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Nonequilibrium interfacial thermodynamics has important implications for crucial
biological, physical, and industrial-scale transport processes. Here, we discuss a theory
of local equilibrium for multiphase multicomponent interfaces that builds upon the
“sharp” interface concept !rst introduced by Gibbs, allowing for a description of
nonequilibrium interfacial processes such as those arising in evaporation, condensation,
adsorption, etc. By requiring that the thermodynamics be insensitive to the precise
location of the dividing surface, one can identify conditions for local equilibrium
and develop methods for measuring the values of intensive variables at the interface.
We then use extensive, high-precision nonequilibrium molecular dynamics (NEMD)
simulations to verify the theory and establish the validity of the local equilibrium
hypothesis. In particular, we demonstrate that equilibrium equations of state are also
valid out of equilibrium, and can be used to determine interfacial temperature and
chemical potential(s) that are consistent with nonequilibrium generalizations of the
Clapeyron and Gibbs adsorption equations. We also show, for example, that, far from
equilibrium, temperature or chemical potential di"erences need not be uniform across
an interface and may instead exhibit pronounced discontinuities. However, even in
these circumstances, we demonstrate that the local equilibrium hypothesis and its
implications remain valid. #ese results provide a thermodynamic foundation and
computational tools for studying or revisiting a wide variety of interfacial transport
phenomena.

interfaces | transport | nonequilibrium thermodynamics | molecular dynamics | statistical mechanics

Interfaces and interfacial e!ects are critically important in many areas of physics, chem-
istry, biology, medicine, and engineering (1–3). In many such cases, interfaces exist in
nonequilibrium systems and play an active role in transport processes, thereby motivating
multiple e!orts to develop a thermodynamically consistent description of nonequilibrium
interfaces (2–4) capable of describing complex interfacial processes (5, 6). "ese thermo-
dynamics, however, are quite subtle and must be developed with care, as many of the
standard equations and methods of bulk transport are not always applicable to interfacial
systems (3). Here, we discuss a recently developed nonequilibrium thermodynamic theory
of interfacial transport and use molecular dynamics (MD) simulations to validate the
approach for multicomponent heterogeneous systems. Our #ndings serve to establish a
thermodynamically consistent framework for analyzing and modeling complex interfacial
transport processes.

To understand the challenges in describing interfacial transport, it is helpful to #rst
recall the foundations of bulk transport phenomena (4, 7), whose governing equations
rest on two fundamental pillars. First, balance equations for conserved quantities (e.g.,
mass, species mass, energy, and momentum) describe the time evolution of these quantities
in terms of associated $uxes. "ese equations are formally exact, but can only be solved
by introducing constitutive equations that relate the underlying $uxes to their spatial
gradients, that is, thermodynamic forces. To obtain these relations, a second key ingredient
of transport phenomena is introduced: the assumption of local thermodynamic equilib-
rium. One assumes that the overall system, which is not in equilibrium, may be divided
into small (but still macroscopic) volumes that are. "us, spatially varying values of the
intensive thermodynamic quantities can be assigned, and the equilibrium thermodynamic
relations (Euler, Gibbs–Duhem, etc.) and equations of state (8) are locally valid. "e
combination of balance equations and local equilibrium leads to an expression for local
entropy production, which is assumed to be nonnegative (again, by virtue of equilibrium
thermodynamics). One can then postulate thermodynamically informed constitutive
relations and obtain the well-known equations of transport phenomena (Navier–Stokes–
Fourier, Maxwell–Stefan, etc.). We stress that, while the balance equations are formally
exact and rely only on well-established conservation principles, the assumption of local
equilibrium is just that: an assumption. In bulk systems, this assumption is usually well
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Fig. 1. (A) Visualization of the binary liquid/vapor system studied by MD
simulations. The middle portion of the vapor phase has been omitted for
clarity. (B) Demonstration of a temperature jump at the interface in a system
subject to driven energy flux. The vertical line is the approximate position
of the interface. (C) Demonstration of an interfacial jump in the chemical
potential difference, φ ≡ µ1 − µ2, in a system with driven species mass flux.
The vertical line again represents the approximate position of the interface.

justi#ed because the mean free path and collision frequencies
of molecules in condensed phases are typically much smaller
and faster, respectively, than the macroscopic length/time scales
of interest, thereby allowing intermolecular collisions to induce
local thermalization (7). Indeed, even for very strong $ows, the
di!erences in intensive variables across the length scales required
for thermalization are usually small or negligible. Of course, many
systems exist which do not satisfy this requirement [for instance,
rare#ed gas $ows (9, 10)], but here we restrict ourselves to the
more common situations for which local equilibrium is valid in
the bulk.

In describing interfacial transport phenomena, we require anal-
ogous balance equations and local equilibrium assumptions. "e
former can readily be extended to interfaces rigorously, albeit with
more complicated mathematics (2, 3). Likewise, we assume that
interfaces will relax to quasi-equilibrium states very rapidly, as
they are in intimate contact with the bulk phases. As a result,
we postulate that these states may be characterized by equilib-
rium thermodynamic quantities that obey equilibrium interfacial
equations of state. However, the situation is actually far more
delicate than in the bulk, as the length scale of the interface is
comparable to molecular dimensions, making the assumption of
local thermalization highly suspect in such circumstances.

"e associated challenges may be more easily appreciated by
considering a simple test system. Fig. 1A shows a nonequilibrium
MD (NEMD) simulation of a binary mixture of Lennard-Jones
particles with coexisting liquid and vapor phases (see Materials
and Methods for details). When subjected to heat/energy or species
mass $uxes, the system develops temperature and chemical poten-
tial gradients, shown in Fig. 1 B and C, respectively.* It is immedi-
ately apparent that both intensive and extensive thermodynamic
quantities vary rapidly through the interface. In fact, the bulk
temperature and chemical potential pro#les imply macroscopic

*Although heat and energy fluxes are intimately related, it is more common, in the
experimental literature, to work with the former, as these may be directly measured.
However, in thermodynamic theories such as the one discussed here, the quantity that
arises more naturally is, in fact, the energy flux (4, 7, 11). Moreover, in molecular simula-
tions, the measurement of heat fluxes in multicomponent systems requires cumbersome
calculations of partial molar enthalpies. We prefer to avoid these complications and so
discuss our results in terms of the energy flux. Nevertheless, for the purposes of this work,
the reader may, in fact, consider the two as conceptually interchangeable without issue.

discontinuities (also called “jumps”) in intensive variables at the
interface. Such jumps are also observed experimentally and can
be quite signi#cant. For example, the evaporation of water is
associated with interfacial temperature jumps of up to 15 K
(12, 13), while the condensation of mercury exhibits temperature
jumps of over 70 K (14). Similar discontinuities in chemical
potentials are less accessible experimentally, but arise quite clearly
in simulations (Fig. 1C ). In light of these complications, one must
grapple with several key questions:

1) Clearly, the validity of the local equilibrium assumption cannot
be taken for granted at interfaces, and must, instead, be estab-
lished empirically. By what means can this be accomplished?

2) In order to use a local interfacial equilibrium in a macro-
scopic description of transport, we must be able to ascribe
intensive quantities to the interface. How can one do so when
the microscopic pro#les in Fig. 1 B and C are not accessi-
ble experimentally, and the bulk temperature pro#les imply
discontinuities?

3) Even if one could obtain microscopic temperature or chemical
potential pro#les (for instance, via molecular simulation), what
is the “correct” position of the interface? Even microscopically
small changes in the interface position can lead to large changes
in the apparent intensive quantities with macroscopic implica-
tions.

With the goal of addressing these issues, in what follows, we
#rst discuss the thermodynamic description of interfaces, and
describe a framework within which we may test the local equi-
librium hypothesis. We then conduct detailed, high-precision
MD simulations to verify the hypothesis for a binary liquid–
vapor system subject to both energy and mass $ux (Fig. 1A). We
further show how equilibrium equations of state can be used to
determine the intensive quantities of the interface in nonequi-
librium conditions—a procedure that does not depend on the
precise position of the interface. "ese results lay a foundation for
thermodynamically consistent modeling of interfacial processes in
systems far from equilibrium.

Background

"e study of interfaces plays a major role in the history of
molecular science and engineering. "e many surprising e!ects
of capillarity, for example, were among the phenomena that
suggested the molecular picture of matter in the 19th century
(1). While a number of di!erent thermodynamic descriptions of
interfaces have been put forward, most may be grouped into one of
two principal categories: 1) the “sharp” interface of Gibbs (15) and
2) the “di!use” interface of van der Waals (16) and, later, Cahn
and Hilliard (17) and Cahn (18). Both frameworks are commonly
used to model interfacial transport (6), and local equilibrium must
therefore be assessed in both pictures. We #rst discuss the di!use
interface model, and identify its shortcomings in the context of
the analysis of local equilibrium. We then introduce the sharp
interface framework, and outline the nonequilibrium theory in
the following section.

Diffuse Interfaces. "e di!use interface viewpoint rests on the
fact that microscopic densities vary rapidly but continuously
through the interface. To capture the thermodynamic cost of such
density inhomogeneities, the local free energy of the system is
augmented to include square gradient terms of the form |∇ψ|2,
where ψ is some scalar #eld (e.g., mass density, volume/mole
fraction, or other auxiliary #eld). "e approach is closely related to
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density functional theory, and the gradient terms can be derived in
this framework via a Taylor expansion of the free energy functional
with respect to the order parameters ψ (6). "e interface is
thus described in the same manner as the bulk phases, rather
than as an autonomous two-dimensional object. To obtain the
equilibrium interfacial density pro#le, one typically minimizes the
free energy through a variational approach and solves the resulting
equations (usually numerically); these methods have been used to
study a wide variety of equilibrium systems. Such treatments are
also known as “phase #eld” models in the literature. To obtain
nonequilibrium evolution equations for phase #eld models, one
combines the free energy functional with bulk balance equations
and (typically linear) constitutive relations. "e resulting equa-
tions are identical to those of bulk $uids, but with a modi#ed
pressure expression that includes the contribution of the gradient
terms.

"e di!use interface model is powerful and widely used, es-
pecially when the length scale of interest is comparable to that
of the interface itself. It can also be attractive from a numerical
perspective. In such cases, it is often considerably more convenient
than the sharp interface description, for instance, in describing
near-critical $uids, contact lines, mixing processes, or nucleation
(6, 19). However, it does have some drawbacks as a thermody-
namic theory. For example, phase #eld models rely on free energy
functionals that are essentially coarse-grained descriptions of the
system. It is therefore unclear whether the same functional(s)
is(are) valid out of equilibrium, especially at the interface, where
the relationships between thermodynamic variables need not be
the same as in the bulk (1). "us, most treatments inherently
assume that local equilibrium is valid through the entire interfacial
region, but, as discussed earlier, the local equilibrium of interfaces
is not obvious and must be demonstrated and tested.

Local equilibrium in the context of the di!use interface frame-
work is a subtle issue, whose di%culty may be traced back to the
fundamental underlying assumptions of the theory. "e classic
derivation of Cahn and Hilliard (17) and Cahn (18) requires
that |∇ψ| " b−1, where b is the range of the direct correlation
function (i.e., the interparticle potential). While this condition is
easily satis#ed in bulk phases (even out of equilibrium), the two
quantities are of the same order of magnitude at the interface for
many systems (SI Appendix). As a result, the pro#les of certain
thermodynamic variables through the interface are microscopi-
cally ill de#ned (1). For instance, one would obtain a di!erent
energy pro#le by assigning each pair of interacting particles one-
half of the interaction energy versus “smearing” the interaction
energy uniformly along the line between the particles [as done
by Kirkwood and Bu! (20) and Irving and Kirkwood (21)]. All
such choices are inherently arbitrary and lead to di!erent results;
thus, local #elds are not well de#ned at the interface for internal
energy, entropy, and stress, among others, and, consequently, the
$uxes of these quantities are also not well de#ned. "ere are, of
course, certain constraints that these pro#les must satisfy, but
these are given in terms of their integrals, which, as described
later on, make reference to a sharp interface. "e lack of well-
de#ned local pro#les for energy and entropy is a challenge for
two reasons: 1) these quantities are the generators of reversible
and irreversible nonequilibrium dynamics, respectively (22–24),
making nonequilibrium modeling di%cult, and 2) it is unclear
how the local equilibrium hypothesis may be understood and
tested within this framework. In fact, the issues described above
apply also to heterogeneous systems in global equilibrium.

As hinted above, although the interfacial pro#les of thermo-
dynamic quantities in the di!use model are not well de#ned,
their integrals are; any ambiguity in the locus of the interaction

energy/stress/etc. is circumvented when integrating over distances
that are large compared to the particle interaction range by virtue
of conservation laws. "ese integrals are closely related to so-called
surface excess quantities that form the basis of the sharp interface
description advanced by Gibbs (1, 15). For these reasons, the sharp
interface model is better suited for studying local equilibrium
compared to the di!use model, as discussed in the next section.

Sharp Interfaces. In the classic picture proposed by Gibbs (15),
a two-phase system comprises the bulk phases and a sharp, two-
dimensional dividing surface. Associated with this surface are ex-
cess densities of extensive quantities (also called surface functions),
which arise because the relevant thermodynamic variables vary
rapidly but continuously through the interfacial region. Mean-
while, at equilibrium, the temperature and chemical potential(s)
of the interface are the same as those of the adjacent bulk phases.
Other intensive quantities, such as surface tension and bending
sti!ness, arise from mechanical properties of the interface and
are the subject of interfacial rheology. Indeed, most rheological
constitutive equations for interfaces are formulated within the
sharp interface framework. Note also that such sharp interfaces
are routinely used as boundary conditions in the study of trans-
port problems. "ese considerations make the sharp dividing
surface model an appealing foundation for a nonequilibrium
thermodynamics of interfaces.

Consider a planar interface with the z axis normal to the
surface. "e values of the excess densities mentioned above depend
on the precise location of the interface, z s , which is chosen a priori
arbitrarily. Since the extensive density pro#les vary rapidly through
the narrow interfacial region, even small changes in the position of
the interface (e.g., on the order of the molecular size) can lead to
large changes in the excess quantities, which may even change sign.
Concretely, the excess density as(z s) of some extensive quantity,
a, is given in terms of the extrapolated bulk density pro#les in the
two phases, a I(z ) and a II(z ) (both constant at equilibrium), and
an “apparent” microscopic pro#le, a(z ), as follows:

as(z s) =

∫ z s [
a(z ) − a I(z )

]
dz +

∫

z s

[
a(z ) − a II(z )

]
dz ,

[1]
where phase I corresponds to the region of smaller z, and the
integration limits are assumed to be far enough from the interfacial
region that the pro#les a(z ) and a I/II become equivalent. We
again stress that, for many quantities, the local pro#les a(z )
are not well de#ned; however, the excess quantities as(z s) are,
since any ambiguities are “integrated out” over length scales
that are large compared to the interfacial width. Such excess
densities are de#ned for the internal energy, us , and species mass,
ρs
α, with the total excess mass density ρs =

∑
α ρs

α. "e excess
entropy ss(z s) represents a somewhat special case which will
be discussed later. At equilibrium, these surface functions are
related to one another through interfacial versions of the Euler and
Gibbs–Duhem relations, which, for a two-component system, are
given by

us = Tss + γ + φρs
1 + µ2ρ

s [2a]

0 = ssdT + dγ + ρs
1dφ + ρsdµ2. [2b]

We have chosen to write Eq. 2 in terms of the excess total mass
density, ρs = ρs

1 + ρs
2, and the di!erence in species chemical

potentials, φ = µ1 − µ2, as there are certain practical advan-
tages associated with this representation; more discussion on this
point is provided in Materials and Methods. Of course, other
choices are possible (1, 4), and the resulting equations are equiv-
alent by construction. Regardless of the speci#c form, further
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manipulation of Eq. 2 leads to the celebrated Clapeyron and
Gibbs adsorption equations that are the foundation of interfacial
thermodynamics (1).

"e Gibbs formulation reveals profound connections between
“ambiguous” excess densities (which depend on the position of the
dividing surface) and nonambiguous intensive quantities (which
do not). Furthermore, the fundamental relationships themselves
are insensitive to the position of the interface; this is perfectly
natural for a macroscopic theory, as the details of the interface
can only be resolved microscopically. In fact, one may view it as a
requirement that any macroscopic thermodynamics of interfaces
(equilibrium or otherwise) should rest on relationships that are
valid regardless of the precise position of the surface. "is insight
has recently been used to develop interfacial thermodynamics in
the formalism of gauge transformations (4, 25, 26), which are here
identi#ed as small changes in the location of the dividing surface.
"e “gauge” is the speci#c choice of z s , and a gauge transforma-
tion z s → z s + l displaces the dividing surface by a small distance
l normal to the interface toward phase II. As a result, the extensive
densities are modi#ed according to as → as + l∆a , where ∆a
is the di!erence (or “jump”) between the bulk phase densities
∆a = a I − a II extrapolated to the interface. Since the variations
in the bulk phase densities under nonequilibrium conditions are
small compared to the gradients at the interface, we take the
density jumps as independent of z s (here and throughout the
paper).

A gauge transformation of the interfacial Gibbs–Duhem
and Euler equations reveals that these relations are only
gauge invariant if we have 0 = ∆s dT +

∑
α ∆ρα dµα and

∆u = T∆s +
∑

α µα∆ρα. By taking conditions of constant
temperature and/or chemical potential(s), the Clapeyron and
Gibbs adsorption equation(s) are immediately recovered. "ese
results are typically reached by imposing the conditions of
equilibrium, that is, constancy of the intensive variables
(temperature, pressure, and chemical potentials) throughout the
system (1). However, we see here that the same fundamental
formulas can be obtained from a quite di!erent (although still
physically motivated) perspective, which does not explicitly
require global equilibrium. "is suggests that a nonequilibrium
thermodynamics of interfaces might be established on the same
grounds.

Local Equilibrium Theory of Interfaces

As discussed earlier, a theory of interfacial transport as powerful
as that of bulk transport requires a local equilibrium assumption.
We now examine the nature and implications of this assumption
through the lens of gauge invariance described above. We begin by
providing a brief but essential review of the theory developed in
earlier works (4, 25–27) and then discuss how the underlying local
equilibrium hypothesis may be tested in multicomponent systems.
In this paper, we deal only with binary systems, and so will focus
on the two-component case; the generalization to an arbitrary
number of components is available elsewhere (4). A visualization
of the system of interest is shown in Fig. 1A.

Theoretical Review. To begin, one hypothesizes nonequilibrium
versions of the Euler and Gibbs–Duhem equations,

us = T sss + γ + φsρs
1 + µs

2ρ
s [3a]

0 = ssdT s + dγ + ρs
1dφ

s + ρsdµs
2. [3b]

Note the subtle di!erence between Eqs. 2 and 3: "e intensive
quantities in the latter are associated speci#cally with the interface,

but are still gauge invariant. We now require that Eq. 3 remain
valid after a gauge transformation, and therefore arrive at nonequi-
librium versions of the Clapeyron equations,

∆ρ1

∆ρ
= −

(
∂µs

2

∂φs

)

Ts

[4a]

∆s

∆ρ
= −

(
∂µs

2

∂T s

)

φs

[4b]

∆u

∆ρ
= µs

2 − T s

(
∂µs

2

∂T s

)

φs

− φs

(
∂µs

2

∂φs

)

Ts

. [4c]

Similarly, we can obtain nonequilibrium versions of the general-
ized Gibbs adsorption equation(s),

Υ1 ≡ ρs
1 − ρs ∆ρ1

∆ρ
= −

(
∂γ

∂φs

)

Ts

[5a]

Υs ≡ ss − ρs ∆s

∆ρ
= −

(
∂γ

∂T s

)

φs

[5b]

Υu ≡ us − ρs ∆u

∆ρ
= γ − T s

(
∂γ

∂T s

)

φs

− φs

(
∂γ

∂φs

)

Ts

,

[5c]

where we have de#ned the relative adsorptions Υ1,Υs , and Υu

of species mass, entropy, and internal energy, respectively.
In writing Eqs. 3–5, we have introduced gauge-invariant

nonequilibrium intensive variables for the interface; speci#cally,
the interfacial temperature, T s , and chemical potentials, φs and
µs

2. However, in practical situations, it is not immediately clear
how to assign these values. In the bulk, it is straightforward
to identify local temperatures and chemical potentials on the
basis of local equilibrium: One has recourse to equilibrium
statistical mechanics, so the temperature can be related to the
kinetic energy and mass density pro#les, while chemical potentials
can be obtained, for instance, from particle insertion methods
(28). "is strategy is not applicable at interfaces away from
equilibrium, for two reasons. First, one must assume that the
local equilibrium assumption holds for the interfacial region in
order to use such statistical mechanical relations. Since this is
the very assumption we aim to evaluate, this is not acceptable
for our purposes. Second, the results of such calculations are
pro#les of the apparent temperatures and chemical potentials
through the interfacial region. However, the pro#les can vary
rapidly through this region, leading to the macroscopic “jumps”
mentioned in the Introduction (Fig. 1 B and C ). As a result,
any resulting values of the interfacial intensive variables would
be gauge dependent, which is not permissible for a macroscopic
thermodynamic description.

To address the di%culty of assigning intensive variables to the
interface, several authors (25, 29) have suggested using the surface
tension as an interfacial “thermometer.” "e essential insight is
that an interface in local equilibrium should obey not only inter-
facial Euler and Gibbs–Duhem relations (Eq. 3) but also the equi-
librium equations of state. Concretely, the nonequilibrium surface
tension, γ, can be directly measured in molecular simulations and
does not depend on the speci#c choice of the dividing surface.
"us, for a one-component system, the equilibrium equation of
state γ(T ) can be inverted to obtain a gauge-invariant interfacial
temperature, T s . Similarly, the interfacial chemical potential can
be obtained as µs = µ(T s), where µ(T ) is another equilibrium
equation of state. For multicomponent systems, more gauge-
invariant variables and associated equilibrium equations of state
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are needed, since additional chemical potentials must be assigned.
In particular, for a two-phase system with k components, the
Gibbs phase rule indicates that k such variables are needed. Note
also that the necessary equations of state become k dimensional.
Proper choices for these variables are not always obvious, but we
are nevertheless able to obtain the desired intensive quantities
of the interface for binary systems, as discussed later. Interfacial
temperatures and chemical potential di!erences obtained in this
manner are denoted T eos and φeos, respectively.

Testing Local Equilibrium. Although we have identi#ed a prac-
tical method for assigning temperature and chemical potential(s)
to the interface under nonequilibrium scenarios, we have not yet
veri#ed the local equilibrium assumption on which the method
depends. To do so, we must show that Eqs. 4 and 5 are consistent
with the equilibrium equations of state used to obtain T eos

and φeos. Speci#cally, we note that Eq. 4 relates nonequilibrium
density jump ratios (which are gauge invariant) to the equation
of state µs

2(T
s ,φs), which is simply identi#ed as the equilibrium

function µ2(T ,φ) under the local equilibrium assumption. "e
density jump ratios can be directly calculated from molecular
simulations, and any two such values allow one (in principle) to
solve numerically for the interfacial intensive quantities via the
equilibrium equation of state µ2(T ,φ). "ese values are denoted
T coex and φcoex, as they re$ect the changes in bulk properties at
the interface due to phase coexistence.

Analogous to the Clapeyron relations, Eq. 5 relates nonequi-
librium gauge-invariant surface excess densities to the equation
of state γ(T s ,φs), which is again taken as equivalent to the
equilibrium equation of state, γ(T ,φ). "e relative adsorptions
for species mass and internal energy are available via simulation,
so interfacial intensive variables may once again be obtained and
are denoted T stru and φstru. "is label highlights the fact that, in
the equimolar gauge, the surface tension (which characterizes the
mechanical structure of the interface) acts as a thermodynamic
potential (29).

Note that the relative adsorption of entropy cannot be cal-
culated without assuming, a priori, the local equilibrium of the
interface, since determining the excess entropy density requires
one to specify a local entropy pro#le throughout the interfacial
region. However, the entropy cannot be measured except in
reference to other thermodynamic quantities through the Euler
equation. In doing so, we tacitly assume that the Euler relation
itself is valid in the interfacial region, so that any demonstration
of local equilibrium becomes a circular argument. "is point
has been discussed in greater detail elsewhere (29). For these
reasons, the excess entropy—even in equilibrium systems—must
be inferred from the interfacial Euler relation, Eq. 2a (or Eq. 3a),
rather than through an integration of any local pro#le as in Eq.
1. "us, Eq. 5b has the character of a de#nition rather than a
requirement. It is this de#nition of a gauge-transformable excess
entropy density that allows for nonequilibrium versions of the
fundamental thermodynamic relations, Eq. 3. As a result, we must
use Eqs. 5a and 5c to determine T stru and φstru, in contrast to
T coex and φcoex, for which three pairs of equations could be chosen
(compare Eq. 4).

In total, we have identi#ed three separate methods of obtaining
intensive thermodynamic quantities for the interface in nonequi-
librium systems: 1) using equations of state for interfacial variables
as “thermometers,” 2) using observed jump ratios to solve Eq.
4, and 3) using measured relative adsorptions to solve Eq. 5. If
local equilibrium were valid at the interface, then the Euler and
Gibbs–Duhem, as well as equilibrium equations of state, would
apply away from equilibrium. As a result, all three sets of values

(T ,φ) should be equivalent within statistical error. We rely on
high-precision MD simulations, as described below, to test the
local equilibrium hypothesis for interfaces. We #rst identify ap-
propriate interfacial variables and then parameterize the various
equilibrium equations of state needed for the methods introduced
above. "en, we perform extensive NEMD simulations at steady
state with both energy and mass $ux (including coupling between
the two) and demonstrate the validity of the local equilibrium
hypothesis for interfaces in binary systems.

Equilibrium Systems

Applying the theory of local interfacial equilibrium to any par-
ticular system of interest requires two types of information: 1)
knowledge of the equilibrium equations of state and 2) iden-
ti#cation of suitable interfacial variables that can be used away
from equilibrium. We obtain this information from equilibrium
MD simulations performed with extremely high precision. In
particular, we simulate a binary system of Lennard-Jones particles
comprising coexisting liquid and vapor phases. We directly specify
the values of T and φ during the simulations (see Materials and
Methods), which uniquely and completely determine the thermo-
dynamic state of the system per the Gibbs phase rule (8). "e two
chemical species have di!erent interaction energies, which lead
to di!erent critical temperatures in their respective pure systems.
"us, we may say that one component is more “liquid-like” and
the other is more “gas-like.” A visual representation of the system
is shown in Fig. 1A.

From the right-hand sides of Eqs. 4 and 5, we see that we
must #rst determine the equations of state µ2(T ,φ) and γ(T ,φ)
as well as their derivatives at constant T and φ. "e values of
µ2 are calculated via the Widom insertion method, while those
of γ are determined from the negative of the excess tangential
pressure, which does not depend on the choice of dividing surface
(see Materials and Methods). A total of 42 equilibrium simulations
were performed with 0.0 ≤ φ≤ 1.5 and 0.6 ≤ T ≤ 0.85, where
the quantities have been made dimensionless by the Lennard-
Jones characteristic parameters. "e highest temperature is close
to the critical point of the gas-like species, while the lowest
temperature brings the system close to the liquid/solid coexistence
region of the liquid-like species. Meanwhile, the values of φ lead to
mole fractions of the liquid-like component in the range of 0.10
to 0.97 in the liquid. In short, the choice of parameters explores a
large area of thermodynamic space while still ensuring that the
system is well mixed and within the liquid–vapor coexistence
region. "e resulting equations of state, µ2(T ,φ) and γ(T ,φ),
and their gradients, are #t with smoothing bivariate cubic splines
(Fig. 2 A and B), which can be used along with the density pro#les
ρ(z ), ρ1(z ), and u(z ) to solve Eqs. 4 and 5.

Next, we must identify two gauge-invariant interfacial quanti-
ties that can be used to determine (T eos,φeos). "e surface tension
is one obvious choice, as it is the only intensive quantity with a me-
chanical de#nition valid in both equilibrium and nonequilibrium
situations. For an additional interfacial variable, several authors
(4, 27) have suggested the relative adsorption of species, Υ1,
de#ned in Eq. 5a. However, for this particular system, the adsorp-
tions are nonmonotonic functions ofφ, so that a given set of values
(γ,Υ1) does not always map to a unique thermodynamic state
(T ,φ). "e jump ratios appearing on the left-hand side of Eq.
4 provide a more useful choice, with the species mass jump ratio
∆ρ1/∆ρ being the easiest to obtain with high accuracy (Fig. 2C ).
"ese variables are indeed monotonic functions of T and φ, and
therefore allow (T eos,φeos) to be determined unambiguously, as
illustrated in Fig. 2D.
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A B

C D

Fig. 2. Equations of state for equilibrium systems. (A) Surface tension, γ(T ,φ). Colors from purple to orange indicate increasing temperature, T. The lines are
isotherms of the fitted bivariate spline. (B) Chemical potential of the gas-like species, µ2(T ,φ). Colors from blue to yellow indicate increasing chemical potential
difference, φ. The lines are points of constant φ of the fitted bivariate spline. (C) Interfacial jump ratio ∆ρ1/∆ρ. As in A, the lines are isotherms of the fitted
bivariate spline. (D)∆ρ1/∆ρ vs. γ. The colored lines indicate constant φ, while the gray dashed lines indicate constant T.

Before continuing, we emphasize again that the chosen interfa-
cial variables must be gauge invariant. Since the bulk densities are
constant at equilibrium, the jump ratio ∆ρ1/∆ρ trivially satis#es
this condition under these circumstances. However, the bulk
densities generally vary with position when out of equilibrium, so
that the jumps must be calculated from the bulk density pro#les
extrapolated to the interface, as mentioned in the previous section.
As a result, these variables are not technically gauge invariant,
since the pro#les must be extrapolated to a speci#c choice of the
dividing surface, z s . "is is of no practical concern, however,
because the density gradients in the bulk are generally much
smaller than those at the interface, so that variations in ∆ρ1/∆ρ
associated with gauge transformations (say, between the equimolar
and equienergetic gauges) are comparable with (or smaller than)
the statistical uncertainty in the values themselves. "e only
scenarios in which the gauge-dependence is not negligible are at
high temperatures near the critical point of the gas-like species,
where the interfacial width becomes very large. Of course, we
do not expect the theory to remain valid near a critical point,
since these states are essentially “nonthermodynamic” in that the
$uctuations dominate over the means, rather than the other way
around (30). Since ∆ρ1/∆ρ is approximately gauge invariant
for relevant systems, we adopt this as the second interfacial
variable without further reservations and calculate its value by
extrapolating to the equimolar gauge (ρs = 0). "is choice of
gauge is essentially arbitrary, but is consistent with the form of Eq.
5. Finally, we determine the equation of state [∆ρ1/∆ρ](T ,φ)

from the equilibrium simulation data and #t the results with a
smoothing bivariate cubic spline, as with the other equations of
state detailed above (Fig. 2C ).

Nonequilibrium Systems

Having laid the necessary foundations, we now conduct an array
of NEMD simulations to test the local equilibrium assumption.
We consider steady-state nonequilibrium systems where energy or
species mass $ux are driven by a gradient in T or φ, respectively
(see Materials and Methods). Note, however, that, in each case,
both energy and mass $ux occur on account of cross-e!ects (4, 7),
which couple these $uxes.

It should be appreciated that, although we only conduct simu-
lations at steady state, this is not required by the theory presented
above. One should only ensure that the time/length scales asso-
ciated with the evolution of the thermodynamic $uxes/forces is
longer than the time/length associated with local thermalization
(i.e., collision frequency, density gradient, etc.). "is same crite-
rion applies also in the case of bulk transport and is therefore not
unique to the present theory. Rather, the focus on stationary states
is a matter of computational practicality. In order to accurately
measure surface excess densities and jumps, one must be able
to survey a large enough area of the surface for a long enough
time so that $uctuations may be “averaged out.” When the inter-
face is moving (as in unsteady conditions), such calculations are
greatly complicated, as it becomes di%cult to distinguish between
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A B

C D

Fig. 3. (A) Relative error between interfacial temperatures obtained from equilibrium equations of state, Teos, and from Eq. 4, Tcoex, as a function of Teos. The
dark and light shaded regions represent 1 and 2 SDs, respectively, of the equilibrium data. Each data point represents a different nonequilibrium simulation
with unique parameters (seeMaterials and Methods). (B) The same data as in A, but plotted against φeos. (C) Absolute error between interfacial chemical potential
differences obtained from equilibrium equations of state, φeos, and from Eq. 4, φcoex, as a function of Teos. As in A, the shaded regions represent the spread of
the equilibrium data. (D) The same data as in C, but plotted against φeos. In all cases, error bars are approximately the size of the data points.

$uctuation and evolution. Of course, it is indeed possible to sim-
ulate dynamic surface phenomena (31, 32), but the high precision
required for a test of local equilibrium (including the calculation of
chemical potentials) makes this a major computational challenge
in the present work.

Given the small length and time scales associated with molec-
ular simulations, the gradients and $uxes observed here are, in
fact, quite extraordinary. For instance, if one assumes Argon-like
Lennard-Jones parameters (33), the temperature gradients are on
the order of 106 K/m, and the species mass velocities are on the
order of 1 m/s. "us, the present analysis, in fact, provides a
stringent test of the local equilibrium hypothesis, dealing with
interfaces in systems far from equilibrium.

Clapeyron Equations. As outlined earlier, Eq. 4 is tested by
calculating the density jump ratios directly from the simulation
data and then solving for (T coex,φcoex) through the equilibrium
equation of state µ2(T ,φ) and its derivatives (Fig. 2B). "e
resulting values should be consistent with (T eos,φeos) In practice,
only two of Eqs. 4a–4c are necessary to solve for the thermo-
dynamic state of the interface, but all three such combinations
must yield consistent results to ensure the gauge invariance of
Eq. 3. Satisfyingly, we have found that all three associated values
of (T coex,φcoex) are essentially identical. "us, we focus our
attention those quantities obtained from the most easily calculated

set of jump ratios, ∆ρ1/∆ρ and ∆u/∆ρ. A direct comparison
with the other combinations is provided in SI Appendix.

"e results of our analysis are shown in Fig. 3, with each data
point corresponding to an individual NEMD simulation with
unique parameters (see Materials and Methods). We consider the
relative error for interfacial temperatures, and the absolute error
for chemical potential di!erences. Such comparisons are chosen
since the temperature is strictly positive, while the chemical poten-
tial di!erence can approach zero (and become negative), thereby
resulting in misleadingly large relative errors. As expected, there
is considerable scatter in the data, which exceeds that observed
for one-component systems (29). Indeed, the binary systems are
more challenging to handle numerically owing to the additional
thermodynamic variable. Even on a fundamental level, the extra
degree of freedom allows for a much greater range of $uctuations
in the thermodynamic state of the interface.

To properly interpret this error, we conduct the same analysis
on the equilibrium systems discussed above; in these systems, Eq.
4 is exact, so the statistical variations in these cases set a reasonable
benchmark for validating the nonequilibrium applicability of the
Clapeyron equations. "e ranges of 1 and 2 SDs of the equilib-
rium data are shown as gray shaded regions in Fig. 3. Almost all
nonequilibrium data fall within one such SD, and the mean errors
are not statistically distinguishable from those of the equilibrium
systems. In summary, the accuracy of Eq. 4 is not appreciably
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A B

C D

Fig. 4. (A) Relative error between interfacial temperatures obtained from equilibrium equations of state, Teos, and from Eq. 4, Tcoex, as a function of Teos. The
dark and light shaded regions represent 1 and 2 SDs, respectively, of the equilibrium data. Each data point represents a different nonequilibrium simulation
with unique parameters (seeMaterials and Methods). (B) The same data as in A, but plotted against φeos. (C) Absolute error between interfacial chemical potential
differences obtained from equilibrium equations of state, φeos, and from Eq. 4, φcoex, as a function of Teos. As in A, the shaded regions represent the spread of
the equilibrium data. (D) The same data as in C, but plotted against φeos.

diminished in the presence of energy and/or mass $ux, supporting
the local equilibrium hypothesis.

Importantly, we #nd that these results show no dependence
on either T eos or φeos. Likewise, the results do not depend on
the magnitude (or sign) of the $uxes (SI Appendix), which might
indicate a restricted range of validity. We therefore conclude that
the Clapeyron Eq. 4 may indeed be generalized to interfaces in
nonequilibrium systems.

Gibbs Adsorption Equations. We now test Eq. 5 by calculating
the excess species mass and energy densities in the equimolar gauge
(ρs = 0) and solving for (T stru,φstru) through the equilibrium
equation of state γ(T ,φ) and its derivatives (Fig. 2A). As men-
tioned earlier (and in contrast with the earlier test[s] of Eq. 4), only
one of the three possible pairs of Eq. 5 may be chosen to solve for
the thermodynamic state of the interface, as it is not possible to
de#ne a local entropy pro#le s(z ) in the interfacial region without
assuming local interfacial equilibrium a priori (29).

"e results of this analysis are shown in Fig. 4, in the same
format as that adopted for the earlier analysis of the Clapeyron
equations. "e error in the data is larger, both in equilibrium and
nonequilibrium systems, owing to the highly $uctuating nature
of the interface, which makes the excess densities di%cult to
determine with high precision. Nevertheless, the nonequilibrium
systems show no greater uncertainty or error than the equilibrium
systems, which is all that can be expected when testing the local

equilibrium hypothesis. As with the earlier test of Eq. 4, there is
no meaningful dependence of the error on either T eos or φeos, or
the magnitude of the $uxes (SI Appendix). It is therefore clear that
the generalized Gibbs adsorption equations, Eq. 5, are also valid
out of equilibrium.

Discussion

"e distributions of the data in Figs. 3 and 4 are shown as box-and-
whisker plots in Fig. 5. "e data for the nonequilibrium systems
are generally comparable to those at equilibrium, in terms of both
the width of the distributions and any deviation from zero error.
"e similarity in these distributions points to the validity of the
local equilibrium description for the interface in nonequilibrium
settings.

For comparison, we have also included the distribution of
temperatures and chemical potential di!erences obtained from
extrapolating the bulk pro#les in the liquid or vapor to the
equimolar gauge. Although these data often appear much closer
to zero and exhibit less scatter than the coexistence or structural
intensive variable values, they are highly dependent on the size
of the jumps in intensive variables (compare Fig. 1 B and C ).
For instance, in the systems studied here, the largest jumps occur
in the temperature pro#le under energy $ux. For such systems,
the temperatures extracted from the vapor-phase pro#le deviate
signi#cantly from the interfacial temperature; in these situations,
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A

B

Fig. 5. Box-and-whisker representation of the data in Figs. 3 (coex) and 4
(stru) for (A) temperature and (B) chemical potential difference. Also shown
are the apparent interfacial values of (T, φ) determined by extrapolating the
bulk temperature and chemical potential profiles of the vapor (vap) and liquid
(liq) phases to the interface.

the relatively small error actually leads to the conclusion that such
a method of choosing the interfacial temperature is incorrect.

In most of the other simulated systems, the interfacial jumps
are fairly small, so the deviations of the liquid/vapor inten-
sive variables from the “true” interfacial ones are not detectable
(although this is not required for the current theory). However,
the small jumps observed here must be understood as special
cases: Since the entropy production at the interface is usually
taken as proportional to the squared magnitude of the jumps
(4), the system will arrange itself so as to minimize these jumps
(and hence entropy production), given the steady-state conditions
(7). Meanwhile, in complex, unsteady $ows, one cannot assume
that the jumps are small. "us, the use of bulk information
for de#ning intensive thermodynamic values of the interface has
limited validity, as was demonstrated earlier in pure systems (29).
On the other hand, the use of equilibrium equations of state
(i.e., the calculation of T eos and φeos) is evidently valid in all
circumstances, regardless of the magnitude of the temperature or
chemical potential jumps. Taken together, these results serve to
establish the interfacial “thermometer” method (25) as a powerful
tool for analyzing transport in heterogeneous systems.

Having established the validity of the local equilibrium hy-
pothesis for interfaces in nonequilibrium conditions, one may
now formulate thermodynamically consistent constitutive rela-
tions by the usual procedure of demanding nonnegative entropy
production (4, 7). Similarly, the coe%cients appearing in these
equations can be determined through an analysis of the data col-
lected here. However, although the governing transport equations
are universal in form and content, the transport coe%cients are
phenomenological and system speci#c. "erefore, these quantities
are not particularly relevant to the present work, as we have

primarily concerned ourselves with the more general aspects of
interfacial transport. Nevertheless, interested readers may obtain
and analyze the simulation data at their convenience (see Data
Availability).

Conclusion

Linear irreversible thermodynamics (4, 7) provides a foundation
for the study of a wide array of transport phenomena. For bulk
systems, the theory is so successful that it has become a key
component of standard pedagogy in physics, biology, engineering,
and elsewhere. Extending these concepts to interfaces has proved
challenging, owing to the existence of macroscopic discontinuities
in the intensive variable pro#les (e.g., temperature jumps), which
complicate the underlying local equilibrium assumption. More-
over, the popular phase-#eld or di!use interface models cannot
assess the validity of such an assumption.

Here, we have discussed and evaluated a local equilibrium
theory of multicomponent interfaces in the sharp interface frame-
work that is based on the concept of gauge transformations.
Simply put, the macroscopic thermodynamics cannot depend on
microscopic changes in the interface position. "e consequences
of this postulate provide methods to test the local equilibrium
hypothesis, which is shown to be applicable through extensive
MD simulations. Furthermore, we have established a reliable pro-
cedure for determining nonequilibrium interfacial temperatures
and chemical potentials on the basis of equilibrium equations
of state. Proper assignment of these intensive variables is crucial
for developing interfacial constitutive relations, and for accurate
calculation of the associated transport coe%cients. In summary,
the formulation of local equilibrium at interfaces presented here
provides a $exible and thermodynamically rigorous method for
modeling interfacial transport.

Materials and Methods
We simulate a binary mixture of particles with mass m interacting via a smoothed
Lennard-Jones spline potential,

φαβ(r) =






4εαβ

[(σαβ

r

)12 −
(σαβ

r

)6
]

if 0 < r < rs

εαβ

[
ζ1(r − rc)

3 + ζ2(r − rc)
2] if rs ≤ r ≤ rc

0 otherwise,

[6]

where r is the interparticle distance, and α, β ∈ {1, 2} denote the particle
species. Here we use the parameters σ11 = σ22 = σ12 = σ and ε11 = ε,
ε22 = ε12 = 0.8ε. The cutoff radius is chosen as rc = 2.5σ, and the parameters
rs = (48/67)rc , ζ1 = 0.099194σ−3, ζ2 = −0.16346σ−2 are assigned so
that the potential and its first derivative (i.e., the force) are continuous and
vanish at rc . This same model has been used in several other investigations of
thermodynamics and transport in binary systems (34–38). All physical quantities
are made dimensionless with m, σ, ε, ε/kB, and τ = (mσ2/ε)1/2 as the units
of mass, length, energy, temperature, and time, respectively.

All systems consist of 16,000 particles placed in a simulation box with x, y, z
dimensions Lx = Ly = 20 and Lz = 200. We use periodic boundary conditions
in the x and y directions and place walls at z = 0 and z = Lz. The left wall is
designed to encourage nonpreferential wetting of the liquid phase. Specifically,
at a distance z from the left wall, particles are subject to a 10–4 Lennard-Jones
spline potential (39),

φw(z) =






8πε
5

[
2
5

(
σ
z

)10 −
(
σ
z

)4
]

if 0 < z < zs

εw
[
ω1(z − zc)

3 + ω2(z − zc)
2] if zs ≤ z ≤ zc

0 otherwise,

[7]

where, by analogy with Eq. 6, we choose εw = ε/2, zc = rc , and zs = rs.
Likewise, the parametersω1 = −0.603715 andω2 = −1.388096 were chosen
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to ensure that the energy and force are continuous and vanish at zc . To further
ensure that the liquid remained at the bottom of the simulation cell, we applied
a small force, in the z direction, of −0.005 to all particles within 5.0 particle
diameters of the left wall and set the total momentum of the particles within this
region to zero every 2,000 time steps (rescaling particle velocities to leave kinetic
energy unchanged). This wall alters the structure of the nearby fluid, creating a
layering effect. However, the oscillations in the associated distribution functions
ρα(z) disappear at distances greater than z ≈ 5σ (40), which is considerably
smaller than the size of the thermodynamic bath (see below). The right wall is
implemented as a hard surface which reflects all particles that move beyond
z = Lz. The reflection is specular (elastic) in the z dimension and diffuse in the
x and y dimensions so that the wall also acts as a thermostat (41). Since the
interactions between the particles and the right wall are purely repulsive, the
adjoining phase is maintained as a vapor.

Near the walls, we implement thermodynamic baths which maintain constant
temperature, T, and chemical potential difference, φ, in the spirit of the dual
control volume method (42). The left bath encompasses the region 0 < z < 10
and is thermostated using the canonical sampling by velocity rescaling (CSVR)
method (43). This method chooses velocity scaling factors based on a stochastic
evolution of the kinetic energy. These auxiliary dynamics depend on the number
of degrees of freedom, which can vary within the specified bath region; thus the
targeted kinetic energy is updated at each time step as particles drift in and out of
the bath. A time constant of 0.1 was used for this algorithm. To maintain constant
φ, we perform Monte Carlo particle identity swaps in the semigrand canonical
ensemble (44–46). The acceptance criteria for these identity changes depend
on (among other things) the number of particles in the bath region, which is
measured prior to each attempted swap.

The right thermodynamic bath acts on the region Lz − 10 < z < Lz, occupied
by the vapor phase. We maintain the region at constant temperature using the
Andersen thermostat (47) with a characteristic time of 0.1. We use a different
thermostat in the right bath because we found that the CSVR algorithm often
leads to large velocity changes and numerical instabilities due to the low density
of the vapor. Moreover, the Andersen method mimics rare collision events,
making it a physically appealing choice for the vapor phase. To maintain constant
chemical potential difference in the right bath, we again apply the Monte Carlo
approach previously described for the left bath.

Using the thermodynamic baths described above, one can more directly
control the system. For instance, we can induce a species mass flux by choosing
different values of φ for each bath. Likewise, the system can be subjected to an
energy flux by choosing different values of T in each bath. One key advantage of
the direct control over φ is that coupled energy/mass transport is possible under
a temperature gradient. Without performing particle identity swaps, the steady
state of such a system will not experience any species mass flux, thus limiting the
breadth of transport processes that can be studied, as was the case in previous
computational investigations of these systems. From a theoretical point of view,
direct control of two intensive variables is greatly preferred, since Eqs. 4 and 5
deal with derivatives of various equations of state with respect to one intensive
variable while holding the other constant. While this could be done with the use
of grand canonical Monte Carlo methods (46), these algorithms are much less
efficient than the semigrand Monte Carlo, since they rely on particle insertions,
which are rarely accepted in condensed phases.

While the algorithms implemented here do indeed maintain temperature
and chemical potential difference with great accuracy, we have made no effort
to ensure that they rigorously reproduce the semigrand canonical distribution.
However, this is not important for our purposes, as these algorithms act only
within relatively small regions of the simulation cell which are far removed from
the interface. Indeed, the position of the interface is roughly zs ≈ 30 to 50σ so
that there is 20 to 40σ of bulk liquid between the left bath and the interface.
Outside of the baths, the system evolves according to Hamiltonian dynamics, free
from the influence of any thermostats or Monte Carlo moves. Thus, in the region
of physical interest (and a great deal of the surrounding volume), mass, species,
energy, and momentum are locally conserved, which provides the foundation for
a nonequilibrium thermodynamic description of the system.

Particle coordinates {r i(t)} are evolved in time according to Newton’s equa-
tions of motion using the Velocity–Verlet algorithm (46) with a time step of
δt = 0.0005τ . Owing to the slow diffusion dynamics in the liquid phase, the
systems require extensive preparation to ensure equilibrium or steady-state

conditions. In particular, equilibrium and nonequilibrium systems were precon-
ditioned for 150 to 250 ×106δt and 250 × 106δt, respectively, and we verified
that energy flux, species mass flux, and species density profiles were constant
(within statistical uncertainty) over the course of the simulations. Following the
system preparation, production simulations of 250 × 106δt were performed,
and the trajectories were analyzed as five separate chunks of 50 × 106δt to
estimate statistical uncertainties, which are reported as 95% CIs unless otherwise
noted.

To impose an energy flux in the systems, we set the right and left baths to
the same chemical potential difference and different temperatures. To impose
a species mass flux, the bath temperatures are kept identical, but the chemical
potential differences are set to different values. In both of these scenarios, cross-
effects occur: The temperature gradient induces a gradient in the chemical po-
tential difference, and vice versa. Note, however, that the particles have equal
mass so that the total mass flux is zero at steady state; that is, the barycentric
reference frame is the same as the laboratory/wall reference. Parameters for the
various simulations are shown in Table 1.

To analyze spatial variations in thermodynamic quantities, we divide the
system into 400 slabs of thickness σ/2 in the z direction with the position
of each layer k ∈ {1, 2, . . . , 400} given by zk = k/2 − σ/4. In each layer,

Table 1. Nonequilibrium simulation parameters
(liquid/vapor thermostat temperatures and chemical
potential differences)
Flux Liquid Vapor Liquid Vapor φ

temperature temperature φ

Energy flux 0.65 0.95 0.5 0.5
0.65 0.95 0.75 0.75
0.65 0.95 1.00 1.00
0.70 1.00 0.50 0.50
0.70 1.00 0.75 0.75
0.70 1.00 1.00 1.00
0.75 0.95 0.50 0.50
0.75 0.95 0.75 0.75
0.75 0.95 1.00 1.00
0.75 1.05 0.50 0.50
0.75 1.05 0.75 0.75
0.75 1.05 1.00 1.00
0.75 1.15 0.50 0.50
0.75 1.15 0.75 0.75
0.75 1.15 1.00 1.00
0.75 1.25 0.50 0.50
0.75 1.25 0.75 0.75
0.75 1.25 1.00 1.00
0.80 1.10 0.50 0.50
0.80 1.10 0.75 0.75
0.80 1.10 1.00 1.00

Mass flux 0.70 0.70 0.25 1.00
0.70 0.70 0.50 1.00
0.70 0.70 0.50 1.25
0.70 0.70 0.75 1.25
0.70 0.70 0.75 1.50
0.70 0.70 1.25 0.50
0.70 0.70 1.25 0.75
0.75 0.75 0.25 1.00
0.75 0.75 0.50 1.00
0.75 0.75 0.50 1.25
0.75 0.75 0.75 1.25
0.75 0.75 0.75 1.50
0.75 0.75 1.25 0.50
0.75 0.75 1.25 0.75
0.80 0.80 0.25 1.00
0.80 0.80 0.50 1.00
0.80 0.80 0.50 1.25
0.80 0.80 0.75 1.25
0.80 0.80 0.75 1.50
0.80 0.80 1.25 0.50
0.80 0.80 1.25 0.75
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we calculate, at every time step, the instantaneous species mass density,
ρk,α(t) = (m/Vs)

∑
i 1ki,α(t) where m is the particle mass, Vs = LxLyσ/2

is the slab volume, and 1ki,α(t) is an indicator function: 1ki,α(t) = 1 if particle
i is of species α and is in slab k at time t, and 1ki,α(t) = 0 otherwise. The total
mass density is the sum over both species mass densities: ρk(t) = ρk,1(t) +
ρk,2(t). Similarly, we calculate the species momentum density
m k,α(t) = (m/Vs)

∑
i 1ki,α(t)v i(t), where v i(t) = ṙ i(t) is the velocity

of particle i. Note that the species momentum density is equivalent to the
species mass flux. The total momentum density follows as m k(t) = m k,1(t) +
m k,2(t). The average barycentric velocity in slab k is then given in terms of the
time-averaged total momentum and total mass densities: v k = m k/ρk , where
a is the time average of the quantity a(t).

The instantaneous potential energy density is calculated as
ψk(t) = (1/2Vs)

∑
i "=j 1ki(t)φαiβj (rij(t)), where αi and βj are the species

of particles i and j, respectively, rij = |r i(t) − r j(t)| is the distance between
particles i and j, and 1ki(t) is a species-agnostic version of the indicator function
defined earlier. As pointed out in previous literature (1, 29) and discussed in detail
in the main text (section Diffuse Interfaces), the definition of ψk(t) is actually
somewhat ambiguous: If interacting particles are in different slabs, how should
the potential energy be partitioned between these slabs (or among any slabs
in between)? Here, we choose to assign to each layer one-half of the interaction
energy, as earlier analysis has indicated that systematic variations in the potential
energy density associated with various partitioning schemes are much smaller
than statistical uncertainties. Moreover, these subtleties are “integrated out” in
our analysis of local equilibrium, so the precise choice should be unimportant.

The instantaneous nonconvected kinetic energy density is expressed as
ηk(t) = (m/2Vs)

∑
i 1ki(t) [v i(t) − v k]

2. Since the barycentric velocity is not
known prior to running the simulations, we instead calculate, at each time step,
the instantaneous total kinetic energy, ξk(t) = (m/2Vs)

∑
i 1ki(t)v2

i (t). The
time-averaged nonconvected kinetic energy (which is the quantity of interest for
thermodynamic analysis) can then be expressed asηk = ξk − (1/2)ρkv2

k using
the relationships given above. The total internal energy density profile is then
obtained from uk = ψk + ηk .

The temperature profile is obtained from the kinetic energy and mass
densities as T(zk) = (2m/3)(ηk/ρk). To compute the pressure, we calcu-
late the instantaneous virial tensor νk(t) =

∑
i "=j 1ki(t)r ijf ij, where f ij is

the force on particle i due to particle j. The pressure profile then follows as
p(zk) = (2/3)ηk + (1/6Vs)Tr(νk). The surface tension is also expressed in
terms of the virial tensor by evaluating the difference of normal and tangential
components of the pressure: γ = −(1/4LxLy)

∑
k [Tr(νk) − 3n · νk · n ],

where n is a unit vector normal to the interface (i.e., in the z direction). Note
that we only consider slabs in the neighborhood of the interface, as the pressure
anisotropy vanishes in the bulk phases.

The chemical potentials in the system are expressed as sums of ideal
and excess parts: µα(zk) = µα,k = µid

α,k + µex
α,k . The ideal contribution is

µid
α = −(3/2)T ln T + T ln ρα. Note that the first term formally involves the

thermal de Broglie wavelength, which includes the Planck constant, h. Un-
fortunately, it is not possible to determine the value of this constant in re-
duced units without specifying values for m, σ, and ε. However, in the clas-
sical system considered here, the Planck constant merely sets a reference
entropy, S0. Although a change in the reference entropy changes the nu-
merical value of the entropy density jump ∆s and, as a result, the posi-
tion of the “equientropic” gauge, the thermodynamic relationships of the
main text (Eqs. 1–5) are not affected: The Euler, Gibbs–Duhem, Clapeyron,
and structural equations are still perfectly valid, and their nonequilibrium
counterparts remain unchanged. Thus, without loss of generality, we sim-
ply ignore these quantum mechanical complications and use the expression
given above for the ideal chemical potential. Thus, for each slab, we have
µid
α,k = −(3/2)T(zk) ln T(zk) + T(zk) ln ρα,k .

The excess chemical potential is calculated by the Widom insertion
method (28). A particle of species α is inserted at a random position

in slab k, denoted r k , and the excess chemical potential follows from
µex
α,k = −(kBT/m) ln 〈exp [−(Φα

k (t)/kBT)]〉, where Φα
k =

∑
j φαβj (rjk) is

the total interaction energy of the inserted particle, and the angled brackets
represent an average over all possible insertion locations and all possible particle
configurations. In a nonequilibrium scenario, the calculation is complicated by
the fact that the temperature is not known a priori and can only be deter-
mined by analyzing the simulation data post hoc (see above). To circumvent
this issue, at runtime, we record insertion energies in a histogram with a bin
width of 0.0025ε. For insertions with interaction energies larger than 30ε, we
simply keep a tally for normalization purposes, as the associated Boltzmann
factors are essentially equal to zero to within machine precision. The mini-
mum insertion energy captured in the histogram is −20ε, which is smaller
than the interaction energy in a system of close-packed Lennard-Jones parti-
cles, ensuring that all insertions are properly recorded. We maintain a sepa-
rate histogram for each slab, and, with proper normalization, obtain the prob-
abilities Pk(Φl) ≡ P(Φα

k ≈ Φl), whereΦl = −20ε + (l − 1/2) × 0.0025ε
is the energy associated with histogram bin l. The ensemble average is then
performed in postprocessing once the kinetic temperature profile is known:
µex
α,k = −(kBT(zk)/m) ln

{∑
l Pk(Φl) exp [−Φl/kBT(zk)]

}
. From our equi-

librium simulations, we have found that, for the bin width chosen here, the error
associated with the histogram procedure is orders of magnitude smaller than
statistical error, and so use the same procedure in the nonequilibrium systems.

To ensure that the nonequilibrium simulations remain at steady-
state conditions, we calculate the instantaneous energy flux j q,k

(t) = (1/Vs)
∑

i 1ki(t)
{
v i(t)ei(t) + (1/2)

∑
j "=i r ij

[
f ij · (v i + v j)

]}
,

where ei(t) is the total energy of particle i at time t: ei =

(1/2)
[

mv2
i (t) +

∑
j "=i φαiβj (rij)

]
. We found that this energy flux as well

as the species mass fluxes (equivalent to species momentum densities; see
above) are constant to within statistical uncertainty throughout the production
simulations and show no systematic deviations over time.

The NEMD code was written from scratch in C++ and was parallelized using
the OpenMP library (48); it is freely available online (49). The simulations were
conducted on 16 Intel Xeon E5 processors simultaneously on the Midway cluster
of the Research Computing Center at the University of Chicago and took approxi-
mately 3 wk to complete. Analysis of the simulation data was performed using the
Pandas (50), NumPy (51), SciPy (52), and CSAPS (53) Python packages. Figures
were created with the MatPlotLib package (54).

Data Availability. Selected data, including certain simulation output, analysis
scripts, and processed data files used for figures have been archived in an
open-access repository (55). Larger data files, such as simulation trajectories and
particle insertion energy histograms, are available from the authors upon request.
The simulation code is also freely available online (49).
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29. M. Schweizer, H. C. Öttinger, T. Savin, Nonequilibrium thermodynamics of an interface. Phys. Rev. E

93, 052803 (2016).
30. M. Kardar, Statistical Physics of Fields (Cambridge University Press, Cambridge, United Kingdom,

2007).
31. S. Cheng, J. B. Lechman, S. J. Plimpton, G. S. Grest, Evaporation of Lennard-Jones fluids. J. Chem.

Phys. 134, 224704 (2011).

32. F. Rahmani, T. Weathers, A. Hosangadi, Y. C. Chiew, A non-equilibrium molecular dynamics study of
subcritical, supercritical and transcritical mixing of liquid-gas systems. Chem. Eng. Sci. 214, 115424
(2020).

33. J. Ge, S. Kjelstrup, D. Bedeaux, J. M. Simon, B. Rousseau, Transfer coefficients for evaporation of a
system with a Lennard-Jones long-range spline potential. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
75, 061604 (2007).

34. M. L. Olivier, J. D. Rollier, S. Kjelstrup, Equilibrium properties and surface transfer coefficients from
molecular dynamics simulations of two-component fluids. Colloids Surf. A Physicochem. Eng. Asp.
210, 199–222 (2002).

35. I. Inzoli, S. Kjelstrup, D. Bedeaux, J. Simon, Thermodynamic properties of a liquid–vapor interface in a
two-component system. Chem. Eng. Sci. 65, 4105–4116 (2010).

36. I. Inzoli, S. Kjelstrup, D. Bedeaux, J. Simon, Transfer coefficients for the liquid–vapor interface of a
two-component mixture. Chem. Eng. Sci. 66, 4533–4548 (2011).

37. B. Hafskjold, T. Ikeshoji, S. Kjelstrup Ratkje, On the molecular mechanism of thermal diffusion in
liquids. Mol. Phys. 80, 1389–1412 (1993).

38. B. Hafskjold, S. K. Ratkje, Criteria for local equilibrium in a system with transport of heat and mass.
J. Stat. Phys. 78, 463–494 (1995).

39. J. J. Magda, M. Tirrell, H. T. Davis, Molecular dynamics of narrow, liquid-filled pores. J. Chem. Phys. 83,
1888–1901 (1985).

40. T. Eckert, N. C. X. Stuhlmüller, F. Sammüller, M. Schmidt, Fluctuation profiles in inhomogeneous fluids.
Phys. Rev. Lett. 125, 268004 (2020).

41. C. Cercignani, M. Lampis, Kinetic models for gas–surface interactions. Transp. Theory Stat. Phys. 1,
101–114 (1971).

42. G. S. Heffelfinger, F. Van Swol, Diffusion in Lennard-Jones fluids using dual control volume grand
canonical molecular dynamics simulation (DCV-GCMD). J. Chem. Phys. 100, 7548–7552 (1994).

43. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys.
126, 014101 (2007).

44. J. G. Briano, E. D. Glandt, Statistical thermodynamics of polydisperse fluids. J. Chem. Phys. 80,
3336–3343 (1984).

45. D. A. Kofke, E. D. Glandt, Monte Carlo simulation of multicomponent equilibria in a semigrand
canonical ensemble. Mol. Phys. 64, 1105–1131 (1988).

46. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, San Diego, CA, ed. 2, 2002).
47. H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem.

Phys. 72, 2384–2393 (1980).
48. OpenMP Architecture Review Board, OpenMP application program interface version 5.0 (2018).

https://www.openmp.org/. Accessed November 24, 2021.
49. P. M. Rauscher, Nonequilibrium simulations of interfaces (NESI). https://github.com/depablogroup/

NESI. Deposited 2 November 2021.
50. W. McKinney, “Data structures for statistical computing in python” in Proceedings of the 9th Python in

Science Conference, S. van der Walt, J. Millman, Eds. (SciPy, 2010), pp. 56–61.
51. C. R. Harris et al., Array programming with NumPy. Nature 585, 357–362 (2020).
52. P. Virtanen et al.; SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing

in Python. Nat. Methods 17, 261–272 (2020).
53. E. Prilepin, CSAPS – Cubic Spline Approximation (Smoothing) version 1.1.0. (2021). https://csaps.

readthedocs.io/. Accessed 24 November 2021.
54. J. D. Hunter, Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
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