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CONSPECTUS: Photochemical reactions are of great importance in
chemistry, biology, and materials science because they take advantage
of a renewable energy source, mild reaction conditions, and high atom
economy. Light absorption can excite molecules to a higher energy
electronic state of the same spin multiplicity. The following
nonadiabatic processes induce molecular transformations that afford
exotic molecular architectures and high-energy-isomers that are
inaccessible by thermal means. Computational simulations now
complement time-resolved instrumentation to reveal ultrafast
excited-state mechanistic information for photochemical reactions
that is essential in disentangling elusive spectroscopic features, excited-
state lifetimes, and excited-state mechanistic critical points. Non-
adiabatic molecular dynamics (NAMD), powered by surface hopping
techniques, is among the most widely applied techniques to model the photochemical reactions of medium-sized molecules.
However, the computational efficiency is limited because of the requisite thousands of multiconfigurational quantum-chemical
calculations multiplied by hundreds of trajectories. Machine learning (ML) has emerged as a revolutionary force in computational
chemistry to predict the outcome of the resource-intensive multiconfigurational calculations on the fly. An ML potential trained with
a substantial set of quantum-chemical calculations can predict the energies and forces with errors under chemical accuracy at a
negligible cost. The integration of ML potentials in NAMD dramatically extends the maximum simulation time scale by ~10 000-
fold to the nanosecond regime.

In this Account, we present a comprehensive demonstration of ML photodynamics simulations and summarize our most recent
applications in resolving complex photochemical reactions. First, we address three fundamental components of ML techniques for
photodynamics simulations: the quantum-chemical data set, the ML potential, and NAMD. Second, we describe best practices in
building training data and our procedure toward training the ML photodynamics model with our recent literature contributions. We
introduce a convenient training data generation scheme combining Wigner sampling and geometrical interpolation. It trains reliable
and effective ML potentials suitable for subsequent active learning to detect undersampled data. We demonstrate how active learning
automatically discovers new mechanistic pathways and reproduces experimental results. We point out that atomic permutation is an
essential data augmentation approach to improve the learnability of distance-based molecular descriptors for highly symmetric
molecules. Third, we demonstrate the utility of ML-photodynamics by showing the results of ML photodynamics simulations of (1)
photo-torquoselective 4 disrotatory electrocyclic ring closing of norbornyl cyclohexadiene, which reveals a thermal conversion from
experimentally unobserved intermediates to the reactant in 1 ns; (2) [2 + 2] photocycloaddition of substituted [3]-syn-ladderdienes
in competition with 47 and 67 electrocyclic ring-opening reactions, uncovering substituent effects to explain the reported increased
quantum yield of substituted cubane precursors; and (3) photochemical 47 disrotatory electrocyclic reactions of fluorobenzenes in
nanoseconds with XMS-CASPT2-level training data. We expect this Account to broaden understanding of ML photodynamics and
inspire future developments and applications to increasingly large molecules within complex environments on long time scales.
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Figure 1. Three components of the ML photodynamics approach. (a) The QC data set stores the information on photochemical reactions. (b) ML
algorithms learn excited-state potential energy surfaces. (c) NAMD is used to propagate trajectories using the ML potential.

Molecular Dynamics (PyRAI’MD) and demonstrates the
role of nanosecond-scale photodynamics simulations in
resolving the photo-torquoselectivity observed in experi-
ments.

Li, J.; Stein, R.; Adrion, D. M,; Lopez, S. A. Machine-
Learning Photodynamics Simulations Uncover the Role
of Substituent Effects on the Photochemical Formation
of Cubanes. J. Am. Chem. Soc. 2021, 143, 20166—
20175.” This work showcases the advantages of machine
learning photodynamics simulations for complex photo-
chemical reactions that uncover the substituent effects on the
photochemical [2 + 2] cycloaddition toward octasubstituted
cubane.

Li, J.; Lopez, S. A. Excited-state distortions promote the
photochemical 4z-disrotatory electrocyclizations of
fluorobenzenes via machine learning accelerated photo-
dynamics simulations. Chem. - Eur. ]. 2022, DOI:
10.1002/chem.202200651.> This work demonstrates the
significance of machine learning photodynamics simulations
for revealing the long-lived nonradiative decay mechanism of
fluorobenzenes and its role in the photochemical formation
of Dewar-fluorobenzenes.

1. INTRODUCTION

Photochemistry is appealing because it harnesses renewable

. . 4 5-8
solar energy to synthesize chemical products™ and fuels
under mild conditions with a high atomic conversion
efficiency. Photochemical reactions occur via radiationless
processes on an ultrashort time scale (107*—107'? s). The
mechanism studies rely on time-resolved experiments (i.e.,
attochemistry”) to probe the excited-state molecular vibrations
and electronic structures. Comprehensive investigations are
complemented with computational modeling to disentangle
the elusive spectroscopic features and identify the critical
excited-state structures. Quantum-chemical (QC) calculations
for excited-state electronic structures are often costly. There-
fore, machine learning (ML) techniques have been introduced
to accelerate the calculations.

ML models learn the relationship between molecular
structures and associated properties (e.g, energies,m_13
transition dipole moments,'*~"* and oscillator strengths
from a large QC data set. The a?éplications have succeeded in
the discovery of new molecules'® and materials,'” predicting

. T . o 19,20 .
reaction barriers, ﬁndm§ transition states, solving the
o1 21,0 . . 22324
Schrodinger equation, modeling wave functions,
o ) . 25,26 : 27
optimizing density functionals, computing IR spectra,
UV—vis spectra,'”"*> and NMR spectra,”® and simulating
. . 12,29 .
excited-state dynamics and complex photochemical
reactions.' > The energy prediction achieves chemical
accuracy (1 kcal'mol™), which is required for realistic
chemical prediction and comparison with experiments. The

14,15)

1973

costs are negligible compared with the same-level QC
calculation.'”*” Thus, many studies have used ML potentials
as a prominent accelerator for nonadiabatic molecular
dynamics (NAMD) simulations, for instance, multiconfigura-
tional time-dependent Hartree (MCTDH)® and trajectory
surface hopping (TSH)®' calculations. Several groups have
developed ML mixed quantum—classical NAMD approaches
(called ML photodynamics in this Account), such as
MLAtom™ with Newton-X"* and SchNarc®* with SHARC.*
To study photochemical cycloaddition and electrocyclic
reactions, our group developed the Python Rapid Artificial
Intelligence Ab Initio Molecular Dynamics (PyRAI’MD)
code.'

Training ML potentials is a challenging task. First,
generating high-quality machine-learnable QC data requires
expertise in computational chemistry and ML. The training
data generation protocol often inherits human biases that
require specific steps to remove. Second, the rapid develop-
ment of ML models has made comparing the efficiencies and
performances of these models rather challenging.”® We begin
with an overview of the fundamental background for ML
photodynamics. We will then provide a short tutorial on
building ML potentials and discuss the applications in our
recent publications. Finally, we will summarize our findings
and outlook on future method development.

2. THE ML PHOTODYNAMICS APPROACH

ML photodynamics methods generally contain three key
components (Figure 1): the QC data set, the ML potential,
and NAMD.

2.1. Quantum-Chemical Data Set for Training

Single-reference methods (e.g, time-dependent density func-
tional theory) are used to compute vertical excitation energies
with an errors ranging from 0.3 to 0.5 eV.”” However, they fail
when there is strong coupling between electronic states (e.g,
avoided crossings or conical intersections) because it violates
the Born—Oppenheimer approximation. Single-reference
methods may also predict incorrect branching-plane dimen-
sionality at these crossing regions.’®*’ Multiconfigurational
self-consistent field (MCSCF) methods, such as complete
active space self-consistent field (CASSCF), are more suitable
for describing the electronic structures near the crossing
regions. The term CASSCF(m, n) refers to an active space of m
electrons and n orbitals. The CASSCF wave function is often
limited to an active space of 22 electrons and 22 orbitals with
modern quantum-chemical software.”” The selection of active
orbitals is not trivial. Active spaces that are too small may cause
high-lying state(s) to become relatively low-lying along the
reaction coordinate, known as intruder state(s). Accounting for
electron correlation significantly improves the energies, which
can approach the experimental energies. The correlation
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Figure 2. Three perspectives of selecting electronic states on the basis of (a) the absorption spectrum, (b) the reaction coordinate diagram, and (c)

state populations from QC-NAMD simulations.

energy is divided into static and dynamic components.
CASSCF recovers the static correlation by its multideter-
minant formalism. However, it omits dynamic correlation
because it treats each electron in the mean field of the other
electrons. Thus, it usually results in overestimated excitation
energies.”’ The use of CASSCF data must be carefully
validated against multireference methods, such as multi-
reference configuration interaction (MRCI) and extended
multistate complete active space second-order perturbation
theory (XMS-CASPT2). We recommend the ANO-type
double- basis set or comparable aug-cc-pVDZ basis set
because they provide a balance between computational cost
and accuracy and capture diverse excitation types, including
Rydberg states.*”** Moreover, Bowan, Lester, and co-workers
showed that in the dissociation of CH;COO Criegee
intermediates™* and more recently Marquet and and co-
workers showed that in the dissociation of tyrosine,” there are
no available reference methods can describe the entire reaction
space, requiring a combination of QC methods to be
employed.

2.2. Machine Learning Potentials

Kernel methods and neural networks (NNs) are the two most
common methods to train ML potentials. Various examples are
high-dimensional neural network potential (HDNNP),*
SchNet,”” PhysNet,"® ANL* deep potential smooth edition
(DeepPot—SE),50 gradient-domain machine learning
(GDML),”" kernel ridge regression using RE descriptor and
the Gaussian kernel (KREG),*” reproducing kernel Hilbert
space (RKHS),>* and Gaussian approximation potential
(GAP).>® Some packages of a collection of ML methods are
MLatom® and fast learning of atomic rare events (FLARE).>*
A comparison of NN and kernel methods shows rather similar
accuracies for ML photodynamics simulations.”> We refer
readers to refs 12 and 32 for more information about the
method benchmarks. Our following discussion will focus on
the most basic architecture of NNs based on fully connected
feed-forward multilayer perceptrons.

ML potentials predict molecular properties using a
numerical representation of the 3D molecular structure. Global
descriptors contain complete molecular structural information,
such as the so-called Coulomb matrix™® and inverse distance
matrix.'’ They are translation- and rotation-invariant and thus
can distinguish molecular structures in arbitrary orientations
and positions. However, global descriptors are not invariant to
permuted chemically equivalent atoms. Specialized techniques
(e.g, bag of bonds,”’ randomly sorted Coulomb matrices,®
and permutationally invariant polynomials®®) are introduced to
enforce permutation invariance in global descriptors. However,
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these techniques may apply only to small molecules and result
in discontinuous potential energy surfaces (PESs). On the
other hand, local descriptors describe atomistic environments
with a set of basis functions'>*° that are permutationally
invariant. However, they may introduce system-dependent
hyperparameters (e.g.,, shape and size of the basis functions).
Some examples are atom-centered symmetry functions
(ACSFs), smooth overlap of atomic positions (SOAP),®'
and Faber—Christensen—Huang—Lilienfeld (FCHL).”> In
addition, Pozdnyakov and co-workers suggested that the
inclusion of higher-order terms in descriptors is essential to
further improve the model accuracy.”” The ML potentials are
often trained for a specific molecule in ML photodynamics.'”
Thus, we implemented global descriptors (e.g., inverse distance
matrix) in PyRAI*MD for simplicity. We enable more efficient
training through a data augmentation approach (see section
3.4).

Many databases, such as GDB-13°* and GDB-17°° and their
subsets QM7,°° QM7b,*” QMS,*® and QM9"° as well as the
VERDE materials database,®” are designed to learn molecular
properties at equilibrium geometries. However, ML photo-
dynamics relies on a more specialized dataset that contains the
molecular properties at different geometries for a given
molecule. Active learning is an efficient and practical strategy
for this task. It allows models to sample undersampled data
resembling an automatic reaction exploration. We will discuss
the initial set generation in section 3.2 and active learning in
section 3.3.

2.3. Nonadiabatic Molecular Dynamics

The ML photodynamics approach is based on mixed
quantum—classical NAMD using TSH methods, such as
Tully’s fewest switches surface hopping (FSSH). It computes
the hopping probability between two states of the same spin
multiplicity with the nonadiabatic couplings (NACs) and
spin—orbit couplings (SOCs) for different spin multiplicities.”
It is more challenging to predict NACs than SOCs because
NACs are vector properties. Marquetand and co-workers
suggested that fitting numerator components of NACs to the
first-order-derivative of a virtual potential’' avoids the
discontinuous data near state crossings. Recent work by our
group' and the Goémez-Bombarelli group’” showed that the
NNs tend to underestimate NACs with increasing atom count
because of the unavailability of training data for the unphysical
virtual potential and/or low-accuracy predictions of energy
gaps near crossing regions. A possible solution to the NAC
prediction problem is to use the Baeck-An approximation
based on the ML-predicted energies.”’* The improvement of
the energy gap is challenging and requires substantial
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Figure 3. Initial set generation with geometrical interpolation and Wigner sampling. The colored curves represent the interpolated points, and the

gray points represent the Wigner-sampled reactant and product structures.

computational effort to generate data near crossing regions.
The NAC prediction may be bypassed with the Zhu—
Nakamura theory of surface hopping (ZNSH).”* ZNSH uses
only energies and forces of two crossing states in hopping
probability calculations. The forces are diabatized in a
generalized 1D model based on three-point interpolation.”
ZNSH has shown results consistent with those of FESSH.”>~"”
It also has a formula to compute intersystem crossing with
SOCs.”® Our examples in section 4 used ZNSH. Since the
ZNSH solely depends on the shape of the PESs, one must
justify the ZNSH results with FSSH if the QC-NAMD data are
available. In addition, the recent developments of ML methods
for multiscale systems’® and long-range dispersion®’ in the
ground-state potential pave the way to the future ML
photodynamics approach for larger systems.

3. TRAINING ML PHOTODYNAMICS MODELS
3.1. Building an ML Potential

We first determine an appropriate number of electronic states
to construct an ML potential. It is recommended to first
compute the absorption spectrum and compare with available
experimental results to assess relevant states in the excitation
(Figure 2a). The reaction coordinate diagram is also useful to
characterize the selected states along with a possible reaction
path (Figure 2b). A more rigorous justification requires
analyzing the state populations during QC-NAMD simulations
(Figure 2c). Because the model system in Figure 2 shows a
separate S; and higher states in the absorption spectrum and
reaction diagram and the state population transfer mainly
involves the S, and S, states, we can build an ML potential to
learn the Sy and S, energies and forces, which reduces the
dataset size and training noise.

Training an ML potential minimizes a mean-square-error
loss function using gradient descent methods.”" We split the
training data into two parts (e.g, 9:1). The first part is used to
train the model; the other part is for test or validation. The
kernel methods and NNs may contain hyperparameters that
need additional optimization, which can be done with grid
search and random grid search.*” With a limited amount of
training data, k-fold cross-validation is an effective approach for
hyperparameter optimization.83 NN potentials are prone to
overfitting, where the model fits the training data and noise
generally leads to predictive failure outside the training set.
Thus, we recommend overfitting prevention (e.g., early
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stopping, dropout, and weight decay).*”** Early stopping
stops the training procedure when the validation error
increases while the training error decreases. Dropout randomly
ignores the outputs from some number of nodes to prevent
complex coadaptation of nodes within the layer, making a
more robust prediction. Weight decay adds a small penalty to
the loss function to prevent overfitting.

3.2. Initial Set Sampling

Initial set sampling provides a baseline for learning the PESs.
Structural sampling has been done in thermal reactions with
MD-based methods (umbrella sampling,*® trajectory-guided
sampling,”® enhanced sampling,”” and metadynamics*®®),
stochastic surface walk,®’ Wigner sampling,90 and normal
mode scans.”"®' However, these techniques have limited
efficacy for complex photochemical reactions. For instance,
Wigner sampling for reactant or product geometries captures
only accessible nonequilibrium geometries near local or global
minima. Normal mode scans include many irrelevant
molecular vibrations; ground-state MD simulations access
different mechanistic pathways from excited-state processes.
Excited-state MD becomes prohibitively expensive as the
number of degrees of freedom increases. We recently reported
a composite scheme that combines Wigner sampling and
geometrical interpolation to generate a compact yet relevant
initial set (Figure 3).

Wigner sampling is commonly used to generate initial
conditions for photodynamics and absorption spectra.”
Learning the Wigner-sampled reactants helps reduce the
undersampling of structures near the Franck—Condon (FC)
region. Geometrical interpolation complements structural
correlations between the reactants and products in the dataset.
We use geodesic interpolation”™ to generate intermediate
structures between the optimized reactant, product, and
minimum-energy crossing point (MECP) geometries. We
combine the Wigner-sampled geometrical displacements of
reactants with the interpolated structures to broaden the
sampled space (Figure 3). For sampling structures of larger
systems in a complex environment, Wigner sampling needs to
be combined with multiscale MD simulations to sample the
environment.”*

We train five models to demonstrate the effect of Wigner
sampling and geometrical interpolation. Each model consists of
two independently trained NNs. The hyperparameters and
training results are available in the Supporting Information. We
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illustrate the spatial distributions of the collected structures.

use the prediction standard deviations to estimate the
prediction uncertainties. The training set is built upon two
subsets in varying ratios: the Wigner sampling set contains 100
reactant and product structures, and the geometrical
interpolation set contains SO0 structures (25 paths by 20

intermediates). The test set has 201 interpolated structures in

1976

the 4z disrotatory electrocyclization of hexafluorobenzene
(HEB).

Figure 4a shows that the NNs exclusively trained with the
Wigner set predict the incorrect topology of PESs near the S,/
So crossing region. The prediction uncertainty rises to >0.01
hartree (>6.2 kcal mol™), which suggests an area of
undersampled structures (Figure 4f). Upon addition of 50%
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of the interpolation set, the NNs learn the S,/S, crossing but
predict two crossing regions (Figure 4b) and show high
uncertainty (>0.03 hartree) near the S;/S; and S,/S, crossings
(Figure 4g). Including the complete interpolation set predicts a
better topology throughout the reaction coordinate diagram
(Figure 4c). The uncertain regions narrow to the So/S;
crossing (Figure 4h). Reducing the Wigner set by 50%
shows similar errors near the S,/S; crossing region (Figure
4d). However, the uncertainty decreases below 0.01 hartree,
which makes the model less effective in detecting under-
sampled structures (Figure 4i). As can be seen in Figure 4e,
removing the Wigner set results in notable uncertainty,
especially for the product (Figure 4j). Our findings suggest
equal significance of Wigner sampling and geometrical
interpolation in the initial set generation but do not yet
indicate an optimal ratio between the Wigner and interpolation
sets.

3.3. Active Learning

Active learning, which searches undersampled structures in the
initial set, was initially introduced by Behler” for ground-state
MD simulations and then adapted for excited-state PESs by
Marquetand and co-workers.”" Active learning uses a similarity
measure to determine the uncertainty of predicted molecular
properties during MD simulations. Kernel-based methods (e.g.,
Gaussian process regression) may provide the covariance of
the predictions as an estimate of the prediction uncertainty.
However, the NN potential needs a committee model of at
least two independently trained NNs to evaluate uncertainties.
The ML potential is first trained with the initial set and
propagates an ensemble of trajectories to search undersampled
structures. These trajectories are terminated if the predicted
energies, forces, NACs, and SOCs of the current structures
exceed predefined thresholds (e.g, 0.043 hartree and 0.25
hartree-bohr™ for energy and force, respectively)."” The
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uncertain structures are recomputed with QC calculations and
added to retrain the ML potential.

Our recent ML photodynamics simulations for octamethyl-
[3]-ladderdiene (A) showed substantial efficacy of active
learning in the automatic discovery of new reaction pathways.”
The initial training set contained only 4321 structures sampled
from the interpolated reaction coordinate diagram for the [2 +
2] cycloaddition. The active learning propagated 125
trajectories from the S; state in 1 ps (0.5 fs time step). It
completed in S1 iterations and found 4982 new structures
from the oc_c cleavage and electrocyclic ring-opening
pathways with five predicted intermediates or products (Figure
Sa). In Figure Sb, we have plotted the number of collected
structures and their distributions to visualize the learning
progress in the reaction space. In the first three iterations, the
trajectories searched around the FC region (A, r > 2.0 A d<
2.0 A, and ¢ < 2.0 A). A broader exploration began at iteration
7 that learned the electrocyclic ring-opening pathways to D
and E (r >2.0A, d>20A, and ¢ < 2.0 A), and the 6c_¢-
cleavage pathways to C (r > 2.0 A, d < 2.0 A, and ¢ > 2.0 A).
The undersampled structures in the electrocyclic ring-opening
pathway gradually decreased to a plateau at iterations 36—40.
After that, the trajectories detected a new pathway toward F (r
>20A d>32A and c<20A).

3.4. Data Augmentation

Symmetric molecules render the inverse distance matrix unable
to learn the photochemical reaction pathways. For instance,
HFB (Dg, symmetry) undergoes a 4z disrotatory electro-
cyclization reaction. It has six equivalent carbons (Figure 6a).
Active learning tends to search all equivalent reaction pathways
because the inverse distance matrix is not permutationally
invariant. This increases the training data calculations ~6-fold.
To reduce these redundant QC calculations, we introduced a
data augmentation approach, called a permutation map, to
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generate equivalent data from existing data. In Figure 6b,
pathways 1 and 2 have equivalent MECPs with different
representations, I; and I,. The permutation maps reorder the
atoms of the MECP in pathway 1 around the C4 axis of HFB.
The permuted MECP has a new representation I, p, and I, p =
I, because the inverse distance matrix is rotationally invariant.
Since the permutation map reorders the atoms in the
representation, all of the vector properties (e.g, forces and
NACs) are also reordered accordingly.

We compare the predicted energies of Dewar-HFB with and
without permutations to show the significance of our data
augmentation approach. Details of the NN hyperparameters
and training results are given in the Supporting Information.
The training set contains the 901 structures from Wigner
sampling and geometrical interpolation of the C1—C4 bond
formation.> The control set contains 100 Dewar-HFB
structures with the C1-C4 bond. The predictions show
similar error distributions regardless of the permutations
(Figure 6¢). The test set contains 100 Dewar-HFB structures
with the C2—CS5 bond. Without permutations, the predictions
result in a large mean absolute error (MAE) of 4.54 eV. Using
the permutation map, however, decreases the MAE to 0.100
eV. Figure 6d compares the progress of the direct active
learning approach with that of active learning with an HFB
permutation map. It propagates 200 trajectories from S, in 10
ps (0.5 fs time step). In the active learning with permutations,
the completion ratio reaches 0.8 in 10 iterations and exceeds
0.9 in 30 iterations. Without permutations, the learning curve
fluctuates in the first 20 iterations and requires 29 iterations to
reach a 0.8 completion ratio. The active learning with
permutations collects considerably fewer structures (2128)
than that without permutations (3029). The data augmenta-
tion can be avoided using a permutationally invariant local
descriptor, such the descriptor implemented in SchNarc.**

4. APPLICATIONS OF ML PHOTODYNAMICS
SIMULATIONS

In this section, we provide an overview of our latest
contributions in applying ML photodynamics to resolve
mechanistic problems in photochemistry. Photochemical
cycloaddition and electrocyclic reactions serve as fundamental
routes to produce highly strained organic compounds that are
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typically inaccessible via thermal routes. CASSCF or XMS-
CASPT2 calculations were used as reference methods to
properly describe the PESs involving state degeneracies along
the reaction coordinate(s). However, the demonstrated
systems all require substantial—sometimes prohibitive—
computational costs for large molecules or reactions that
have excited-state lifetimes exceeding 10 ps. ML photo-
dynamics simulations enable the acceleration of energy and
gradient predictions on increasingly large molecules.

4.1. Photo-torquoselective Isomerization of Norbornyl
Cyclohexadiene

Irradiation of norbornyl cyclohexadiene (NCHD) initiates a
torquoselective 47 disrotatory electrocyclic ring-closing re-
action to major (anti-NL) and minor (syn-NL) norbornyl
ladderene (NL) products (Figure 7a)." We performed QC and
ML photodynamics simulations to uncover the origin of the
photo-torquoselectivity. We computed 240 QC trajectories of
NCHD at the CASSCF(4,3)/ANO-S-VDZP level and 3954
ML trajectories with NN trained at the same level in 1 ps. The
QC trajectory required 17 days, whereas the ML trajectory
only took 38 s on a single CPU. The final MD snapshots were
optimized to intermediates and products (Figure 7b).

The ML trajectories show excited-state dynamics and an S,
half-life consistent with those from the QC trajectories (Figure
7¢c). They predict a 0.2% quantum yield of syn-NL (Figure 7e),
which is missing in the QC trajectories because of the limited
number of trajectories (Figure 7d). The ML photodynamics
simulations are consistent with our PES calculations and
confirm that the syn pathway is steeper than the anti pathway,
forming a higher ratio of Int-a. However, the anti pathway has
a steeper energy descent at the S;/S, crossing seam, favoring
anti-NL. The 984 1 ns ML trajectories reveal thermal
conversions from the unexpected intermediates Int-a and
Int-b to NCHD (Figure 7f), which explains their absence in
the experiment. This work demonstrates the efficiency and
accuracy of ML photodynamics simulations and emphasizes
the importance of long-time-scale simulations.

4.2. Substituent Effects on the Photochemical Reactions of
[3]-Ladderdiene

The [2 + 2] cycloaddition of [3]-ladderdienes can access
cubanes. The quantum yield of cubane increases in the [3]-
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ladderdienes octasubstituted with methyl (CHj,), trifluoro- state dynamics. Figure 8a,b illustrates the observed pathways
methyl (CF;), and cyclopropyl (cPr) groups.” We recently and S, — S, relaxation half-lifes.
performed the first simulations for these molecules using ML The ML trajectories discovered four S, relaxation pathways
photodynamics.” The NNs were trained with CASSCF(8,7)/ in the trajectories of octamethyl [3]-ladderdiene: (1) [2 + 2]
ANO-S-VDZP+ANO-S-MB (for substituents) calculations. cycloaddition, (2) 4 disrotatory electrocyclic ring opening,
The trajectories were propagated from the S; FC region for (3) 6¢_c cleavage, and (4) 67 conrotatory electrocyclic ring
2 ps (0.5 fs time step). We collected 3835, 3259, and 3122 opening. The 4z and 67 ring-opening reactions have higher
trajectories for octamethyl (A), octatrifluoromethy (A’), and relaxation rates than the [2 + 2] cycloaddition (Figure 8b).
octacyclopropyl [3]-ladderdiene (A”) to analyze the excited- The closed-shell repulsion in CF; blocks the 67 ring-opening
1979 https://doi.org/10.1021/acs.accounts.2c00288
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pathway, enhancing the [2 + 2] cycloaddition. The steric effect
of cPr also accelerates the [2 + 2] cycloaddition reaction to
compete with the 4z disrotatory electrocyclic ring-opening
reaction. Figure 8c shows a broad trajectory distribution
toward five products, where the quantum yield of octamethyl
cubane is 1%. As can be seen in Figure 8d,e, the steric clashes
narrow the spatial distributions of the reaction paths and
deactivate the side-reaction channels. These findings explain
the increasing quantum yields of octatrifluoromethyl (14%)
and octacyclopropyl cubane (15%). This work highlights the
capability of ML photodynamics simulations to discover
complex photochemical reactions.

4.3. Photocyclization of Hexafluorobenzenes

Hexafluorination of benzene significantly enhances the chemo-
selectivity of the photochemical 47 disrotatory electrocycliza-
tion to strained Dewar-HFB (Figure 9a).”® However, the long-
lived nonradiative decay of HFB and low quantuam yield of
Dewar-HFB prevent productive QC-NAMD simulations from
understanding the mechanisms.”” The ML photodynamics
simulations enable us to model the excited-state dynamics of
HFB in 4 ns at the XMS-CASPT2(6,7)/aug-cc-pVDZ level.’

The ML photodynamics simulations show that most HFBs
reform the reactant. Figure 9b illustrates one of the HFB
trajectories in the first 600 ps (0.6 ns). The snapshots display
the pseudo-Jahn—Teller distortions breaking the planar
structure with out-of-plane C—F bending. The nonradiative
decay occurs at a surface hopping point involving a 7¢_¢ cis—
trans isomerization, where the twisting angle o is 110° at 0.29
ns. Figure 9¢ plots the distribution of the HFB hopping points.
The hopping structures reveal a smooth twisting of the C—F
bonds around the C1—C2 bond, indicating a continuous S;/S,
crossing seam. However, the structures leading to the 4x
disrotatory electrocyclization are sparsely distributed along the
seam without a particular clustering pattern (R = 2.58—2.87
A). This implies that neither the 7c_c twisting nor the 1,4-
carbon distance directly determines the formation of Dewar-
HEFB. Thus, the 4z disrotatory electrocyclization of HFB could
be attributed to the dynamical effects in the post-surface-
hopping structures, with the nuclear momentum continuously
populating the bond-forming vibration mode. Figure 9d shows
a surface hopping point yielding Dewar-fluorobenzene. The
predicted reaction quantum yield is 0.3%, in line with the
experimental results (<3%).”

4.4. Remarks on ML Photodynamics Simulations
Long-time-scale ML photodynamics simulations extensively

integrate Newton’s equation of motion. The time step strongly
depends on the vibrational frequency of the system under
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investigation. For instance, a typical vibrational period of C—H
stretching in small organic molecules is about 10 fs, suggesting
that the maximum time step should be 1 fs. A time step that is
too large may accumulate substantial errors in trajectory
propagations. The simulations also require a sufficient number
of trajectories to meet the statistical convergence of the
considered properties (e.g, time constants and quantum
yields). However, this information is often unavailable in
QC-NAMD studies because of the computational cost. In this
subsection, we use ML photodynamics simulations to explore
the influence of the integration time step and number of
trajectories on simulation of photochemical reactions. The
model system is octacyclopropyl [3]-ladderdiene (A”).

The trajectories were propagated from the S; in 1 ps. We
collected 3266, 3268, 3271, and 3211 trajectories with time
steps (At) of 0.1, 0.25, 0.5, and 1 fs, respectively. Figure 10a
plots the time evolution of the S; population. For At = 0.1 fs,
the predicted S, half-life is 165.6 fs. Increasing the step size to
1 fs shortens the half-life to 80 fs. However, the product
distributions are less sensitive than the state populations.
Setting At from 0.1 to 1 fs lowers the yield of A” only from
0.54 to 0.50 and increases the yield of B” from 0.14 to 0.16
and the yield of E” from 0.29 to 0.34 (Figure 10b). A recent
benchmark by Barbatti and co-workers reported that the
random numerical noise of 10~° hartree in energy calculations
at At = 0.5 fs causes the total energy not to be conserved in
NAMD simulations.”® As the NN potential is trained at
chemical accuracy (1.6 X 1072 hartree), the choice of At needs
extra carefulness. For At = 0.1 fs, the trajectories obtain
reasonable energy conservation with an absolute energy drift of
5 X 107° hartree (Figure 10c). The energy drifts increase to 2
x 107 and 2 X 1073 hartree at At = 0.25 and 0.5 fs,
respectively. However, At = 1 fs accumulates a tremendous
energy drift approaching 0.1 hartree in 2 ps of simulation.
Thus, we think that At = 0.5 fs is required for energy
conservation in ML photodynamics.

Figure 10d plots the predicted yields as functions of the
number of trajectories of A”. A typical 500 trajectories that we
usually consider in QC-NAMD simulations do not predict a
converged yield. The yields significantly fluctuate under 1000
trajectories. Thus, the ML photodynamics simulations require
at least 1100—1500 trajectories to reach statistical con-
vergence.

5. CONCLUSIONS AND OUTLOOK

We have presented an overview of ML-photodynamics and
demonstrated its value in resolving the role of substituent
effects on the reactivities, stereoselectivities, and automatically
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identifying mechanistic pathways with active learning in
photochemical reactions. We combined Wigner sampling and
geometrical interpolation to simplify training data generation.
The method trains effective ML potentials to predict
qualitatively correct PESs and detect undersampled structures
near crossing regions. Moreover, we discussed data augmenta-
tion with atomic permutations that mitigate the permutational
variance in the inverse distance matrix representation; it
substantially accelerates active learning for photochemical
reactions of high-symmetry molecules.

ML photodynamics enables highly efficient nanosecond
NAMD simulations with the quality of CASSCF and XMS-
CASPT? for relatively large molecules. The training requires
minimal prior knowledge of the intended photochemical
reaction. The current limitations of ML photodynamics are
unsatisfactory predictions of NACs and the energy gaps near
the crossing regions. Current ML photodynamics simulations
may employ NAC-free surface hopping methods such as the
Zhu—Nakamura theory until a more suitable model for NAC
predictions is developed. Overall, ML photodynamics simu-
lations provide a valuable tool to study long-time-scale
photochemical reactions. We expect this Account to contribute
to a deeper understanding of the ML photodynamics approach
and inspire future applications in simulating photochemistry in
molecular solids and explicit solvation with further applications
in chemical biology and materials chemistry, solid-state,
explicit-solvent, and biological systems.
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