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ABSTRACT
Continuous location authentication (CLA) seeks to continuously
and automatically verify the physical presence of legitimate users in
a protected indoor area. CLA can play an important role in contexts
where access to electrical or physical resources must be limited
to physically present legitimate users. In this paper, we present
WearRF-CLA, a novel CLA scheme built upon increasingly popular
wrist wearables and UHF RFID systems. WearRF-CLA explores the
observation that human daily routines in a protected indoor area
comprise a sequence of human-states (e.g., walking and sitting) that
follow predictable state transitions. Each legitimate WearRF-CLA
user registers his/her RFID tag and also wrist wearable during sys-
tem enrollment. After the user enters a protected area, WearRF-CLA
continuously collects and processes the gyroscope data of the wrist
wearable and the phase data of the RFID tag signals to verify three
factors to determine the user’s physical presence/absence without
explicit user involvement: (1) the tag ID as in a traditional RFID
authentication system, (2) the validity of the human-state chain,
and (3) the continuous coexistence of the paired wrist wearable
and RFID tag with the user. The user passes CLA if and only if
all three factors can be validated. Extensive user experiments on
commodity smartwatches and UHF RFID devices confirm the very
high security and low authentication latency of WearRF-CLA.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; Au-
thentication.

KEYWORDS
Continuous location authentication (CLA), wireless security, RFID,
wrist wearables, deep learning
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1 INTRODUCTION
Continuous location authentication (CLA) seeks to continuously
and automatically verify the physical presence of legitimate users in
a protected indoor area. CLA can play an important role in contexts
where access to electrical or physical resources must be limited to
physically present legitimate users, e.g., in a mission-critical facility
for authorized service members processing classified information,
in hospitals for clinicians examining private patient medical records,
and in companies for employees accessing confidential databases. In
addition, CLA can eliminate the inconvenience for authorized users
to keep manually providing identity credentials (e.g., inputting a
password) if they have to stay for a long time in a protected site.
Furthermore, CLA can automatically deauthenticate users once
they leave the protected indoor venue.

CLA is most related to the following categories of works.

• Presence-detection sensors. This category relies on ex-
isting human-presence detection sensors such as passive IR
detectors, ambient light sensors, and ultrasonic proximity
sensors [4]. However, these sensors can neither verify user
identities nor detect stationary users.

• Distance bounding and location verification. This cat-
egory ties the location of a wireless device (called prover)
with that of its registered owner. Distant bounding tech-
niques like [28] allow a wireless device (called verifier) to
verify that a prover is within a certain distance, but they
cannot distinguish whether the prover is in the protected
zone or an adjacent zone within the enforced distance limit.
Location-verification schemes such as [33, 41] explore multi-
ple verifiers to jointly estimate the location of a prover and
can fulfill CLA, but the requirement for multiple verifiers
may not be easily satisfied in practice.

• Indoor localization. This category explores wireless signals
(e.g., WiFi, Bluetooth, or acoustic signals) and pre-deployed
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Figure 1: A snippet of user daily routines in a workplace.

devices such asWiFi routers to localize and track user-carried
wireless devices in real time [19, 23–25, 40, 42] with up to
decimeter-level accuracy. These techniques target benign
users/devices, and their resilience to malicious users/devices
has not been investigated.

• Secure localization in sensor networks. These techniques
such as [20, 21] help a sensor node determine its location
with the help of a few beacon nodes in the presence of wire-
less signal attacks. Targeting benign sensor nodes, they do
not apply to CLA with possibly malicious users/devices.

• Biometric authentication. This category captures and val-
idates a user’s activity-related physiological and behavioral
biometrics from his/her smartphone’s IMU sensor data [30]
or surrounding wireless signals [35] to continuously ver-
ify his/her physical presence in an indoor area. But these
systems can only identify users when they are engaged in
particular human activities like walking or sitting. More-
over, they require each user to participate in an intensive
model-training process and are less applicable to multi-user
scenarios such as in a workplace.

In this paper, we present WearRF-CLA, a novel CLA scheme
built upon increasingly popular wrist wearables (e.g., smartwatches
and fitness trackers) and ultra-high frequency radio frequency iden-
tification (UHF RFID) systems. In particular, Pew Research reported
that about 21% of U.S. adults regularly use a smartwatch or fitness
tracker in 2020, and this percentage keeps growing. In addition,
UHF RFID tags have been widely used in many applications such
as personnel identification, access control, and personal tracking.
For example, the employees in many workplaces (e.g., companies,
hospitals, and military bases) are required to wear uniforms or ID
badges with embedded RFID tags. WearRF-CLA is designed only for
the contexts where each legitimate user carries both a wrist wearable
and an RFID tag embedded into his/her ID badge or uniform.

WearRF-CLA explores the observation that human daily routines
in a protected indoor area comprise a sequence of human-states. In
Fig. 1, we use Bob as an exemplary legitimate user to illustrate a
snippet of his daily routines in a multi-user workplace. Bob enters
the locked workplace after swiping his ID card or inputting the PIN
on the door keypad. He then walks to his desk, sits down, and starts
working (steps 1&2). During working hours, he may access some
confidential databases through his computer by inputting additional
passwords. Later, he sends some documents to the printer. So he
stands up, walks to the printer, fetches the documents, goes back
to his desk, sits down, and continues working (steps 3&4&2). If he

decides to leave the workplace, he stands up and exits through the
door (step 5). So Bob’s activities can be seen as a natural human-state
chain: walk→sit down→sit & work→stand up→walk→stand &
fetch→walk→sit down→sit and work→stand up→walk.

WearRF-CLA explores the above observation for CLA in a multi-
user indoor venue containing a commodity UHF RFID reader. Each
legitimate user registers his/her RFID tag and also wrist wearable
during system enrollment. Continue with the previous example.
After Bob enters a protected indoor area, his RFID tag keeps an-
swering the queries from the RFID reader while his wrist wearable
(e.g., smartwatch) continuously records gyroscope data. A backend
server retrieves the RFID signals’ phase data from the reader and
the gyroscope data from the wrist wearable. WearRF-CLA processes
the received gyroscope and RFID-phase data to continuously and
automatically verifies three factors to determine Bob’s physical
presence/absence without his explicit involvement: (1) the tag’s
Electronic Product Code (EPC) as in a traditional RFID authenti-
cation system, (2) the validity of the human-state chain, and (3)
the continuous coexistence of the paired wrist wearable and RFID
tag with Bob. Bob passes CLA if all three factors can be validated;
otherwise, WearRF-CLA considers Bob absent and automatically
shuts down all the physical/electronic resources opened to him.
For example, if Bob walks away from his desk without returning,
WearRF-CLA can recognize an illegitimate human-state chain and
then consider Bob absent.

The wrist wearable and RFID tag have complementary roles in
WearRF-CLA. The former contributes gyroscope data for recog-
nizing legitimate human-state chains, but it cannot directly prove
Bob’s physical presence because it can communicate with the re-
mote server through WiFi/cellular links even after Bob leaves the
protected area. In contrast, the communication range of a commod-
ity UHF RFID reader is up to 12m, so Bob’s RFID tag continuously
responding to the fixed reader can prove its close vicinity. Bob,
however, may accidentally lose the tag or have it stolen, e.g., by
a malicious coworker in the same area. In addition, RFID signals
cannot help recognize human-state chains, so the RFID tag alone is
insufficient as well. Therefore, WearRF-CLA combines the merits
of the wrist wearble and RFID tag by verifying their continuous
coexistence with Bob. For instance, if Bob leaves his desk while leav-
ing his RFID tag there, the coexistence can no longer be detected,
indicating Bob’s absence from his desk to the system.

The design of WearRF-CLA faces three critical challenges.
• Challenge 1: how to define human-states and legitimate human-
state chains in a typical indoor venue? Fine-grained daily user activ-
ities are difficult to recognize from noisy gyroscope data and also
lead to privacy concerns. Therefore, we propose to only explore five
common human-states in a typical indoor venue: walk, sit, stand,
sit down, and stand up. In addition, a legitimate human-state chain
must have two attributes: (1) human-states are permissible, and (2)
human-state transitions are legitimate in a target area. So we define
a human-state transition diagram to check whether a recognized
human-state chain is legitimate.
• Challenge 2: how to recognize human-states from noisy gyroscope
data? Due to differences in physiological (e.g., body shape, height,
and weight) and behavioral characteristics (e.g., walking patterns),
each human subject likely performs the same activity in different
ways. Hence, there exists distribution discrepancy among gyroscope
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Table 1: Categorization of common human-states.

Categories Human-states
Dynamic state Walk
Static state sit, stand

Transition state sit down, stand up

data collected from different users, resulting in a model trained on
one set of users suffering from significant performance degradation
when applied to other users. To tackle this challenge, we first uti-
lize supervised contrastive learning [17] to train a feature encoder
network that can extract user-independent feature representations
from gyroscope data. Based on the extracted feature representations,
we build a multiple layer perception (MLP) classifier to recognize
human-states. To the best of our knowledge, this is the first work to
explore self-supervised contrastive learning for gesture recognition
based on the IMU sensor data of wrist wearables.
• Challenge 3: how to check the coexistence of the paired RFID tag and
wrist wearable with the same user? To tackle this challenge, we ex-
plore the observation that the correlation between RFID-phase and
gyroscope data rely on particular human-states because the RFID
tag and wrist wearable are on different body positions. We classify
such correlations into three classes: strong, weak, and uncorrelated.
Since the gyroscope and RFID-phase data are of different types, we
design a two-stream cross-modal deep neural network (DNN) to
learn their correlations. By crosschecking recognized human-states
and learned phase-gyroscope data correlations, we can verify if a
user simultaneously carries the RFID tag and wrist wearable.

We prototype WearRF-CLA on commodity smartwatches and
UHF RFID systems and evaluate its performance with 10 volun-
teers in two university offices. The over classification accuracy
for the human-state classifier is about 98.5%, which significantly
outperforms traditional machine learning models. In addition, the
true and false acceptance rates with the cross-modal DNN for data
correlation measurement are 92.25% and 0.1%, respectively. The
results confirm thatWearRF-CLA can effectively detect the physical
presence or absence of legitimate users. In addition, WearRF-CLA
can achieve an average authentication latency of less than 213ms,
so it can well satisfy the real-time CLA requirement.

The rest of this paper is organized as follows. §2 outlines the sys-
temmodel and workflow. §3 presents the adversary model.§4 details
the WearRF-CLA design. §5 presents the experimental evaluation.
§6 concludes this paper.

2 SYSTEM OVERVIEW
WearRF-CLA aims to continuously and automatically authenticate
users for accessing physical/electrical resources after they enter
a protected indoor area (e.g., workplace). From the hardware per-
spective, WearRF-CLA consists of a backend server, RFID readers,
wrist wearables, and RFID tags. We outline the WearRF-CLA oper-
ations with Bob as an exemplary legitimate user in an multi-user
workplace as shown in Fig. 1. We deploy one or more antennas
connected to an RFID reader on the office wall or ceiling. Bob has an
RFID tag which is worn on a lanyard or clipped to his clothes. The
tag has been enrolled into the server and communicates with RFID
readers by backscattering its signals. The RFID reader has a limited

Walk Stand Sit

Stand up

Sit Down

Start

Figure 2: Human-state transition diagram.

communication range covering the indoor venue, while the system
server may simultaneously server many indoor areas such as dif-
ferent rooms in a large facility. Bob also has a password-protected
smartwatch (or fitness tracker) with a standard inertial gyroscope.
He installs a WearRF-CLA app on it and creates the WearRF-CLA
app username and password for the server to recognize him. The
server associates the smartwatch with his tag.

We assume that Bob’s smartwatch can always communicate with
the server either through a direct WiFi/cellular channel or with
a paired smartphone as a relay. The WearRF-CLA app handles all
the communication messages between Bob’s smartwatch and the
server. So we assume a cryptographically secure end-to-end TLS-
like channel between the WearRF-CLA app and server. Specifically,
when the server receives authenticated messages from an WearRF-
CLA app instance logged into under Bob’s username and password,
it trusts that the messages are indeed from Bob’s smartwatch.

The WearRF-CLA workflow is as follows. (1) After passing one-
time authentication such as swiping his ID card or inputting a PIN
on the doorpad, Bob enters the protected workplace while wear-
ing his smartwatch and RFID tag. (2) The RFID reader acquires
the RFID EPC according to the standard EPC Gen2 protocol [? ]
and then sends it to the server for verification. (3) After validating
the EPC associated with a legitimate user Bob, the server notifies
the RFID reader to continuously report the phase information of
backscattered RFID signals and also Bob’s enrolled smartwatch to
submit its gyroscope data at regular time interval (say, 15 s) without
involving any Bob’s effort. (4) The server keeps inferring a sequence
of human states (e.g., stand, sit, and walk) from the noisy gyroscope
data. Based on human-states, the server further checks the rela-
tionship between the RFID-phase and smartwatch-gyroscope data.
Bob is considered still physically present if both the human-state
chain and phase-gyroscope data relationship are deemed normal.
Otherwise, he is considered no longer present in the target indoor
area and automatically logged out (or deauthenticated).

3 ADVERSARY MODEL
For lack of cryptographic support, most commodity RFID systems
are particularly vulnerable to tag cloning. In particular, a capable
attacker can use a commodity RFID reader or software-defined
radio to easily overhear unencrypted tag information transmitted
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Figure 3: System modules.

between a legitimate RFID tag and the reader. Then he/she can cre-
ate a cloned tag by writing the sniffed tag information onto a blank
commodity RFID tag. Therefore, we consider a reasonable insider
adversary (e.g., a malicious coworker), denoted by A, that has a
clone of Bob’s RFID tag. A is inside the protected area and aims to
impersonate Bob by faking Bob’s physical presence with the cloned
tag or Bob’s genuine tag accidentally lost/stolen. Bob’s smartwatch
is password-protected. Each time Bob puts on his smartwatch, he
must enter the unlocking password and launch the WearRF-CLA
app therein which can run in the background until the smartwatch
leaves Bob’s wrist. Therefore, A still cannot bypass WearRF-CLA
by stealing both Bob’s smartwatch and RFID tag as long as the
smartwatch’s password mechanism is secure.

We use one example to illustrate A’s objectives. Assume that
Bob forgets to lock his computer when leaving the workplace. A
attempts to fake his continual presence to access Bob’s computer
or other physical/electronic resources opened to Bob. Bob’s smart-
watch can still respond to the system server over WiFi/cellular
links even after leaving the workplace. A can respond to the RFID
reader’s query with the cloned tag or even Bob’s genuine tag ac-
cidentally lost/stolen. A succeeds if the server detects legitimate
human-state chains and normal phase-gyroscope data relationships
from received smartwatch-gyroscope data and RFID-phase data. A
is further classified into the following two types.
Type-1 adversary: random mimicking. A is assumed to know
howWearRF-CLA works and wears the cloned tag to initiate a CLA
session. But A cannot monitor Bob’s real-time activities and just
performs random human activities such as walking, sitting, and
typing on a computer keyboard. Since the tag EPC is authentic
and verifiable, the server pulls the phase and gyroscope data from
the RFID reader and Bob’s smartwatch, respectively. It then infers
human-states from gyroscope data and checks the relationship
between the phase and gyroscope data as usual. WearRF-CLA is
designed to be highly autonomous, so Bobmay be not aware that his
smartwatch has uploaded gyroscope data that relate to his activities.
Type-2 adversary: synchronized mimicking A can observe
Bob’s real-time activities either in person (e.g., as a malicious by-
stander or coworker) or through a live feed from a spy camera.
Then A attempts to synchronize his activities with Bob.

For both adversary types above, we assume that the server cannot
use secure localization techniques to tell whether Bob’s smartwatch

and the RFID reader the adversary attempts to cheat are in the
same target indoor area, as such techniques often rely on many
assumptions which may not hold in practice. In addition, we do not
consider denial-of-service attacks, in which the adversary seeks to
induce wrong RFID phase measurements and thus authentication
failures by signal interference.

4 SYSTEM DESIGN
In this section, we first describe human-states and the human-
state transition diagram. Then we overview WearRF-CLA system
modules. Finally, we detail the design of each module.

4.1 Human-states and Human-state Transitions
Although numerous human activity recognition techniques based
on smartphone’s IMU sensors have been proposed, fine-grained hu-
man daily activities are difficult to recognize from noisy gyroscope
data due to many challenges such as distribution discrepancy and
annotation scarcity [8]. In addition, since each WearRF-CLA user
wears his1 RFID tag on lanyard or clips it to his clothes, backscat-
tered RFID signals’ phase can relate to coarse-grained human-body
states (e.g., walking or stationary). As mentioned in Section 1, we
determine whether a user simultaneously wears his RFID tag and
wearable by checking the relationship between the RFID-phase and
gyroscope data. Hence, we do not need to identify fine-grained hu-
man activities from gyroscope data. Moreover, fine-grained human
daily activity recognition can raise privacy concerns. Therefore,
we explore common human states in typical indoor workplaces for
CLA. As shown in Table 1, we consider five human-states: walk, sit,
stand, sit down, and stand up. Based on their characteristics, we
classify them into three categories: dynamic, static, and transition
states. According to our observation, almost all human activities
in a common indoor workplace are based on these human-states.
For example, when a user sits at his desk, he may be talking to his
colleagues, typing on a computer keyboard, or writing on paper. So
we classify all such human activities into the sitting state.

Fig. 2 shows the human-state transition diagram. We consider
some natural transitions between two human-states such as stand→sit
down→sit. Additionally, we notice that users usually start walking
(e.g., to their desks) after entering a typical indoor venue in most

1No gender implication.
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cases. Therefore, we use the walking state as the initial human-state
in a legitimate human-state chain.

4.2 System Modules
As shown in Fig. 3, WearRF-CLA consists of five main modules. In
theDataCollectionmodule, the server instructs the RFID reader and
the enrolled wearables to continuously record and submit phase
and gyroscope data at a regular time interval (say, 15 s), respec-
tively. In the Data Preprocessing module, the server uses different
techniques to remove the noise from raw phase and gyroscope
data. After this, WearRF-CLA utilizes the fixed-size sliding window
method to segment data. In the Human-state Recognition module,
the server recognizes and extracts human-states from the processed
gyroscope data. It also checks whether the human-states are per-
missible and also whether the human-state chain is legitimate in
the target indoor area. If so, it feeds the processed gyroscope data to
the last Cross-modal Correlation Measurement module; otherwise,
the user is considered no longer present. In the last module, the sys-
tem explores a two-stream DNN to check the relationship between
the phase and gyroscope data. WearRF-CLA declares the physical
absence/presence of the user in the target indoor area based on the
output of the last module.

4.3 Data Collection
WearRF-CLA starts detecting the physical presence of a legitimate
user after the RFID reader validates his tag EPC. In particular, the
RFID reader continuously transmits a continuous wave (CW) to
activate tags within its read range. The RFID tag automatically re-
sponds to the reader’s query by backscattering its unique EPC. The
reader-tag communications follow a standard RFID protocol such as
EPC Gen2. [? ]. After receiving the tag response, the reader decodes
it and then sends the tag EPC to the backend server. The server then

queries its database. If a matching user (i.e., Bob in our example) is
found, the server sends a “Start Sensing” notification to both the
reader and Bob’s enrolled wearables. The overall latency from the
RFID tag responding until the “Start Sensing” command reaches the
reader and wearable is usually very short and well below 0.5 s per
the EPC Gen2 standard and our experiments. Once receiving “Start
Sensing”, the RFID reader and wrist wearable begin to record and
submit the phase and acceleration data in a regular authentication
interval (say 15 s), respectively, which is predetermined according
to the CLA time-granularity requirement. The server issues a “Stop
Sensing” command to the reader and wearable if the RFID reader
cannot detect the tag or the user is considered not present.

4.4 Data Preprocessing
The server feeds raw RFID-phase and gyroscope data into the Data
Preprocessing module. Since the data are collected from two differ-
ent modalities, they are processed in separate ways.

As shown in Fig. 3, the raw phase data go through phase unwrap-
ping, Savitzky-Golay filtering, and data segmentation in sequence.
In particular, the raw phase values are wrapped within [0, 2𝜋] and
result in range ambiguity. So we correct each phase value in ra-
dians by adding or subtracting 2𝜋 if absolute differences between
two consecutive phase values are greater than or equal to 𝜋 . Then
we use a Savitzky-Golay smoothing filter [34] to smooth the un-
wrapped phase data and also remove random noise. This filter uses
least-squares fitting to perform a local polynomial regression in a
subset of neighboring points. It can preserve some crucial distri-
bution features like relative maxima and minima, making it more
suitable than other filtering methods for our case.

For the gyroscope data, we adopt a low-pass filter with a cutoff
frequency of 3Hz to eliminate noise and interference. The frequency
of people walking is lower than 3Hz [15]. Additionally, according
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to our experiments, the frequency of transition states varies around
0.5Hz to 1.25Hz. So we set up the cutoff frequency as 3Hz to all
three axes of gyroscope data to remove the high-frequency noise
and interference.

After removing noise and interference, we use a fixed-length
sliding window method with 50% overlap to segment the phase and
gyroscope data, respectively. Previous studies show that the size
for fixed windows ranges from 2 s to 5 s for a frequency of 20Hz to
50Hz [6, 36]. In addition, the average duration of a single dynamic
or transition state (e.g., a gait step or sitting down) is less than 2 s.
We thus segment the phase and gyroscope data into frames of 2 s
with 50% overlap.

4.5 Human-state Recognition
Fig. 3 shows that this module has two components: Human-state
Identification and Human-state Chain Examination. The former
aims to recognize predefined human-states from a sequence of
gyroscope data segments and output a human-state chain. The
latter then seeks to check the validity of the human-state chain.
The following steps are performed in sequence.

4.5.1 Human-state identification. Prior attempts adopt traditional
machine learning or deep learning approaches to recognize human
activities from IMU sensor data such as accelerometer and gyro-
scope data [12–14, 22, 32]. However, since different users perform
the same activity in different ways, these pre-trained models are
highly specific to users. Recent works explore transfer learning to
improve cross-user activity recognition performance [5, 7, 9, 31].
However, transfer learning requires extra training efforts for each
user. A natural question that arises is that whether we can train
a “one-size-fits-all" model that is able to be trained once but used
anywhere. The key challenge is how to extract user-independent
feature representations from sensor data for activity recognition. In
this work, we explore supervised contrastive learning [17] to tackle
this challenge. This learning technique aims to learn latent feature
representations from raw input data by contrasting positive pairs
(samples from the same class) against negative pairs (samples from
different classes). So the latent feature representations from the
same class should stay close to each other, while the feature repre-
sentations of different classes far apart. Fig. 4 shows the framework
of supervised contrastive learning, which comprises the following
four components.

• Data augmentation. For each batch of raw input data, we
transform it into two augmentations, each of which represents a
different view of the data. In this paper, we utilize a set of data
transformation functions in [39] and [32].

1. Jittering. To imitate noise induced by hardware, software,
and environment, random Gaussian noise with zero mean
and standard deviation of 0.05 are added to a data sample.

2. Scaling. The magnitude of a data sample is scaled by a ran-
dom factor that is sampled from a Gaussian distribution of
mean being 1 and standard deviation being 0.1.

3. Rotation. A rotation matrix for a random rotation angle
around a random axis is generated for each data sample.
Both the rotation angle and axis are drawn with a uniform
distribution. The generated rotation matrix is then applied
to the data sample.

4. Permutation. The data sample is first divided into N (e.g.,
4) segments that have the same length. Then we randomly
permute the segments to generate a new data sample .

5. Time-warping. This transformation function stretches or
compresses a data sample by smoothly varying the time
intervals of the original data samples.

6. Magnitude-warping. This transformation changes themagni-
tude of a data sample by multiplying a smooth curve varying
around one (e.g., cubic spline curve).

7. Channel Shuffling. The axial dimensions of a data sample
are shuffled at random.

• Encoder network 𝑓 (·). This component aims to extract high-
level feature representations from augmented data samples. As
shown in Fig. 4, we instantiate Encoder network as a three-layer
convolutional neural network. Each layer consists of a 1D convolu-
tional layer, a batch normalization Layer, a Rectified Linear Unit
(ReLU), and a dropout layer.

• Projection network 𝑔(·). It maps the high-level feature repre-
sentations into another space for contrastive learning. We utilize a
multilayer perceptron with one hidden layer of size 1024 to convert
the high-level feature representations to a one-dimensional vector.

• Supervised contrastive loss function. A contrastive loss
function defines the learning object for supervised contrastive
learning. Consider a dataset of N pairs of data samples and la-
bels, denoted as {𝑥𝑘 , 𝑦𝑘 }𝑘=1,2,...,𝑁 . For each data sample in the
dataset, we perform two augmentations, resulting in 2N pairs of
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augmented samples and labels, denoted as {𝑥𝑙 , 𝑦𝑙 }𝑙=1,2,...,2𝑁 , where
𝑥2𝑘 and 𝑥2𝑘−1 are two augmentations of 𝑥𝑘 (𝑘 = 1, 2, ..., 𝑁 ) and
𝑦2𝑘 = 𝑦2𝑘−1 = 𝑦𝑘 . Let 𝐼 ≡ {1, 2, ..., 2𝑁 } be the index set of aug-
mented samples. According to [17], the supervised contrastive loss
function, called SupCon, can be written as:

L = −
∑︁
𝑖∈𝐼

1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖)

log
exp (𝑧𝑖 · 𝑧𝑝/𝜏)∑

𝑎∈𝐴(𝑖) exp (𝑧𝑖 · 𝑧𝑎/𝜏)
. (1)

where 𝐴(𝑖) ≡ 𝐼 \ {𝑖} denotes the index set of augmented samples
that does not include 𝑖 , the index 𝑖 is called the anchor, 𝑧 = 𝑔(𝑓 (𝑥)),
𝑃 (𝑖) ≡ {𝑝 ∈ 𝐴(𝑖) : 𝑦𝑝 = 𝑦𝑖 } represents the index set whose labels
are the same as the label of 𝑖th data sample, |𝑃 (𝑖) | is the cardinality
of 𝑃 (𝑖), 𝜏 ∈ R+ is a scalar temperature parameter, and the · symbol
is the inner product. According to [17], lower temperature benefits
training more than higher ones, but extremely low temperatures
are harder to train due to numerical instability.

Downstream task. After completion of training, we discard the
projection head 𝑔(·) and use encoder 𝑓 (·) to extract high-level
representations ℎ for the downstream task, which refers to human-
state recognition in this paper. As shown in Fig. 5, we build a
multilayer perception (MLP) classifier with three hidden layers for
human-state recognition. It takes as input feature representations
extracted by the encoder 𝑓 (·) and outputs human-state labels.

4.5.2 Human-state chain examination. After obtaining a human-
state chain, WearRF-CLA starts verifying its validity. Specifically,
based on the predefined human-states in Table 1, it first checks if
the human-state chain contains some undefined human-states in
a normal typical indoor workplace. If so, WearRF-CLA consider
the legitimate user absent to be on the safe side. Otherwise, the
system further checks if the transitions between every two consec-
utive human-states is normal based on the human-state transition
diagram shown in Fig. 2. If so, it feeds the processed phase data,

gyroscope data, and the human-state chain to the Cross-modal
Correlation Measurement submodule.

4.6 Cross-modal Correlation Measurement
Finally, we build a cross-modal correlation measurement network
to check the relationship between the processed phase and accel-
eration data by exploring deep learning techniques. Fig. 6 shows
the architecture of the proposed DNN architecture. It takes the
processed phase and gyroscope data as inputs. We pad zeros in the
end (if necessary) to ensure that all input vectors/matrices are of
the same length. The network has two streams that can extract
features from the phase and gyroscope data, respectively. Both net-
work streams consist of two one-dimensional (1D) convolutional
layers and a Gated Recurrent Units (GRU) layer. Each 1D convo-
lutional layer is followed by a batch normalization Layer, a Leaky
Rectified Linear Unit (LeakyReLU) activation layer, and a dropout
layer. The two 1D convolutional layers extract features from the
input vector/matrix, and the GRU layer encodes the sequence of
features to a vector representation. At the end of the two branches,
we concatenate the feature map of each stream in the phase and
gyroscope domain. We then feed the concatenated feature map to
three fully connected (FC) layers with a softmax activation function
to produce a likelihood vector that represents the probability distri-
bution of a list of potential relationship between the two data. After
this, we select the one that has largest values as the relationship
type of the input phase and gyroscope data. Finally, we determine
if the relationship is normal or not based on the human-state chain.
Specifically, there are three cases: (1) if the user is in the static state
(e.g., sitting and standing), the relationship between the phase and
gyroscope data should be weak; (2) if the user is in the dynamic or
transition state, the relationship between them should be strong;
and (3) if we consider the aforementioned adversaries in Section 3,
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the relationship between them should be uncorrelated. If a relation-
ship type is consistent with the corresponding human-state in the
human-state chain, the legitimate user is considered still present in
the typical indoor area and otherwise absent.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
We evaluate WearRF-CLA in this section. In what follows, we first
describe our experimental setup. Then we evaluate the performance
of WearRF-CLA in two university offices as shown in Fig. 7.

Hardware implementation. We implemented a prototype of
WearRF-CLAwith commodity UHF RFID devices and smartwatches.
Specifically, we used an Impinj Speedway R420 RFID reader with
two circularly polarized RFID antennas. We connected the reader
to a Dell Precision laptop that serves as the backend server and
mounted antennas on two tripods. As shown in Fig. 7, the two
antennas were deployed in two university offices with the sizes of
22 ft × 16 ft and 13 ft × 10 ft, respectively. In addition, each user was
required to wear a smartwatch and a Zebra UHF RFID tag on his
or her lanyards in our experiments. But our system is applicable
to any other commodity UHF RFID tags such as Aline ALN-9640
RFID tags and Omni-ID‘s Adept 650P RFID cards.
Software implementation. To capture human states, we used
three different types of smartwatches, including Huawei Watch 2
that runs AndroidWear 2.1, Samsung GalaxyWatch that runs Tizen
5.0, and Apple Watch 2 that runs WatchOS 7. To collect gyroscope
data, we implemented Android, Tizen, andWatchOS applications on
HuaweiWatch 2, GalaxyWatch, andAppleWatch 2, respectively. To
save energy, the gyroscope sampling rate was set to 20Hz. We also
implemented a Java application based on Octane SDK [3] together
with the reader to obtain the RFID phase data. The application on
the smartwatches and the phase-recording application are both part
of the Data Collection submodule in WearRF-CLA. In addition, we
implemented Data Preprocessing, Human-state Recognition, and
Cross-modal Correlation Measurement modules using Python on
the laptop. Finally, we constructed the proposed DNN architecture
in PyTorch 1.8 [26] and trained it on Dell 7920 Tower with Quadro
RTX 5000 16GB GPU.

5.2 Data Collection
With the Institutional Review Board (IRB) approval from our insti-
tution, we recruited 10 participants for the experiments, including
4 females and 6 males aged between 20 and 35. We consider eight
common daily activities in an indoor workplace: (1) walk, (2) sit and
type, (3) sit and write, (4) sit and talk, (5) stand and type, (6) stand
and talk, (7) sit down, and (8) stand up. As mentioned in Section 4.1,
we labeled (2)-(4) and (5)-(6) activities as sitting and standing states,
respectively. In addition, we used three publicly available datasets
to cover a wide variety of human subjects and daily activities for
human-state recognition. Finally, We collected the following two
training datasets (Dataset I and II) and two test datasets (Datasets
III and Datasets IV).

Dataset-I for human-state recognition. We asked a participant
P to perform the aforementioned human daily activities in office
A. Specifically, he performed “sit down” and “stand up” 3,800 times,

respectively. He was also asked to perform the other daily activities.
Finally, we collected about 24 hours of phase and gyroscope data for
the walking state and 16 hours in total for sitting and standing states
. We fed the raw phase and gyroscope data into the Data Prepro-
cessing module to obtain the processed phase and gyroscope data
segments. We also considered the following three public datasets
to incorporate more daily activities and human subjects.

• Heterogeneity human activity recognition (HHAR) dataset [38].
There are six human activities in this dataset: sitting still,
standing still, walking, biking, stair up, stair down. Nine sub-
jects were required to wear Samsung and LG smartwatches
on each arm and conduct five minute of each activity. We
labeled the last three activities as undefined activities in the
two offices. The sampling rates of Samsung and LG smart-
watches are 200Hz and 100Hz, respectively.

• PAMAP2 [29]. This dataset was obtained from a group of 9
participants with a wrist-worn Colibri wireless IMUs from
Trivisio [2]. The gyroscope signals are sampled at 100Hz
when participants performed the following 21 activities: sit-
ting, standing, walking, lying, running, cycling, Nordic walk-
ing, watching TV, computer work, car driving, ascending
stairs, descending stairs, vacuum cleaning, ironing, folding
laundry, house cleaning, playing soccer, rope jumping. Most
activities were performed over three minutes. Except for the
first three activities, we classified all others as undefined
activities in our experiments.

• UT-Complex [36, 37]. This dataset was collected from 10
participants with a smartphone on their wrist to emulate
smartwatches or wrist-worn devices. The data were recorded
for 13 activities: sitting, standing, walking, sitting and eating,
sitting and writing, sitting and typing, sitting and drinking
coffee, sitting and giving a talk, standing and smoking, jog-
ging, biking, upstairs, downstairs. The last four were labeled
undefined activities. All these activities were perform about
three to six minutes by each participant.

Table 2 summarizes some details of the above three datasets.
Since the data sampling rate in the three dataset ranges from 50Hz
to 200Hz, we downsampled them at 20Hz. Then we used the Data
Preprocessing module to remove noise and divide denoised data
into a series of segments. Finally, we combined them with P’s
processed gyroscope data to build Dataset-I.

Dataset-II for training cross-modal correlation measurement
network. We used processed phase and gyroscope data of P’s
activities for training the Cross-modal Correlation Measurement
Network. In particular, we labeled phase-gyroscope data pairs under
dynamic and transition states as 2 and those under static states as 1.
We further asked another participant P ′ to perform daily activities
as P did in office B to collect phase and gyroscope data samples.
A phase data sample from P (P ′) and a gyroscope data sample
from P ′ (P) constitute an uncorrelated phase-gyroscope data pair,
which are labeled as 0.

Dataset-III for evaluating human-state identification and
cross-modal correlation measurement. 10 participants were
asked to perform the aforementioned daily activities at least about
1.5 hours in the two offices. Nine of them performed the activities in
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Figure 7: Experimental Setup.

Table 2: Summary of public datasets

Dataset No. of users No. of Activities Devices
HHAR 9 6 Samsung smartwatch and LG smartwatch
PAMAP2 9 19 Colibri wireless IMUs

UT-Complex 10 13 Samsung Galaxy S2

office A, while two carried out the activities in Office B. Specifically,
to imitate multi-user workplaces, we asked two groups of three
participants to perform the activities in office A at the same time slot.
To imitate sing-user workplaces, three other participants to perform
the activities at different time slots. Additionally, in office B, two
participants were asked to perform the activities in the same time
slot. After obtaining the raw data, we used the Data Preprocessing
module to remove noise and segment the preprocessed data. Similar
to Dataset-II, we labeled the phase-gyroscope data pairs from each
participant under dynamic states and transition states as 2 and
those under static states as 1.

Dataset-IV for user and attacker emulation. Five participants
acted as either legitimate users or attackers to generate this dataset.
For each volunteer who served as an attacker, the other 5 were re-
garded as his/her victims. In particular, we first asked them to act as
Type-1 attackers. So they just randomly performed some daily activ-
ities. Then each participant served as a Type-2 attacker. Specifically,
each attacker was physically co-located with the victim and could
clearly observe the victim’s hand movement. They observed and
practiced victims’ daily activities (e.g., gait patterns) until he/she
was familiar with them. Afterwards, we required them to mimic
victims’ daily activities in real time. For both cases, we asked all
participants to perform the activities for 15 minutes. Therefore, the
collected paired phase-gyroscope samples were assigned as 0.

5.3 Performance Metrics
We use the confusion matrix to evaluate human-state recognition. A
confusion matrix is a 𝑁 ×𝑁 table that summarize prediction results
on a classification problem. 𝑁 is the number of target classes. Each
row of the table represents the instances in an actual class, and
each column represents the instances in a predicted class.

We adopt True Acceptance Rate (TAR) and False Acceptance
Rate (FAR) as the main performance metrics to evaluate the cross-
modal correlation measurement network. TAR is the ratio between
correctly classified positive (legitimate) instances and all positive
ones in a test dataset. A higher TAR means that the system is more
likely to admit legitimate users. FAR is the ratio between wrongly
classified negative (adversarial) instances and all negative ones
in a test dataset. A lower FAR means that the system can more
effectively prevent adversaries from being physical present in a
protected indoor area.

5.4 Model Setting
We used Dataset-I to train a feature encoder network and a MLP
classifier for human-state recognition. Additionally, we trained
the proposed cross-modal correlation measurement network on
Dataset-II. The parameter settings are summarized as follows.
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Table 3: List of features.

Domain # Feature Name Description

Time-domain

1 Mean The arithmetic mean along each axis.
2 Standard deviation Standard deviation along each axis.

3 Mean absolute deviation Median absolute deviation of the data
along each axis.

4 Skewness Measure the asymmetry around its
mean value along each axis

5 Kurtosis Measure the combined weight of a distribution’s
tails relative to the center of the distribution

6 Root-Mean-Square (RMS) The square root of the mean square
7 Max Maximum value along each axis
8 Min Minimum value along each axis

9 Zero-crossing rate (ZCR)
The rate at which a signal changes from

positive to zero to negative
or from negative to zero to positive

10 Absolute Energy Summation over the squared values along each axis

11 Variance Coefficient
Measure dispersion of a distribution,

which is defined as the ratio of
the standard deviation to the mean.

12 Autocorrelation The correlation of a signal with
a delayed copy of itself as a function of delay.

13 Pearson correlation coefficient Measure linear correlation between
two sets of data.

Frequency-domain

14 Spectral centroid The spectral center of gravity.
15 Spectral variance The amount of variation of the spectrum over time

16 Spectral skewness Measure the asymmetry of the spectrum
around its mean value.

17 Spectral Kurtosis Measure the flatness of the spectrum
around its mean value.

18 Spectral entropy Measure spectral power distribution of a signal.
19 Spectral spread The spread of the spectrum around its mean value.

20 Spectral Rolloff The frequency below which 95% of
the signal energy is contained.

21 Spectral Decrease The amount of decreasing of the spectra amplitude.

22 Spectral slope Measure how quickly the spectrum of a signal
tails off towards the high frequencies.

Feature encoder network and projection network. As shown
in Fig. 4, the feature encoder network comprises three-layer 1D
CNN, and the projection network has one FC layer. In this paper,
the number of hidden units in each 1D convolutional layer was
set to 128. The kernel size of 1D convolutional layer was 7 with
stride of 1. The dropout rate was set to 0.2 for all dropout layers. In
addition, the number of neuron in the projection network was set
to 1,024. In addition, the temperature 𝜏 is set to 0.11.

MLP classifier for human-state identification. After training
the feature encoder network, we frozen all three layers of the feature
encoder network and combined it with the MLP classifier. For the
MLP classier, the number of hidden units in the first, second, and

third hidden layers were set to 1,024, 512, and 256, respectively. The
model is fine-tuned with Adam optimizer and a learning rate of
0.01 for 100 epochs

Cross-modal correlationmeasurement network.Weused dataset-
III to train the proposed DNN architecture. The number of hidden
units in each 1D convolutional layer and GRU layer was set to
128. The kernel size of 1D convolutional layer was 3 with stride
of 1. The dropout rate was set to 0.5 for all dropout layers. The
number of neuron in the first and second FC layer was 120 and 80,
respectively. We trained the network by minimizing binary cross
entropy between the actual label and the output using the Adam
optimizer [18].
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Figure 9: Confusion matrix for classifiers.

5.5 Performance Evaluation of Human-state
Identification

5.5.1 Baselines. To fairly evaluate the performance of the feature
encoder network and MLP classifier, we use the following models
as baselines.

Support Vector Machine (SVM) [10]. SVM is one of the most
widely used supervised learning algorithm. The goal of the SVM
algorithm is to construct a hyperplane or a set of hyperplane in
a high-dimensional or infinite-dimensional space that distinctly
classifies the data points. In this paper, we adopted the one-vs-one
scheme for our multi-classification problem.

Gradient boosting decision tree (GBDT) [11]. GBDT is an en-
semble model of decision trees, which are trained in sequence. In
this work, we trained this model by utilizing LightGBM [16], which
is a fast, distributed, high-performance gradient boosting frame-
work based on the decision tree algorithm and can be used for
ranking, classification and many other machine learning tasks.

CNN-based model. We built a three-layer CNN model to iden-
tify human-states from raw gyroscope data. Fig. 8 shows the CNN

architecture, in which the number of hidden units in each 1D con-
volutional layer was set to 128. The kernel size of 1D convolutional
layer was 5 with stride of 1, and the dropout rate was set to 0.2 for
all dropout layers. The number of hidden units in the first, second,
and third hidden layer were set to 1,024, 512, and 256, respectively.

5.5.2 Model evaluation. Wefirst used the gyroscope data inDataset-
I to train the aforementioned models. Then we tested the trained
models on the gyroscope data in Dataset-III and Dataset-IV. In
particular, to train the SVM and GBDT models, we extracted time-
domain and frequency-domain features in Table 3 to represent the
gyroscope segment [27]. To evaluate the impact of using different
transformation for the feature encoder network and MLP classifier,
we used the weighted F1 score as the evaluate metric. Based on
our experiments, the highest performing models were trained by
combining magnitude-warping and permutation, with an average
F1 score of 0.983. So we selected this model as the human-state
classifier, which is denoted by “SupCon” hereafter. Fig. 9 shows the
confusion matrix of the four models in the two offices. Compared
with the other three models, the SupCon model achieves a much
higher overall classification accuracy. Specifically, the recognition
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accuracy for walking activities are as high as 95.1% in the two of-
fices, indicating that the SupCon model generalizes better than the
other three models. The reason is that different users have different
walking patterns. This also demonstrates that the SupCon model
can extract user-independent features from raw gyroscope data.

5.6 Performance Evaluation of Cross-modal
Correlation Measurement Network

We evaluated the cross-modal correlation measurement network
on Dataset-III and Dataset-III. As mentioned in Section 4.6, we
directly input the processed phase and gyroscope data segments
into the trained cross-modal correlation measurement network to
check their relationship. Our results show that the TAR of the deep
correlation network is 92.25%. In addition, the FARs under Type-1
and Type-2 adversaries are around 0.1% and 0.2%, respectively. For
Type-2 adversaries, we observed that the walking, standing-up, and
sitting-down patterns of a user are very difficult to imitate, so it is
almost impossible for attackers to bypass our system. Therefore,
these results demonstrate that our system can detect Type-1 and
Type-2 attackers with overwhelming probability.

5.7 Authentication Latency
We also studied the authentication latency of WearRF-CLA, which
can be broken into two parts: the network delay to transmit gy-
roscope data to the server and the response time that the system
needs to make a decision. In our experiment, the smartwatches
uploaded gyroscope data every 15 s. The average network delay
for transferring the gyroscope data is about 52ms. In addition, the
average response time is about 0.161 s. Hence, WearRF-CLA can
achieve an average authentication latency of less than 213ms.

6 CONCLUSION
This paper presented the design and evaluation of WearRF-CLA, a
deep learning-based system that explores commodity UHF RFID
tags and wrist wearables to continuously and automatically verify
the physical presence of legitimate users in a protected indoor area
without user involvement. Comprehensive experiments confirmed
the high security and low authentication latency of WearRF-CLA.
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