠 ≈ 7 𝑝𝑁 and 𝑓𝑒 ≈ 12 𝑛𝑁,23 and 𝑅(𝑓) is given by eq. 5. The typical 
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breaking force of a polymer chain that has C-C or C-O as backbone bonds is 𝑓break ≈

4.5 𝑛𝑁.16,24 For a tree with functionality 𝑧 = 4, which consists of strands with these parameters, 

the energy stored in different generations 𝑈𝑔 can be calculated by substituting eq. 9 into eq. 3. 

The calculated result, shown by the black line in Figure 6, exhibits a nonmonotonic dependence 

on the absolute value of the generation index. Note that the energy per generation plotted in 

Figure 6 is normalized by the energy stored in the bridging strand 𝑈0. As |𝑔| increases, 𝑈𝑔 first 

reaches a local minimum at |𝑔| = 2, and then reaches a local maximum at |𝑔| = 5.  

To understand this nonmonotonic variation of the energy stored in a particular generation of the 

tree, we separately calculate the entropic component and the energetic component by substituting 

eqs. 7 and 8 into eq. 3. The results for these two components are presented by blue (entropic 

contribution) and red (energetic contribution) lines in Figure 6. 

Since the energetic contribution 𝑈𝑒(𝑓𝑔) stored in network strands is described by the Hookean 

linear deformation (eq. 8) of network strands (Figure 5a and 5c, energetic linear regime), the 

combined energetic component 𝑈𝑔
𝑒 of the energy stored in generation 𝑔 exponentially decays 

with the generation index |𝑔| (red line in Figure 6) as predicted by the Lin-Zhao model. The 

reason for this exponential decay is that the energy stored in a network strand 𝑈𝑒(𝑓𝑔) =

𝑈𝑒(𝑓0)/(𝑧 − 1)2|𝑔| decreases exponentially very fast with |𝑔| and cannot be compensated by the 

exponential but slower increase in the number of network strands in this generation (𝑧 − 1)|𝑔|. 

Therefore, if we only consider the energetic component, the energy stored in the bridging strand 

dominates the energy of the energetic component of the tree, and the total energy in the energetic 

component converges to ∑ 𝑈𝑔
𝑒

𝑔 (𝑓𝑏𝑟𝑒𝑎𝑘) = [𝑧
(𝑧 − 2)⁄ ] 𝑈𝑒(𝑓𝑏𝑟𝑒𝑎𝑘), which is the prediction of the 

Lin-Zhao model.10  
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The entropic component of the stored energy in the bridging strand (𝑔 = 0) is indeed negligible 

in comparison to the energetic component,12 but the entropic component of the energy stored in 

generation 𝑔 of the tree increases significantly as |𝑔| increases and dominates the energy 𝑈𝑔 for 

|𝑔| ≥ 2 (blue line in Figure 6). The tension 𝑓𝑔 in the first several generations, is larger than the 

characteristic conformational force (𝑓𝑔 ≫ 𝑓𝑠) and therefore the energy of the entropic component 

𝑈𝑠(𝑓𝑔) is dominated by the non-linear elasticity, which is given by the second limit (𝑓 ≫ 𝑓𝑠) of 

eq. 7: 𝑈𝑠(𝑓) ≈ 𝑁𝑏𝑓𝑠ln (𝑓/𝑓𝑠). In this regime, the energy stored in a network strand decreases 

linearly with the generation index |𝑔|: 

𝑈𝑠(𝑓𝑔) = 𝑈𝑠 (
𝑓0

(𝑧−1)|𝑔|) ≈ 𝑁𝑏 [𝑓𝑠ln (
𝑓0

𝑓𝑠
) − |𝑔|𝑓𝑐ln(𝑧 − 1)]  (10) 

 The exponential increase in the number of network strands (𝑧 − 1)|𝑔| is much stronger than this 

linear decrease of 𝑈𝑠(𝑓𝑔). This is the reason why 𝑈𝑔 (black line in Figure 6) varies non-

monotonically with increasing generation index |𝑔|. After the entropic component reaches its 

maximum, the tension in network strands in these higher generations decreases below the 

characteristic entropic tension (𝑓𝑔 < 𝑓𝑠). The entropic component 𝑈𝑠(𝑓𝑔) in higher generation 

strands is dominated by the entropic linear elasticity, which is described by the first limit (𝑓 ≪

𝑓𝑠) of eq. 7. Since the force-extension dependence in these higher generation strands obeys 

Hooke’s law (analog to the energetic component, but with a much smaller coefficient), the 

energy 𝑈𝑔
𝑠 decreases exponentially with the generation index |𝑔| in this regime. 

To summarize, the results in Figure 6, based on typical experimental data, indicate that the 

energy stored in the tree can be dominated by the energy stored in generations other than the 

bridging strand itself. The network strands in generations that dominate stored energy are in the 
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non-linear entropic regime (Figure 5a). The total energy Ug stored in these generations increases 

with the generation index  |𝑔| while the energy stored in generations corresponding to linear 

energetic and entropic regimes decreases exponentially with |𝑔|. 

 

Figure 6.  In the m-FJC model, the energy stored in generation 𝑔 of a tetra-functional tree, 

normalized by 𝑈0(𝑓𝑏𝑟𝑒𝑎𝑘), is plotted in black, and its entropic and energetic components are 

plotted in blue and red, respectively. The parameters used in this plot are 𝑓𝑠 ≈ 7 pN, 𝑓𝑒 ≈ 12 nN,  

𝑓break ≈ 4.5 nN, and 𝑧 =  4. 

Below we provide a quantitative analysis of the condition that gives 𝑈𝑔 local maximum or 

minimum according to the area under the force-extension curve. Because the tree is symmetric, 

let us only consider the positive generations. Recall from eq. 2 and eq. 3, that the energy 𝑈𝑔 

stored in generation 𝑔 can be expressed by 

𝑈𝑔 = (𝑧 − 1)𝑔 ∫ 𝑓(𝑅′)𝑑𝑅′
𝑅

0
=

𝑓0

𝑓(𝑅)
∫ 𝑓(𝑅′)𝑑𝑅′

𝑅

0
   (11) 

The condition that gives the local maximum or minimum of 𝑈𝑔 is given by 𝑑𝑈𝑔 𝑑𝑅⁄ = 0 (since 

each generation 𝑔 has a corresponding 𝑅). This condition can be rewritten as: 
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∫ 𝑓(𝑅)𝑑𝑅
𝑅𝑚

0
=

𝑓𝑚
2

(
𝑑𝑓𝑚
𝑑𝑅𝑚

)
    (12) 

where 𝑅𝑚 and 𝑓𝑚 are the corresponding extension and force of a strand in the generations that 

gives the local maximum or minimum of 𝑈𝑔. The left-hand side of eq. 12 is the area under the 

force-extension curve 𝑈 to the point (𝑅𝑚, 𝑓𝑚) (blue + red areas in Figure 7a). To understand the 

meaning of the right-hand side of eq. 12, we write the equation of the tangent line at the point 

(𝑅𝑚, 𝑓𝑚) (Figure 7a red dash line):  

𝑓tan(𝑅) = 𝑓𝑚 +
𝑑𝑓𝑚

𝑑𝑅𝑚
(𝑅 − 𝑅𝑚)    (13) 

The base length of the red triangle (Figure 7a) is given by (𝑅𝑚 − 𝑅tan) = 𝑓𝑚/(𝑑𝑓𝑚/𝑑𝑅𝑚), 

where 𝑅tan is the intercept of the tangent line on 𝑅 axis. The size of the red triangle can be 

written as: 1 2⁄ (𝑅𝑚 − 𝑅tan)𝑓𝑚 = 1
2⁄ 𝑓𝑚

2/(𝑑𝑓𝑚/𝑑𝑅𝑚), which is half of the right-hand side of 

eq. 12. This result indicates that for the strands of generations that give the local maximum or 

minimum of 𝑈𝑔, the area of the red triangles in the force-extension curves of these strands is 

equal to the blue areas. For each extension and its corresponding force (𝑅, 𝑓) on the curve, we 

shall define 𝛾 as the ratio between the area of the red triangle (1
2⁄ 𝑓2/(𝑑𝑓/𝑑𝑅)) and the area 

under the force-extension curve 𝑈.  

𝛾 = [
𝑓2

2(
𝑑𝑓

𝑑𝑅
)
] /𝑈     (14) 

When 𝛾 = 1/2, the blue, and the red areas are equal, and the energy 𝑈𝑔 reaches its local 

maximum or minimum (Figure 7b, c). Essentially, the area of the red triangle of a network 

strand can be considered as the energy of an effective Gaussian spring which has the same 
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stiffness as the strand itself at the corresponding force and extension. When this effective 

Gaussian spring dominates the energy stored in strands (𝛾 > 1/2), the energy 𝑈𝑔 decreases with 

increasing 𝑔, which corresponds to the red and pink sections in Figure 7b, c. These two intervals 

of generation 𝑔 correspond to strands that are in the energetic (for small values of 𝑔) and the 

linear entropic (for large generations 𝑔) regimes shown in Figure 5a, respectively. When the 

blue area in Fig. 7a dominates the energy stored in strands (𝛾 < 1/2), the energy 𝑈𝑔 increases 

with the generation index 𝑔, which corresponds to the non-linear entropic regime (Figure 5a & 

light blue section in Figure 7b, c).  
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Figure 7. (a) The schematic force-extension curve of the network strand with extension 𝑅𝑚 and 

force 𝑓𝑚 of a strand in the generations that gives the local maximum or minimum of 𝑈𝑔. 𝑅tan is 

the intersection of the tangent line (red dashed line) with extension 𝑅 axis, and 𝛾 is the ratio of 

the area of the red triangle and the area under the force-extension curve (red + blue). The 

corresponding schematic plots of  𝑈𝑔 𝑣𝑠. 𝑔 and  𝛾 𝑣𝑠. 𝑔 are presented in (b) and (c). The regimes 
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shaded with red and blue colors indicate the energy 𝑈𝑔 in corresponding regimes is dominated by 

the red triangle and blue area in fig. (a), respectively.  

For the polymer networks with finite loops, attention should be paid to the interconnection of a 

tree with other trees that form many loops at higher generations.8,9,14 The generations that go 

beyond the scale of the loop cannot be simply treated as a part of one tree as they are shared by 

multiple trees. Since there are many loops formed above the scale of topological loop sizes, we 

expect the network on larger scales to be considered by continuum mechanics and the energy 

term 𝑈̂break should be cut off by topological loop sizes.  

In summary, the energy stored in the tree is determined by the functionality 𝑧, the breaking 

tension of the bridging strand 𝑓break, the shape of the force-extension curve 𝑓(𝑅) (e.g., for the 

m-FJC, it is controlled by 𝑓𝑠 and 𝑓𝑒), and the topological loop sizes. If we consider networks with 

different loop sizes but with the same other parameters, the energy stored in the tree with a larger 

number of generations in its loops is significantly larger before 𝑈𝑔  reaches its maximum due to 

the contribution of the non-monotonic change in 𝑈𝑔 (Figure 3b), although this effect becomes 

saturated for larger trees when strands in high generations are in the linear entropic regime. 

Hence, networks prepared by end-linking chains with the same degree of polymerization at 

higher concentrations with stronger overlap between chains are expected to be tougher, even 

when investigated and compared at the same final volume fraction. This effect is expected to 

increase weakly (logarithmically) with preparation concentration.8,9 If we consider networks with 

different chain-breaking forces 𝑓break but with the same other parameters,25 then a network with 

a lower 𝑓break would have a higher contribution from the entropic component (Figure S3a,b) 

and the stored energy cannot be simply estimated using the Lin-Zhao model. Similarly, if we 
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consider networks with different characteristic energetic tensions 𝑓𝑒 with the same other 

parameters, the network with higher 𝑓𝑒 would have a larger contribution from the entropic 

component (Figure S3c). A typical case of a network consisting of sub-chains with a high 𝑓𝑒 is a 

PEG network. The PEG chain is known to have a much higher 𝑓𝑒 (~105 nN) than conventional 

covalent hydrocarbon polymers (𝑓𝑒 = 20 ~ 30 nN).18,23 For PEG networks , even the energy 

stored in 𝑔 =  1 is expected to be almost the same as that stored in the bridging strand (Figure 

S3c, d). The influence of functionality z and the characteristic entropic tension can also be found 

in Figure S3e-f. 

Effect of mechanophores. In a previous study,26 it was shown that the addition of 

mechanophores (MP) with stored length toughens polymer networks through reactive strand 

extension. As predicted in our previous work,27 one might expect that the incorporation of higher 

force mechanophores should toughen the network more, since the reactive strand extension at 

high force dissipates more energy. This conclusion was made on the basis of the Lake-Thomas 

theory. However, the strands in the second and third generations of the tree also experience 

considerably large forces (on the order of ~100 pN) when the bridging strand is at its breaking 

tension (4 ~ 5 nN). Although high-force mechanophores provide more energy dissipation in the 

bridging strand, they can only be activated in the bridging strand. Low-force mechanophores 

with the same stored length, however, dissipate less energy in the bridging strand due to their 

low activation forces, but they are more likely to be activated in other generations with many 

more mechanophores and could therefore dominate the dissipation of energy.  

To explore this effect, we choose two characterized mechanophores as examples, which have 

activation forces ca. 0.7 nN and 2.1 nN at reaction rate constants ca. 2 s-1, respectively.27 The 
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force-extension curves of network strands that consist of these two mechanophores are separately 

plotted in Figure 8a with the set of parameters described above (𝑓𝑠 ≈ 7 pN, 𝑓𝑒 ≈ 12 nN,  

𝑓break ≈ 4.5 nN, and 𝑧 = 4). The total stored length released by the mechanophores is set to 𝑁𝑏, 

which doubles the contour length of the strands upon release. The increase in contour length due 

to the stored length release is assumed to be the same for both mechanophores. The area under 

the red curve is much larger than that under the blue curve, which indicates the mechanophore 

with a larger transition force dissipates ca. 60% more energy on the single-chain level with the 

set of parameters described above (this difference could range from ca. 50% ~ 200% depending 

on the parameters of the chain). However, when we plot the energy-force curves (Figure 8b) of 

tree-like structures that consist of these two types of mechanophores, there are two force 

transitions for the tree containing 0.7 nN mechanophores, while there is only one for the tree 

containing 2.1 nN mechanophores. This is because the mechanophores with 0.7 nN are not only 

activated in the bridging strand (𝑔 = 0), but also in generations |𝑔| = 1, before the bridging 

strand breaks (Figure 8c). Since the tension is shared by 3 network strands in generation 𝑔 = −1 

and 𝑔 = 1, when mechanophores in these three strands are activated at ~ 700 pN, the whole 

generation is bearing ~ 2.1 nN tension. In other words, the mechanophores with 0.7 nN in |𝑔| =

1 are working effectively as mechanophores with 2.1 nN in combined chains (See SI for details). 

Therefore, the mechanophore with 0.7 nN provides ca. 60% more energy dissipation in the tree 

in comparison to the mechanophore with 2.1 nN with the set of parameters described above. This 

effect would be more significant if we consider a trifunctional tree, in which the mechanophores 

with 0.7 nN activation force can be activated in generations |𝑔| = 0, 1, 2 (Figure S4) if the 

bridging strand breaks at 4.5 nN.  
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Figure 8. (a) Force-extension curves of single m-FJC network strands for typical data (𝑓𝑠 ≈  7 

pN, 𝑓𝑒 ≈ 12 nN, 𝑓break ≈ 4.5 nN) that contain different mechanophores (MP) with different 

activation forces (blue 0.7 nN and red 2.1 nN). The transition plateaus are assumed to have 

constant force. The contour length of the network strand is assumed to be doubled after transition 

(the additional contour length of 𝑁𝑏 is released from the stored length of mechanophores). (b) 

energy-force curves 𝑈̂(𝑓) of the tree (𝑧 = 4) that consists of generations 𝑔 from -2 to 2 made 

from the corresponding m-FJC network strands in fig. (a). Since the analytical form of 𝑈̂(𝑓) is 

complicated, we calculate them numerically. The energy 𝑈̂ in (b) is normalized by the energy 

stored in the tree without mechanophore at 4.5 nN. (c) Schematic illustration of different MPs 

(red 2.1 nN and blue 0.7 nN) activation in the tree-like structure before the bridging strand 

breaks.  

As discussed above, the incorporation of mechanophores with higher activation force does not 

necessarily result in tougher polymer networks in this tree model. In contrast, “weaker” 

mechanophores have more opportunities to be activated in other unbroken strands, and they work 

effectively as “strong” mechanophores in generations other than the bridging strand. A more 

general approach considering the tree with complex chain extension is provided in the SI. 

Conclusion. We modify the Lake-Thomas theory by taking into account the contribution of the 

energy stored in the tree-like structure to the energy parameter 𝑈̂break. With the reported 

experimental and computational data of force-extension curve 𝑓(𝑅) and the breaking force 

𝑓break, the energy stored in other unbroken network strands that are part of the tree structure is 

estimated to be significant in comparison to that stored in the bridging strand at the break. An 

unexpected non-monotonic dependence of the energy 𝑈𝑔 stored in generation |𝑔| on the 
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generation index is due to the non-linear entropic elasticity of polymer chains. We provide a 

geometric interpretation and show that the non-linear entropic elasticity is inherently different 

from the other two elasticities (linear entropic and linear energetic). We further introduce the 

concept of the topological loop size as the scale that determines the size of the tree-like structure.  

Depending on the parameters (𝑧, 𝑓break, 𝑓𝑠, 𝑓𝑒, the loop size, etc.) of the network, the energy 

stored in the tree could be dominated by the energy stored in the bridging strand or energy stored 

in higher generations. Although we apply the m-FJC model with a linear energetic stretching in 

this current work, we note that there could be some nonlinear elasticity in the high force regime 

(> 3 nN), which has seldom been captured by the single-molecule force spectroscopy up to ~ 2.5 

nN. 18,23,28,29 Since only the bridging strand is likely to experience such high force regime, we 

expect that this non-linearity has a minor effect on the energy stored in the tree. 

Another intriguing conclusion of our model is related to the incorporation of mechanophores 

with stored length into networks. We suggest that lower force mechanophores could enhance the 

fracture energy even more than high force mechanophores in the cases when low force 

mechanophores can be activated both in the bridging strand and in network strands of 

generations |𝑔| > 0 before the bridging strand breaks. We show that such low-force 

mechanophores would dissipate more energy than a high-force mechanophore that can be 

activated only in the bridging strand. We propose that continued advancements in strand 

extensional behavior, and mechanophore design, combined with techniques to control and 

characterize polymer network topology, can lead to better predictive models and a more 

insightful understanding of network fracture mechanics. 
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