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ABSTRACT. We present a modified Lake-Thomas theory that accounts for the molecular details
of network connectivity upon crack propagation in polymer networks. This theory includes not
only the energy stored in the breaking network strands (bridging strands) but also the energy stored
in the tree-like structure of the strands connecting the bridging strands to the network continuum,
which remains intact as the crack propagates. The energy stored in each of the generations of this
tree depends non-monotonically on the generation index due to the nonlinear elasticity of the
stretched network strands. Further, the energy required to break a single bridging strand is not
necessarily dominated by the energy stored in the bridging strand itself, but in the higher

generations of the tree. We describe the effect of mechanophores with stored length on the energy
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stored in the tree-like structure. In comparison with the “strong” mechanophores that can only be
activated in the bridging strand, “weak” mechanophores that can be activated both in the bridging
strand and in other generations could provide more energy dissipation due to their larger

contribution to higher generations of the tree.

Introduction. The lifetime and the utility of polymer networks are often restricted by their
fracture, which involves the mechanical scission of covalent polymer strands within the network.
The fracture of networks is typically discussed in terms of its tearing energy, which quantifies the
resistance of a network to crack propagation.! The tearing energy has a critical value, which is
defined by the minimum energy required to create a unit of the new surface.!** Due to the lack of
direct characterization of molecular behaviors at the crack tip, the energy required to break each
bridging strand in the network that enters the critical tearing energy of the network remains
unclear.”” Hence, a quantitative molecular model that can provide physical and chemical insight
into the molecular behaviors at the crack tip is needed for a detailed description of the fracture of
polymer networks. The critical tearing energy of polymer networks has been extensively studied
using the approach of fracture mechanics, in which the network is usually considered as an elastic
continuum.? On small length scales, however, the network cannot be described as a continuous
elastic body since it consists of tree-like structures of polymer chains that are “liquid-like”; the
relevant length scale of this transition from continuum to molecular behavior is given by the
topological loop size.®® Current molecular models that estimate the network critical tearing energy
mainly take into account only the energy of ruptured polymer strands (strands that originally bridge
the crack interface) under crack propagation,'>® but they often ignore the role of the remainder of
the tree-like structure'® within the characteristic topological loop®’. In the next few paragraphs,

we first introduce both the macroscopic viewpoint® that has been well established in fracture



mechanics and review the molecular models that have been developed to estimate the critical
tearing energy. We then present a new model that takes into account the contributions of the tree-
like structure of a network in the context of topological loop analysis to connect the molecular and

the macroscopic length scales.

Consider a thin elastic network infinite in the horizontal direction with a semi-infinite crack
(Figure 1a). The sample under vertical load can be divided into three zones: two zones that are
further from the crack than the sample height (shaded in light and dark grey in Figure 1b), and
the zone in the vicinity of the crack (shaded in red in Figure 1b). The light grey zone on the left
is already relaxed and does not experience any significant stress, while the dark grey zone on the
right is almost uniformly deformed and does not yet “feel” the crack. As the crack propagates,

the energy released from the sample per newly created surface defines the tearing energy 7.

Assuming that energy is not dissipated during the elastic deformation of the material, the energy
released is the elastic energy that was originally stored in the material during crack propagation.
Consider a slice in the dark grey zone that is uniformly deformed. The stress-stretch curve of the
material is shown in Figure 1¢. When the crack propagates, the stretch in the dark grey zone is A

= Ac. The elastic energy stored per unit volume in this part of the sample is the shaded area under
the stress-stretch curve | 1 ‘o dA. During the crack propagation, the red region shifts in an invariant

way: the dimensions, volume, and distribution of stresses relative to the position of the crack
remain unchanged. The energy dissipated by the crack is the energy decrease of the dark grey zone

on the right in Figure 1d due to the decrease in the volume of this zone. The elastic energy released

. . . 2 .
when a new surface with area AA is created can be written as HAA [ . 0 dA. Hence, the tearing

energy is I = H |, 1/1 “odA. Under the conditions of the slow displacement of the crack and
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assuming no hysteresis in the bulk material, elastic energy stored in the material is only released
in a small process zone (1, < H, see Figure. 1d) near the crack tip,!' where the elastic energy is
irreversibly dissipated through the damage of the material. Since the tearing energy /I is a

material’s property, the critical stretch A, at which crack propagates varies with sample height H

in such a way that I' = H | 1/1 “odA does not depend on sample height H.

When it comes to the covalent polymer network with low hysteresis in the bulk, the energy stored
in the network can only be dissipated (transferred into heat) through the relaxation of polymer
strands, which is triggered by the scission of chemical bonds. The dissipated energy at the process
zone in such polymer networks is the critical tearing energy. Therefore, current ideas on the
molecular nature of the network critical tearing energy are mainly focused on understanding the

rupture of network strands at the crack tip.

Figure 1. (a) A network plate infinite in the horizontal direction with a semi-infinite crack is (b)

loaded vertically. The sample can be divided into three zones, two far zones that are far away from



the crack (light grey on the left and dark grey on the right indicate uniformly undeformed and
deformed, respectively) and the near zone around the crack (red). (¢) Engineering stress-stretch
curve of the material. (d) Stress field of the near zone and the far zone. Process zone r, is

highlighted with the bright red circle.

From the molecular perspective, the fracture of the network is caused by the rupture of elastically
active chains that originally bridge the crack interface (bridging strands).!!>!* The rupture of
bridging strands defines a minimum, intrinsic tearing energy because the potential energy that is
released by the relaxation of the breaking strand is not redistributed to the other strands, but is
completely dissipated as heat and thus contributes to I According to Lake and Thomas,' the
critical tearing energy /" (without contribution from bulk dissipation) per unit area of undeformed
new surface created by the crack (see Figure 1b) is equal to the number of elastically active
bridging strands per cross-sectional area (f = vR,) (Figure 2 inset a), multiplied by the critical

energy required to break each bridging strand (Uy,qx) (Figure 2 inset b):

= ﬁﬁbreak ~ URoUo(fpreak) (1)

where v is the number density of elastically active strands, R, is the average end-to-end distance
of an elastically active strand in the undeformed network, and U (fpreqr) 1S the energy stored in

the bridging strand at the time of fracture.
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Figure 2. The Lake-Thomas theory predicts that the critical tearing energy [ is equal to the
product of (a) the areal number density of bridging strands 8 and (b) the energy required to break
one such bridging strand Uy, eqx. The original Lake-Thomas theory only takes into account the
energy stored in the bridging strand when it breaks Up,eqr = Uo(forear), Which is (c) the area
under the force-extension curve of the bridging strand up to the breaking extension. To break the
bridging strand, other (unbroken) strands connected to the bridging strand deform and store elastic
energy, that dissipates when the bridging strand breaks and this energy must also be taken into
consideration. The energy Uy, .q, stored at the moment of scission of the bridging strand is
essentially elastic energy stored in (d) the tree-like structure. The continuum deforms elastically,
and the energy stored in it is dissipated through the scission of tree-like structures. Different colors

indicate different generations of the tree.

The extension of bridging strands is accompanied by the extension of other (unbroken) network
strands (Figure 2d) that are connected to the bridging strands. Based on this concept, Lin and Zhao
examined the energy put into multiple generations of a Cayley tree structure with the root at the

bridging strand.!® Once a bridging strand is broken, unbroken strands of this tree are partially



relaxed, and the corresponding part of the elastic energy stored in those strands is dissipated rather
than transferred within the invariant process zone. Lin and Zhao assumed that the main
contribution to the energy stored in each chain is made by the enthalpy of its linear stretching. In
this case, the energy released in each generation of the Cayley tree decays exponentially with
distance along the tree from the bridging strand (Figure 3a).!” Since the tree is symmetric, it has
two branches rooted in the bridging strand. The positive and negative generations simply represent
two directions relative to the bridging strand. Compared to the original Lake-Thomas theory, the
Lin-Zhao model modified the energy term U,,.qx by an additional numerical factor of z/(z — 2),

where z is the functionality of the network.

In this paper, we propose a network fracture model which predicts a non-monotonic dependence
on energy Uy, stored per generation on the generation index g (the number of network strands
along the tree from the bridging strand) (Figure 3b). We show that depending on the network
structure, the main contribution to the energy stored in the tree of network strands does not
necessarily come from the bridging strand. We apply this analysis in the context of the topological
loop size, which describes the crossover between elastic energy that is transferred within the
propagating, invariant process zone and elastic energy that is dissipated as heat within a local,
liquid-like region (Figure 3c¢). For a network with monodisperse strands between crosslinks and
without defects and entanglements, the size of this crossover topological loop (circle in Figure 3c¢)
is on the order of the size of the process zone mentioned above (red circle in Figure 1d) because
the energy originally stored in the continuum is assumed to be released exclusively in the process
of relaxation of tree structures (in an elastically deforming continuum, this energy is redistributed
between neighboring chains; we treat the case where viscous dissipation in this region is assumed

to be negligible and can be ignored). On length scales smaller than the loop size (in the red shaded



process zone in Figure 3¢; the loops are highlighted in red), trees rooted from different bridging
strands are assumed to be independent, as they have not yet “realized” that they are in the same
loops with other trees. On scales larger than the loop size, the network can be described by

continuum mechanics.
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Figure 3. (a) Monotonic dependence of energy stored in the tree generations on the absolute value
of generation index predicted by Lin and Zhao (ref). (b) Non-monotonic dependence of energy
predicted by the current model (eq. 3, 8). (c) The length scale of the crossover between tree

structures and the continuum bulk at the crack tip is determined by the average topological loop



size in the polymer networks. The topological loops formed by interconnected trees of different

bridging strands are highlighted by red color.

As we show below, the non-monotonic dependence of energy U, stored in the generation of the
tree structure with generation index g originates from the non-linear entropic elasticity of polymer
chains. To understand the origin of such non-monotonic dependence, we analyze the condition
that gives the extremes of the energy per generation. The distribution of the energy per generation
along the tree structure is discussed for various parameters (functionality, breaking tension,
entropic elasticity, and energetic elasticity of chain segments). Using the concept of a tree
structure, we further discuss how to design mechanophores to achieve larger critical tearing energy

in polymer networks.

Elastic energy stored in a “tree-like” structure (U). Imagine a defect-free unentangled polymer
network that 1s formed by an end-linking solution or melt of monodisperse polymer chains. In such
networks, tree structures have at least several generations.®”!'* As the crack propagates, tension is
focused onto some strands, that become the bridging strands. Therefore, the bridging strands have
higher tension than other strands which do not bridge the crack surface. For each bridging strand,
we can imagine a tree structure shown in Figure 2d. We ignore both viscous energy dissipation
and chain scission in the continuum by assuming a relatively low deformation rate and small loss
modulus G” at this rate and chain tension in the continuum being much lower than critical.
Therefore, during the crack propagation, the energy stored in the continuum is redistributed
between its chains, transferred to the tree-like structure at the crack surface, and released there

through the scission of bridging strands, since in this case, the chain scission in the process zone



is the only mechanism for energy dissipation. Once a bridging strand is broken, most of the elastic
energy stored in that tree-like structure is released, and a loop is opened (Figure 3¢). The scission
of the bridging strand determines the energy stored in a tree structure, and as established in polymer
mechanochemistry, the scission of the bridging strand is controlled by the tension applied to
it.'>1516 Hence, it is useful to express the energy stored in a tree U as a function of the tension in

the bridging strand f;.

The energy stored in the network strand upon its loading is given by the general expression in

terms of the force f (Figure 2c¢):

U(f) = [ fdR = fR() — [ RS @

As the strands near the crack tip are highly extended, we assume that the strands in the same
generation g are parallel to each other, and that they share similar displacement R(f,) and force
fq (Figure 4). According to the force balance condition, the sum of all tensions in each
generation is the same, and it is equal to the tension in the bridging strand f,. Thus, the tension in
a strand of the generation g, is given by f; = fo/(z — 1)19!) where z is the crosslink
functionality. The energy stored in a network strand located in the generation g is given by

U ( fg) =U ( fo/ (z—1)l9 |). The combined energy stored in all (z — 1)!9! chains of generation g

1S

Uy = 2= D90(f,) = (z - DIy (L) 3)

(2_1)Igl

Therefore, the total energy U stored in a tree can thus be written as the sum of Ug:
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0(fo) = 34Uy = Zo(z = DU (-L27) )

The dependence of U on f, raises a critical issue: in order for strand scission to occur on any
timescale that is relevant to real crack propagation, the required bridging strand tension is
kinetically determined. Thus, the specific value of f, that is relevant to a given network fracture
problem will depend both on the chemical composition of the strand (mechanism of the scission
reaction) and on the loading rate of bridging strands at the propagating crack front. The force
dependence of mechanochemical reactions has been examined in detail previously,'® and so an
appropriate value of f;, can be chosen based on the system and mechanical conditions under
investigation. We note that, in practice, the scission of conventional polymer strands tends to
involve tensions on the order of 3-5 nN. Because the force changes by 0.1 nN per decade of
variation in timescale, the error introduced by uncertainty in the precise loading-rate dependent

value of f is typically expected to be quite small.

Figure 4. A schematic illustration of a tree structure with crosslink functionality z = 4 at the
crack tip. Different colors indicate the generation index of strands (red < yellow < gray). All
strands have the same dependence of extension on applied force R(f) but they have different

tensions f,; depending on their generation. The red dash line indicates the crack path.
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Energy profile of a tree-like structure. The Lake-Thomas theory considers the energy stored
only in bridging strands, while the Lin-Zhao model considers the energy stored in a tree-like
structure, which is equal to the prediction of the Lake-Thomas theory multiplied by a pre-factor
related to the functionality of the networks.!? This Lin-Zhao prediction is the consequence of
their assumption that the energy stored in a tree-like structure is dominated by the energetic
stretching of strands with linear force-extension dependence. This is, however, not necessarily
true since there could be many strands with higher generation indexes that are not as strongly
stretched as the bridging strand and network strands with low generation indexes. Since the
tension f, in the tree decreases exponentially with the increasing generation g, very few
generations will have their chains in the energetic rather than the entropic stretching regime.
Below we describe how the energy is distributed in different generations of the tree structure

with an emphasis on the nonlinear entropic regime.

For an illustration of our theory, we consider an example of the modified-Freely Jointed Chain
(m-FJC) model,'”!® which is widely used in fitting the force-extension curves of polymers
(Figure 3a). This model accounts for both the low-force, entropy-dominated (Langevin function
L(f/fs) part of eq. 5), and the high-force, energy-dominated linear force-extension part (last

term in eq. 5) with very large characteristic energetic tension f,.

0o c(f)+£=() (14 ®

where R(f) is the average of end-to-end distance at force f, N is the number of Kuhn segments,
b is the Kuhn Length, £ is the Langevin function (£(x) = coth(x) — x~1). The entropic tension
fs = kT /b characterizes the crossover between the linear Gaussian and nonlinear deformation

regimes of a polymer chain, where k is the Boltzmann constant, and T is the absolute
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temperature. Although in some previous studies,!” the m-FJC model has also been expressed as
the right-hand side of eq. 5, it is asymptotically the same as the middle part for characteristic
entropic tension f; significantly smaller than the characteristic energetic tensions f; < f,.!71% A
typical value of f; for flexible polymers with Kuhn length b = 1 nm is f; = kT /b = 4 pN at
room temperature. The characteristic energetic stretching tension f, is typically three orders of
magnitude higher than f; and describes the linear energetic extension of contour length R /L, =

1+ f/f. at f < f,. Note that the polymer chain breaks at fy,cqr < fe-

The m-FJC model can be treated as a combined spring which consists of a conformational
entropic sub-spring and an energetic stretching sub-spring connected in series (Figure Sa, b, ¢).
The extensions of the conformational entropic sub-spring R, and the energetic sub-spring R, are
additive (R = R + R,), while the tension f in both sub-springs is the same. The force-extension

curve of the entropic sub-spring can be expressed by the inverse Langevin function

3% () /5 <1

fs
1-Rs/(Nb)’ f/fs » 1

_1(Rs
f=fLH ()~ (©6)
This equation has two limits: for f/f; <« 1 it predicts linear dependence of force on chain
extension (upper approximation in eq. 6); for f/f; > 1 it predicts the divergence of the tension
as chain extension approaches the contour length (lower approximation in eq. 6). These two

limits correspond to the linear and the non-linear regimes in Figure 5b, respectively.'**

The energy U*(f) that is stored in the conformational entropic sub-spring can be obtained by

integrating eq. 6 and replacing R with £, which is expressed by*!*:
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2
v =mr-(Qe() en(Hig) | MR <
v ’ Nbfn (f/fs), f/fs > 1
Note this equation for the entropically-stored energy also has two limits: in the linear elasticity
regime (f /f; < 1), the stored energy increases quadratically with the applied force (upper
approximation in eq. 7); while in the non-linear elasticity regime (f/f; > 1), the stored energy
grows logarithmically with the force (lower approximation in eq. 7). The force-extension curve
of the energetic sub-spring can be described by Hooke’s law f = f,(R./NDb). The energy stored
per network strand in the energetic sub-spring increases quadratically with the applied tension

(similar dependence as for the linear entropic regime, but with a much smaller coefficient):

e _ f2 _ f2
Ue(f) = 2(fe/Nb) NkT (Zfsfe) ®)

These energies stored in entropic and energetic sub-springs are additive (U = U® 4 U®), thus the

energy of a network strand in the m-FJC model can be written as the sum of eq. 7 and eq. 8:

UG = US() + () = NiT [(£) £ (£) +1n (522-) + L] ©)

The separation of the entropic component and the energetic component for each network strand
allows separate analysis of the three regimes of an m-FJC, which are linear entropic, non-linear

entropic, and linear energetic regimes.
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Figure 5. Schematic illustration of (a) force-extension curve f (R) for the modified Freely Jointed
Chain model. (a) The m-FJC model can be treated as two sub-springs connected in series: (b) an
entropic FJC sub-spring and (c) an energetic linear sub-spring. The extension of these two sub-
springs is additive (R = Rg + R,), while the tensions are the same. The blue and red shaded areas
are the energy that is stored in the entropic sub-spring U® and the energetic sub-spring U®,

respectively. The curves are schematic, and the curvature has been exaggerated.

To illustrate the main results of our model, we first start with a specific example of a typical

synthetic polymer with f; ~ 7 pN and f, ~ 12 nN,? and R(f) is given by eq. 5. The typical
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breaking force of a polymer chain that has C-C or C-O as backbone bonds is fyreax =

4.5 nN.'%* For a tree with functionality z = 4, which consists of strands with these parameters,
the energy stored in different generations U, can be calculated by substituting eq. 9 into eq. 3.
The calculated result, shown by the black line in Figure 6, exhibits a nonmonotonic dependence
on the absolute value of the generation index. Note that the energy per generation plotted in
Figure 6 is normalized by the energy stored in the bridging strand U,. As |g| increases, Uy first

reaches a local minimum at |g| = 2, and then reaches a local maximum at |g| = 5.

To understand this nonmonotonic variation of the energy stored in a particular generation of the
tree, we separately calculate the entropic component and the energetic component by substituting
eqs. 7 and 8 into eq. 3. The results for these two components are presented by blue (entropic

contribution) and red (energetic contribution) lines in Figure 6.

Since the energetic contribution U®(fy) stored in network strands is described by the Hookean
linear deformation (eq. 8) of network strands (Figure 5a and 5S¢, energetic linear regime), the
combined energetic component U of the energy stored in generation g exponentially decays
with the generation index |g| (red line in Figure 6) as predicted by the Lin-Zhao model. The
reason for this exponential decay is that the energy stored in a network strand U*® ( fg) =
U¢(fy)/(z — 1)?!9! decreases exponentially very fast with |g| and cannot be compensated by the
exponential but slower increase in the number of network strands in this generation (z — 1)!9!.
Therefore, if we only consider the energetic component, the energy stored in the bridging strand
dominates the energy of the energetic component of the tree, and the total energy in the energetic
component converges to Y.g Ug (forear) = [Z /(z _ 2)] U®(fprear)> Which is the prediction of the

Lin-Zhao model.'?
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The entropic component of the stored energy in the bridging strand (g = 0) is indeed negligible
in comparison to the energetic component,'? but the entropic component of the energy stored in

generation g of the tree increases significantly as |g| increases and dominates the energy U, for
|g| = 2 (blue line in Figure 6). The tension f, in the first several generations, is larger than the
characteristic conformational force (f; > f;) and therefore the energy of the entropic component
U*(f4) is dominated by the non-linear elasticity, which is given by the second limit (f >> f;) of
eq. 7: US(f) = NbfyIn (f/f;). In this regime, the energy stored in a network strand decreases

linearly with the generation index |g|:

Us(f,) = U ((Z_ff)lgl) ~ Nb [fIn (%) —lglfeln(z - )| (10)

The exponential increase in the number of network strands (z — 1)!9! is much stronger than this
linear decrease of U*(fy). This is the reason why Uy (black line in Figure 6) varies non-
monotonically with increasing generation index |g|. After the entropic component reaches its
maximum, the tension in network strands in these higher generations decreases below the
characteristic entropic tension (f; < f;). The entropic component U*(f,) in higher generation
strands is dominated by the entropic linear elasticity, which is described by the first limit (f <
fs) of eq. 7. Since the force-extension dependence in these higher generation strands obeys
Hooke’s law (analog to the energetic component, but with a much smaller coefficient), the

energy U decreases exponentially with the generation index |g| in this regime.

To summarize, the results in Figure 6, based on typical experimental data, indicate that the
energy stored in the tree can be dominated by the energy stored in generations other than the

bridging strand itself. The network strands in generations that dominate stored energy are in the
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non-linear entropic regime (Figure 5a). The total energy Uy stored in these generations increases
with the generation index |g| while the energy stored in generations corresponding to linear

energetic and entropic regimes decreases exponentially with |g|.
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Figure 6. In the m-FJC model, the energy stored in generation g of a tetra-functional tree,
normalized by Uy (fprear ), 1S plotted in black, and its entropic and energetic components are
plotted in blue and red, respectively. The parameters used in this plot are f; = 7 pN, f, = 12 nN,

fbreak ~ 4.5 nN, andz = 4

Below we provide a quantitative analysis of the condition that gives U, local maximum or
minimum according to the area under the force-extension curve. Because the tree is symmetric,

let us only consider the positive generations. Recall from eq. 2 and eq. 3, that the energy U,

stored in generation g can be expressed by

Uy=(z— 19 [ f(RVAR =

f(R) (1)

The condition that gives the local maximum or minimum of Uy is given by dU,/dR = 0 (since

each generation g has a corresponding R). This condition can be rewritten as:
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L™ f(R)R = % (12)

dRm

where R,, and f,, are the corresponding extension and force of a strand in the generations that
gives the local maximum or minimum of Uy. The left-hand side of eq. 12 is the area under the
force-extension curve U to the point (R,,, f;n) (blue + red areas in Figure 7a). To understand the
meaning of the right-hand side of eq. 12, we write the equation of the tangent line at the point

(R, fm) (Figure 7a red dash line):

fran(R) = fon + 2 (R = Rip) (13)

The base length of the red triangle (Figure 7a) is given by (R, — Rian) = fin/(dfm/dRp),

where Ry, is the intercept of the tangent line on R axis. The size of the red triangle can be
written as: 1/ > (R — Rean) fin = L 2 fn?/(dfm/dR,,), which is half of the right-hand side of
eq. 12. This result indicates that for the strands of generations that give the local maximum or
minimum of Uy, the area of the red triangles in the force-extension curves of these strands is
equal to the blue areas. For each extension and its corresponding force (R, f) on the curve, we
shall define y as the ratio between the area of the red triangle (1/ 2 f 2/(df/dR)) and the area

under the force-extension curve U.
[ L ] /U (14)
Y = |>rany
2(gr)

When y = 1/2, the blue, and the red areas are equal, and the energy U, reaches its local

maximum or minimum (Figure 7b, c). Essentially, the area of the red triangle of a network

strand can be considered as the energy of an effective Gaussian spring which has the same
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stiffness as the strand itself at the corresponding force and extension. When this effective
Gaussian spring dominates the energy stored in strands (y > 1/2), the energy U, decreases with
increasing g, which corresponds to the red and pink sections in Figure 7b, c¢. These two intervals
of generation g correspond to strands that are in the energetic (for small values of g) and the
linear entropic (for large generations g) regimes shown in Figure 5a, respectively. When the
blue area in Fig. 7a dominates the energy stored in strands (y < 1/2), the energy U, increases
with the generation index g, which corresponds to the non-linear entropic regime (Figure Sa &

light blue section in Figure 7b, ¢).
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Figure 7. (a) The schematic force-extension curve of the network strand with extension R,,, and
force fp, of a strand in the generations that gives the local maximum or minimum of Uy. R,y 18
the intersection of the tangent line (red dashed line) with extension R axis, and y is the ratio of
the area of the red triangle and the area under the force-extension curve (red + blue). The

corresponding schematic plots of Uy vs.g and y vs. g are presented in (b) and (c). The regimes
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shaded with red and blue colors indicate the energy Uy in corresponding regimes is dominated by

the red triangle and blue area in fig. (a), respectively.

For the polymer networks with finite loops, attention should be paid to the interconnection of a
tree with other trees that form many loops at higher generations.®*!* The generations that go
beyond the scale of the loop cannot be simply treated as a part of one tree as they are shared by
multiple trees. Since there are many loops formed above the scale of topological loop sizes, we
expect the network on larger scales to be considered by continuum mechanics and the energy

term Uppeax should be cut off by topological loop sizes.

In summary, the energy stored in the tree is determined by the functionality z, the breaking
tension of the bridging strand f}, eax, the shape of the force-extension curve f(R) (e.g., for the
m-FJC, it is controlled by f; and f,), and the topological loop sizes. If we consider networks with
different loop sizes but with the same other parameters, the energy stored in the tree with a larger
number of generations in its loops is significantly larger before U, reaches its maximum due to
the contribution of the non-monotonic change in U, (Figure 3b), although this effect becomes
saturated for larger trees when strands in high generations are in the linear entropic regime.
Hence, networks prepared by end-linking chains with the same degree of polymerization at
higher concentrations with stronger overlap between chains are expected to be tougher, even
when investigated and compared at the same final volume fraction. This effect is expected to
increase weakly (logarithmically) with preparation concentration.®? If we consider networks with
different chain-breaking forces fjeax but with the same other parameters,? then a network with
a lower f,reax Would have a higher contribution from the entropic component (Figure S3a,b)

and the stored energy cannot be simply estimated using the Lin-Zhao model. Similarly, if we
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consider networks with different characteristic energetic tensions f, with the same other
parameters, the network with higher f, would have a larger contribution from the entropic
component (Figure S3c¢). A typical case of a network consisting of sub-chains with a high f, is a
PEG network. The PEG chain is known to have a much higher f, (~105 nN) than conventional
covalent hydrocarbon polymers (f, = 20 ~ 30 nN).!®?* For PEG networks , even the energy
stored in g = 1 is expected to be almost the same as that stored in the bridging strand (Figure
S3c, d). The influence of functionality z and the characteristic entropic tension can also be found

in Figure S3e-f.

Effect of mechanophores. In a previous study,?¢ it was shown that the addition of
mechanophores (MP) with stored length toughens polymer networks through reactive strand
extension. As predicted in our previous work,?’ one might expect that the incorporation of higher
force mechanophores should toughen the network more, since the reactive strand extension at
high force dissipates more energy. This conclusion was made on the basis of the Lake-Thomas
theory. However, the strands in the second and third generations of the tree also experience
considerably large forces (on the order of ~100 pN) when the bridging strand is at its breaking
tension (4 ~ 5 nN). Although high-force mechanophores provide more energy dissipation in the
bridging strand, they can only be activated in the bridging strand. Low-force mechanophores
with the same stored length, however, dissipate less energy in the bridging strand due to their
low activation forces, but they are more likely to be activated in other generations with many

more mechanophores and could therefore dominate the dissipation of energy.

To explore this effect, we choose two characterized mechanophores as examples, which have

activation forces ca. 0.7 nN and 2.1 nN at reaction rate constants ca. 2 s™!, respectively.?’ The
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force-extension curves of network strands that consist of these two mechanophores are separately
plotted in Figure 8a with the set of parameters described above (f; = 7 pN, f, = 12 nN,

foreak = 4.5 nN, and z = 4). The total stored length released by the mechanophores is set to Nb,
which doubles the contour length of the strands upon release. The increase in contour length due
to the stored length release is assumed to be the same for both mechanophores. The area under
the red curve is much larger than that under the blue curve, which indicates the mechanophore
with a larger transition force dissipates ca. 60% more energy on the single-chain level with the
set of parameters described above (this difference could range from ca. 50% ~ 200% depending
on the parameters of the chain). However, when we plot the energy-force curves (Figure 8b) of
tree-like structures that consist of these two types of mechanophores, there are two force
transitions for the tree containing 0.7 nN mechanophores, while there is only one for the tree
containing 2.1 nN mechanophores. This is because the mechanophores with 0.7 nN are not only
activated in the bridging strand (g = 0), but also in generations |g| = 1, before the bridging
strand breaks (Figure 8c). Since the tension is shared by 3 network strands in generation g = —1
and g = 1, when mechanophores in these three strands are activated at ~ 700 pN, the whole
generation is bearing ~ 2.1 nN tension. In other words, the mechanophores with 0.7 nN in |g| =
1 are working effectively as mechanophores with 2.1 nN in combined chains (See SI for details).
Therefore, the mechanophore with 0.7 nN provides ca. 60% more energy dissipation in the tree
in comparison to the mechanophore with 2.1 nN with the set of parameters described above. This
effect would be more significant if we consider a trifunctional tree, in which the mechanophores
with 0.7 nN activation force can be activated in generations |g| = 0, 1, 2 (Figure S4) if the

bridging strand breaks at 4.5 nN.

24



(@)

f (NN)

o = N W b

—
=2
—

Normalized U

(c)

[ === With 2.1 nN MP

e Without MP
= With 0.7 nN MP

0 1 2

Normalized R

[ s Without MP

e With 0.7 NN MP
=== With 2.1 nN MP
3

25




Figure 8. (a) Force-extension curves of single m-FJC network strands for typical data (f; = 7
PN, fo = 12 nN, fyreak = 4.5 nN) that contain different mechanophores (MP) with different
activation forces (blue 0.7 nN and red 2.1 nN). The transition plateaus are assumed to have
constant force. The contour length of the network strand is assumed to be doubled after transition
(the additional contour length of Nb is released from the stored length of mechanophores). (b)
energy-force curves U(f) of the tree (z = 4) that consists of generations g from -2 to 2 made
from the corresponding m-FJC network strands in fig. (a). Since the analytical form of U(f) is
complicated, we calculate them numerically. The energy U in (b) is normalized by the energy
stored in the tree without mechanophore at 4.5 nN. (c) Schematic illustration of different MPs
(red 2.1 nN and blue 0.7 nN) activation in the tree-like structure before the bridging strand

breaks.

As discussed above, the incorporation of mechanophores with higher activation force does not
necessarily result in tougher polymer networks in this tree model. In contrast, “weaker”
mechanophores have more opportunities to be activated in other unbroken strands, and they work
effectively as “strong” mechanophores in generations other than the bridging strand. A more

general approach considering the tree with complex chain extension is provided in the SI.

Conclusion. We modify the Lake-Thomas theory by taking into account the contribution of the
energy stored in the tree-like structure to the energy parameter Uy eqx. With the reported
experimental and computational data of force-extension curve f(R) and the breaking force
foreak- the energy stored in other unbroken network strands that are part of the tree structure is
estimated to be significant in comparison to that stored in the bridging strand at the break. An

unexpected non-monotonic dependence of the energy U, stored in generation |g| on the
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generation index is due to the non-linear entropic elasticity of polymer chains. We provide a
geometric interpretation and show that the non-linear entropic elasticity is inherently different
from the other two elasticities (linear entropic and linear energetic). We further introduce the
concept of the topological loop size as the scale that determines the size of the tree-like structure.
Depending on the parameters (Z, fyreaks fs» fe, the loop size, etc.) of the network, the energy
stored in the tree could be dominated by the energy stored in the bridging strand or energy stored
in higher generations. Although we apply the m-FJC model with a linear energetic stretching in
this current work, we note that there could be some nonlinear elasticity in the high force regime
(> 3 nN), which has seldom been captured by the single-molecule force spectroscopy up to ~ 2.5
nN. 18232829 Since only the bridging strand is likely to experience such high force regime, we

expect that this non-linearity has a minor effect on the energy stored in the tree.

Another intriguing conclusion of our model is related to the incorporation of mechanophores
with stored length into networks. We suggest that lower force mechanophores could enhance the
fracture energy even more than high force mechanophores in the cases when low force
mechanophores can be activated both in the bridging strand and in network strands of
generations |g| > 0 before the bridging strand breaks. We show that such low-force
mechanophores would dissipate more energy than a high-force mechanophore that can be
activated only in the bridging strand. We propose that continued advancements in strand
extensional behavior, and mechanophore design, combined with techniques to control and
characterize polymer network topology, can lead to better predictive models and a more

insightful understanding of network fracture mechanics.
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