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Abstract—Tag cloning and spoofing pose great challenges to
RFID applications. This paper presents the design and evaluation
of RCID, a novel system to fingerprint RFID tags based on
the unique reflection coefficient of each tag circuit. Based on a
novel OFDM-based fingerprint collector, our system can quickly
acquire and verify each tag’s RCID fingerprint which are inde-
pendent of the RFID reader and measurement environment. Our
system applies to COTS RFID tags and readers after a firmware
update at the reader. Extensive prototyped experiments on 600
tags confirm that RCID is highly secure with the authentication
accuracy up to 97.15% and the median authentication error
rate equal to 1.49%. RCID is also highly usable because it only
takes about 8 s to enroll a tag and 2 ms to verify an RCID
fingerprint with a fully connected multi-class neural network.
Finally, empirical studies demonstrate that the entropy of an
RCID fingerprint is about 202 bits over a bandwidth of 20 MHz
in contrast to the best prior result of 17 bits, thus offering strong
theoretical resilience to RFID cloning and spoofing.

Index Terms—RFID, Fingerprinting, Authentication, Wireless
Security

I. INTRODUCTION

Passive ultra-high frequency (UHF) RFID tags are dom-
inating the RFID market, and most commodity UHF RFID
tags do not support cryptographic operations. To the best of
our knowledge, NXP’s UCODE DNA RAIN RFID [1] is
the only product that supports cryptographic authentication
checks. These crytographic tags cost about 70¢ in contrast to
the typical price of 5¢ to 15¢ for crypto-less tags. Therefore,
most existing and new UHF RFID systems still rely on crypto-
less tags which are the focus of this paper. For brevity only, we
omit the term “crypto-less passive UHF” hereafter whenever
no confusion may arise.

Tag cloning poses possibly the greatest challenge to RFID
systems. In particular, since there is no mutual authentication
between the RFID reader and tags, a capable attacker can
directly interrogate an RFID tag or sniff the unencrypted
reader-tag communications. The attacker can then exploit the
acquired information such as the EPC to clone and then
impersonate legitimate RFID tags. Although many crypto-
based countermeasures such as [2]-[4] have been proposed,
they do not apply to commodity crypto-less UHF RFID tags.

RFID fingerprinting [5]-[13] is widely believed to be an
effective anti-cloning technique. An RFID fingerprint refers
to some unique hardware-based tag features caused by manu-
facturing imperfection and is hard to duplicate. Existing RFID
fingerprinting schemes often have a small feature space subject
to brute-force attacks. For example, the entropy of the RFID
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Fig. 1: Motivation: frequency-dependent and tag-dependent
backscatter-power profiles of RFID tags.

fingerprint proposed in the state of the art [12] is estimated
to be about 17 bits (Section VI-F), which may be insufficient
against dedicated attackers.

In this paper, we propose Reflection Coefficient-based
RFID Fingerprint (RCID), a novel method to fingerprint RFID
tags. RCID is motivated by the following observations.

o Fact 1: the power of backscattered RFID signals
is frequency-dependent. Specifically, each RFID tag
communicates with the reader via signal backscatter-
ing. The backscattered signal power (or equivalently
the amount of reflected incident power) depends on the
reflection coefficient that relates to the impedance of the
tag circuit. Since some frequency-dependent capacitive
and inductive electronic components compose the tag
circuit, the reflection coefficient and thus the resulting
backscattered signal power are also frequency-dependent.
Fig. 1a gives an example where the backscattered signal
power varies a lot for continuous-wave (CW) signals
of different frequencies and the same incident power,
leading to a unique frequency-dependent backscatter-
power profile.

o Fact 2: each RFID tag has a unique reflection coef-
ficient due to manufacturing imperfection. Therefore,
each tag may reflect a different amount of power for
the same CW signal. As exemplified in Fig. 1b, such
unique reflection coefficients lead to distinguishable rag-
dependent backscatter-power profiles for the same CW
signal at different tags.

RCID explores the two observations above to well char-
acterize the frequency-dependent, tag-dependent backscatter-
power profiles of RFID tags over a wide frequency band.
The key component of RCID is an RCID collector based
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Fig. 2: RCID system architecture and workflow.

on orthogonal frequency-division multiplexing (OFDM). The
RCID collector measures the backscattered signal power at
each CW frequency to that of a reference frequency. Using
the relative power makes each RCID fingerprint independent
of the reader-tag distance and the reader’s transmission power.
In addition, the RCID collector measures the multi-path effects
and channel response for each reader and use these measure-
ments to calibrate each RCID fingerprint for achieving both
reader and environment independence. Moreover, the RCID
collector uses OFDM to simultaneously obtain the fingerprint
elements at multiple carrier frequencies, so it can significantly
accelerate the fingerprinting process. The RCID collector can
be implemented either as a cheap auxiliary device or as a
firmware update to existing RFID readers.

We prototype the entire RCID system on USRP X310
and thoroughly evaluate its efficacy and security. Our studies
involve 600 COTS RFID tags, one of the largest experiments
of its kind. According to our empirical results, the entropy
of each RCID fingerprint can be up to 202 bits in contrast
to the best prior result of 17 bits [12]. In addition, the
authentication accuracy of RCID is 97.15% with the mean
and median authentication error rates equal to 2.9% and 0.1%,
respectively, which are comparable to the best prior work.
Finally, it takes about 8 s to enroll a tag and 2 ms to verify
an RCID fingerprint with a fully connected multi-class neural
network to achieve a 97.15% authentication accuracy.

The rest of this paper is organized as follows. Section II
gives an overview of the RCID system. Section III illustrates
the definition of RCID fingerprints. Section IV details the
RCID system design. Section VI evaluates the RCID system
with prototyped experiments. Section VII outlines the related
work. Section VIII concludes this paper.

II. RCID SYSTEM OVERVIEW AND THREAT MODEL

Our RCID system targets many typical RFID application
scenarios such as access control, asset tracking, and inventory
management. For example, when a user with an RFID access
card approaches a gate-control device, or when RFID-tagged
physical objects are transported on a conveyor belt through a
checkpoint, the RFID tag can be placed at or pass through a
given location where its RCID fingerprint can be extracted and
validated. Fig. 2 shows the RCID architecture and workflow,
which consist of a backend server, RFID readers, and RFID
tags. Each RFID reader is associated with an RCID collector
which can be implemented either as a cheap auxiliary device

or as a firmware update to commodity RFID readers with
technical support from the reader manufacturer.

Each tag is associated with a physical entity such as a
unique person or product and must be enrolled into the system
by being brought to the vicinity of an arbitrary RFID reader
along with the RCID collector. The RFID reader uses a
conventional signal Sgpip to interrogate and power the tag.
The RCID collector transmits a low-power OFDM sensing
signal Seensing and also receives the wideband backscattered
signals from the tag. Subsequently, the Frame Synchronization
module is invoked to synchronize backscattered RFID and
OFDM signals and then outputs the OFDM symbols that
contain the RCID fingerprint. Next, the RCID Extraction
module outputs the RCID fingerprint after eliminating the
impact of the radio environment (e.g., multi-path effects) and
the RFID reader hardware from received OFDM symbols.
Finally, the backend server trains a classifier based on the
RCID fingerprint and stores it along with the standard tag
information (e.g., EPC). In the later verification phase, the
RCID fingerprint of each tag is extracted by any RFID reader
in the same way and sent to the backend server for verification
with the trained classifier.

Threat Model. We assume that the attacker acquires the data
such as the EPC of a legitimate RFID tag, e.g., by sniffing
the unencrypted reader-tag communications or impersonating
a legitimate RFID reader to directly interrogating the tag. As
mentioned before, commodity crypto-less RFID tags cannot
deal with such data stealing. The attacker knows exactly how
RCID works and can create many clones by writing the data
on different writable RFID tags it owns. RFID cloning is quite
easy and cheap to conduct, as a commodity writable RFID tag
normally costs only a few cents.

III. FORMULATION OF RCID FINGERPRINTS

In the passive UHF RFID system we target, the reader
continuously sends queries and transmits continuous wave
(CW) to power the RFID tag. The tag replies with its unique
EPC after being activated and receiving the query message.
The tag communicates with the reader via backscatter [14],
which is a passive communication method.

RCID fingerprints depend on a key RF circuit parameter
called the reflection coefficient [15] denoted by I', which
indicates the amount of reflected RF power caused by the
impedance discontinuity of transmission media. I' varies when
the tag is in the backscatter or non-backscatter state. Since the
RFID tag circuit contains many frequency-dependent compo-
nents, I" also varies with the frequency of the incident signal.
Given the incident power P, of the reader’s CW signals, the
reflected power P..¢ by the RFID tag can be represented by
Pef = Pyl 2, which depends on both P;,, and the frequency
of the CW signal. In addition, no two RFID tags have identical
circuits due to manufacturing imperfection, so Pyt of different
tags also varies for the same CW signal.
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Fig. 3: Preliminary experimental results.

Based on the above motivation, We first formulate the power
of backscatter signals in RFID systems. According to the free-
space path loss model, the backscattered signal power is

GthrxG%agC4
(4m)dA f4
where P is the power of CW sent by the reader, P is
the leakage signal of CW, Gy and G, are the gain of
the reader’s transmitting and receiving antenna, Gia.g is the
gain of the tag antenna, c is the speed of light, f is the
carrier frequency, d is the distance between the reader and tag,
and I'; is the reflection coefficient at the carrier frequency
f. This backscatter-power model is more complicated than
the commonly used one for RFID sensing [16]-[19], which
mostly focuses on a single frequency in the operating band of
RFID tags. It is more suitable for our need for a fine-grained

power profile over a wide frequency band.

P = Py IT¢1> + Py, (1)

In existing methods [20], [21], the power of backscatter
signals is the difference between the power received in the
backscatter and non-backscatter states. Denoting the total
gain of system by Gy = Gthrfoag, we can rewrite the
backscattered signal power as

GOC4
W(Wlf
where P, and P,y > denote the backscatter power in the

backscatter and non-backscatter states, respectively. Define
8¢ = |Ta, 7> — |T'1,7]%. Eq. (2) can be rewritten as

_ & (47T)4d4f4
B Py, Goct
where Pp and P, can both be measured at the reader for a

given carrier frequency f. In contrast, Gy and d are hard to
measure in the real scenarios.
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In our design, the RCID fingerprint of a tag is collected
over a wide frequency band from f_ to fy with step fa, by
sweeping the carrier frequency f with the same transmission
power P;. We normalize dy, by 0y, as

5. — Ofn — @(&)4 4)

IS Poy fol
where Pp and Pp, denote the backscattered signal power at
fn and fy, respectively. Doing normalization helps mitigate
the impact of Py, Gg, and d, which can vary a lot across
different RFID readers and verification instances. Finally, the
RCID fingerprint of an RFID tag is defined as

T FUNE FUNS T SRS P 5)

Preliminary Experiments. We conduct a simple experiment
to highlight the feasibility of RCID fingerprints. To obtain
the feature vector in Eq. (5), we simply sweep the CW
carrier frequency from 905 to 925 MHz with step 500 KHz.
Our experiment uses a USRP X310 [22] with two VERT900
antennas and the GNURadio RFID module [23] as the reader
whose transmission power is set to 20 dBm. We test 7 Alien
9640 UHF RFID tags, and the reader-tag distance is fixed
to 15 cm. The tests are conducted multiple times for each
tag. We randomly select the results of 50 runs for each tag
to derive and plot the RCID fingerprints A. Fig. 3 shows
the experimental result, where the X-axis denotes the CW
frequency, and the Y-axis represents & .- As we can see, the
RCID fingerprint of each tag is highly consistent across the
50 runs and is also quite different from those of other tags.

Although the preliminary experiment above confirms the
feasibility of RCID fingerprints, our basic prototype takes too
much time to do frequency sweeping over a wide band. Take
the UBX-160 [24] used on USRP X310 [22] as example. The
frequency synthesizer MAX2871 [25] used on UBX-160 takes
up to 100 ps' to set up a frequency according to the data
sheet. In practice, we find that UBX-160 takes up to 300 ms to
generate a stable, usable carrier frequency and needed 12.2 s in
total to collect the RCID fingerprint over 40 CW frequencies.
This latency is too long for many time-sensitive RFID applica-
tions such as access control, asset tracking, and conveyor belt
systems. In addition, Eq. (4) relies on an important assumption
that the reader-tag distance d remains unchanged during the
fingerprinting process. Very long execution time like 12.2 s
would invalidate this assumption. For example, it may be
difficult to ask an RFID user to hold a tag steady for 12.2 s;
RFID-tagged physical objects on a conveyor belt may quickly
pass through the checkpoint. So we are motivated to propose a
more effective method in Section IV to collect reliable RCID
fingerprints in a very short time.

IV. RCID SYSTEM DESIGN

In this section, we explore OFDM to collect the RCID
fingerprints over multiple subchannels simultaneously to sig-
nificantly shortening the overall fingerprinting time.

A. Frame Design of RCID Collector

According to previous work [26], [27], the RFID tags can
backscatter the ambient RF signals within their operating
bandwidth. Therefore, if we deliver appropriate RF power over
several subchannels concurrently, the backscatter occurs on

11t depends on the actual frequency.
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Fig. 4: FMO baseband symbols and preamble.

all these subchannels. Therefore, if we let the RCID collector
transmit OFDM signals along with the reader’s query signal,
the RFID tag would backscatter both signals.

To make OFDM signals compatible with the EPC Gen2
RFID standard, we need to solve the following challenges.

1. The first challenge is how to deliver the RF power on each
subchannel using OFDM properly. According to Eq. (3), the
transmitted power on each subchannel should be exactly
the same in order to extract the RCID fingerprint. If we
arrange the same value (e.g., '1’) on all subchannels, the
time-domain signal will be a sharp pulse followed by a
long sequence filled with *0’, which needs to be avoided
when transmitting the wireless signal. Some existing OFDM
training sequences can be used to construct the CW of RFID
systems without worrying about the long strings of '0’. In
particular, the Legacy Long Training Field (LLTF) of the
802.11n legacy preamble uses two continuous long training
sequences (LTS) for channel estimation. The LTS is a vector
filled with 52 “1” and “-1”. Continuously transmitting the
LTS can construct a “virtual CW” on each subchannel,
which is filled with “1” and “-1” at different subcarriers.
Therefore, the LTS can substitute the frequency-sweeping
CW to collect RCID fingerprints.

2. The RFID and OFDM signals are transmitted at the same
carrier frequency and thus may interfere with each other.
According to the EPC UHF Gen2 Air Interface protocol
[28], RFID tags can encode the baseband signal using either
FMO (bi-phase space) or miller encoding methods, selected
by the RFID reader. The backscatter link frequency ranges
from 40 KHz to 640 KHz. In this paper, we only consider
the 40 KHz FMO-encoded baseband, our techniques can be
easily extended to the miller-encoded baseband and also
other backscatter link frequencies. Fig. 4 shows the FMO
baseband symbols consisting of data-0 and data-1 symbols.
Both types of symbols invert their baseband phase at the
boundary between each symbol, and the data-0 symbol has
an extra mid-symbol phase inversion. In addition, both Data-
0 and Data-1 symbols have high-voltage and low-voltage
states, corresponding to the backscatter and non-backscatter
states, respectively. The 40 KHz FMO baseband signal can
be treated as a 40 KHz square wave containing only the
odd-integer harmonic frequency. If we only consider the
5th harmonic frequency, the bandwidth of the 40 KHz
FMO baseband signal is approximate 200 KHz. To avoid
interference between RFID and OFDM signals, we leave the
12 central subchannels (312.5 KHz each) empty by shifting
the LTS. By doing so, the OFDM and RFID signals do not
have overlapping spectrums and can be easily separated by
appropriate filters.

3. The RFID and OFDM signals are not synchronized. As
shown in Fig. 5d, the OFDM symbols can occur during
backscatter states, non-backscatter states, or the transitions
between backscatter and non-backscatter states. The OFDM
symbols during the transition states are corrupted and
cannot be used for channel estimation. To make sure that
there is at least one uncorrupted OFDM symbol in each
backscatter or non-backscatter state, the duration of each
OFDM symbol should be shorter than half of the minimum
FMO symbol duration in either state. In particular, let 7},,1/2
denote the minimum duration of an FMO symbol, since
the FMO symbol “0” flips its state in the middle of the
symbol duration. The duration of OFDM symbols should
meet Torppm < Tpri/4

4. Although OFDM symbols are used for RCID fingerprints

collection instead of communication, they still need pream-
bles for synchronization. We adopt the Legacy Short Train-
ing Field (LSTF) of IEEE 802.11 for frame synchronization.
Each frame contains an LSTF and 100 OFDM symbols. The
length of the LSTF is 2.57orpm, so it does not overlap
much with the backscatter signal.

B. Frame Synchronization

The Frame Synchronization module is used to detect the
preambles of backscattered RFID and OFDM frames. RFID
frames contain the tag response, and OFDM frames contain
the information for RCID fingerprints.

1) Preamble detection of RFID frames: Since the backscat-
tered signals contain both RFID and OFDM signals, it is hard
to apply the traditional preamble detection algorithms. An
example is given in Fig. 5a, in which the received signal Siy,
is sampled at f,. Recall that we leave the central 12 OFDM
subchannels empty where RFID signals are dominating. So
we use a low-pass filter with the cutoff frequency at 200 KHz
to remove most OFDM signal. A K-points moving average
filter is used to further smooth the signal. Fig. 5b shows the
filtered signal Si,¢ in which only a few OFDM signal above
the cutoff frequency are still retrained.

We develop a basic algorithm to detect the RFID preamble.
The target is to detect the FMO preamble shown in Fig. 4. It
takes five inputs, where S is the waveform vector, P_LEN
is the vector recording the samples of each state in the
FMO preamble, Ly, is the window length, Lprcamble 1S the
preamble length, Sprcamble iS the total number of preamble
states, and e is the tolerance for counting the samples in
each preamble state. We use a sliding window to calculate
the windowed average value whereby to judge the positive
or negative state of the FMO baseband signal. A finite state
machine is used to decide whether the whole preamble is
detected. Since the signal is interfered by the OFDM signal,
we need to count the exact number of samples at each state.

We further propose a two-stage preamble strategy to sig-
nificantly reduce the time complexity O(nlogn) of the basic
algorithm, where n denotes the total number of signal samples.
If the basic algorithm is directly applied to the raw data with
high sampling rate, it may take thousands of hours just for
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Fig. 5: Signal processing for frame synchronization.

preamble detection. For example, n is equal to 2 x 107 for a
one-second signal sampled at 20 MHz. In our approach, Sip¢
is decimated at fpno = 2 MHz to Sgec in the coarse-grained
detection stage. Then the basic algorithm is applied to Sqec to
extract a coarse-grained set of the preamble’s starting points,
denoted by p = [p1, P2, ...,pN], where N is the number of
detected FMO baseband preambles. In the subsequent fine-
grained detection stage, The basic algorithm is reapplied to
the samples in S)pr with indices in [yp,, — €,vp, + L + €] to
a fine-grained set of the preamble’s starting points, denoted
by p, where v = fs/frmo is the decimation coefficient, and
n € [1, N]. Since the K-point moving average filter causes
a delay of K/2, p needs to be compensated by K /2. The
detected preamble after this two-stage process is shown as
the read line in Fig. 5b.

2) Preamble detection of OFDM frames: To detect the
preamble of OFDM frames, we first apply a high-pass filter
with the cutoff frequency at 200 KHz to remove the RFID
signals. The filtered signal Syp¢ is shown as the grey line in
Fig. 5c. Since the LSTF is adopted, we can use the similar
preamble detection method in IEEE 802.11. In particular, the
windowed autocorrelation can be calculated by

Lsrs—1

Z Sn+kS;,+k+LFFT’ (6)

k=0
where Lgrg is the length of the STS symbol, and Lypr is
the FFT length. The signal energy in the processed window

is

Lsrs—1 )
Po= Y |Suisl*. (7)
k=0
The normalized windowed autocorrelation is
Cn
n = —. 8
p P 3

The local peaks of p which are larger than the system thresh-
old are the starting indices of OFDM preambles, represented
by q = [q1, 92, - -, qm], Where M is the number of detected
OFDM preambles. Fig. 5c plots p, and Sype. There is a
peak corresponding to the first sample in the preamble. Also
note that the window length of the windowed autocorrelation
function is LgTg instead of the standard value in IEEE 802.11,
as we use an all-zeros cyclic prefix to suit our purpose.

3) Feature-symbol detection: The next step is to seg-
ment the OFDM symbols into one of the backscatter, non-
backscatter, and transition states. This can be easily done
based on the preamble positions of RFID and OFDM frames.
The OFDM symbols in the backscatter state are extracted
as By = [Bym,Bom,. .., Bk|u], where K is the number
of extracted symbols. There are much more OFDM symbols
in the non-backscatter state than in the backscatter state. So
we only extract the K most adjacent ones to By, which are
denoted by By, = [By|z,Byz, ..., Bg|z]. In Fig. 5d, By and
By, are shown in red and blue lines, respectively.

C. RCID Fingerprint Extraction

The last step is to extract reliable RCID fingerprints from
the retrieved OFDM symbols By and By. RFID system may
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be deployed in both indoor and outdoor environments with
rich location-dependent multi-path effects. In addition, in a
large system with many RFID readers, the RCID fingerprint
of the same tag may be collected and verified at different
locations. Furthermore, each RFID reader has RF fingerprint
that may have large impact on RCID fingerprint. So it is
critical to eliminate the impact of multi-path effects and
the RFID reader hardware to make RCID fingerprints both
environment-independent and reader-independent.

For this purpose, we let the RCID collector measure the
channel-response vector h, of the reader’s transceiver and
h, of the multi-path environment by transmitting an OFDM
pilot signal alone before acquiring the RCID fingerprint. The
received backscattered signal is represented by

Yo = hgh.t +n 9)

where t is the training sequence, and n represents the i.i.d.
Gaussian white noise. Define hg = hzh,.. Using the common
least squares estimator, we can estimate hg as hy = yot L

The receiving vectors y; and y; can be obtained by
removing the unused sub-carriers from F(By) and F(By).
By doing so, the leakage signal Pr, in Eq. (1) in the center of
the spectrum can be removed. Define the channel vectors of
tag in the backscatter and non-backscatter states as hy and
hy, respectively. We have

Yy = F(Bg) =hgh.tthy +1)+n (10)

and

vy, = F(By) = hgh.t(h; +1) +n. a1
Define heyy = hyy — hy, = h;%g = (yy — y;)t 'ho . Then

we can compute A = ’ht;g and further normalize it per

Eq. (4) to obtain the eventual RCID fingerprint A.

D. Authentication (Classification and Identification)

We build a fully connected multi-class neural network with
one hidden layer and 256 perceptrons for RCID fingerprint
classification. This neural network is trained and used at the
backend server. It takes A as input and outputs a vector
s containing the confidence scores for each class. In the
experiment, we observe from a commercial spectrum analyzer
that there can be some other devices in the ISM band that
transmit periodically. To eliminate the sudden interference in
backscattered signals, 77 confidence scores vector are summed
up. The predicted result p is the tag with the highest score

n
p = arg mlaxkz:l Ski-

(12)

If the other information such as EPC of tag p matches
the retrieved from the tag being authenticated, the system
considers the tested tag a genuine one and otherwise a clone.

V. SECURITY ANALYSIS

Now we analyze the resilience of RCID against various
attacks launched by the adversary denoted by A.

Tag cloning. In this attack, A makes a fake tag with the
same EPC as the genuine tag. According to our experimental
results, RCID achieves the overall authentication accuracy up
to 97.15% and the FPR less than 0.1%. So it is highly unlikely
for A’s fake tag to have a very similar RCID fingerprint to
the genuine one.

Brute force. In this attack, A keeps making and trying
different fake tags with the genuine EPC. According to our
empirical studies, the entropy of the RCID fingerprints over a
20 MHz bandwidth is about 202 bits. So it takes A about
2202 tries to make a tag with an RCID fingerprint highly
similar to the genuine one and 2'°! tries to find two RFID
tags with highly similar RCID fingerprints. Such brute-force
attacks occur in the physical world and can also be mitigated
by rate-limiting authentication failures.

Signal replay. In this attack, A relays the sniffed backscatter
signals from the genuine tag to the RFID reader. The replayed
signal inevitably contains the RF fingerprint of A’s device, so
the RCID fingerprint measured by our system fails to match
the genuine one with overwhelming probability.

Signal forgery. In this attack, A tries to forge a backscattered
RFID signal in the hope of inducing an RCID fingerprint
that closely matches genuine one. According to Eq. 9, the
RCID collector needs to estimate the channel-response vector
h,; of the reader’s transceiver and that h, of the multi-path
environment to generate an authentic fingerprint that is both
reader-independent and environment-independent. Since the
RCID collector is a software module inside the RFID reader,
it is almost infeasible for external A to acquire hy and h,
for fine-tuning its forged signal to produce a valid RCID
fingerprint measured by the RCID collector.

To sum up, our RCID system offers very strong resilience to
the tag cloning, brute force, signal replay, and signal forgery
attacks, which are all common attacks on RFID authentication
systems. Same as all the other RFID fingerprinting techniques,
RCID cannot deal with denial-of-service (DoS) attacks aiming
to prevent the acquisition and authentication of valid RCID
fingerprints. There is no practical solution to such DoS attacks.

VI. EVALUATION

A. Implementation

We implement a simplified EPC UHF Gen2 Air Interface
Protocol and an RCID collector on USRP X310 [22] with two
UBX160 [24] daughter boards and three VERT900 vertical
antennas. Both the RFID reader and RCID collector run on a
single X310 using different RF channels. The X310 connects
with an Intel X520-DA2 10 Gigabit Ethernet card on the host
workstation via an SFP+ cable to ensure the high throughput.
We implement a GNURadio workflow for signal Tx/Rx and
files I/0. Generating transmission samples and processing
received signals are all done by Matlab in non-real-time. All
communication with USRP, signal processing, and training
models are performed by a workstation equipped with AMD
3960X 24 cores CPU, 128 GB RAM, and 2 NVIDIA Titan
RTX GPU.
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Fig. 6: Authentication performance with dataset D1.

More implementation and evaluation settings are as follows.
The RFID reader works at 915 MHz with the transmission
power of -5 dBm and the sampling rate of 1 MHz. The
OFDM-based RCID collector works at 915 MHz with the
transmission power of -15 dBm and used 64-point FFT, 1/2
length cyclic prefix with zero padding, and a bandwidth of
20 MHz. The transmission power of both the RFID reader and
the OFDM-based RCID collector comply the FCC regulation
[29]. We test 600 UHF RFID tags involving four models of
different antenna shapes: Alien 9640 (300 pieces), Alien 9730
(100 pieces), SMARTRAC DogBone (100 pieces), and Avery
Dennison AD-226iM (100 pieces).

We implement the multi-class neural network via PyTorch,
which has one hidden layer and 256 perceptions. Typical
performance metrics for machine learning research are used
and include the accuracy (ACC), the false positive rate (FPR),
and the false negative rate (FNR). Since all the datasets have
multiple classes, we calculate the macro-average on each met-
ric. Unless stated otherwise, k-fold cross-validation (k = 5) is
used to eliminate the unbalance of all datasets; n = 5 is used to
eliminate the sudden interference from ambient transmissions
in the ISM band; and all the experiments are conducted in a
bedroom with the tag-reader distance of 15 cm.

B. Dataset Description

We collect 2 datasets for different experimental purposes.

D1: All 600 tags are used in this dataset. The samples in D1
were all collected with the same experimental setup, and
the duration of each sample was 10 s.
50 Alien 9640 tags are used to evaluate the impact of four
factors: hardware, environment, distance, and orientation.
We change every single factor while fixing the rest. The
duration of each sample was 2 s.

The data-collection procedures are controlled by a bash
script to realize accurate timing control. Each signal sample
is an 8-bytes single-precision complex number. The raw 1/Q
data rate for each tag is 160 Mbps, and the total data volume
is more than 2.2 TB.

D2:

C. Overall Performance

1) Authentication accuracy: We first evaluate the authen-
tication accuracy of RCID with D1. Table I shows the results

TABLE I: Authentication accuracy of different tag models.

Alien 9640 | Alien 9730 | AD-226iM | DogBone | Overall
99.01% | 94.96% | 97.08% | 93.43% | 97.15%

for each tag model and the overall performance. Fig. 6a also
shows the CDF of RCID’s authentication errors for each tag
model. The overall authentication accuracy is 97.15%, and
the mean and median of the authentication error rates are
2.9% and 0.1%, respectively. The results of each tag model
show that the RCID performance is closely related to the
complexity of the antenna shape and also the size of each
tag. Dogbone tags have the simplest antenna design, so they
have the lowest authentication accuracy. Although Alien 9730
tags have a complex antenna, their tiny size make them easily
suffer from interference and poor SNR, leading to the average
authentication accuracy. Alien 9640 tags have a relatively
complex antenna and a reasonable size as well, so they achieve
the highest authentication accuracy.

2) Enrollment time: We next evaluate the relation be-
tween the enrollment time and authentication accuracy. The
enrollment time are proportional to the number of training
samples. Fewer training samples can translate into higher
system usability, and vice versa. By controlling the number of
training samples, we test the following nine enrollment time
settings in seconds: 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and
8.0. As shown in Fig. 6b, it is not surprising to see that the
authentication accuracy increases with the enrollment time.
We also notice that the FNR is always very low regardless of
the authentication accuracy. So the system operator can freely
adjust the enrollment time to suit the usability requirement
without sacrificing the system security.

3) Authentication time: We further evaluate the impact of
the authentication duration. The authentication module uses 7
continuous scores to mitigate the possible interference from
ambient radio signals. The larger 7, the longer the authenti-
cation time, the lower the system usability, and vice versa.
In this experiment, we evaluate the authentication accuracy,
the FPR, and the FNR over D1 with n ranging from 1 to
2000. As shown in Fig. 6¢, the accuracy without interference
elimination (i.e., n = 1) is 93.67% and reaches 97.15% for
n = 10. But when 7 increases from 10 to 2,000, the accuracy
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TABLE 1II: Accuracy with different hardware and environ-
ments.

Baseline USRP 0, Bedroom 1, 15cm, n =5
Accuracy | 99.25%

Device USRP 1 USRP 2

Accuracy | 97.55% 96.95%

Location Living Room 1 Living Room 2
Accuracy | 98.40% 91.60%

Distance 15cm | 17.5¢n] 20cm | 22.5¢n] 25 cm
Accuracy | 99.25%] 90.90%| 84.99%| 76.42% 79.85%

only slightly improves by 1.48% to 98.63%. In our prototype
system, RCID fingerprints can be extracted at an average
rate of five features per millisecond, each corresponding to a
different CW frequency. For n = 10 and n = 2000, the actual
authentication delays are about 2ms and 0.4s, respectively.
Both authentication delays are quite acceptable for practical
applications. It is unwise to make 7 too large because it would
significantly increase the computational load and time without
many performance gains.

4) Impact of OFDM bandwidth: We also evaluate the
impact of the OFDM signal bandwidth. Intuitively speaking,
the larger the bandwidth, the more features in the RCID
fingerprint with one for each carrier frequency, the higher the
authentication accuracy, and vice versa. In this experiment, we
selected a subset of features from the samples over 20 MHz
and show the result in Fig. 6d. As expected, the authentication
accuracy increases with the number of features or equivalently
the OFDM signal bandwidth. In particular, since adjacent fea-
tures are separated by a bandwidth of 312.5 kHz, the accuracy
is already larger than 90% for 20 features corresponding to a
bandwidth of 6.25 MHz.

5) False-positive rates (FPRs): Our previous evaluations
reveal an extremely low FPR consistent in all experimental
settings regardless of the achievable TPR and authentication
accuracy. For example, Fig. 6b shows that the authentication
error rate is about 25% with only 0.05 s enrollment duration,
while the FPR is only 0.2%. This means that the RCID system
is highly effective in rejecting inauthentic RFID tags, which
is very important for security-sensitive applications.

D. Impact of Measurement Conditions

It is important to evaluate the robustness of RCID fin-
gerprints to various measurement conditions. In this set of
experiments, we first randomly select 50 tags from DI as
the enrollment samples to train the classifier. In each sub-
sequent evaluation instant, we use these 50 tags to collect
the fingerprint samples by taking turns varying each influence
factor while fixing the others. It takes about 2 s to collect
one fingerprint sample. The baseline experiment setups and
accuracy results are shown in Table II.

Hardware. We first evaluate the impact of different RFID
readers and RCID collectors. For this experiment, we col-

TABLE III: Performance comparison.

TIE+ABP | SP HuFu Eingerprint RCID
St 96.0% 99.6% | 95.0% | 97.3% 99.25%
Dy | 36.2% 37.6% | 90.0% | 96.2% 95.0%

lect the RCID fingerprints of the 50 tags with another two
USRP X310 devices and obtain consistent performance results
among the three X310 devices.

Environment. Then we evaluate the impact of the measure-
ment environment which incur different multi-path effects
to backscattered signals. For this experiment, we collect the
RCID fingerprints at another two living rooms. The resulting
authentication accuracy in both locations is comparable with
the original result.

Distance. The tag-reader distance d affects the RSSI and
phase of backscattered signals. In this experiment, we col-
lect RCID fingerprints at four different distances and show
the result in Table II. As d increases, backscattered signals
experience a graduate attenuation, which leads to inaccurate
RCID fingerprints and thus slightly reduces the authentica-
tion performance. But the overall performance is still quite
acceptable for practical distance settings below 20 cm. For
example, the RCID fingerprints can be verified when RFID
users approach a gate-control device or when RFID-tagged
physical objects are transported on a conveyor belt through a
checkpoint.

E. Feature Space and Entropy

One of the most important issues for RFID fingerprinting
is the dimension and entropy of the feature space, which
determine the security and usability of the fingerprinting
technique. Each feature in an RCID fingerprint relates to a
normalized value at a unique OFDM subcarrier. We estimate
the RCID feature space based on the 1,217,006 samples for
600 tags in D1. Fig. 7a is the Ist, 2nd and 3rd quantile
plots of each feature. We can see that the feature values
of most subcarriers cover a large range, which means the
high distinctiveness of individual RCID fingerprints. We also
compute the entropy for each subcarrier space and show the
result in Fig. 7b. Each subcarrier space can offer 4 bits of
information on average. Since there are 52 subcarriers over
20 MHz, the total entropy of the RCID fingerprints is about
202 bits which can guarantee sufficiently high security in
practical settings.

F. Performance Comparison with Related Work

We compare the authentication accuracy of RCID with
some representative UHF RFID fingerprinting schemes based
on different hardware features, including the time interval
error (TIE) and average baseband power (ABP) in the pio-
neering work, the spectrum (SP) feature proposed by Zanetti
[30], the coupling feature between two tags in HuFu [10], and
the charging duration feature in Eingerprint [12]. We use the
same experiment setups in HuFu [10] for fair comparisons.
In the stationary (St) case, the enrollment and authentication
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are done in the same location, while in the dynamic (Dy)
case these procedures are done in separate rooms. There are
total 50 Alien 9640 tags tested in each case. The comparison
results are shown in Table III. In the stationary case, all the
techniques achieve comparably high authentication accuracy.
For the dynamic scenario, RCID still achieves very high
accuracy and is only slightly worse than Eingerprint [12]. This
is because RCID extract the fingerprints with OFDM which
is relatively more sensitive to the environment fluctuation.

We also briefly compare the entropy of our RCID feature
space to that of two most relevant schemes. Note that the
entropy of the feature space represents the capability of the
maximum number of the tags can be distinguished. The
pioneering work [5] uses the baseband signal power at a single
frequency to fingerprint RFID tags, amounting to a single
subcarrier feature in RCID fingerprints. This work can deliver
an empirical entropy of 4.57 bits, which is comparable to
the entropy of a single RCID subcarrier feature. In addition,
Eingerprint [12] uses a one-dimension feature called persis-
tence time for RFID fingerprinting. The standard variance of
persistence time is about 0.1 s. The impinj reader they use
can report timestamps in the granularity of us. Therefore,
Eingerprint can support at most 0.1s/1 ps = 100,000 devices,
corresponding to an entropy of about 17 bits. In contrast, the
empirical entropy of our RCID feature space is about 202 bits
over a bandwidth of 20 MHz, representing a much higher level
of security than all existing work.

VII. RELATED WORK

There is significant effort on RFID security. Existing work
can be divided into three categories by enhanced protocol
designs, cryptography, and RF fingerprinting.

The solutions in the first category such as [8], [11], [31]-
[33] normally secure the RFID systems by adding extra factors

to the authentication procedures. Self-jamming [31], [33] is
an effective method to prevent unauthorized querying and
eavesdropping attacks. Both Yang [8] and Zhao [11] leverage
the interrelationships between tags inside a federated tag
array to authenticate tags. RF-Mehndi [11] adds a biometric
authentication factor, and RF-Rhythm [32] uses RFID tags as a
password-input method to induce a second authentication fac-
tor to the RFID system. Although these solutions can secure
the RFID system and do not require modifications on either
tags or the infrastructure, adding extra authentication factors
inevitably diminishes convenience of the RFID systems.

The techniques in the second category apply elegant cryp-
tographic designs [2]-[4], [34]-[36] to secure RFID systems.
Although offering strong security against RFID spoofing and
cloning, these techniques require significant updates to both
tags and the infrastructure. Since the original EPC Gen2 proto-
col does not support the crypto functions, these cryptographic
designs are not compatible with COTS UHF RFID devices. In
contrast, the proposed RCID system applies to COST RFID
tags and readers after a firmware update at the reader side or
adding a very cheap auxiliary device.

The methods in the third category such as [5], [6], [9], [10],
[12], [13], [37] explores the physical-layer features caused
by manufacturing imperfection to fingerprint RFID tags. The
pioneering work [5] combines the time-interval error (TIE)
and the baseband signal power Pp of the backscattered signal
to fingerprint 50 RFID tags. The empirical entropy for TIE
and Pp are 5.84 bits and 4.57 bits, respectively. The impulse
response of RFID tags has been tested in [5], [6] as well. Hu-
Fu [10] uses the coupling features between two tags to identify
tags. More recently, Eingerprint [12] fingerprints RFID tags
by using the persistent time, which refers to the duration of a
tag going from the fully charged state to the fully discharged
state. Both tag coupling and persistence time only have a
single feature space with limited entropy. In contrast, we have
demonstrated that the RCID fingerprint involves an entropy of
202 bits over a 20 MHz bandwidth, which indicates the high
resilience of our system to signal spoofing and cloning.

VIII. CONCLUSION

In this paper, we proposed RCID, a novel system to finger-
print RFID tags based on the unique reflection coefficient of
each tag circuit. Based on a novel OFDM-based fingerprint
collector, our system can quickly acquire and verify the
RCID fingerprints of RFID tags which are independent of
the RFID reader and measurement environment. Our system
applies to COTS RFID tags and readers after installing a
firmware update at the reader or adding a very low-cost
auxiliary device. Extensive prototyped experiments confirm
that RCID is highly secure against common attacks on RFID
authentication systems and is also highly usable with very
short tag-enrollment and authentication time.

ACKNOWLEDGMENT

This project was supported in part by US National Science
Foundation under grants CNS-2055751/1933069/1824355.

708
Authorized licensed use limited to: ASU Library. Downloaded on March 08,2023 at 21:32:14 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]
[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

“MIFARE SAM AV3 for NTAG 5, ICODE DNA and UCODE DNA,”
2020. [Online]. Available: https://www.nxp.com/docs/en/application-
note/AN12698.pdf

T. Li, W. Luo, Z. Mo, and S. Chen, “Privacy-preserving RFID authenti-
cation based on cryptographical encoding,” in /JEEE INFOCOM, 2012.
L. Fu, X. Shen, L. Zhu, and J. Wang, “A low-cost UHF RFID tag
chip with AES cryptography engine,” Security and Communication
Networks, vol. 7, no. 2, pp. 365-375, May 2014.

L. Yang, Q. Lin, C. Duan, and Z. An, “Analog on-tag hashing: Towards
selective reading as hash primitives in Gen2 RFID systems,” in ACM
MobiCom, 2017.

D. Zanetti and B. Danev, “Physical-layer identification of UHF RFID
tags,” in ACM Mobicom, Chicago, Illinois, September 2010.

B. Danev, T. S. Heydt-Benjamin, and S. Capkun, “Physical-layer
identification of RFID devices,” in USENIX Security, Montreal, Canada,
August 2009, pp. 199-214.

S. Periaswamy, D. Thompson, and J. Di, “Fingerprinting RFID tags,”
IEEE Transactions on Dependable and Secure Computing, vol. 8,
no. 06, pp. 938-943, November 2011.

L. Yang, P. Peng, F. Dang, C. Wang, X. Li, and Y. Liu, “Anti-
counterfeiting via federated RFID tags’ fingerprints and geometric
relationships,” in /[EEE INFOCOM, Kowloon, Hong Kong, April 2015.
J. Han, C. Qian, P. Yang, D. Ma, Z. Jiang, W. Xi, and J. Zhao,
“GenePrint: Generic and accurate physical-layer identification for UHF
RFID tags,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp.
846-858, April 2016.

G. Wang, H. Cai, C. Qian, J. Han, X. Li, H. Ding, and J. Zhao, “Towards
replay-resilient RFID authentication,” in ACM MobiCom, 2018.

C. Zhao, Z. Li, T. Liu, H. Ding, J. Han, W. Xi, and R. Gui, “RF-mehndi:
A fingertip profiled RF identifier,” in IEEE INFOCOM, Paris, France,
April 2019.

X. Chen, J. Liu, X. Wang, H. Liu, D. Jiang, and L. Chen, “Eingerprint:
Robust energy-related fingerprinting for passive rfid tags,” in NSDI,
Santa Clara, California, February 2020.

J. Han, C. Qian, Y. Yang, G. Wang, H. Ding, X. Li, and K. Ren, “Butter-
fly: Environment-independent physical-layer authentication for passive
RFID,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 2, no. 4, pp. 1-21, December 2018.

C. Boyer and S. Roy, “Backscatter communication and rfid: Coding,
energy, and mimo analysis,” IEEE Transactions on Communications,
vol. 62, no. 3, pp. 770-785, March 2014.

J. Griffin and G. Durgin, “Complete link budgets for backscatter-radio
and rfid systems,” IEEE Antennas and Propagation Magazine, vol. 51,
no. 2, pp. 11-25, July 2009.

L. Yang, Y. Li, Q. Lin, X.-Y. Li, and Y. Liu, “Making sense of mechan-
ical vibration period with sub-millisecond accuracy using backscatter
signals,” in ACM Mobicom, New York City, New York, October 2016.
H. Jin, J. Wang, Z. Yang, S. Kumar, and J. Hong, “Wish: Towards a
wireless shape-aware world using passive RFIDs,” in ACM MobiSys,
Munich, Germany, June 2018.

C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and
S. Lu, “Multi-touch in the air: Device-free finger tracking and gesture
recognition via COTS RFID,” in IEEE INFOCOM, Honolulu, HI, April
2018.

H. Jin, Z. Yang, S. Kumar, and J. Hong, “Towards wearable everyday
body-frame tracking using passive RFIDs,” in ACM UBICOMP, Singa-
pore, October 2018.

C. Wang, L. Xie, W. Wang, T. Xue, and S. Lu, “Moving tag detection
via physical layer analysis for large-scale RFID systems,” in /EEE
INFOCOM, San Francisco, CA, April 2016.

T. Wei and X. Zhang, “Gyro in the air: tracking 3D orientation of
batteryless internet-of-things,” in ACM Mobicom, New York City, New
York, October 2016.

“UBX 10-6000 MHz Rx/Tx (160 MHz, X Series only).” [Online].
Available: https://www.ettus.com/all-products/x310-kit/

N. Kargas, F. Mavromatis, and A. Bletsas, “Fully-coherent reader
with commodity SDR for Gen2 FMO and computational RFID,” IEEE
Wireless Communications Letters, pp. 617-620, 2015.

“Ubx 10-6000 mhz rx/tx (160 mhz, x series only),” 2021. [Online].
Available: https://www.ettus.com/all-products/ubx 160/

10

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

“MAX2871 23.5MHz to 6000MHz Fractional/Integer-
N Synthesizer/VCO.” [Online]. Available:
https://www.maximintegrated.com/en/products/comms/wireless-
rf/MAX2871.html

Y. Ma, N. Selby, and F. Adib, “Minding the billions: Ultra-wideband
localization for deployed RFID tags,” in ACM Mobicom, Snowbird,
Utah, October 2017.

Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib, “3d backscatter
localization for fine-grained robotics,” in NSDI, Boston, Massachusetts,
February 2019.

“EPC UHF Gen2 Air Interface Protocol.”” [Online]. Available:
https://www.gs1.org/standards/epc-rfid/uhf-air-interface-protocol

“47 CFR § 15231 - Periodic operation in the band
40.66-40.70 MHz and above 70 MHz.” [Online]. Available:
https://www.law.cornell.edu/cfr/text/47/15.231

D. Zanetti, P. Sachs, and S. Capkun, “On the practicality of uhf rfid
fingerprinting: How real is the rfid tracking problem?” in Privacy
Enhancing Technologies, Waterloo, Canada, July 2011.

H. Ding, J. Han, Y. Zhang, F. Xiao, W. Xi, G. Wang, and Z. Jiang,
“Preventing unauthorized access on passive tags,” in [EEE INFOCOM,
Honolulu, HI, April 2018.

J. Li, C. Wang, A. Li, D. Han, Y. Zhang, J. Zuo, R. Zhang, L. Xie, and
Y. Zhang, “RF-Rhythm: secure and usable two-factor RFID authentica-
tion,” in /EEE INFOCOM, Jun. 2020.

H. Hassanieh, J. Wang, D. Katabi, and T. Kohno, “Securing RFIDs by
randomizing the modulation and channel,” in NSDI, Oakland, CA, May
2015.

L. Kulseng, Z. Yu, Y. Wei, and Y. Guan, “Lightweight mutual authenti-
cation and ownership transfer for RFID systems,” in IEEE INFOCOM,
Pisa, Italy, March 2010.

H.-J. Chae, M. Salajegheh, D. J. Yeager, J. R. Smith, and K. Fu,
“Maximalist cryptography and computation on the WISP UHF RFID
tag,” in Wirelessly Powered Sensor Networks and Computational RFID,
J. R. Smith, Ed. Springer, 2013, ch. 10, pp. 175-187.

M. Chen and S. Chen, “Etap: Enable lightweight anonymous RFID
authentication with o (1) overhead,” in IEEE ICNP, San Francisco,
California, March 2015.

G. Delean and D. Kirovski, “RF-DNA: Radio-frequency certificates of
authenticity,” in International Workshop on Cryptographic Hardware
and Embedded Systems, Vienna, Austria, September 2007.

709
Authorized licensed use limited to: ASU Library. Downloaded on March 08,2023 at 21:32:14 UTC from IEEE Xplore. Restrictions apply.



