Uncertainty Visualization for Graph Coarsening
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Abstract—The complexity of large real-world graphs makes
their analyses prohibitively costly and their visualizations uninfor-
mative. The idea behind graph reduction is to reduce the size of a
graph while preserving its properties of interest. To improve com-
putational efficiency and to provide provable guarantees, many
graph reduction techniques employ randomization. However, the
uncertainty associated with randomized graph reduction and its
subsequent interpretation has remained largely unexplored. In
this paper, we present a framework to quantify and visualize
the uncertainty associated with randomized graph reduction
techniques. We focus on spectral clustering introduced by Ng,
Jordan, and Weiss, a popular graph reduction technique that
reduces the number of nodes by clustering the nodes of a graph
into super-nodes. We introduce two uncertainty measures — local
adjusted Rand indices and co-occurrences — to quantify and
visualize uncertainty associated with an ensemble of reduced
graphs. We demonstrate via experiments, that these measures
complement each other in visualizing uncertainty and guiding
the selection of optimal numbers of clusters.

Index Terms—Summarization and visualization of large net-
works, uncertainty visualization, graph clustering and coarsening

I. INTRODUCTION

Graphs are ubiquitous in modeling large and complex data in
science and engineering. They are also increasingly relevant in
deep learning [52]. In the age of big data, a real-world graph can
become prohibitively large, thereby hampering the efficiency of
its analysis and the interpretability of its visualization. These
problems can be addressed by graph reduction, where the idea
is to reduce the size of the graph, while preserving its properties
of interest.

Graph sparsification and graph coarsening are the two
most commonly used graph reduction techniques. Graph
sparsification reduces the number of edges in a graph while
maintaining the number of nodes. Graph coarsening, on the
other hand, reduces the number of nodes, which implicitly
reduces the number of edges. Graph coarsening appears in many
applications, such as visualization [18], graph partitioning [42],
dimensionality reduction [6], and convolutional neural net-
works [4]. In this paper, we focus on graph coarsening, which
is typically achieved via node clustering, where nodes from the
original graph are clustered together to form the super-nodes of
the reduced graph. Specifically, we use a representative spectral
clustering algorithm introduced by Ng, Jordan and Weiss [36]
(referred to as the NJW algorithm); although our technique is
applicable to any other graph coarsening algorithm.
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Although graph reduction techniques have been used in
analysis and visualization, the uncertainty associated with
their outputs and the subsequent visual interpretation has
remained largely unexplored. Many graph reduction techniques,
including the NJW algorithm, employ randomization to provide
theoretical guarantees and to improve computational efficiency.
As a result, the same algorithm applied to the same input may
produce different outputs across different runs. In this paper,
we are interested in visualizing the uncertainty of an ensemble
of reduced graphs as a result of such a randomized process.
Even if different instances of the reduced graphs agree on the
global level, variations may occur in the size and connectivity
of individual communities. Understanding such variability will
help us obtain deeper insights into the reduced graphs and gain
more confidence in the analytical results.

Contribution. Randomization from the NJW algorithm intro-
duces uncertainty among the reduced graphs and the induced
insights from such graphs. We present a general and a flexible
framework to quantify and visualize this uncertainty. Our
contributions are as follows:

« We introduce two uncertainty measures - local adjusted
Rand indices and co-occurrences — that not only provide
an overall uncertainty score for the entire clustering, but
also capture the uncertainty associated with each super-
node of the reduced graph in an ensemble;

o« We demonstrate via experiments, that these measures
complement each other in visualizing uncertainty in
the communities and guiding the selection of optimal
coarsening parameters;

o Furthermore, we provide an open source demo of our
framework ! that allows the users to explore the structures
of reduced graphs across multiple runs of the NJW spectral
clustering algorithm.

It is important to note that although we use the NJW algorithm

to illustrate our framework, our approach is applicable to other
randomized graph reduction algorithms.

II. RELATED WORK

Uncertainty visualization and graph visualization. Uncer-
tainty visualization conveys uncertainty information through
visualization; see [3], [38] for recent surveys on information
and scientific visualization, [9] for uncertainty-aware visual

Uhttps://github.com/tdavislab/uncertainty- graph-vis/
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analytics, and [1] for uncertain data mining. Uncertainty
information is typically described by statistical quantities such
as mean, median, and standard deviation, and visualized using
color, opacity, texture, glyphs, and animation [38].

For graph visualization, there are excellent surveys for
information visualization [20], scientific visualization [51],
visual analysis of large graphs [47], dynamic graphs [2]
and graph drawing [11]. In this paper, we employ a classic
graph layout technique, the Fruchterman-Reingold’s (FR) force-
directed layout algorithm [13].

Previous works have studied uncertainty for special types of
graphs such as trees [27], [53] and lattice graphs [8]. Innovative
visual encodings have been proposed to visualize observational
uncertainty, where the uncertainty of a community is given a
priori. Vehlow et al. [46] visualized fuzzy overlapping network
communities using a combination of color, geometry, brightness,
position, edge color, edge thickness, and pie chart to encode
uncertainty information. In contrast, the work of Schulz et
al. [43] distinguished between uncertainty inherent to data
(probabilities for observation uncertainty) and uncertainty intro-
duced by their visualization technique (stress and distortion). In
our formulation, we are interested in capturing the uncertainty
that arises during a randomized graph reduction process.

Graph reduction. Graph reduction has been explored in graph
visualization previously [19], [22], [50]. To the best of our
knowledge, our paper is the first to explore and visualize uncer-
tainty associated with randomized graph reduction techniques.
Graph coarsening is the process of reducing the number of
nodes by partitioning the graph and selecting a representative
node for each partition, or merging nodes in a partition to form
a super-node. Heuristics such as heavy edge matching [25],
[26], [49] and node similarities or distances [7], [39], [42]
are commonly used in coarsening algorithms. Coarsening
is by far the most popular graph reduction technique in
graph drawing [17], [18], [49]. However, apart from a few
exceptions [5], [10], [29], the algorithms used in practice lack
strong theoretical support.

Spectral clustering algorithms are a type of graph coarsening
techniques that rely on the notion of spectral similarity between
nodes. Spectral clustering was made popular by Shi and
Malik [44], and Ng, Jordan and Weiss [36] (referred to as
the NJW algorithm). The NJW algorithm, which we focus on,
applies the standard k-means clustering to the first £ nontrivial
eigenvectors of the normalized graph Laplacian. While classic
spectral clustering algorithms may not scale well with the size
and density of the input graphs, they typically enjoy strong
theoretical support (e.g., [28], [29], [36]). Loukas [28] recently
proposed a general multi-level coarsening scheme such that the
reduced graph preserves the eigenvalues and the eigenvectors
of the original graph in a restricted setting.

When coarsening a graph, the correct choice for the number
of clusters, k, is often not apparent from prior knowledge of
the data. Several methods have been proposed in the literature
to help determine the appropriate k£ [16], [37], [40], [45]. Our
work aims to guide the choice of optimal & via visualization.

Consensus clustering. Finally, consensus clustering is used
to represent the consensus across multiple clusterings from
the same input data, across either multiple runs of the same
algorithm [31] or different clustering algorithms. We use the
notion of clustering-induced graphs to derive co-occurrences
for uncertainty visualization. These ideas have previously been
explored in the context of consensus clustering [12], [14].

III. BACKGROUND

Let G = (V, E,w) be a simple, weighted, undirected graph
with n nodes, m edges, and positive edge weights w : E — R™T,
Its n x n weighted adjacency matrix A is defined as A;; =
Aj; = we := w(e) for all 4,5 € V forming an edge e € E;
otherwise, A;; = A;; = 0. Since G is a simple graph, 4;; = 0.
Let D be an nxn diagonal matrix such that D;; = Zl A;j. The
graph Laplacian of G is the matrix L = D— A. The normalized
adjacency matrix and the normalized graph Laplacian are
defined as A = D~'/2AD~'/2 and L = D~'/2LD~1/2.
Coarsening matrix. In graph coarsening, given a graph G =
(V,E,w), a reduced graph H = (V'  E’,w’) is constructed
from G w.r.t. a set of k partitions S = {s1,-- , sx} of V. Each
super-node of H 1is a cluster, denoted by c;, and corresponds
to a partition s; C V (for 1 < ¢ < k). The super-nodes ¢; and
c; are connected via a super-edge. The weight of a super-edge
is given by the sum of weights of edges connecting the nodes
across the clusters. That is, Aj j :=3_ . ., A(v,u), where
A’ is a k x k adjacency matrix for H.

We identify a clustering with a coarsening matrix M €
Rk*"_ which is defined as [24, Section 3.1]: M;; = 1if
v; € s;3 M;; = 0, otherwise. We have A’ = MAMT,

Spectral clustering. Spectral clustering can be used in graph
coarsening to group clusters of nodes into super-nodes, hence
reducing the size of a graph. Many variants of spectral
clustering are described in the literature, see [32] for a survey.
In this paper, we employ the NJW algorithm; although our
framework is easily generalizable to other graph coarsening
algorithms.

Let k be the number of clusters. The NJW algorithm utilizes
two key ingredients: the k largest eigenvalues of the normalized
adjacency matrix and k-means clustering. Given a graph G with
a weighted adjacency matrix A, we compute the eigenvectors
u1,...,u corresponding to the k largest eigenvalues of its
normalized adjacency matrix A. The spectral embedding of
G is the n x k matrix U = [uq,...,ux]. The matrix U is
then row-normalized and used as an input to the k-means
clustering algorithm. The cluster assignment returned by k-
means clustering is used to cluster the nodes of the graph, i.e.,
if it" row of U is assigned to cluster j, then node i of G is
assigned to cluster j. Then, all nodes assigned to cluster j are
grouped into the super-node j to construct the reduced graph.

IV. QUANTIFYING NODE UNCERTAINTY

In graph coarsening, node uncertainty may arise due to the
initialization or the randomization inherent to the underlying
algorithm. For instance, when coarsening a graph using the
NJW algorithm, node uncertainty arises due to the initialization



of k-means clustering internal to the algorithm. We introduce
two complementary methods to quantify node uncertainty for
visualization, namely, locally adjusted Rand indices and co-
occurrences. The former captures the amount of contribution
from one cluster to the global clustering; whereas the latter
represents the co-occurrence probability of node pairs among
all clusters.

A. Node Uncertainty via Local Adjusted Rand Indices

Given a graph G = (V,E,w), let S = {s1,52, -+ ,sk}
denote a clustering (coarsening) of the node set V into k
clusters (super-nodes). Let s; denote a cluster in S, with size
|s;|; ¢; is its corresponding super-node in the reduced graph
H= (V' E ).

The Rand index is a commonly used measure of similarity
between two clusterings. Consider a set V' of n nodes in G
and a pair of clusterings S* and S?, the Rand index calculates
the fraction of correctly classified pairs of nodes w.r.t. all pairs.
It is defined as

n11 + Noo
n 9
(2)
where nj; is the number of pairs in the same cluster under
S' and S2, and ngo the number of pairs in different clusters
under S! and S? [48].

Given two clusterings S' and S2, let M and M? denote the
corresponding coarsening matrices. Let F' = M'(M?)T be the
k x k confusion matrix for S* and S, where Fy; = [s{ N s7
captures the size of overlap between clusters s} in S* and s?
in S2. The adjusted Rand index is defined as the normalized
difference between the Rand index and its expected value [30],

[48].

R(S', 8% = (1)

St S?) — E[R(S',S?))
1 —E[R(S!, S?)]
_ Zf:l Z?:l (F2”> -

%(Tl +1ra) — 13

where r, = Zle (|52}\)7 ry = 25:1 (“92?'), and r3 =
o/ (3):

Given the adjusted Rand index that measures the global
similarity between clusterings S' and S?, we introduce a
local adjusted Rand index (LAR) that captures the amount of
contribution from a cluster in S* to the global measure with
S2:

AR(S',8%) = R( )

3)

25:1 (Fz”) -7}

3(r1+r) —rg’

LAR(s},S?) = 4

where 71,79, 73 are the same as in (3), and 75 = (lsg‘)rg/(g).
By definition, we have ¥ | LAR(s!,S?) = AR(S!,S?).
Suppose we are given an ensemble S = {S° ... S!}
of [ + 1 clusterings of nodes in G. & may be obtained
by running a single randomized graph coarsening algorithm
multiple times, or multiple graph coarsening algorithms. Each
ensemble member gives rise to a reduced graph. We encode

node uncertainty based on a representative graph, which arises
from a representative clustering from the ensemble.

To find such a representative, we first define a distance
between two clusterings in the ensemble d(S?!, S?), based on
the adjusted Rand index:

dr(S',8?) =1 - AR(S!, S?). (5)

A representative clustering is the one in the ensemble that
minimizes the sum of distances to other ensemble members,
i.e., argminges Zé:o d(s,S%; w.lo.g., let S := S° denote
the representative clustering and S',---,S' the remaining
clusterings in the ensemble (we relabel the clusterings if
necessary). Each S* (1 < t < [) gives rise to a coarsening
matrix M? and a reduced graph H®.

For each cluster s; in S, we compute its local contribution
to the global similarity measure between S and each of the
ensemble members {S',--- ,S!} and obtain a distribution of
local measurements. Formally, let a;? denote the LAR between
s;in S and S* (1 <t < I); then ! = LAR(s;,S"). The
uncertainty associated with a super-node ¢; in the representative
reduced graph H is therefore described by the mean and
standard deviation of the distribution {a}, -, al}.

To establish the relationship between the number of clusters
(super-nodes) and the uncertainty of the clusterings (ensembles
of reduced graphs), we compute a global uncertainty measure
for each ensemble based on LAR of its representative graph,
referred to as the aggregated Rand index (ARZI). For each
ensemble, its ARZ is defined to be the sum of the standard
deviations of LAR of each super-node in the representative
graph. In other words, LAR captures the local uncertainty for
a single super-node in a reduced graph while ARZ captures
the global uncertainty for an entire reduced graph.

Given a pair of clusterings S! and S2?, computing
LAR(s},S?) for all i reduces to constructing F' (by checking
set memberships of n nodes) and computing 2?21 (FQJ ), which
takes O(n) and O(k?) time, respectively. For [+1 clusterings in
the ensemble, computing LAR among all pairs in the ensemble
takes O(1%(n + k?)) time.

B. Node Uncertainty via Co-occurrences

Consider a graph G(V, E,w), with a set V' of n nodes. Let
S ={S%...,S'} be an ensemble of clusterings, where each
St (0 < t < 1) is a clustering of nodes of G into k clusters. For
each clustering St € S, we define an n x n cluster-induced
adjacency matrix A? such that

a1 if vj, 5 € st for some st € S,
ik 0 otherwise.

A? is the same as the cluster-induced element graph proposed
by Gates et al. [14], and it captures the co-occurrence of node
pairs among the clusters of S*. By definition, A* = (M*)T M?.

Let A* denote the element-wise average of matrices At ie.,
A* = 1%1 Zi:o Af. A% is the empirical estimate of the co-
occurrence probability of nodes v; and vy, across all clusterings
in the ensemble. We have 0 < A;k < 1, where a value close



to 1 indicates that its end points have a high probability of
belonging to the same cluster.

Treating the binarized A* as an adjacency matrix, we
construct a graph G* = (V* E* w*), referred to as the
A* graph, with edge weights w; = A7, (1 — Aj,). Since
probabilities A;k close to 0 or 1 are both considered stable,
w} captures the uncertainty of an edge; its largest value
(i.e., 0.25) corresponds to the highest uncertainty w.r.t. co-
occurrences of its end points. Finally, for any given reduced
graph H'! with k clusters (super-nodes), with the corresponding
clustering S* = {s,..., st }, and the coarsening matrix M,
the k x k matrix Q' = M*A*(M?*)T captures the co-occurrence
probabilities among pairs of clusters in H*.

Computing A? for a fixed ¢ takes matrix multiplication time
of O(n?k); computing A’ for all ¢ therefore takes O(In?k)
time. Given all A?, computing A* takes O(In?). Computing
Q! for a fixed ¢ takes matrix multiplication time of O(n?k);
thus Computing @ for all ¢ takes O(In’k) time.

V. RESULTS

We now apply the NJW algorithm to four datasets and obtain
ensembles of reduced graphs. We visualize node uncertainty of
these ensembles via local adjusted Rand indices (LAR) and
co-occurrences. A key takeaway is that these two uncertainty
measures complement each other to visualize uncertainty
in randomized spectral clustering and empirically guide the
choices of the optimal numbers of clusters (super-nodes). This
is particularly useful for understanding uncertainty associated
with community detection based on graph coarsening.

Visual encoding of uncertainty measures. We first introduce
our visual encoding. For each dataset, we visualize the reduced
graphs with varying number of clusters. In terms of LAR
uncertainty measure in each reduced graph, the size and
color of a super-node double encode the mean £ AR measure,
which reflects the contribution of the super-node to the global
uncertainty. The orange ring around each super-node encodes
the 1st standard derivation of L£AR, which reflects node
uncertainty. Communities with large mean LAR measures are
typically considered to be more important in our uncertainty
framework. In other words, a large super-node with a thick
orange ring is more important than a small super-node with
an orange ring of the same width. The thickness and color of
an edge in a reduced graph reflect the mean edge weight.

For co-occurrence, we visualize the A* graphs, where edge
uncertainty is encoded by a color map. A stable clustering
structure is indicated by well-separated clusters with high edge
weights among nodes within a cluster and low edge weights
between clusters.

A. Les Miserables Dataset

We begin with the well-known Les Miserables dataset.
Each node represents a character in Victor Hugo’s novel
“Les Miserables”, and an edge connects two nodes if the
corresponding characters co-appear in a scene within the novel.
This leads to a graph of 77 nodes and 254 edges. This dataset is
commonly used to benchmark the performance of community

detection algorithms, where the goal is to distinguish groups
of characters based on their social interactions and to detect
key players in a storyline.

Recently, Hu et al. [21] presented a modified spectral
clustering algorithm that incorporated a Bayesian analysis
model to improve the selection of the number of clusters.
For the Les Miserables test case, they concluded that the best
clustering should consist of 11 communities. We apply our
uncertainty visualization framework to demonstrate that we
obtain interpretable community structures when the number of
clusters k is set to 8 or 11.

Global uncertainty with ARZ. To study the global uncer-
tainty trend, we apply the NJW algorithm to the dataset for
2 < k < 76 (since there are 77 nodes in the graph). We plot the
global uncertainty measure — aggregated Rand index (ARZ) —
w.r.t. the number of clusters, as shown in Fig. 1a. We observe
two local minima at 8 and 11 clusters, respectively.

Les Miserables Global ARI Trend Les Miserables Local ARI Variation
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O
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Number of Clusters Number of Clusters

Fig. 1. Les Miserables dataset. Left: ARZ with an increasing number of
clusters. Right: the variability of ARZ with 7 to 20 clusters.

For a fixed k, we apply the NJW algorithm to the dataset
100 times and generate an ensemble of 100 members. To study
the variability of such an ensemble, we treat each ensemble
member (a reduced graph) as the representative graph and
compute its ARZ. We then study the distribution of this global
uncertainty measure by plotting the set of 100 ARZ as a box
plot (see Fig. 1b). As we vary the cluster sizes from 7 to
20, we observe low ensemble variability surrounding the two
local minima (with 8 and 11 clusters). This means that the
randomized process during graph coarsening produced similar
reduced graphs across the 100 runs.

Local uncertainty with LAR. In Fig. 2, using LAR, we
highlight the node uncertainties for representative graphs with
8,9, 10, 11, and 12 clusters. Recall a representative graph is
the one in the ensemble that minimizes the sum of distances
to the others in the ensemble. For each representative graph,
the size of the super-node reflects the average LAR score
of the corresponding cluster. The standard deviation of the
LAR scores is represented by the width of the orange ring
around each super-node, indicating the associated uncertainty.
In Fig. 2, the representative graphs with 8 and 11 clusters are
shown to contain one and four clusters with thin, but visible,
orange rings, respectively, indicating a low level of uncertainty
among these super-nodes. The number of clusters with visible
orange rings and the widths of the orange rings increase when
we deviate from 8 and 11 clusters. This observation confirms
an increase in overall uncertainty as we move away from the
two local minima. In addition, the representative graph at 11
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Fig. 2. Les Miserables dataset: visualizing node uncertainty of representative graphs with 8, 9, 10, 11, and 12 clusters, respectively.
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Fig. 3. Les Miserables dataset: the original and the reduced representative graphs with 8 (a-b) and 11 (c-d) clusters. Nodes are colored by cluster memberships.

clusters is well aligned with the results of Hu et al., where the
cluster memberships are almost identical to the ones in [21].

Comparing cluster memberships. We compare cluster mem-
berships at the two local minima (k = 8 and 11) by computing a
matching of clusters based on the largest pairwise intersections.
We find that the representative graphs for k = 8 vs. k = 11
have close to identical cluster memberships.

A detailed analysis reveals that clusters in Fig. 3d typically
merge to form clusters in Fig. 3b. Such merging behaviors
are explainable based on the storyline. For example, clusters 0
and 10 in Fig. 3d merge to form cluster 1 in Fig. 3b. Cluster
0 in Fig. 3d reflects the close social circle around the main
character Valjean, and cluster 10 contains a single character
Myriel. Myriel shared a scene with Valjean early on in the story,
years before the main storyline for Valjean began. However,
Myriel did not appear in Valjean’s main storyline. Therefore,
Myriel is in a cluster by himself in Fig. 3d, but he can also
be considered part of Valjean’s social circle in Fig. 3b. This
example further illustrates that the selection of the optimal
number of clusters guided by our visualization framework is
reasonable and interpretable.

We further investigate the possible cause of uncertainty in
the super-nodes (clusters) of Fig. 3b and Fig. 3d. Fig. 3b shows
that super-node 7 has the largest uncertainty (indicated by its
thick orange ring). A close examination of the cluster reveals
that this uncertainty is largely due to the node Toussaint in
Fig. 3a. Toussaint is a servant for both Cosette and Valjean,
two of the main characters in the novel and each with their own
social circles. Across multiple runs, Toussaint is frequently
clustered into Cosette’s social circle, which corresponds to
super-node 7; it is also occasionally considered to be part of
Valjean’s circle, which corresponds to super-node 1.

In Fig. 3d, super-node O appears to have the highest

uncertainty (with the thickest orange ring), due to the character
Cosette (see Fig. 3c¢). Cosette has complicated relationships
with characters from different social groups in the novel,
making her a difficult character to cluster. The uncertainties
associated with super-nodes 8 and 9 in Fig. 3d can also be
explained using a frequency analysis. Specifically, the five red
nodes in Fig. 3e correspond to one parent, three children, and
a housekeeper of the Gorbeau household. Graph coarsening
frequently splits up the five characters from the same household,
resulting in the high uncertainties for super-nodes 8 and 9 in
Fig. 3d.

Co-occurrences with A* graphs. As a secondary guidance,
we visualize the A* graphs computed based on co-occurrences
for k = 8,9,10,11, and 12, see Fig. 4 top. Fig. 4 bottom shows
the histograms of non-zero edge weights of these A* graphs.
The histograms for £ = 8 and £ = 11 are shown to have
fewer and shorter bars in the highly uncertain region, i.e., with
values close to 0.25, compared to their neighbors. Meanwhile,
the A* graphs at K = 8 and k = 11 display well-separated
clusters; each of such clusters corresponds to a low uncertainty
super-node in the representative graph of Fig. 3b and Fig. 3d,
respectively. Such observations based on the A* graphs further
guide our selection of optimal number(s) of clusters.

B. College Football Dataset

The College Football network collected by Girvan and
Newman [15] represents the schedule of Division I games
for the 2000 season. The nodes represent the 115 teams. There
is an edge between two nodes if a game was played between
the corresponding teams. The teams were divided into 11
conferences, plus a group of independent teams. Recently,
Newman and Reinert [35] used a maximum-likelihood method
to estimate that the correct number of communities for the
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Fig. 4. Les Miserables dataset. Top: A* graphs for k = 8,9,10, 11, and 12. Bottom: histograms for non-zero edge weights in the A* graphs.

College Football dataset is 11. We again would like to validate
previous results using our uncertainty visualization framework.

Football Global ARI Trend Football Local ARI Variation

BB B 1
Number of Clusters

Fig. 5. College Football dataset. (a): ARZ with an increasing number of
clusters. (b): the variability of ARZ with 8 to 20 clusters.

Global uncertainty with ARZ. We apply the NJW algorithm
and show the ARZ global trend and the ensemble variability
across 100 runs in Fig. 5, varying the number of clusters from
2 to 30. The local minimum of ARZ appears at 11 clusters,
with 10 clusters following closely. Both clusterings also display
little to none local variability across the ensembles (Fig. 5b).

Local uncertainty with £LAR. The reduced graph with 11
clusters in Fig. 6 identifies the 11 conferences mostly accurately,
with the independent teams spread out in various clusters. The
independent teams do not form a tight cluster because they
played few games against each other, whereas the teams from
the same conference played mostly among themselves. For
example, teams in the Big Twelve played a total of 82 games
and 48 of them were against other teams in the same conference.
However, the independent teams played a total of 45 games,
with only 1 played between two independent teams. In Fig. 6,
we visualize the representative graphs with node uncertainty for
k =9,10,11, and 12. The graphs with 10 and 11 super-nodes
show close to zero node uncertainty, whereas the graphs with 9
and 12 clusters display visible orange rings (pointed by orange
arrows), indicating an increase in uncertainty.

Cluster memberships. Comparing the membership of the
reduced graphs with 10 and 11 clusters, we conclude that
the latter captures the community structure better than the
former. In the graph with 10 super-nodes (Fig. 7a), the Sun
Belt teams (highlighted by black circles) are spread across
multiple clusters. Although this result is justifiable since the
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Fig. 6. College Football dataset: visualizing node uncertainty of representative
graphs with 9, 10, 11, and 12 clusters, respectively.

Sun Belt teams played more games outside the conference
(45 games) than among the conference teams (10 games), the
clustering with 11 super-nodes separate the 11 conferences
with higher accuracy. In particular, Fig. 7c contains a new red
cluster that includes 4 out of the 7 Sun Belt teams, cf., Fig. 7a.

Co-occurrences with A* graphs. The A* graphs provide
additional guidance to the selection of k. The A* graphs with
10 and 11 clusters display well-separated clusters with almost
no uncertain edges, indicating stable community structures,
see Fig. 8 top. Furthermore, the A* histograms at k£ = 10 and
k = 11 contain almost no uncertain bars, in comparison with
those at £ =9 and 12; see Fig. 8 bottom. These findings align
well with the Newman’s results [35], that 11 is the appropriate
number of communities for this dataset.

C. Co-authorship Dataset

The Co-authorship dataset, compiled by Newman in [33],
is a graph of scientists conducting research on network related
topics. We take the largest connected component of the
graph consisting of 379 scientists, where an edge is drawn
between two nodes if the corresponding scientists co-authored
a publication; the edge weight captures the strength of the
collaboration (computed by combining the number of papers
coauthored and the number of coauthors on the paper, see [33,
section V] for details).

Global uncertainty with ARZ. Using our framework, we
apply the NJW algorithm to this dataset, varying the number
of clusters from 2 to 50. The global ARZ trend shown in
Fig. 9a displays two local minima far apart from each other, at
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Fig. 8. College Football dataset. Top: A* graphs for k = 9,10, 11, and 12. Bottom: histograms for non-zero edge weights.

10 and 29 clusters. Both clusterings also have low ensemble
variability shown in Fig. 9b and Fig. 9c, respectively.

Local uncertainty with £LAR. We investigate this global
trend more closely by visualizing the representative graphs
with 9, 10, 11, 28, 29, and 30 clusters in Fig. 10a. We observe
a similar behavior as the previous datasets: as we deviate from
10 and 29 clusters, the orange rings around some clusters
thicken, i.e., the local uncertainty for these corresponding
clusters increases.

Cluster memberships. The two clusterings at k¥ = 10 and
k = 29 are closely related, see Fig. 10b-c. The nodes in
the two graphs are assigned the same color when a cluster
in Fig. 10c is completely contained in a cluster in Fig. 10b.
This means that all clusters but one (i.e., the black super-node)
from the representative graph at k = 29 merge to form clusters
in the representative graph at £ = 10. In other words, almost

all clusters in Fig. 10c are refinements of clusters in Fig. 10b.

An in-depth analysis reveals that clusters in Fig. 10b are often
composed of multiple related research topics, while clusters in
Fig. 10c provide further refinement of these topics. For instance,
when k£ = 10, cluster 1 consists of scientists working on
biological networks. The corresponding clusters when £ = 29
each focus on one of the following topics: ecological networks,
bacterial and neuronal networks, human and animal population

networks, and social network analysis using statistical physics.

Co-occurrences with A* graphs. Finally, A* graphs for k =
10 and k£ = 29 show more separation among clusters, indicating
more stable cluster memberships, compared to their neighbors;
see Fig. 11 top. Histograms with 10 and 29 clusters (Fig. 11
bottom) mainly display one bar at a low uncertainty value,
indicating stability w.r.t. co-occurrences.

D. LastFM Asia Dataset

To demonstrate the effectiveness of our framework on larger
datasets, we work with the LastFM Asia dataset [41] collected
in March 2020. It is a social network of the music streaming
service LastFM users in Asia. The nodes represent the 7,624
users and an edge is drawn if there is a mutual follower
relationship between pairs of users. There are 18 ground-truth
communities, labeled by the users’ home countries (although
the exact country names are not provided).

Global uncertainty with ARZ. We apply the NJW algorithm
by varying the number of clusters from 2 to 30. Similar to the
result of the Co-authorship dataset, we observe more than one
local minima, at k = 12, 15, and 18, see Fig. 12a. All three
local minima also display low ensemble variability in Fig. 12b.

Local uncertainty with LAR. We visualize the representa-
tive graphs and their associated uncertainty with the number
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Fig. 11. Co-authorship dataset. Top: A* graphs for £ = 9,10, 11, 28,29, and 30. Bottom: histograms for non-zero edge weights.

of clusters ranging from 11 to 19 in Fig. 13a. We focus our
attention on the cluster (labeled cluster 1) in each clustering
that contributes the most to the global uncertainty, that is,
the cluster with the largest radius which reflects the largest
mean LAR. These clusters contain almost identical members
across all representative graphs with £ = 11 to 19. Compared
to their immediate neighbors, clusterings with 12, 15, and
18 clusters display thinner orange rings, especially around

cluster 1, indicating more stable community structures. This
observation aligns with the observations from previous datasets.

Cluster memberships. We discover that the the cluster mem-
bers of the representative graph with £ = 18 correspond well
with the ground-truth communities. From the ground-truth, 13
out of the 18 communities have an average of 80% overlap
with a cluster in the representative graph. These 13 clusters
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consist of 89% of the total 7,624 nodes.

We further investigate the relationship among the three
clusterings with k = 12, 15, and 18 in Fig. 13b. When k£ = 18,
6 small clusters merge to form 3 clusters in the representative
graph with & = 15. For instance, clusters 11 and 12 (for
k = 18) form cluster 13 (for k = 15); cluster 4 (for k = 18)
maps into cluster 8 (for k = 15). Similarly, the representative
graph with k = 15 contains 6 clusters that merge into 3 cluster
when k = 12. For instance, clusters 8 and 13 (for £ = 15)
merge and form cluster 10 (for k£ = 12). Fig. 13b illustrates
this relationship by encoding the corresponding clusters among
the three representative graphs using the same color.

VI. CONCLUSION AND DISCUSSION

In this paper, we present two complementary uncertainty
measures based on local adjusted Rand indices and co-
occurrences to quantify and visualize uncertainty associated
with a randomized spectral clustering algorithm. We demon-
strate that these two uncertainty measures complement each
other to serve as an empirical guide for the selection of the
appropriate number of clusters. These measures can also be
generalized to any randomized graph coarsening algorithms.

We have considered using a user study to evaluate our
framework in addition to our quantitative evaluation. However,
we concluded that a traditional user study approach is infeasible
for a specialized tool that we provide. The targeted users of
our framework are data scientists with expertise in network
reduction algorithms such as spectral clustering and community
detection. A user study with the general population will not
provide insights relevant to our technical contribution. On the
other hand, a user satisfaction survey with a small sample
of specialized participants could suffer from significant bias
because of participants’ prior knowledge of the datasets and
the desired outcome. Therefore, we chose to demonstrate the
effectiveness of our framework by applying it to datasets from
different domain areas. We argue that the presented quantitative
evaluation is a good initial approach to establish the credibility
of the proposed framework. Nevertheless, a recent work by
Jefferson et al. [23] presented a technique that uses conjoint
analysis to quickly conduct expert elicitation. Applying the
method to our framework could be an interesting direction in
the future.

Our framework serves as a proof of concept that uncertainty
visualization can be used to improve interpretability and
confidence in graph reduction tasks. Although we have used
small to medium size datasets in this paper, our framework is
applicable to larger datasets. However, one obstacle is scalable
computation, as our current framework requires multiple runs
of the same randomized algorithm. Another obstacle we
encountered is that many of the existing large networks often
lack ground truth communities, making it hard to evaluate the
resulting visualization. Developing benchmark large networks
with curated ground truth communities is something that would
benefit the whole network analysis community.

Our approach is currently developed for ensembles generated
from multi-runs of a single graph coarsening algorithm. It
may be generalized to multiple algorithm scenarios. Finally,
the matrix Q* defined in Sect. IV is closely related to the
matrix used in modularity computations [34]; establishing a
formal connection between co-occurrences and modularity, and
using such a connection for uncertainty visualization would be
interesting.
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