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ABSTRACT

Finding prototypes (e.g., mean and median) for a dataset is central to a number of common ma-
chine learning algorithms. Subspaces have been shown to provide useful, robust representations
for datasets of images, videos and more. Since subspaces correspond to points on a Grassmann
manifold, one is led to consider the idea of a subspace prototype for a Grassmann-valued dataset.
While a number of different subspace prototypes have been described, the calculation of some
of these prototypes has proven to be computationally expensive while other prototypes are af-
fected by outliers and produce highly imperfect clustering on noisy data. This work proposes a
new subspace prototype, the flag median, and introduces the FlagIRLS algorithm for its calcula-
tion. We provide evidence that the flag median is robust to outliers and can be used effectively
in algorithms like Linde-Buzo-Grey (LBG) to produce improved clusterings on Grassmannians.
Numerical experiments include a synthetic dataset, the MNIST handwritten digits dataset, the
Mind’s Eye video dataset and the UCF YouTube action dataset. The flag median is compared the
other leading algorithms for computing prototypes on the Grassmannian, namely, the £,-median
and to the flag mean. We find that using FlagIRLS to compute the flag median converges in 4 iter-
ations on a synthetic dataset. We also see that Grassmannian LBG with a codebook size of 20 and
using the flag median produces at least a 10% improvement in cluster purity over Grassmannian
LBG using the flag mean or ¢,-median on the Mind’s Eye dataset.

1 Introduction

The mean and median are basic methods for calculating central prototypes from a probability distribution. The
median is commonly more robust to outliers than the mean. Generalizations of such prototypes to Euclidean
space can be formulated as a solution to an optimization problem. Suppose we have a set of points in Euclidean
space, ¥ = {xi}f:1 < R" which we would like to represent as a prototype y via solving
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The solution to (1) for A =R" and g = 2 is called the centroid, which may be viewed as the generalization of the
mean. In fact, the centroid is the component-wise mean of the vectors in &, Zle x;/p. Generalizations of the
median involve solving (1) when ¢ = 1. When A = &, the solution is called the medoid, while when A = R”,
the solution is called the geometric median. The geometric median inherits the robustness to outliers from the
median without being required to be a point in the dataset; however, it is not as straightforward to compute as a
centroid since that calculation is not simply a least squares problem. An iterative algorithm for approximating a
geometric median is the Weiszfeld algorithm [1]; each iteration of this algorithm is a weighted centroid problem.
Thus, the Weiszfeld algorithm falls into a class known as Iteratively Reweighted Least Squares algorithms (IRLS).
These Euclidean prototypes are used as a statistic for a dataset and in common machine learning algorithms like
k-means and nearest centroid classification.

Not all datasets are best represented using points in Euclidean space. Specifically, image or video datasets are
sometimes better represented using subspaces, i.e., as points on a Grassmannian. For example, the smallest prin-
cipal angle between two subspaces has proven powerful for modeling illumination spaces [2]. Hyperspectral data



may fail to be linearly separable in Euclidean space but separate linearly on the Grassmannian [3]. Hence, it is
potentially useful to find versions of the Euclidean prototypes on the Grassmannian. A logical generalization of
prototypes from Euclidean space to the Grassmannian is to replace the Euclidean 2-norm in the optimization
problems for the centroid, medoid and geometric median with a distance or dissimilarity between subspaces. The
centroid is generalized using the geodesic distance in [4] and the chordal distance in [5]. To the extent of our
research, we have have not found a generalization of the medoid. However, the geometric median has been gener-
alized using the geodesic distance and is called the £,-median in [6, 7]. Prototypes like these have been used alone
as a method to classify emotion in images [8], as a step in a k-means type algorithm [9] and in feature extraction

[71.

Popular machine learning techniques, like dictionary learning, have been adapted to Riemannian manifolds [10].
Jayasumana et. al. consider learning on the Grassmannian (and Riemannian manifolds in general) with RBF ker-
nels and advocate for chordal distance (sometimes referred to as the projection norm) kernels on the Grassman-
nian because chordal distance generates a positive definite Gaussian kernel [11]. More recently, Cherian et. al.
use kernalized Grassmannian pooling for activity recognition [12]. Methods for Riemannian optimization like Rie-
mannian SVRG have gained popularity alongside this surge of interest in Riemannian learning [13]. Even more
uses for subspaces in computer vision and machine learning can be found in, e.g., [6, 14, 5, 15, 16, 9, 8].

In this paper we propose the flag median, a prototype which is a generalization of the geometric median to the
Grassmannian using the chordal distance. We solve the flag median optimization problem using the novel Fla-
gIRLS algorithm. The FlagIRLS is an IRLS algorithm on the Grassmannian that solves a weighted flag mean prob-
lem at each iteration similar to the way an iteration of the Weiszfeld algorithm solves a weighted centroid problem.
We conduct experiments with the flag median, £;-median and the flag mean on synthetic datasets, the MNIST
handwritten digits dataset [17], the DARPA (Defense Advanced Research Projects Agency) Mind’s Eye dataset used
in [9] and the UCF YouTube action dataset [18]. In these examples we find that the FlagIRLS algorithm tends to
converge quickly. We show that the flag median appears to be more robust to outliers than the flag mean and
¢»-median, and produces the highest cluster purities in the LBG algorithm [19].

2 Background

2.1 Introduction to the Grassmannian

For the purposes of this paper, the Grassmannian manifold (a.k.a. "the Grassmannian"), denoted Gr(k, n), is the
manifold whose points correspond to the k dimensional subspaces of R"”. We will represent a point in Gr(k, n)
using a tall n x k real matrix X with orthonormal columns. The point on Gr(k, n) determined by X is the column
space of X and is denoted [X]. Thus if X and Y have the same column space then they determine the same point
[X] = [Y] on Gr(k, n).

In order to allow more flexibility in our generalization of optimization problems to subspaces, we work with points
that are not all necessarily on the same Grassmannian manifold but are in the same ambient space. Suppose we
have a set of subspaces of n-dimensional space, {[X1], [X21,..., [Xpl}, where [X;] € Gr(k;,n). We want to find an
r-dimensional subspace of R", [Y*] € Gr(r, n), that is in some sense the center of these points, i.e., that [Y*] is a
solution to
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where d measures dissimilarity between its arguments.

Principal angles between subspaces are a common dissimilarity measure that is invariant to orthogonal transfor-
mations [20, 5]. Take [X], [Y] € Gr(k, n). The ith smallest principal angle between [X] and [Y], 6; ((X], [Y]) € [0,7/2] is
defined as the solution to (3) [20].

cos0;(1XI, [¥]) = max max xy =x] y;
Subjecttox’x =y y=1 3
xij :yTyj =0forj=1,2,...,i—1
Now let O([X], [Y]) € R* be the vector of principal angles between [X] and [Y]. The geodesic distance on Gr(k, n) is

[16([X], [Y])|l2 and the chordal distance on Gr(k, n) is || sin(0 ([X], [Y]))|l2 [21]. We can calculate these quantities when
[X] € Gr(k, n), [Y] € Gr(r, n) where k # r by setting the last max(k, r) — min(k, r) entries of ([X], [Y]) € Rmax(kr) ¢ 0,



2.2 Geodesic Distance Prototypes

The Euclidean mean and geometric median have been translated to the Grassmannian using the geodesic dis-
tances. The mean on the Grassmannian using geodesic distance (the solution to (4) for g = 2) is called the Karcher
mean and the geometric median using geodesic distance (the solution to (4) for g = 1) is called the ¢,-median.
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The Karcher mean and the ¢,-median are only computable in the case where all subspaces are of equal dimensions
(e.g., r=k1 =kz--- = kp) and [9] use examples to show that the available algorithms to compute these prototypes
are slow. The most common algorithm for finding the solution to the Karcher mean was discovered by Karcher
[4] and Fletcher et. al. [7] show we can find the ¢,-median using a Weiszfeld-type algorithm. [9] show that the
Karcher mean is not only slow to compute, but also produces lower cluster purities than the £,-median in their
LBG clustering example so we choose not to use the Karcher mean as a prototype in our experiments (Section 5).

For context, the Weiszfeld algorithm for vectors in R” is stated in Algorithm 1.

Algorithm 1: Weiszfeld Algorithm in R”

Data: {x,-}f:1 cR"
Result: The geometric mediany e R”
while not converged do
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end

Note that each iteration of the Weiszfeld algorithm (Algorithm 1) is the solution to the least squares problem (1)
(with A = R" and g = 2) for the weighted vectors w;x;. The weights, w;, come from the fact that the geometric
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Fletcher et. al. solve (4) for g = 1 by generalizing this approach to Riemannian manifolds.

In Section 5, we use the unweighted Weiszfeld-type algorithm from Fletcher et. al. with geodesic distance to calcu-
late the ¢,-median on the Grassmannian. Let d be the maximum distance between points in the dataset and let §
be the convergence parameter. We define N; 5 as the number of iterations of one run of our implementation. The
complexity of our implementation of this algorithm in Section 5 is O (npk? Ny 5).

2.3 The Flag Mean Prototype

Draper et. al. [5] present the flag mean as an average of subspaces of different dimensions using the squared
chordal distance. The optimization problem for the flag mean is
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This flag mean determines not only a point on Gr(r, n), it determines a point on various flag manifolds. A flag man-
ifold is a manifold whose points represent a flag of subspaces [S;] < [Sz] < --- < [S;] = R". If we let s; = dim([S;]),
then we say the flag is of type s, $2, ..., s;. For more details on flag manifolds, see [22].

We will refer to a flag mean in this paper as the point on Gr(r, n) determined by the flag. Let [Y] be the flag mean

of {[Xi]}le. Let y; be the ith column of Y, the orthonormal matrix representation of [Y]. Then the rih “real” flag
mean is the point on the flag manifold of type {1,2,...,r, n} defined as in (6).
[Y] = spanfy;} c span{yi,y»} < --- c span{yi,yo,...,y,} cR" (6)



The point on Gr(r, n) determined by the flag is span{y;, y2,...,y-} < R".

Draper et. al. [5] show that we can calculate the flag mean by utilizing the singular value decomposition (SVD)
of the matrix [X;,Xs,...,X,]. The flag mean, as a point on Gr(r, n), is the span of the r left singular vectors of the
corresponding to the r largest singular values.

The complexity of this algorithm is O(n(Zf:I kl-)z). Marks [16] suggests calculating weighted flag means in his

dissertation. This weighted flag mean calculation will be used as an iteration of the FlagIRLS algorithm introduced
in Section 3.2.

3 Flag Median

The translation of the geometric median to the Grassmannian using chordal distance is called the flag median.
The optimization problem for this novel prototype is in (7).
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We call this the flag median since, using FlagIRLS, [Y] actually is a flag of subspaces rather than a single r dimen-
sional subspace of n dimensional space. This flag median is indeed a median (similar to the geometric median)
because it minimizes the chordal distance rather than the squared chordal distance problem in (5) that is solved
by the flag mean.

3.1 Derivation

In this section we show that the FlagIRLS algorithm can be used to approximate the flag median. The algorithm
derived in this section revolves around weighted flag means of {[Xl-]}le. For the rest of this paper we will denote
the weight of the subspace [X;] as w;.

Notice that the flag median optimization problem in (7) involves a sum of two norms of the vector of sines of
principal angles and the flag mean optimization problem in (5) involves squared two norms of the same vector.
So, in other words, we are deriving an algorithm, analogous to Weiszfeld and IRLS in the Euclidean setting, that
approximates solutions to the 2-norm problem by iteratively solving squared 2-norm problems. So the FlagIRLS
algorithm 2 provides an “iterative reweighted least squares” method for approximating the flag median.

Let us begin by translating the flag median problem from (7) to an optimization problem over matrices with or-
thonormal columns. The eigenvalues of YTXin.TY are the entries in the vector cos?(0([X;], [Y])). Using properties
of trace we can show tr(YTXiXiTY) = Z;ﬁ:"l cos20 i (IX;1,[Y]) [20]. This allows us to rewrite the flag median problem
from (7) as the matrix optimization problem in (8) where m; = min(r, k;).
p
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We formulate a Lagrangian from this problem using A as a symmetric matrix of Lagrange multipliers with entries
A ij in (9)
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We then calculate (10) the Lagrangian with respect to the jth column of Y, namely y;, and set it equal to 0.

Xl'XlTy]' =2Aj; (10)
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Now define the matrix X
X = w1 Xy, woXo, -+, wpXp| 11
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where w; (—mi—tr (YTXin.TY)) .

Combining the information in (10) and the matrix X in (11), we see that Y must be r left singular vectors of X when
[Y] to be the flag median of {[X;]}}_,

Now let us consider an iterative algorithm with the jth iteration of the form Y;; = Flag Mean ({ ng )Xi}’.g 1) where
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wi = (mi—tr(Y]TxixiTYj)) :

Y;+1 to be an approximation of the flag median of the dataset {Xl-}le. We will now show that the columns of Y1
should be chosen as the left singular vectors of X associated with the r largest singular values and therefore the

This algorithm will be formalized in Section 3.2. For this type of algorithm, we desire

. j P .
update using the flag mean of { w? )X,-} -, s the correct update choice.
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Let U* be some matrix consisting of r left singular vectors of X. To determine U* where

= argmin Z q- tr(UTX,XTU))U2 (12)
i=1
we solve the optimization problem
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which requires the columns of U* to be the left singular vectors of X associated with the largest singular values. So
we take our update tobe Y1 =U".

3.2 The FlagIRLS Algorithm

We use an iteratively reweighted least squared flag mean algorithm structure to solve (7). We will call the weight for
subspace X;, w;. A concern with these weights arises when the denominator of a weight is zero. For the flag median
objective function, the denominator is zero when [Y] is a subspace of [X] or vise versa. To avoid singularities, we
added a small quantity € to the denominator. The w; for the flag median problem is in (14)
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wi = (14)

We use these weights, along with the flag mean, in the FlagIRLS algorithm as described in Algorithm 2.

Algorithm 2: The FlagIRLS algorithm. See (14) for the algorithm weights. We assume the columns of U are
sorted from the left singular vector associated with the smallest to the largest singular values of X.

Input: A set of orthonormal subspace representatives {Xl}’[J for {[X;] € Gr(k;, n)}
Output: An orthonormal subspace representative Y for the flag median [Y] € Gr(r n)
while not converged do

assign each w;;

X — [ Xy |woXol - lwpXp);

UxVT =X %calculate the SVD ;

Y —Ul[;, 1:r] %first r columns of U;
end

An important note is that FlagIRLS is an iterative weighted flag mean algorithm so the outputs of this algorithm
come from the left singular vectors of X. We take r singular vectors associated with the r largest singular values of
X, i.e., the first r columns of U. However, there are n columns of U, so FlagIRLS actually outputs a flag of subspaces
[U[:;,1]] € [U[;,: 2]] c--- < [U[:,: n]]. This flag is used to distinguish between different prototypes in Section 5.2 with
MNIST digits.

4 Limitations

The main limitation of calculating the flag median is the speed of FlagIRLS. This requires that we take the thin SVD
of X € R**P¥ every iteration in FlagIRLS. The complexity of the FlagIRLS algorithm is the complexity of the flag



mean times the number of iterations of the algorithm, i.e., O (I’lNg (Zle ki) ) where Nj is the number of iterations
and 6 is the convergence parameter.

Another current limitation of this work is the lack of proven mathematical guarantees for the flag median and the
FlagIRLS algorithm. Although, for all our examples, FlagIRLS converges to a local minimum of the flag median
problem, we have not worked out the mathematical theory to find the conditions where FlagIRLS converges. We
also still need to determine the conditions where an iteration of FlagIRLS is a contraction mapping. On a larger
scale, given a dataset of subspaces of R”, we have yet to determine where the flag median problem is convex.
Section 3.1 shows that FlagIRLS is a logical algorithm for finding the flag median, but further development of the
mathematical theory would give us more intuition about which datasets are good for FlagIRLS, how to initialize
FlagIRLS and overall provide the user with a better understand of rates of convergence. Currently, the FlagIRLS
algorithm is run with a number of different initializations to verify convergence.

5 Experiments

In this section we carry out experiments with synthetic data, the MNIST handwritten digits dataset [17], the Mind’s
Eye dataset [9] and the UCF YouTube action dataset [18]. The goal is to compare the flag median to the flag mean
and the ¢,-median and establish the efficiency of FlagIRLS. For all of this section we use FlagIRLS to compute the
flag median and the Weiszfeld-type algorithm from [7] for the £,-median.

The convergence criteria for our implementation of FlagIRLS is as follows. We terminate the algorithm when ob-
jective function values of consecutive iterates of FlagIRLS are less than § = 101!, or if the ith iteration resulted in
an increasing objective function value. In the former case, we output the (i — 1)st iterate. For our weights in all
examples we run the FlagIRLS algorithm with e = 1077,

The convergence criteria of our implementation of the Weiszfeld-type algorithm from [7] to calculate the ¢;-
median is similar to the Flag IRLS convergence criteria. We terminate the algorithm when when objective function
values of consecutive iterates are less than § = 10711,

Both FlagIRLS and the Weiszfeld-type algorithm are terminated when we have exceeded 1000 iterations. FlagIRLS
never exceeds 1000 iterations in our examples.

5.1 Synthetic Data

We begin with two experiments on a dataset consisting of 10 points from Gr(3,20) and 10 points from Gr(5,20).
A representative for a point on Gr(k, n) is sampled in two steps. The first step is to sample an n x k matrix from
a uniform distribution on [-.5,.5), %[-.5,.5). We then do the QR decomposition of this matrix to get a point on
Gr(k, n). We perform two experiments on this dataset: The first experiment verifies convergence of FlagIRLS, and
the second experiment compares the convergence rate of FlagIRLS to Grassmannian gradient descent.

For the first experiment, we run 100 trials of FlagIRLS with different random initializations. For each of these trials,
we verify that we have converged by checking 100 points near the FlagIRLS algorithm output. Given one algorithm
output, [X] € Gr(3,20), we sample the entries of Y € R?**3 from % [-0.5,0.5) and check the objective function value
at the first 3 columns of Q where Q comes from the QR decomposition of the matrix X+ 0.00001Y. We call these
points “test points” for the algorithm output. We say the FlagIRLS algorithm for flag median converged when all the
objective function values of the test points are less than or equal to the objective function value for the algorithm
output. In this experiment, we find that 100% of the FlagIRLS trials converge.

We now show an example with the same dataset where we run FlagIRLS and Grassmannian gradient with 100
random intializations to compute the flag median. The results of this experiment are in Figure 1. For this example,
Grassmannian gradient descent is implemented with a step size of 0.01. We find that FlagIRLS converges in fewer
iterations than Grassmannian gradient descent for the flag median problem.

For our next example, we use a dataset of 200 points on Gr(6, 100). The points are sampled by first fixing a “center”
point for the dataset, [X.]. We do this by taking a random 100 x 6 matrix with entries from % [-.5,.5). We then take
X. as the first 6 columns of Q from the QR decomposition of this random matrix. The 200 points in the dataset are
now calculated via the following steps. For each point, we generate Z by sampling a random 100 x 6 matrix with
entries sampled from % [-.5,.5) and scaling it by 0.01. We then take the point determined by the first 6 columns of
Q from the QR decomposition of X, +Z.

We then run our FlagIRLS and Weiszfeld-type algorithm implementations with 20 random initializations to cal-
culate the flag median and the ¢,-median respectively. For the random initializations, we initialize FlagIRLS and
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Figure 1: The mean objective function values over 100 trials with different random initializations. FlagIRLS con-
verges in fewer iterations than gradient descent for the flag median problem for the synthetic dataset.

Algorithm/ Initialization || Mean Iterations

FlagIRLS/random 4.55+0.50
Weiszfeld-Type/ datapoint || 795.50 +227.40
Weiszfeld-Type/ randomly || 968.80 +94.49
Table 1: The mean number of iterations until convergence of 20 random initalizations of FlagIRLS and the
Weiszfeld-type algorithm on a dataset of 200 points on Gr(6,100). FlagIRLS is converges in far fewer iterations
than the Weiszfeld-type algorithm and also sports a much lower standard deviation in the number of iterations.

the Weiszfeld-type algorithm at the same point. The results of this experiment are in Table 1. We terminate the
Weiszfeld-type algorithm after 1000 iterations regardless of convergence. So perhaps, many of the high iteration
runs of Weiszfeld still did not converge even after 1000 iterations.

Now we will use a dataset that consists of 200 points on Gr(3,20). These points consist of a cluster of 180 points
centered around the subspace [X.] and 20 outlier points. The points from the 180-point cluster are sampled by the
following process. We calculate a fixed “center” point for the dataset, [X.], by taking a 20 x 3 matrix with entries
from %[-.5,.5). We then take X, as the first 3 columns of Q from the QR decomposition of this random matrix.
We then calculate the points in the cluster via the following steps. The first step is to generate Z by sampling a
random 20 x 3 matrix with entries sampled from %/[-.5,.5) and scaling it by 0.01. The second step generates one
point in the 180 point cluster as the first 3 columns of Q from the QR decomposition of X, +Z. A point from the set
of outlier 20 points is the first 3 columns of the QR decomposition of a random 20 x 3 matrix with entries sampled
from %[-.5,.5).

Table 2 shows the results of calculating the flag median, £,-median and flag mean of this dataset and then com-
puting the chordal distance between [X.] and the three different prototypes. Notice the flag median is the least
affected by the outliers, the £,-median is twice as affected and the flag mean is ten times more affected by the
outliers.

Algorithm | Chordal Distance

Flag Median 0.0017
/,-median 0.0022
Flag Mean 0.0128

Table 2: The chordal distance between the algorithm result and [X*].



Note: for Table 2, FlagIRLS converges to the flag median in one iteration.

5.2 MNIST Handwritten Digits dataset

The MNIST digits dataset is a set of 28 x 28 single band images of handwritten digits [17]. We represent an MNIST
handwritten digit using an element of Gr(1,784) to by taking one image, vectorizing it, then dividing the resulting
vector by its norm.

For our first example, we see how the flag median, ¢,-median and flag mean prototypes are classified by a MNIST-
trained 3-layer neural network. This trained neural network classifier has a 97% test accuracy on the MNIST test
dataset. We generate our datasets for this experiment by to taking 20 examples of the digit 1 and i examples of the
digit 9 from the MNIST training dataset. Weleti =0,1,2,3,...,19 and this results in 20 datasets. For each of these
datasets, we calculate the flag median, £,-median and flag mean, then predict the class of each of these prototypes
by passing each through the neural network classifier. In Figure 2 we plot the predicted class of each prototype for
each dataset by the trained neural network. For this figure, we choose to use the random initialization that resulted
in the best predictions of the £,-median.

31 —e— Flag Median
L2 Median
#+ Flag Mean

Predicted Class
L

14 -

0 2 4 & g 10 12 14 15 15
Added Mines

Figure 2: The neural network predicted class of the prototype for the dataset with 20 examples of 1’s and i examples
of swithi=0,1,2,...,19.

The ¢,-median and flag mean are misclassified with i =9 added examples of 9’s whereas the flag median is still
classified correctly for i = 10 and i = 11 added examples 9’s. Therefore the flag median is the most robust prototype
to outliers in this experiment. The common misclassification as 8 is likely due to the fact that the 1’s tend to be at
an angle, so when averaged, they tend to look like fuzzy 8’s, especially when some 9’s have been introduced to the
dataset. Also, the ¢;-median of a dataset of 20 1’s with 15 to 19 9 digits is misclassified as a 7. This is likely a result
of the different angled 1’s and the introduction of the examples of 9’s adding the top of the digit 7.

Now we use Multi Dimensional Scaling (MDS) [23] to visualize the movement of the prototypes of an MNIST
dataset that is poisoned with outliers. For this experiment, we use 20 examples of 7’s and i = 0,2,4,6,8 exam-
ples of 6’s. This results in 5 different subspace datsets formed from examples from the MNIST training dataset. We
then calculate the flag median, ¢,-median and the flag mean. We generate a distance matrix for all the examples
of 6's and 7’s along with the exemplars from each dataset using the geodesic distance and pass the distance matrix
through a MDS algorithm to visualize relationships between these subspaces in two dimensions. This example is
in Figure 3.

Notice that the flag mean is moving the most as we add examples of 6’s and the ¢;-median is moving similarly
to the flag mean. The flag median moves substantially less than the other prototypes and therefore is the least
affected prototype by the added examples of 6s.
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Figure 3: MDS embedding of flag median, ¢,-median and flag mean with points as one dimensional subspaces.
We have 20 examples of 7’s and i examples of 6’s. Each triangle represents a prototype for i = 0,4,8. The furthest
left triangle is the prototype for the dataset with i = 0 examples of 6’s and the furthest right triangle is the prototype
for the dataset with i = 8 examples of 6’s. The lower image is a zoomed in version of the interior of the red box in
the upper image to clarify the difference between the exemplars.

We now compute the r = 5-dimensional flag median and flag mean of a dataset with 20 examples of 7’s with i = 8
6’s. We plot each of the reshaped columns of the matrix representative of these prototypes in Figure 4. Notice
that the flag mean is more affected by examples of 6’s than the flag median. This is particularly noticeable in the
final column (dimension 5) where there is a clear 6 in the image for flag mean whereas the 6 is not clear in the flag
median.
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Figure 4: Each column of the matrix representative for flag median and flag mean on the dataset with 20 examples
of 7’s and i = 8 examples of 6’s.

5.3 Mind’s Eye dataset

The Mind’s Eye dataset is a set of grey-scale outdoor video clips that are centered on moving objects (mainly hu-
mans) and have a subtracted background. Each video clip consists of 48 frames, each rescaled to a size of 32 x 32
pixels. We use the preprocessed data from the k-means experiment from Marrinan et. al. [9]. These data and
the scripts for the preprocessing can be accessed at https://www.cs.colostate.edu/ vision/summet. There
are 77 labels of the video clips for the action of the centered object in the video. A video clip is represented on
Gr(48,1024) by the span of the 1024 x 48 matrix formed by vectorizing and horizontally stacking each frame.

For this example, we use subspaces (points in Gr(48,1024)) that represent clips with action labels bend, follow,
pickup, ride-bike and run. There are 27 examples of bend, 32 of follow, 27 of pickup, 17 of ride-bike and 24 of
run. We run the Linde-Buzo-Grey (LBG) algorithm [19, 24] to cluster these data with different sized codebooks
(numbers of centers) and prototype calculation using the flag median, ¢,-median and flag mean. In the LBG


https://www.cs.colostate.edu/~vision/summet

algorithm, we calculate distance using chordal distance. For each number of centers, we run 10 trials with different
LBG initializations. The results are in Figure 5.

We note that the flag median produces the highest cluster purities for 8, 12, 16 and 20 clusters. In all of the previous
experiments we found that the flag median is more robust to outliers which may be the key factor in the success of
the flag median prototype LBG implementation. We also note that the ¢,-median and the flag mean LBG imple-
mentations have similar cluster purities for each of the codebook sizes. Again, this is consistent with the similar
behavior the /,-median and the flag mean MNIST experiments (see Figures 2 and 3).
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Figure 5: An LBG implementation on the Mind’s Eye dataset. The results of 3 different implementations of LBG for
codebook sizes 4,8,12,16 and 20. The flag median is competitive with the ¢,-median and flag mean for a size 4
codebook and outperforms ¢»-median and flag mean for codebook sizes 8,12, 16, 20.

5.4 UCF YouTube dataset

Our final dataset is a subset UCF YouTube Action dataset [18]. This dataset contains 11 categories of actions. For
each category, the videos are grouped into groups with common features. For this expeeriment, we take approx-
imately one example from each group within an action category. Specifically our dataset consists of 23 examples
of basketball shooting, 22 of biking/cycling, 25 of diving, 24 of golf swinging, 24 of horse back riding, 24 of soccer
juggling, 23 of swinging, 24 of tennis swinging, 24 of trampoline jumping, 22 of volleyball spiking, and 24 of walking
with a dog. Since these RGB videos are quite large, we convert them to greyscale. Then we generate a matrix for
each video whose columns are vectorizations of each frame. Finally, we perform the QR decomposition of each
video and take the first 10 columns of Q to be it’s representative on the Grassmannian.

We then run subspace LBG with 48 dimensional flag mean and the flag median. The results are in Figure 6. We
choose to omit the ¢,-median LBG implementation since the Weiszfeld-type algorithm since it can only compute a
10 dimensional prototype. We run our LBG implementations with 10 trials for each of the following codebook sizes:
4,8,12,16 and 20. We see the flag median LBG implementation out preform the flag mean LBG implementation in
all trials.

6 Conclusion

In this paper we presented a new prototype, the flag median, for clusters of points on the Grassmannian. We
propose the FlagIRLS algorithm to approximate solutions to the flag median optimization problem. We run ex-
periments comparing the flag median, flag mean, and the #,-median. In our experiments, we find the FlagIRLS
generally converges faster than gradient descent. In addition, we discover that the flag median is the most robust
to outliers and produces higher cluster purities than the flag mean and ¢,-median algorithms.
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Figure 6: An LBG implementation on the YouTube dataset. The results of 2 different implementations of LBG for
codebook sizes 4,8,12,16 and 20. The flag median outperforms flag mean for all codebook sizes.

Future work with the flag median and FlagIRLS could involve machine learning or add details to the mathematical
theory. For machine learning, the flag median can be used as a step in a subspace k-means algorithm, Grass-
mannian n-shot learning or any other machine learning algorithm in which calculating an “average” is a step.
Most likely these types of algorithms will be useful for classifying images and videos. In terms of mathematics,
we would like to find domain on which the flag median problem is convex and proofs for the convergence rates
of FlagIRLS is an open problem. There are potential connections between this flavor of optimization problem
and frame theory; so further investigation in this direction could prove useful. Finally, the flag median could be
generalized to other spaces such as Stiefel manifolds.
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