
Computer-Aided Design 155 (2023) 103435

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Constrained Form-Finding of Tension–Compression Structures using
Automatic Differentiation
Rafael Pastrana a,∗, Patrick Ole Ohlbrock b, Thomas Oberbichler c, Pierluigi D’Acunto d,
Stefana Parascho e

a School of Architecture, Princeton University, United States of America
b Chair of Structural Design, ETH Zürich, Switzerland
c Chair of Structural Analysis, Technische Universität München, Germany
d Professorship of Structural Design, Technische Universität München, Germany
e Lab for Creative Computation, École Polytechnique Fédérale de Lausanne, Switzerland

a r t i c l e i n f o

Article history:
Received 30 September 2021
Received in revised form 25 August 2022
Accepted 9 October 2022

Keywords:
Form-finding
Shape optimization
Automatic differentiation
Structural design
Design tool
Combinatorial equilibrium modeling

a b s t r a c t

This paper proposes a computational approach to form-find pin-jointed bar structures subjected
to combinations of tension and compression forces. The generated equilibrium states can meet
structural and geometrical constraints via gradient-based optimization. We achieve this by extending
the combinatorial equilibrium modeling (CEM) framework in three important ways. First, we introduce
a new topological object, the auxiliary trail, to expand the range of structures that can be form-found
with the framework. Then, we leverage automatic differentiation (AD) to obtain an exact value of
the gradient of the sequential and iterative calculations of the CEM form-finding algorithm, instead
of a numerical approximation. Finally, we encapsulate our research developments in an open-source
design tool written in Python that is usable across different CAD platforms and operating systems.
After studying four different structures – a self-stressed tensegrity, a tree canopy, a curved bridge, and
a spiral staircase – we demonstrate that our approach enables the solution of constrained form-finding
problems on a diverse range of structures more efficiently than in previous work.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

A form-finding method generates the shape and the internal
force state of a structure so that, given a design load and a set
of support conditions, the structure is in a state of static equilib-
rium [1,2]. Different numerical form-finding methods exist that
fall into one of three categories: stiffness-matrix [3,4], dynamic
equilibrium [5–7] and geometric [8–15] methods. An in-depth
review of this taxonomy is found in [1,16]. Advancements in
all categories have been propelled over the last decade by the
development of multiple computational design tools [17–21].

In a form-finding method, a structure is often modeled as a
discrete network of straight bars that are connected by pinned
joints at the nodes of the network. The design load is transferred
from one node to another exclusively through axial forces in
the bars and a state of static equilibrium is reached when the
sum of forces incident to every node is zero. Conceptually, the
axial-dominant load-carrying mechanism of a structure in static
equilibrium implies that it will require less material volume to
withstand the applied design load [22].

∗ Corresponding author.

E-mail address: arpastrana@princeton.edu (R. Pastrana).

1.1. The CEM framework

The Combinatorial Equilibrium Modeling (CEM) framework
is a geometric form-finding method for 3D structures modeled
as pin-jointed bar networks and subjected to combinations of
tension and compression forces [23–25]. Examples of such mixed
structures are space frames, bridges, stadium roofs, multistory
buildings and tensegrities.

The CEM framework consists of two operative parts: the CEM
form-finding algorithm and an optimization-based constrained
form-finding solver. This framework represents a structure with
three diagrams: a topology diagram T describes the internal con-
nectivity and the internal tension–compression state of a struc-
ture. Meanwhile, a form diagram F and a force diagram F∗ display
the geometric and force attributes of the calculated state of static
equilibrium. Fig. 1 presents a graphical overview of how these
components interact and Section 2 provides a thorough review
of their theoretical underpinnings.

A distinctive feature of the CEM form-finding algorithm is that
static equilibrium is computed sequentially and iteratively, unlike
other geometric form-finding methods [8–10,26]. Nevertheless,
this computation approach is precisely what allows the algorithm
to ensure the generation of a static equilibrium state for a mixed

https://doi.org/10.1016/j.cad.2022.103435
0010-4485/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2022.103435
https://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2022.103435&domain=pdf
mailto:arpastrana@princeton.edu
https://doi.org/10.1016/j.cad.2022.103435

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 1. Overview of the Combinatorial Equilibrium Modeling (CEM) framework
and our extensions. The inputs to the framework are a topology diagram T
and the design parameters x. The CEM form-finding algorithm calculates a
state of static equilibrium u from which a form diagram F can be optionally
constructed. To find a constrained equilibrium state ū that best satisfies force
and geometric constraints gi , the CEM framework minimizes an objective
function L(s) by iteratively adjusting the optimization parameters s using the
gradient ∇sL(s) until the convergence criteria L(s) ≤ ϵ or ∥∇L(s)∥ ≤ κ is
reached. The vector of optimization parameters s contains a user-defined portion
of the design parameters x. Two of the extensions we make in this paper are
highlighted in pink. Auxiliary trails simplify the construction of a larger variety
of valid topology diagrams T . Reverse-mode automatic differentiation computes
an exact value of ∇sL(s) thus allowing for more efficient and stable solutions
to constrained form-finding problems. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

tension–compression structure as long as the input topology di-
agram T fulfills the requirements listed in Section 1.2.1.

The CEM form-finding algorithm allows designers to explore
different equilibrium states for a fixed diagram T by manipulating
a portion of the nodal positions, and the lengths and the forces
in a subset of the bars of a structure (see Section 2.2). However,
realistic structural design scenarios often pose constraints a priori
where it is important to find a specific equilibrium state that
best satisfies them. Examples of such constraints include fitting
a target shape [27,28], restraining bar forces and lengths [29–31],
and controlling the reaction forces at the supports of a struc-
ture [20,32,33]. The challenge is that while constraints can be
readily enumerated in a design problem, it is often not straight-
forward to discern what combination of input design parameters
is conducive to the envisioned result.

One way to solve such constrained form-finding problems
is to manually tweak the input parameters until the required

constraints are met, one by one. This can quickly become a
cumbersome process. Instead, the CEM framework form-finds 3D
structures subjected to design constraints following an automatic
approach: the constraints are aggregated into a single objective
function and a computer assists the designer in calculating the
values of the design parameters that minimize the function via
gradient-based optimization [24,34].

1.2. Limitations of the CEM framework

The CEM framework as presented in [23,24,34] faces two
limitations. One of them is related to its topological modeling
flexibility and the other to its computational performance when
solving a constrained form-finding problem.

1.2.1. Strict topological modeling rules
Every topology diagram T must fulfill two requirements in

order to be considered a valid input to the CEM form-finding
algorithm:

1. Every node v needs to be part of exclusively one trail ω

(Section 2.1.1).
2. Every trail ω must have one and only one support assigned

to its last node.

Modeling a topology diagram that abides by these rules can
become a daunting task without a sound knowledge of the CEM
theoretical background, especially for structures that do not have
a clear load-transfer hierarchy. As a result, the type of struc-
tures that can be readily form-found with the CEM form-finding
algorithm is limited. Fig. 2(a) shows an example of a topology
diagram wherein the two topological modeling rules are satisfied.
In contrast, the diagram in Fig. 2(b) violates the first rule because
the two proposed trails ω1 = {1, 3, 4} and ω2 = {2, 3, 4} share
nodes 3 and 4. Fig. 2(c) depicts a self-stressed tensegrity structure
which has no supports and consequently infringes rule number
two.

1.2.2. Approximate gradient computation
To solve a constrained form-finding problem, the CEM frame-

work approximates the gradient of an objective function to mini-
mize via finite differences (FD) [24,34]. This is in stark contrast
to other geometric form-finding precedents wherein analytical
equations are used to calculate an exact gradient of the objective
function [9,27,28,33,35,36]. FD circumvents the derivation prob-
lems we discuss in Section 3.2 as it does not require the calcula-
tion of analytical derivatives of the CEM form-finding algorithm
to obtain an estimate of the gradient.

Using FD poses a number of challenges nonetheless. FD re-
quires choosing an adequate step size h to compute an approx-
imation of the gradient [37]. If the step size h is too large, then
the gradient approximation can be inaccurate, whereas if it is too
small it can lead to significant round-off errors due to floating-
point underflow or to a much extended optimization runtime.
Furthermore, calculating gradients with FD is a computationally
taxing process since the objective function has to be evaluated
at least once for every input optimization parameter [37,38]. An
expensive calculation of the gradient can be detrimental to an
interactive exploration of constrained static equilibrium states for
a structure, particularly if the number of optimization parameters
is large.

2

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 2. Topology diagrams T that correspond to three different structural systems. Diagrams 2(b) and 2(c) do not meet the CEM topology requirements listed in
Section 1.2. The former shows nodes 3 and 4 as members of two different trails, whereas the latter omits the assignment of trails and support nodes.

1.3. Automatic differentiation

Automatic differentiation (AD), also known as algorithmic dif-
ferentiation, comprises a set of techniques that evaluate the
derivatives of a differentiable function that is expressed algorith-
mically by means of the automated and repeated application of
the chain rule [39]. In contrast to FD, derivatives obtained with
AD are exact up to floating-point precision and do not require
the specification of a step size h to be computed [37]. Unlike
symbolic differentiation, AD enables the evaluation of derivatives
through control flow statements, such as if-else clauses, loops and
recursion [39].

One of the most prominent applications of AD today is in
training machine learning models via backpropagation, in par-
ticular neural networks that learn via gradient descent [40]. In
structural analysis, AD has been used to derive complex iso-
geometric elements from an energy functional, showcasing its
ease of use and its numerical efficiency for high-dimensional
analysis problems [41]. Other precedents of AD applied to various
engineering problems are the sizing of the frame of an injection
molding machine [38], the shape optimization of a supersonic
aircraft [42], and the weight minimization of steel frames under
seismic loads [43].

In the context of form-finding, Cuvilliers recently proposed
the use AD to form-find pin-jointed bar structures subjected to
geometric constraints [44]. Unlike their work, we use the CEM
form-finding algorithm and not the Force Density Method [8,9]
as the equilibrium state calculator. Furthermore, they focus on
compression-only shells while we study various types of mixed
tension–compression structures.

1.4. Outline and contribution

Table 1 lists the symbols we use to display topology, form and
constrained form diagrams, T , F and F̄ , respectively.

This paper is organized in six sections.
In Section 2 we present the theoretical concepts that underpin

the current state of the CEM framework. We review the steps the
framework follows to sequentially and iteratively compute a state
of static equilibrium from an algorithmic perspective, and then
discuss the mathematical formulation of the objective function
that it minimizes to solve a constrained form-finding problem.

Section 3 develops the extensions we make to the CEM frame-
work to overcome the limitations we outlined in Section 1.2,
which constitute the core of our contribution. We first introduce
a new topological helper object, the auxiliary trail. We show
next how we leverage AD to evaluate an exact gradient of the
CEM form-finding algorithm and guide the reader through this
process with a simple constrained form-finding example. We also
present a new standalone design tool called compas_cem that
encapsulates the two above-mentioned extensions.

Table 1

Symbols that describe the elements of topology (T), form (F) and constrained
form (F̄) diagrams in the extended CEM framework. Refer to Section 2.1 for
element definitions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In Section 4, we benchmark and validate the extended CEM
framework by studying multiple constrained form-finding prob-
lems on three different types of structures: a self-stressed tenseg-
rity, a tree canopy and a curved bridge subjected to eccentric
point loads. We showcase the applicability of our work in prac-
tical structural design problems with the case study of a spiral
staircase in Section 5. For reproducibility, we share the data
and the code we use to solve all the constrained form-finding
problems we discuss in Sections 4 and 5 in an open-access repos-
itory [45].

The paper concludes in Section 6 with a discussion of our
experimental findings, the limitations of our approach and future
research directions.

2. Theoretical background

We review how the Combinatorial Equilibrium Modeling
(CEM) framework works. This is relevant to guide the discussion
in subsequent sections. The CEM framework was introduced
in [23] and further developed in [24,25]. It consists of two op-
erative parts: (i) a form-finding algorithm that builds equilib-
rium sequentially and iteratively (Section 2.3), and (ii) a con-
strained form-finding routine that utilizes an optimization solver
(Section 2.4). The goal of the former is to generate a numerical
state of static equilibrium, u. That of the latter is to produce a
constrained state of static equilibrium ū that has been restricted
by a set of geometric and force constraints. Regardless, there are
two necessary inputs to calculate these states: a valid topology
diagram T and a vector of design parameters x.

3

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

2.1. Topology diagram

A topology diagram T is an undirected graph of N nodes V

connected by M edges E . It captures the internal connectivity of
a structure modeled as a pin-jointed network of straight bars.

Every edge ei,j connecting two nodes vi, vj must be labeled as
either a trail edge eti,j or a deviation edge, edi,j. Therefore, the total
number of trail edges R and the total number of deviation edges
D in T must add up to M , i.e. R + D = M . Trail edges outline
the trails of a structure (Section 2.1.1). These edges determine the
primary paths that the loads applied to a structure follow towards
the supports. Deviation edges connect nodes on different trails to
redirect the load trajectories determined by the trails.

The entries in the adjacency matrix C ∈ {−1, 0, 1} of the
topology diagram define the expected internal force state ci,j
of the bars in the structure [24]. If C[i, j] = ci,j = −1, the
corresponding edge ei,j is in compression. Conversely, if ci,j = 1,
then ei,j is in tension. A topology diagram furthermore prescribes
the subset S of size L with the nodes where a support is assigned
to the structure, S ⊂ V .

2.1.1. Trails
Trails are critical to assess the validity of a topology diagram

T . A trail ω is an ordered set of nodes linked exclusively by trail
edges, ω = {vo, . . . , vs}. The first node in a trail vo is referred to
as an origin node. The last node vs must have a support assigned,
vs ∈ S , and it is thus referred to as a support node. A trail must
contain at least two nodes. The set of all trails in a topology
diagram is denoted Ω . There must be as many trails as there are
support nodes, |S| = |Ω|. Trails need not have the same number
of nodes each.

2.1.2. Sequences
Once a trail ω is constructed, the nodes within are sorted based

on how distant they are to the origin node vo in the trail. For every
node vi, this topological distance is defined as the number of
intermediate trail edges et plus one between vi and vo. Nodes that
are equally distant to their corresponding vo across all defined
trails Ω belong to the same sequence, k. While the first sequence
k = 1 groups all the origin nodes vo in T , the last sequence klast

contains the support nodes of the trails with the most nodes.
The list of sequences k is an ordered set of consecutive integers
between k = 1 and klast.

2.2. Design parameters

The vector of design parameters x prescribes an immutable
portion of the state of static equilibrium u that is calculated by
the CEM form-finding algorithm. It concatenates:

• A vector µ ∈ R
M
+ with the absolute magnitude of the

internal force µd
i,j of every deviation edge edi,j.

• A vector λ ∈ R
M
+ with the length λt

i,j of each trail edge eti,j.

Alternatively, a matrix Φ ∈ R
R×6 with an intersection plane

φi,j ∈ R
6 per trail edge eti,j to implicitly compute λt

i,j.

• A matrix P ∈ R
N×3 with the position po ∈ R

3 of every origin
node vo

• A matrix Q ∈ R
N×3 with the load vectors q ∈ R

3 applied
to the nodes v. Only one load vector per node is permitted.
If the modeled structure is self-stressed, all the entries in Q

are null vectors.

Algorithm 1: The CEM form-finding algorithm

Input : Topology diagram, T
Sequences, k
Trails, Ω
Design parameters, x
Maximum # of equilibrium iterations, τmax

Minimum distance threshold, ηmin

Output: State of static equilibrium, u
1 V, E, S, C,← T
2 µ, λ,Φ, P,Q← x

3 iteration, τ ← 1
4 distance, η←∞
5 while τ ≤ τmax or η ≥ ηmin do

6 for sequence in sequences, k ∈ k do

7 for trail in trails, ω ∈ Ω do

8 vi ← NodeInTrailAtSequence(ω, k)
9 if node exists in trail, vi ∈ ω then

10 if first sequence, k = 1 then

11 th ← 0

12 pi ← PositionOriginNodeInTrail(ω)

13 di ← DeviationEdgesVector(vi, pi) ▷ Eq. (4)
14 ti ← ResidualForceVector(th, di, qi) ▷ Eq. (3)
15 if node is not a support node, vi /∈ S then

16 if plane φi,j exists then

17 λt
i,j ← PlaneIntersection(pi, ti, φi,j) ▷ Eq. (2)

18 pj ← NodePosition(pi, ti, ci,j, λ
t
i,j) ▷ Eq. (1)

19 µt
i,j ← TrailEdgeForce(ti) ▷ Eq. (5)

20 th ← ti
21 pi ← pj

22 else

23 ri ← ti

24 for deviation edge in edges, edi,j ∈ E do

25 λd
i,j ← DeviationEdgeLength(pi, pj) ▷ Eq. (6)

26 if not first iteration, τ > 1 then

27 η← NodeDistances(P(τ), P(τ−1)) ▷ Eq. (7)
28 τ ← τ + 1

29 u← µ, λ, P,Q,R

2.3. Form-finding algorithm

The CEM form-finding algorithm completes the attributes in
u following Algorithm 1. The numerical outputs of the algorithm
consist of:

• The absolute magnitude of the internal force µt
i,j ∈ µ of

every trail edge eti,j.

• The length λd
i,j ∈ λ of every deviation edge edi,j.

• The position pi ∈ P of every non-origin node, vi ̸= voi .

• A matrix R ∈ R
L×3 with the reaction force vector ri ∈ R

3

incident to every support node, vsi ∈ S .

The outputs are concatenated into a single vector. Once u is
complete, the form diagram F and the force diagram F∗ of the
structure can be built using vector-based graphic statics [14] to
visualize the resulting equilibrium state of the structure.

2.3.1. Sequential equilibrium
Static equilibrium is calculated at the nodes of the diagram T

one sequence at a time [23,24]. The form-finding process starts
off by computing equilibrium at the nodes at the first sequence

4

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

k = 1 and continues to the next sequence k+1 until the last one,
klast, is reached. The calculation ends for every trail ω when the
node at the current sequence k is a support node.

Except for the nodes at the first sequence k = 1, a state of
static equilibrium at node vj at sequence k ̸= 1 is subordinated
to the equilibrium state of the nodes preceding it. Let the triplet of
nodes vh, vi and vj be three consecutive nodes along a sequence-
ordered trail ω. Let vi be the node on the trail at sequence k,
vh the node at the previous sequence, k − 1, and vj the node at
the next sequence, k+ 1. The calculation of static equilibrium at
node vi outputs the position pj of the next node vj and the force
magnitude µt

i,j of the trail edge eti,j connecting them. The position
pj is calculated as:

pj = pi + ci,j λ
t
i,j

ti

∥ti∥
(1)

where pi is the position of node vi, ci,j and λt
i,j are the internal

force state (−1 for compression, +1 for tension) and the length
of eti,j, respectively; and ti is a residual force vector incident to
node vi as per Eq. (3).

If a plane φi,j is supplied instead of a specific trail edge length
λt
i,j, then the absolute magnitude of λt

i,j is computed by intersect-
ing the line of action of the vector ti onto φi,j [25]:

λt
i,j =

⏐

⏐

⏐

⏐

nφi,j · (pφi,j − pi)

nφi,j · (ti/∥ti∥)

⏐

⏐

⏐

⏐

(2)

where pφi,j ∈ R
3 is the base point and nφi,j ∈ R

3 the vector normal
that describe the plane φi,j.

To estimate vector ti, all the forces acting on vi are summed:

ti = th − di − qi where th =
{

0 if k = 1

t
(k−1)
i otherwise

(3)

where th is the residual force vector at node vh. The vector qi

denotes the load applied to node vi, if any, and di corresponds
to the resultant force vector generated by all the deviation edges
edi,m connected to vi:

di =
∑

m

ci,m µd
i,m

pi − pm

∥pi − pm∥
(4)

The terms ci,m, µd
i,m and pm encode the force state, the force

magnitude and the position of the node vm that is connected to
vi by the deviation edge edi,m, respectively. If no deviation edges
are connected to vi, then di = 0.

To maintain the equilibrium of forces at vi, the residual vector
ti is taken by the trail edge eti,j such that the vector formed
between positions pi and pj point in the same direction as ti, and
the absolute magnitude of the force µt

i,j passing through the trail
edge is equal to the norm of ti:

µt
i,j = ∥ti∥ (5)

If vj is a support node, then the residual vector ti is parsed as
the reaction force vector incident to the support node vsi , that is,
ri = ti. The length of any deviation edge edi,j is lastly calculated as
the distance between the positions of the two nodes it links:

λd
i,j = ∥pi − pj∥ (6)

2.3.2. Iterative equilibrium
The process described in Section 2.3.1 must be run iteratively

whenever (i) form-dependent load cases like wind or self-weight
are applied to the structure; or (ii) deviation edges edi,j that
connect any two nodes vi, vj that do not belong to the same
sequence k exist (these edges are also called indirect deviation
edges) [24]. The termination conditions for iterative equilibrium
are to exhaust a maximum number of iterations τmax or to reach

Table 2

Selection of constraint functions supported by the CEM framework. From a
geometrical vantage point, g1 sets a target position p̄i for node vi; g2 a target

orientation vector āi,j for edge ei,j; while g3 a target length λ̄d
i,j for deviation

edge edi,j . Similarly, but from a force perspective, g4 prescribes a desired force

magnitude µ̄t
i,j for trail edge eti,j; g5 a target individual load path ϕ̄i,j for edge

ei,j; and g6 a target reaction force vector r̄i at support node vsi . The edge load
path ϕi,j in g5 corresponds to Maxwell’s load path [46]. The minimization of
this non-negative quantity over all the edges of a structure is conducive to a
minimum-volume, pin-jointed bar structure [47,48].

Type Target Constraint function

Geometry

Node position, p̄i g1(u(s)) = ∥pi − p̄i∥
Edge direction, āi,j g2(u(s)) =

⏐

⏐

⏐

pj−pi
∥pj−pi∥ · āi,j

⏐

⏐

⏐
− 1

Edge length, λ̄d
i,j g3(u(s)) = λd

i,j − λ̄d
i,j

Force

Edge force, µ̄t
i,j g4(u(s)) = µt

i,j − µ̄t
i,j

Edge load path, ϕ̄i,j g5(u(s)) = |µi,jλi,j| − ϕ̄i,j

Reaction force, r̄i g6(u(s)) = ∥ri − r̄i∥

a minimum distance threshold ηmin close to zero, such that η ≤
ηmin. The distance η measures the cumulative displacement of
the position pi of every node vi at iteration τ in relation to the
previous one:

η =
V

∑

i

∥p(τ)
i − p

(τ−1)
i ∥ (7)

The value of η can be normalized by dividing it by N to make
it independent of the total number of nodes in the structure. If
indirect deviation edges exist, their contribution to di in Eq. (4) is
set to 0 during the first iteration, τ = 1 [24].

2.4. Constrained form-finding

The CEM framework can determine the parameters that lead
to a constrained state of static equilibrium ū that best satisfies a
priori geometric and structural design requirements. This is ac-
complished by minimizing an objective function using gradient-
based optimization.

2.4.1. Optimization parameters
The vector of optimization parameters s defines the potential

solution space of a constrained form-finding problem. It collects
a subset of the design parameters x (see Section 2.2). Design
parameters that are not included in s stay constant throughout
the optimization process.

2.4.2. System solution
The CEM form-finding algorithm provides an explicit solution

u(s) for a given a choice of optimization parameters s. As per
Section 2.3, this solution contains the missing node positions
p, the internal forces in the trail edges µt, the lengths of the
deviation edges λd, and the reaction forces r. The output solution
described by s and u(s) is in static equilibrium.

2.4.3. Constraints
Vector s is modified to satisfy nonlinear equality constraints.

Each constraint gi is formulated as a function of the optimization
parameters and the system solution u(s):

gi(u(s)) = 0 (8)

The constraint functions gi can be formulated arbitrarily. How-
ever, the complexity of the formulation may affect the solution
and the convergence rate of the optimization problem. We list

5

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 3. Auxiliary trails in a topology diagram T . To ensure topological validity, in Fig. 3(a) and Fig. 3(b) we append auxiliary trails to the diagram of the branching
structure first displayed in Fig. 2(b). Similarly, we insert four auxiliary trails to that of the self-stressed structure in Fig. 3(c).

in Table 2 the most frequently used geometric- and force-related
constraint functions which measure the distance between the
current value and a target value for one of the attributes in u(s).
These functions can be freely combined in Eq. (9).

2.4.4. Objective function
Every nonlinear equality constraint gi is weighted by a penalty

factor wi and aggregated into a single objective function L that is
minimized to solve a constrained form-finding problem.

L(s) = 1

2

∑

i

wi gi(u(s))
2 (9)

2.4.5. Gradient-based optimization
Eq. (9) can be efficiently minimized using first-order gradi-

ent descent or any other gradient-based optimization algorithm,
such as the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS) [49], Sequential Least Squares Quadratic Pro-
gramming (SLSQP) [50] or Truncated Newton (TNEWTON) [51].

2.4.6. Optimization convergence
The selected optimization algorithm minimizes Eq. (9) over a

prescribed number of optimization iterations υmax. The algorithm
converges to an optimal instance of the optimization parameters
s when one of the two conditions given by Eq. (10) is fulfilled:

L(s) ≤ ϵ

∥∇sL(s)∥ ≤ κ
(10)

The objective convergence threshold ϵ and the gradient con-
vergence threshold κ are two scalars close to zero (for example,
ϵ = 1 × 10−6). The first condition in Eq. (10) indicates that
the output value of the objective function L(s) approaches zero,
which implies that the defined constraints gi satisfy Eq. (8). An
instance of s that fulfills Eq. (8) does not exist when the supplied
constraints contradict each other. In such case, the optimizer
converges to a local minimum of the objective function where the
norm of the gradient vanishes, ∥∇sL(s)∥ ≤ κ . The computation of
the gradient is discussed in Section 3.2.

3. Extensions to the CEM framework

We extend the CEM framework to overcome the limitations
outlined in Section 1.2: auxiliary trails facilitate the creation of
a valid topology diagram T and automatic differentiation enables
the computation of more reliable and efficient solutions to con-
strained form-finding problems. The extended CEM framework is
implemented in a standalone design tool.

3.1. Auxiliary trails

An auxiliary trail ωa = {voi , vsj } is a short helper trail with
an origin node voi and a support node vsj linked by a single
trail edge eti,j of unit length λt

i,j = 1. We automatically attach
an auxiliary trail to any node vi in a topology diagram T that
has not been assigned to another trail before the application of
the CEM form-finding algorithm (see Section 2.3). Such trail-free
nodes are characteristic at the intersection between one or more
deviation edges and no trail edges. The attachment operation
transforms node vi into the origin node voi of ωa. The extensive
use of auxiliary trails enables the explicit construction of the
topology diagram T of a structure using only deviation edges.
Given an input T wherein every bar of a structure is modeled as
a deviation edge edi,j, appending an auxiliary trail to every node vi
in T converts this initially invalid diagram into a diagram T that
complies with the topological modeling rules of the CEM form-
finding algorithm (Section 1.2.1). Such a deviation-only modeling
strategy circumvents the manual edge labeling process described
in Section 2.1 as no distinction has to be made upfront by a
designer on whether an edge ei,j is a trail edge eti,j or a deviation

edge edi,j. We show two examples of structures that are modeled
using the deviation-only modeling strategy in Sections 4.1 and
4.2.

However, the topological modeling flexibility enabled by aux-
iliary trails comes at a computation price. The attachment of an
auxiliary trail creates a local artificial subsystem wherein a spe-
cific state of static equilibrium must be computed: the auxiliary
trails must not carry any loads in order to capture the originally
intended load-carrying behavior of the structure. An analogy for
the role auxiliary trails play is that they provide additional tem-
porary support to a structure while it is being form-found. Since
we are interested in the ‘‘self-standing’’ version of the structure,
we must find an equilibrium state in which the magnitude of the
loads these temporary supports carry is zero.

Form-finding a structure whose topology diagram T contains
at least one auxiliary trail hence becomes a constrained form-
finding task. The initially-desired static equilibrium state for a
structure is obtained only after solving the optimization problem
discussed in Section 2.4, where the objective function L is ex-
tended with extra penalty terms, one per auxiliary trail, as we
show in Eq. (11):

1

2

∑

a

wa (µ
t
i,j − µ̄t

i,j)
2
a (11)

The purpose of the additional penalty terms is to minimize the
difference between the target force µ̄t

i,j = 0 and the current force
µt

i,j in the trail edge eti,j of each auxiliary trail ωa in T . These terms
are equivalent to constraint function g4 in Table 2. By extension,
when the force in the trail edge of an auxiliary trail is zero, the
reaction forces incident to its corresponding support node also
vanish.

6

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 3 shows three topology diagrams T that use auxiliary trails
to remedy the modeling challenges posed by the diagrams in
Fig. 2. Fig. 3(a) depicts a diagram T where auxiliary trails ωa

2 =
{1, 6} and ωa

3 = {2, 5} are appended to nodes 1 and 2. Meanwhile,
in Fig. 3(b), trail ω2 = {2, 3, 4} is deleted, thus leaving node v2
trail unassigned. An auxiliary trail ωa

2 = {2, 5} is attached to v2
to make T valid. As portrayed by Fig. 3(c), an auxiliary trail is
annexed to each of the four nodes of the tensegrity structure in
Fig. 2(c) to correct its initial topological invalidity.

3.2. Automatic and exact computation of the gradient

The gradient required to determine a minimum of Eq. (9)
results from the first derivative of L with respect to the optimiza-
tion parameters s:

∇sL =
∑

i

wi gi · ∇s gi (12)

The computation of the gradient ∇sL requires the calculation
of the derivatives of the individual constraint functions ∇s gi and
the derivative of the system solution u(s):

∇s gi =
∂gi
∂u

∂u

∂s
(13)

While Eqs. (1)–(7) are compact algebraic manipulations for
which derivatives can be found analytically, manually applying
the chain rule through the control flow structure of the CEM
form-finding algorithm (see Algorithm 1) to calculate the partial
derivative of the system solution with respect to the optimization
parameters has been a complex task [24]. Instead of circum-
venting its sequential and iterative characteristics, we exploit
the computational implementation of the CEM form-finding al-
gorithm we develop in Section 3.3 by using AD in reverse mode
to obtain a version of ∇sL(s) that is exact up to floating-point
precision. AD ingests the function L, and generates another func-
tion ∇sL that calculates the associated gradient. The key insight
is that ∇sL is automatically generated by a computer program.

We stress that AD provides a numerical value of ∇sL(s) evalu-
ated at a specific instance of s instead of generating an analytical
expression for it. Nevertheless, the AD output is adequate for our
purposes since we use the value of ∇sL(s) to minimize Eq. (9),
regardless of what the underlying analytical expression might be.
We refer the reader to [39,40] for a detailed theoretical treatment
on how reverse-mode AD evaluates derivatives of algorithmically
expressed functions. To illustrate how AD operates specifically
through the calculations of the CEM framework, we supplement
the discussion with a toy constrained form-finding example.

3.2.1. Example
Consider a two-segment strut subjected to a horizontal com-

pressive force q1. Fig. 4(a) shows the topology diagram T , the in-
ternal force states C and the design parameters x. The
compression-only diagram F corresponding to the state of static
equilibrium u output by the CEM form-finding algorithm is given
in Fig. 4(b). In this example, we impose a geometric restriction on
the position of node v3: it should land at p̄3 = [3, 0, 0]. However,
the resulting position p3 = [2, 0, 0] is away from the target.

We are deliberately unsure of what combination of trail edge
lengths λt

i,j would result in a constrained state of static equilib-
rium ū that matches p̄3. To solve this constrained form-finding
problem, we set the two trail edge lengths as optimization vari-
ables such that s = [λ1,2, λ2,3] = [1, 1]. The superscript t in
λt
i,j is dropped in this example for legibility. The only constraint

function used is g1 from Table 2 and the penalty factor w1 is set
to w1 = 1.

The value of the gradient that reverse-mode AD computes is
∇sL(s) = [−1,−1]. As expected, the negative magnitude of the

Fig. 4. Constrained form-finding of a two-segment strut.

Fig. 5. Computation graph of the two-segment strut described in Section 3.2.1.
The graph traces the operations involved in the evaluation the objective function
L(s) at optimization parameters s = [λ1,2, λ2,3] during the forward pass (solid
arrows). The nodes vi store the output of each of the intermediary operations
that modify s on their way to L(s). Nodes v1 to v4 correspond to operations that
occur within the CEM form-finding algorithm (see Algorithm 1), while nodes v5

to v7 correspond to those executed in the evaluation of the constraint function
g1 . Nodes v8 and v9 evaluate Eq. (9). To evaluate the gradient ∇sL(s), reverse-
mode AD propagates the partial derivatives of each node as per Eq. (14) in the
opposite direction of the forward pass (backpropagation, dotted arrows). We
unpack the operations of both the evaluation trace and the derivatives trace in
Table 3.

partial derivatives in the gradient indicates that adjusting s in the
opposite direction of the gradient would elongate both trail edges
for p3 to move closer to the target position p̄3 after the next op-
timization step. Reverse-mode AD arrives at ∇sL(s) = [−1,−1]
after processing one forward and one reverse computation trace,
one after the other, as we depict in Fig. 5 and in Table 3.

First, AD builds a forward evaluation trace (also called a
Wengert list [52]) to calculate the output value of the objective
function L(s). During the assembly of the forward trace, AD keeps
track of the sequence of operations that interact with the entries
in s in their journey towards L(s). The forward evaluation trace is

7

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Table 3

Automatic differentiation (AD) applied to the CEM framework to solve the constrained form-finding problem depicted in Fig. 4(b). To evaluate the gradient ∇sL(s)
of Eq. (9), reverse-mode AD operates on two computation traces: firstly, one forward evaluation trace (left-hand side) and secondly, one derivatives trace (right-hand
side, also called backpropagation). To construct the former, AD evaluates Eq. (9) and keeps of all the elementary operations that modify the optimization parameters
s = [λ1,2, λ2,3] (in this case, the length of the edges e1,2 and e2,3), and the sequence in which these operations alter them. The output of each elementary operation
is stored in intermediary variables vi which finally become interconnected nodes in the computation graph we show in Fig. 5. AD calculates the partial derivative
of each of the nodes with respect to L(s) (i.e. the adjoints, v̄i) walking in reverse over the edges of the graph and applying the chain rule. The graph walk starts
from the last operation tracked in the evaluation trace and ends when s is reached. The adjoints of the optimization parameters with respect to Eq. (9) are finally
the partial derivatives in the gradient, ∇sL(s) = [−1,−1].

Evaluation trace (Forward pass) Derivatives trace (Backpropagation)

λ1,2 = 1 λ̄1,2 = v̄1
∂v1

∂λ1,2
= v̄⊤1 c1,2

t1
∥t1∥ = −1

λ2,3 = 1 λ̄2,3 = v̄3
∂v3

∂λ2,3
= v̄⊤3 c2,3

t2
∥t2∥ = −1

v1 = λ1,2 × c1,2
t1
∥t1∥ = 1× [1,0,0]

1
= [1, 0, 0] v̄1 = v̄2

∂v2
∂v1

= v̄2 × 1 = [−1, 0, 0]
v2 = v1 + p1 = [1, 0, 0] + [0, 0, 0] = [1, 0, 0] v̄2 = v̄4

∂v4
∂v2

= v̄4 × 1 = [−1, 0, 0]
v3 = λ2,3 × c2,3

t2
∥t2∥ = 1× [1,0,0]

1
= [1, 0, 0] v̄3 = v̄4

∂v4
∂v3

= v̄4 × 1 = [−1, 0, 0]
v4 = v3 + v2 = [1, 0, 0] + [1, 0, 0] = [1, 0, 0] v̄4 = v̄5

∂v5
∂v4

= v̄5 × 1 = [−1, 0, 0]
v5 = v4 − p̄3 = [2, 0, 0] − [3, 0, 0] = [−1, 0, 0] v̄5 = v̄6

∂v6
∂v5

= v̄6 × 2× v5 = [−1, 0, 0]
v6 = v⊤5 · v5 = [−1, 0, 0]⊤ · [−1, 0, 0] = 1 v̄6 = v̄7

∂v7
∂v6

= v̄7 × 0.5×√v6 = 0.5

v7 = √v6 =
√
1 = 1 v̄7 = v̄8

∂v8
∂v7

= v̄8 × 2× v7 = 1

v8 = v7 × v7 = 1× 1 = 1 v̄8 = v̄9
∂v9
∂v8

= v̄9 × 0.5 = 0.5

v9 = v8 × 0.5 = 1× 0.5 = 0.5 v̄9 = L̄(s) ∂L(s)
∂v9

= L̄(s)× 1 = 1

L(s) = 0.5 L̄(s) = 1

broken next into a sequence of elementary mathematical opera-
tions, such as sums, divisions and multiplications, whose outputs
are stored in intermediary variables vi. Dependency relations be-
tween the variables vi are finally represented as nodes and edges
in a computation graph [53], which we show for this example
in Fig. 5. In this example, from all the steps that the CEM form-
finding algorithm comprises (see Algorithm 1), only one modifies
s, which corresponds to Eq. (1). We highlight the capability of
AD to register this automatically despite the multiple loops and
conditional statements in the CEM form-finding algorithm.

Once the forward evaluation trace is complete, reverse-mode
AD backpropagates the derivatives on the nodes of the computa-
tion graph displayed in Fig. 5. We present the derivatives trace
of this example on the right-hand side of Table 3. This reverse
derivatives trace starts off at the value of the objective function
L(s) and finishes once the nodes in the graph that correspond to
the optimization parameters s are reached. Unlike forward-mode
AD, only one pass over the entire computation graph suffices to
compute ∇sL(s) [54].

As the AD process walks in reverse over the graph, it calculates
the partial derivative of L(s) with respect to every intermediate
node using the chain rule. This partial derivative v̄i, called an
adjoint, quantifies the sensitivity of the output L(s) to changes in
the value of an intermediary variable vi. The adjoint is expressed
as:

v̄i =
∂L(s)

∂vi
=

∑

j

v̄j
∂vj

∂vi
(14)

The calculation of v̄i is carried out by looking at each of the
j children nodes of the variable vi in the graph [53,55]. In our
example, the value of the gradient finally results from the adjoints
of the optimization parameters ∇sL(s) = [λ̄1,2, λ̄2,3] where their
partial derivatives are scaled by the adjoints v̄1 and v̄3, such that
λ̄1,2 = v̄1 ∂v1/∂λ1,2 and λ̄2,3 = v̄3 ∂v3/∂λ2,3.

3.3. Design tool

With the goal of making our work usable and reproducible,
the CEM framework and the extensions presented hitherto are

consolidated in a standalone, open-source design tool called com-
pas_cem [56]. The tool is written in Python [57] and is integrated
into the COMPAS framework, a computational ecosystem for col-
laboration and research in architecture, engineering, fabrication,
and construction [58]. As a COMPAS extension, compas_cem can
interface seamlessly with other packages in the COMPAS frame-
work to perform additional downstream tasks on the structures
generated with this tool [59–61].

A first CEM toolkit was presented in [62] as a plugin bound
to the Windows version of Grasshopper [63]. In contrast, com-
pas_cem runs independently from 3D modeling software, and
it makes it possible to solve constrained form-finding problems
on tension–compression structures readily from the command
line interface of any of three major computer operating systems:
Windows, MacOS and Linux. Furthermore, COMPAS provides our
tool with the necessary interfaces to be invoked directly inside
Blender [64], Rhino for Windows, Rhino for MacOS [65], and
Grasshopper [63]. We illustrate this possibility in the structural
design application we discuss in Section 5.

Currently, compas_cem uses the implementation of the op-
timization algorithms in the NLopt library [66] to minimize
Eq. (9), and delegates the evaluation of the gradient ∇sL(s) shown
in Eq. (12) with AD to autograd [67]. This choice of dependen-
cies is not restrictive. In the future, we envision integrating other
Python optimization and automatic differentiation libraries such
as scipy [68] and hyperjet [69].

The codebase of the design tool we propose follows a modular
and object-oriented structure. For a granular overview of the
objects and functions that it comprises, we refer the interested
reader to the latest version of the compas_cem manual available
online [56]. We offer instead a walk-trough over a minimal work-
ing example of compas_cem written in 59 lines of Python code
and discuss how it relates to the theoretical concepts developed
in Sections 2 and 3. This example, shown in Fig. 6, generates the
structure we presented in Section 3.2.

The required compas_cem imports occur in lines 1–11. A
TopologyDiagram() object, instantiated in line 16 is a child
class of the Network() relational datastructure from COMPAS. A
Network() is a graph that facilitates the storage of attributes on

8

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 6. Python code that models the structure shown in Figs. 4(a) and 4(b) with
the version of compas_cem at the time of writing [56].

its vertices and edges as Python dictionaries. Therefore, the inputs
to the CEM form-finding algorithm, the topology diagram T and
the design parameters x, are stored in the same TopologyDia-

gram() object. In lines 25–26, we set the internal force state of
the trail edges ci,j as the sign of the length that parametrizes them
(see Section 2.1). The negative length indicates that the edges are
under compression, c1,2 = c2,3 = −1. A positive length would
conversely assign them a tension state. After defining nodes,

edges, supports and loads in lines 19–32, the composition of T
can be formally expressed as V = {1, 2, 3}, E = {(1, 2), (2, 3)},
S = {3}.

A graph traversal algorithm that automatically searches for
trails Ω is invoked on line 35. This algorithm takes the support
node vs3 as the search starting point and moves recursively over
the next connected trail edge ei,j until no more trail edges are
found. If the boolean argument auxiliary_trails were set
to True, the trail-search algorithm would attach an auxiliary
trail ωa to any node that was not automatically assigned to a
trail by the graph traversal, as exposed in Section 3.1. Only one
trail is expected in this example, ω1 = {1, 2, 3}. In line 39, the
CEM form-finding algorithm is invoked to output a form diagram
F , conditioned on τmax = 1 and ηmin = 1 × 10−5. As with
TopologyDiagram(), F is a subclass of Network() that self-
contains the attributes that describe the computed state of static
equilibrium u.

The generation of a constrained form diagram F̄ is spread over
lines 43–54. In line 46, we specify that the desired position for
node v3 is p̄3 = [3, 0, 0], and in lines 50–51, we define the opti-
mization parameters s as the length of the trail edges created in
lines 25–26 such that s = [λt

1,2, λ
t
2,3]. The formulated constrained

form-finding problem is solved in line 54. Eq. (9) is minimized
with the SLSQP optimization algorithm [50] from NLopt [66]
using an optimization convergence threshold of ϵ = 1 × 10−6.
Internally, autograd [67] evaluates the gradient, as required by
the optimization process. We plot the resulting instance of F̄ in
line 59 of the code and show it in Fig. 4(c).

4. Numerical validation

The intent of this section is to quantitatively benchmark the
extensions we make to the CEM framework. We study three
structures that leverage auxiliary trails to be topologically com-
patible with the CEM form-finding algorithm: a self-stressed
tensegrity wheel, a tree canopy and a bridge curved on plan.

We assume that all the structures are pin-jointed and only
bear axial forces. We model the first two structures using only
deviation edges to illustrate how, in an extreme case, inserting
an auxiliary trail to every node in T can relieve designers from
the trail-deviation edge labeling process (see Section 2.1). The
bridge structure follows a more conventional topological model-
ing approach and only appends auxiliary trails at the tip of the
cantilevering hangers.

The primary goal of all the constrained form-finding experi-
ments in this section is to minimize the forces in the auxiliary
trails by setting the target edge force µ̂i to zero. We impose
additional geometric constraints to the bridge to test the auxiliary
trails extension we propose in combination with more constraint
types. The penalty factors for all the constraints are equal to one,
w = 1, and the distance threshold for iterative equilibrium in the
CEM form-finding algorithm is ηmin = 1× 10−6 (Section 2.3.2).

We solve each constrained form-finding experiment using
automatic differentiation (AD) and finite differences (FD) with dif-
ferent step sizes h, following the implementation of the baseline
version of the CEM framework [24,25,62]. We fix the optimization
convergence thresholds to ϵ = 1× 10−6 and κ = 1× 10−8 in all
experiments, and compare the impact of the two differentiation
schemes by looking at the total convergence runtime (i.e. the
elapsed time in seconds it takes an optimization algorithm to
converge as per Eq. (10)), the number of optimization parameters
s, and the output value of the objective function after convergence
to a constrained equilibrium state ū. We run every experiment
ten times and report the resulting mean values per experiment.

For reference, we execute the work we present in this section
in a collection of jupyter notebooks [70] using compas_cem on
MacOS, on a quad-core Intel CPU clocked at 2.9 GHz. We make
these notebooks available as supplementary data in [45].

9

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 7. Planar tensegrity wheels form-found using the extended CEM framework.
Auxiliary trails are not drawn in the diagrams F̄ as they bear no force post
optimization. We contrast the total convergence runtime for AD and FD with
h = 1× 10−9 per diagram F̄ .

4.1. Auxiliary trails in 2D

Self-stressed structures are not subjected to external loads and
are support-free. Here, we model a 2D self-stressed tensegrity
wheel such that its perimeter is entirely in tension and the
internal spokes in compression (Fig. 7). We carry out a parametric
study where we progressively increase the number of optimiza-
tion parameters as we increment the number of edges on the
perimeter of the wheel in steps of size 2n, where n ∈ {2, . . . , 8}.
For each configuration, the topological diagram of the wheel
comprises of 2n+1 nodes and 2.5(2n) edges, of which 1.5(2n) are
deviation edges. The remainder of the edges are the edges of the
auxiliary trails. We consider the force in every deviation edge an
optimization parameter in s and test FD with four different step
sizes h, three orders of magnitude apart, h ∈ {1 × 10−3, 1 ×
10−6, 1× 10−9, 1× 10−12}. Eq. (9) is minimized with the L-BFGS
algorithm [49]. All the wheel experiments converge by satisfying
the condition L(s) ≤ ϵ in Eq. (10).

While AD and FD show comparable performance when n < 4,
the total time for convergence with FD surges as the number of
parameters increases, irrespective of the step size h (see Fig. 8(a)).
When the number of parameters is the highest, form-finding the
tensegrity wheel with AD gradients takes only 2.1% of the time
it takes to do so with the best FD performance (1.32 vs. 64.55 s,
with h = 1× 10−9).

Figs. 8(a) and 8(b) expose the effect that changing the value of
h has on the optimization convergence with FD. The computation
time with FD for a single iteration is equivalent for all the values
of h we tested. However, if h is too large (h = 1 × 10−3)

Fig. 8. Performance comparison between AD and FD to optimize a planar
tensegrity wheel. Fig. 8(a): using FD is more expensive than AD as the number
of optimization parameters increases. Fig. 8(b): inadequate values of the step
size h raise the number of iterations required for convergence and thus extend
the optimization runtime. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

or too small (h = 1 × 10−12), then convergence with FD for
this tensegrity structure is much extended because the optimizer
needs more iterations to reach an optimal solution for s due to
an inaccurate approximation of the gradient ∇sL(s). For example,
the optimizer requires 5 and 41 more iterations than AD to solve a
tensegrity wheel with n = 8, when h = 1×103 and h = 1×10−12,
respectively.

4.2. Auxiliary trails in 3D

We test the addition of auxiliary trails to a three-dimensional
tree canopy structure (see Fig. 9). We observe how the per-
formance of AD and FD differs as the choice of optimization
algorithm changes. We model the initial tree structure with 46
nodes and 72 deviation edges. The total number of nodes and
edges in the topological diagram doubles after inserting the auxil-
iary trails. We apply a point load q = [0, 0,−0.5] to the topmost
nodes of the structure.

To minimize the forces in the auxiliary trails, we define 186
optimization parameters. These parameters consist of the posi-
tions of the origin nodes, which are allowed to translate only in
the Y and Z Cartesian directions, and the force magnitude in every
deviation edge. We test three different gradient-based optimiza-
tion algorithms: L-BFGS [49], SLSQP [50], and AUGLAG [71] and
run them for a maximum of υmax = 200 optimization iterations.

10

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 9. Tree canopy. The auxiliary trails on the branches take a large portion of the reaction forces in the form diagram F . After optimization, the reaction forces in
the constrained form diagram F̄ are taken only by the two supports at the base of the structure while the internal forces in the auxiliary trails vanish.

Fig. 10. Tree canopy. Convergence with AD is at least 10 times faster per
iteration than FD. This disparity in computational performance is consistent for
this constrained form-finding problem regardless of the selected optimization
algorithm. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The FD step sizes we discuss for this structure are h ∈ {1 ×
10−6, 1× 10−9}.

In Fig. 10, we report the elapsed time per iteration that the
optimization algorithms take to converge by meeting the condi-
tion L(s) ≤ ϵ in Eq. (10) with ϵ = 1 × 10−6. Fig. 11 displays
an architectural representation of the optimized tree structure.
We calculate the time per iteration by dividing the convergence
runtime over the total number of iterations incurred. This ratio is
nearly equal for both FD step sizes across the three optimization
algorithms we assess. Minimizing the forces in the auxiliary trails
of the tree structure is at least 10 times faster per iteration using
AD than with FD. The optimization time with AD is at most 0.14 s
per iteration with L-BFGS, whereas this value is at least 1.52 s
with FD in combination with SLSQP.

Among the three optimization algorithms we test, L-BFGS
takes the fewest number of iterations to solve this constrained
form-finding problem for both differentiation schemes, requiring
78 and 120 iterations to converge for AD and FD, respectively.
Moreover, the minimization of Eq. (9) with AD is at least one
order of magnitude faster for the 2D tensegrity structure with
n = 7 described in Section 4.1 than it is with the tree structure
presented here, despite the size of the two constrained form-
finding problems is similar and the optimization algorithm is the

Fig. 11. Architectural vision for the constrained form diagram F̄ shown in Fig. 9.
The form-found tree canopy is repeated sequentially to create a colonnade of
load-bearing trees.

same: 192 parameters and a convergence runtime of 0.65 s for
the tensegrity versus 182 parameters and 11.15 s for the tree.

A plausible reason for this discrepancy is that, for the tree
structure, both the node positions and the deviation edge forces
are set as optimization parameters, whereas for the spoke wheel
the optimization parameters only contemplate the forces in the
deviation edges. The minimization of the auxiliary trail forces
utilizing both the node positions and the internal forces of the
structure is a non-linear problem that can be computationally
more expensive to solve.

4.3. Auxiliary trails in 3D and additional constraints

We combine force and geometric constraints to steer the
form-finding of a bridge with no intermediary supports (Fig. 12).

The bridge has two chords that curve on plan. A series of
triangular hangers perpendicular to the longitudinal axis of the

11

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 12. Sensitivity analysis of a bridge curved on plan. The form diagrams F
obtained after the first run of the CEM form-finding algorithm are drawn in
the background with dotted lines. The forces in the auxiliary trails at the tip
of the hangers have been minimized and the bridge endpoints pulled to the
dashed vertical lines. The solution to this constrained form-finding problem is
consistently faster with AD.

bridge take a uniformly distributed line load produced by an
eccentric deck. We convert this line load into point loads via
tributary lengths and apply them to the tip of the hangers. Unlike
the spoke wheel and the tree structure discussed in Sections 4.1

and 4.2, we model the topological diagram T of the bridge using
a hybrid strategy: we append auxiliary trails only to the nodes at
the tip of the hangers because we assign all the other nodes in T
along the bridge chords to a standard trail.

The geometric constraint for this structure is to pull the sup-
port nodes towards two predetermined vertical line rays located
at either extreme of the bridge. The rationale behind this con-
straint is to arrive at a form in static equilibrium subject to a
limited range of locations where to anchor the bridge abutments.
The forces in all the deviation edges in T are considered optimiza-
tion parameters, in addition to the length of the four trail edges
connected to a support node.

We do a sensitivity analysis and compare AD and FD by mono-
tonically increasing the number of hangers, from 4 to 22 in even
steps, and then solving the resulting constrained form-finding
problem with SLSQP [50]. The number of optimization parameters
ranges from 18, when the number of triangular hangers is the
smallest, to 72 when it is the greatest. Our goal is to estimate
the time this constrained form-finding problem would take to
converge to L(s) ≤ ϵ, where ϵ = 1×10−6, when we add auxiliary
trails only to a portion of the nodes in T of the bridge. We set the
step size for FD to h ∈ {1×10−3, 1×10−6, 1×10−9, 1×10−12} and
we restrict the number of optimization iterations to υmax = 100
for both differentiation methods, AD and FD.

Fig. 13(a) shows that the time for convergence with FD is
equivalent for three different step sizes h across all experiments.
The optimizer did not converge with h = 1 × 10−3 for this
structure. This is different from the observations we make after
studying a planar tensegrity in Section 4.1, where FD converges
with a step size of h = 1 × 10−3 at the expense of significantly
extending the convergence runtime. This finding illustrates that
the impact of h on the quality of the gradient approximation with
FD is problem dependent.

Fig. 13(b) provides further insight into the inadequacy of h =
1 × 10−3 to tackle this constrained form-finding problem. The
final value of the objective function L(s) is, on average, two orders
of magnitude higher than the desired optimization convergence
threshold ϵ. In contrast, AD and FD with the three other step
sizes h meet the target value of ϵ within the iteration budget
υmax = 100 since they reach the goal of L(s)/ϵ ≤ 1. Nevertheless,
optimizing the bridge is consistently more expedite with AD: con-
vergence with a AD is 2.4 and 5 times faster when the number of
parameters is the smallest (22) and the largest (72), respectively.

5. Case study

We illustrate the potential of the extended CEM framework to
support designers in practical structural design problems, espe-
cially during the conceptual design stage.

5.1. Design task

We design the load-bearing structure of a spiral staircase sub-
jected to the design constraints listed in Section 5.3. The external
perimeter of the staircase follows a semicircle on-plan with a
diameter of 4 m (Fig. 14(b)). The staircase is planned to connect
the ground floor to a mezzanine slab with a single run of 18
equidistant steps. Every step is 1 meter wide and perpendicular
to the semicircle. The top of the mezzanine slab is 3.4 m above
the ground and the design load is of 1 kN per step.

Inspired by the Fourth Bridge over the Grand Canal in Venice
[72], we use the extended CEM framework to form-find a spiral-
ing truss-like structure for the staircase. We imagine the structure
to carry the applied loads via cross-shaped ribs suspended on two
curving chords. The chords are initially proposed to be 1 meter
apart from each other, running parallel to the run of stairs, and

12

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 13. Curved bridge. Fig. 13(a): Optimizing the bridge with FD is consistently
more expensive than with AD regardless of the step size h. Fig. 13(b): the
optimizer misses the optimization convergence threshold ϵ = 1 × 10−6 by at
least two orders of magnitude with FD and h = 1× 10−3 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

to be anchored at their intersections with the ground floor and
the side of the mezzanine slab.

The static equilibrium concept is to first use the tread in every
step of the staircase as a tension element that ties the upper
half of the compression rib underneath (see callout rectangle in
Fig. 14(c)). Next, the goal is to resist the torsional effects produced
by the forces coming from the ribs by coupling together the two
chords of the staircase as a pair of tension–compression rings.

5.2. Topology diagram

Fig. 14(a) displays the topology diagram T we build to form-
find the staircase. We represent each of the chords with two trails
connected by a single deviation edge at the middle as the chords
are the main paths for load transfer towards the supports. As
secondary load-bearing elements, we model the 18 ribs and ties
with deviation edges and auxiliary trails.

5.3. Design constraints

The form-found shape of the staircase structure has to con-
form to a number of design requirements in addition to the
minimization of the forces in the 54 auxiliary trails in T . We show
these graphically in Fig. 14(b).

The side of the mezzanine slab where the chords have to be
anchored has a maximum pull-out force capacity of 35 kN at

position p̄1 = [0, 4, 3.4]. As a result, the position of support node
vs1 in the tension chord must coincide with p̄1, and the target
absolute force magnitude passing through edge e1,2 has to be
constrained to µ̄1,2 = 35 kN. The position of the support node on
the compression chord vs21 is restricted to slide on a horizontal
line 0.20 m below p̄1, parallel to the soffit of the mezzanine slab.
We set these design requirements as optimization constraints.

Additionally, we define a sequence of planes to constrain,
with the CEM form-finding algorithm, the position of the chord
nodes to the plane formed by the upper portion of the rib they
connect to (see Section 2.3.1). For example, nodes v5 and v25
in T should lie on the plane formed by vo50, v

o
51, v

o
52, which is

plane φd in Fig. 14(b). Numerically, plane φd corresponds to the
intersection planes φ6,5 and φ26,25 of trail edges et6,5 and et26,25 in
T , respectively. The reasoning behind this planarity constraint is
to enable the fabrication of the ribs from flat sheets of material.
Similarly, we pull the positions of the bottom support node per
chord to the ground floor plane φs and that of the support nodes
connecting to the slab to φt to explicitly restrict the feasible
range of positions of these nodes can take during the optimization
process. Plane φs is described by base point pφs = [0, 0, 0] and
normal nφs = [0, 0, 1], whereas plane φt is defined by pφt = p̄1

and nφt = [1, 0, 0].

5.4. Constrained form diagram

We parametrize this constrained form-finding problem by set-
ting the absolute force magnitude in all the deviation edges µd as
entries in the vector of optimization parameters s. We also allow
the position of the origin nodes on the chords vo10, v

o
11, v

o
30, v

o
31 to

translate vertically. The resulting optimization problem is mini-
mized with L-BFGS [49].

We show the resulting constrained form diagram F̄ in
Fig. 14(c). The output values of the gradient ∇sL(s) and of the
objective function L(s) reaches the optimization convergence
threshold ϵ = 1 × 10−6, implying that the generated F̄ for
the staircase is satisfactory, meeting all the imposed design con-
straints. We can observe that some of the trade-offs made to solve
this constrained form-finding task are that the initial distance
between the chord supports on the mezzanine slab increased
from 1 meter to 1.28 m and that the absolute magnitude of the
reaction forces at the compression chord supports are about 25%
and 60% higher than that at node vs1 post-optimization.

Fig. 15 finally shows one architectural interpretation of F̄ .

6. Conclusion

In this paper, we presented, developed and validated three
extensions to the CEM framework: auxiliary trails, automatic dif-
ferentiation (AD) and compas_cem. Compared to its baseline ver-
sion [23–25], our work positions the extended CEM framework
as a more efficient, general and accessible approach to generate
structurally efficient shapes that meet force and geometric design
requirements.

Auxiliary trails simplified the construction of valid topology
diagrams for more types of structures that were difficult to be
topologically modeled otherwise, such as branching structures,
triangular cantilevers, and self-stressed systems. These helper
trails also made it possible to explicitly model a structure only
with deviation edges while still fulfilling the topological modeling
rules of the CEM form-finding algorithm.

The application of AD enabled the automatic calculation of an
exact gradient value of the CEM form-finding algorithm, no longer
an approximation that depends on the calibration of a step size as
in previous work. While the FD baseline and AD saw comparable
performance for small constrained form-finding problems, our

13

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 14. Application of the extended CEM framework to design the load-bearing structure of a spiral staircase. After constructing a topology diagram T (Fig. 14(a)), a
constrained form diagram F̄ (Fig. 14(c)) that complies with a priori structural and fabrication constraints is computed using AD. The design constraints input to Eq. (9)
in addition to the minimization of the forces in the auxiliary trails are shown in pink in Fig. 14(b) and comprise: (i) restraining the position of node vs1 to target
position p̄1 = [0, 4, 3.4], (ii) fixing the magnitude of support force r1 to 35 kN; and (iii) constraining p21 to lie on a continuous horizontal line 0.2 m below p̄1 . We
also restrict via the CEM form-finding algorithm the position of every pair of unsupported nodes on the chords to the plane defined by the nodes of the funicular
rib they connect to (e.g. v5 and v25 to φd), the position that of support nodes vs20, v

s
40 to the ground floor plane φs and that of nodes vs1, v

s
21 to the slab plane φt .

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

experiments demonstrated that calculating a constrained state
of static equilibrium can be substantially faster with AD as the
number of optimization parameters increases. Using AD opens
up the possibility to accelerate design exploration cycles with
the extended CEM framework, especially for large constrained
form-finding problems.

With compas_cem, we consolidated our work into an open-
source design tool. The tool enables the formulation and the
solution of constrained form-finding problems in plain and sim-
ple Python code. Furthermore, compas_cem enables designers to
use the extended CEM framework on three different operating
systems and on three distinct pieces of 3D modeling software.

The work presented herein has limitations. The computation
of an equilibrium state where auxiliary trails are not load-bearing

depends on the solution of a constrained form-finding problem
and not on a single run of the CEM form-finding algorithm. This
optimization dependency is starker when a structure is modeled
entirely with deviation edges. Consequently, the risk of using
auxiliary trails is to end up with an under-parametrized or an
over-constrained problem where neither equilibrium nor any
other design constraint is met. We also hypothesize that the
calculation of equilibrium states for deviation-only models with
the extended CEM framework may be comparable to the numer-
ical formulation of the Update Reference Strategy [10] and the
Force Density Method [8,9], and as such, form-finding deviation-
only models with our approach may share their drawbacks. A
deeper investigation of this relationship is left to subsequent
publications.

14

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

Fig. 15. Architectural interpretation of the constrained form diagram F̄ of a
spiral staircase generated with the extended CEM framework.

Future work should look into hybrid modeling strategies that
guide designers to best combine auxiliary trails with standard
trail and deviation edges during the construction of a topology
diagram. Other future research directions are to add regulariza-
tion terms to our current penalty approach to handle outlier
constraints more robustly and to experiment with more types of
objective functions as presented in [44]. We are also interested
in leveraging more complex gradient-based optimization tech-
niques such as Newton-based optimization methods that utilize
the second-order derivatives (i.e. the Hessian) of the CEM form-
finding algorithm to solve constrained form-finding problems
more efficiently [37]. By delegating the calculation of derivative
values to a computer with AD, we can now compose arbitrary
design constraints and calculate higher-order derivatives with
minimal friction: the only requisites are that the constraint and
the objective functions are differentiable and written in (Python)
code.

The adoption of computational techniques like AD can make
gradient-based optimization more accessible to researchers in the
field and it can propel the development of integrative and effi-
cient frameworks that generate forms imbued with structural and
other non-structural design requirements. We ultimately hope
our work helps positioning constrained form-finding as a viable
approach to tackle practical structural design problems on a
wider spectrum of structural typologies, beyond the conventional
catalog of shells and cable nets.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We thank Isabel Moreira de Oliveira from the Form-Finding
Lab at Princeton University for her valuable suggestions dur-
ing the development of this paper. This work was supported in
part by the U.S. National Science Foundation under grant OAC-
2118201 and the Deutsche Forschungsgemeinschaft, Germany
under grant 434336509.

References

[1] Lewis WJ. Tension structures: form and behaviour. London: Thomas
Telford; Distributors, ASCE Press; 2003.

[2] Bletzinger K. Fifty years of progress for shell and spatial structures :
in celebration of the 50th anniversary jubilee of the IASS (1959-2009).
Madrid: International Association for Shell and Spatial Structures; 2011.

[3] Argyris JH, Angelopoulos T, Bichat B. A general method for the shape
finding of lightweight tension structures. Comput Methods Appl Mech
Engrg 1974;3(1):135–49. http://dx.doi.org/10.1016/0045-7825(74)90046-2.

[4] Tabarrok B, Qin Z. Nonlinear analysis of tension structures. Comput Struct
1992;45(5–6):973–84. http://dx.doi.org/10.1016/0045-7949(92)90056-6.

[5] Barnes MR. Form Finding and Analysis of Tension Structures by Dynamic
Relaxation. Int J Space Struct 1999;14(2):89–104. http://dx.doi.org/10.1260/
0266351991494722.

[6] Kilian A, Ochsendorf J. Particle-Spring Systems for Structural Form Finding.
J Int Assoc Shell Spat Struct 2005;46(2):77–84.

[7] Adriaenssens S, Ney L, Bodarwe E, Williams C. Finding the form of an
irregular meshed steel and glass shell based on construction constraints.
J Archit Eng 2012;18(3):206–13. http://dx.doi.org/10.1061/(asce)ae.1943-
5568.0000074.

[8] Linkwitz K, Schek HJ. Einige Bemerkungen zur Berechnung von vorges-
pannten Seilnetzkonstruktionen. Ing-Arch 1971;40(3):145–58. http://dx.
doi.org/10.1007/BF00532146.

[9] Schek H-J. The force density method for form finding and computation of
general networks. Comput Methods Appl Mech Engrg 1974;3(1):115–34.
http://dx.doi.org/10.1016/0045-7825(74)90045-0.

[10] Bletzinger K-U, Ramm E. A General Finite Element Approach to the form
Finding of Tensile Structures by the Updated Reference Strategy. Int J Space
Struct 1999;14(2):131–45. http://dx.doi.org/10.1260/0266351991494759.

[11] Nouri Baranger T. Form Finding Method of Tensile Fabric Structures:
Revised Geometric Stiffness Method. J Int Assoc Shell Spat Struct
2002;43(1):13–21.

[12] Block P, Ochsendorf J. Thrust network analysis: A new methodol-
ogy for three-dimensional equilibrium. J Int Assoc Shell Spat Struct
2007;48(3):167–73.

[13] Pauletti RMO, Pimenta PM. The natural force density method for the
shape finding of taut structures. Comput Methods Appl Mech Engrg
2008;197(49):4419–28. http://dx.doi.org/10.1016/j.cma.2008.05.017.

[14] D’Acunto P, Jasienski J-P, Ohlbrock PO, Fivet C, Schwartz J, Zastavni D.
Vector-based 3D graphic statics: A framework for the design of spatial
structures based on the relation between form and forces. Int J Solids
Struct 2019;167:58–70. http://dx.doi.org/10.1016/J.IJSOLSTR.2019.02.008.

[15] Hablicsek M, Akbarzadeh M, Guo Y. Algebraic 3D graphic statics: Reciprocal
constructions. Comput Aided Des 2019;108:30–41. http://dx.doi.org/10.
1016/j.cad.2018.08.003.

[16] Veenendaal D, Block P. An overview and comparison of struc-
tural form finding methods for general networks. Int J Solids Struct
2012;49(26):3741–53. http://dx.doi.org/10.1016/j.ijsolstr.2012.08.008.

[17] Fivet C, Zastavni D. A fully geometric approach for interactive constraint-
based structural equilibrium design. Comput Aided Des 2015;61:42–57.
http://dx.doi.org/10.1016/j.cad.2014.04.001.

[18] Rippmann M. Funicular shell design: geometric approaches to form finding
and fabrication of discrete funicular structures (Ph.D. thesis), ETH Zurich;
2016, p. 374. http://dx.doi.org/10.3929/ETHZ-A-010656780.

[19] Senatore G, Piker D. Interactive real-time physics: An intuitive approach
to form-finding and structural analysis for design and education. Comput
Aided Des 2015;61:32–41. http://dx.doi.org/10.1016/j.cad.2014.02.007.

[20] Lee J, Mele TV, Block P. Disjointed force polyhedra. Comput Aided Des
2018;99:11–28. http://dx.doi.org/10.1016/j.cad.2018.02.004.

[21] Nejur A, Akbarzadeh M. PolyFrame, Efficient Computation for 3D Graphic
Statics. Comput Aided Des 2021;134:103003. http://dx.doi.org/10.1016/j.
cad.2021.103003.

[22] Michell A. The limits of economy of material in frame-structures. Lond
Edinb Dublin Philos Mag J Sci 1904;8(47):589–97. http://dx.doi.org/10.
1080/14786440409463229.

[23] Ohlbrock PO, Schwartz J. Combinatorial Equilibrium Modeling.
Int J Space Struct 2016;31(2–4):177–89. http://dx.doi.org/10.1177/
0266351116660799.

15

http://refhub.elsevier.com/S0010-4485(22)00168-3/sb1
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb1
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb1
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb2
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb2
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb2
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb2
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb2
http://dx.doi.org/10.1016/0045-7825(74)90046-2
http://dx.doi.org/10.1016/0045-7949(92)90056-6
http://dx.doi.org/10.1260/0266351991494722
http://dx.doi.org/10.1260/0266351991494722
http://dx.doi.org/10.1260/0266351991494722
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb6
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb6
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb6
http://dx.doi.org/10.1061/(asce)ae.1943-5568.0000074
http://dx.doi.org/10.1061/(asce)ae.1943-5568.0000074
http://dx.doi.org/10.1061/(asce)ae.1943-5568.0000074
http://dx.doi.org/10.1007/BF00532146
http://dx.doi.org/10.1007/BF00532146
http://dx.doi.org/10.1007/BF00532146
http://dx.doi.org/10.1016/0045-7825(74)90045-0
http://dx.doi.org/10.1260/0266351991494759
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb11
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb11
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb11
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb11
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb11
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb12
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb12
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb12
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb12
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb12
http://dx.doi.org/10.1016/j.cma.2008.05.017
http://dx.doi.org/10.1016/J.IJSOLSTR.2019.02.008
http://dx.doi.org/10.1016/j.cad.2018.08.003
http://dx.doi.org/10.1016/j.cad.2018.08.003
http://dx.doi.org/10.1016/j.cad.2018.08.003
http://dx.doi.org/10.1016/j.ijsolstr.2012.08.008
http://dx.doi.org/10.1016/j.cad.2014.04.001
http://dx.doi.org/10.3929/ETHZ-A-010656780
http://dx.doi.org/10.1016/j.cad.2014.02.007
http://dx.doi.org/10.1016/j.cad.2018.02.004
http://dx.doi.org/10.1016/j.cad.2021.103003
http://dx.doi.org/10.1016/j.cad.2021.103003
http://dx.doi.org/10.1016/j.cad.2021.103003
http://dx.doi.org/10.1080/14786440409463229
http://dx.doi.org/10.1080/14786440409463229
http://dx.doi.org/10.1080/14786440409463229
http://dx.doi.org/10.1177/0266351116660799
http://dx.doi.org/10.1177/0266351116660799
http://dx.doi.org/10.1177/0266351116660799

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

[24] Ohlbrock PO, D’Acunto P. A Computer-Aided Approach to Equilibrium
Design Based on Graphic Statics and Combinatorial Variations. Comput
Aided Des 2020;121:102802. http://dx.doi.org/10.1016/J.CAD.2019.102802.

[25] Ohlbrock PO. Combinatorial equilibrium modelling: a computational
framework for equilibrium-based structural design (Ph.D. thesis), ETH
Zurich; 2020, p. 238. http://dx.doi.org/10.3929/ETHZ-B-000478732.

[26] Bahr M. Form finding and analysis of shells and slabs based on equilibrium
solutions (Ph.D. thesis), ETH Zurich; 2017, p. 141. http://dx.doi.org/10.
3929/ETHZ-B-000182853.

[27] Panozzo D, Block P, Sorkine-Hornung O. Designing Unreinforced Masonry
Models. ACM Trans Graph SIGGRAPH 2013 2013;32(4):91:1–91:12. http:
//dx.doi.org/10.1145/2461912.2461958.

[28] Tamai H. Advanced application of the force density method in mul-
tidisciplinary design practice by incorporating with optimization using
analytical derivatives. In: Obrebski J, Tarczewski R, editors. Proceedings
of the international association for shell and spatial structures (IASS)
symposium 2013. Wroclaw, Poland; 2013, p. 9.

[29] Zhang JY, Ohsaki M. Adaptive force density method for form-finding
problem of tensegrity structures. Int J Solids Struct 2006;43(18):5658–73.
http://dx.doi.org/10.1016/j.ijsolstr.2005.10.011.

[30] Allen E, Zalewski W. Form and forces: designing efficient, expressive
structures. John Wiley & Sons; 2009.

[31] Miki M, Kawaguchi K. Extended Force Density Method for Form-Finding
of Tension Structures. J Int Assoc Shell Spat Struct 2010;51(4):13.

[32] Malerba P, Patelli M, Quagliaroli M. An Extended Force Density Method
for the form finding of cable systems with new forms. Struct Eng Mech
2012;42:191–210. http://dx.doi.org/10.12989/SEM.2012.42.2.191.

[33] Quagliaroli M, Malerba PG. Flexible bridge decks suspended by ca-
ble nets. A constrained form finding approach. Int J Solids Struct
2013;50(14):2340–52. http://dx.doi.org/10.1016/j.ijsolstr.2013.03.009.

[34] Ohlbrock PO, D’acunto P, Jasienski J-P, Fivet C. Constraint-Driven
Design with Combinatorial Equilibrium Modelling. In: Proceedings
of IASS annual symposia, Vol. 2017. Hamburg, Germany: Inter-
national Association for Shell and Spatial Structures (IASS); 2017,
p. 1–10, URL https://www.ingentaconnect.com/content/iass/piass/2017/
00002017/00000015/art00013.

[35] Takahashi K, Ney L. Advanced form finding by constraint projections for
structural equilibrium with design objectives. In: Proceedings of the IASS
symposium 2018. Boston, USA; 2018, p. 8.

[36] Cuvilliers P, Danhaive R, Mueller C. Gradient-based optimization of closest-
fit funicular structures. In: Kawaguchi K, Ohsaki M, Takeuchi T, editors.
Proceedings of the IASS annual symposium 2016. Tokyo, Japan; 2016
p. 10.

[37] Nocedal J, Wright SJ. Numerical optimization. Springer series in operations
research, 2nd ed.. New York: Springer; 2006.

[38] Haase G, Langer U, Lindner E, Mühlhuber W. Optimal Sizing Using Auto-
matic Differentiation. In: Hoffmann K-H, Hoppe RHW, Schulz V, editors.
Fast solution of discretized optimization problems. ISNM international
series of numerical mathematics, Basel: Birkhäuser; 2001, p. 120–38. http:
//dx.doi.org/10.1007/978-3-0348-8233-0_10.

[39] Corliss G, Faure C, Griewank A, Hascoet L, Naumann U. Automatic differ-
entiation of algorithms: from simulation to optimization. New York, NY:
Springer; 2013, URL https://link.springer.com/book/10.1007/978-1-4613-
0075-5.

[40] Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic differentiation
in machine learning: A survey. 2018, arXiv:1502.05767 [cs, stat]. URL
http://arxiv.org/abs/1502.05767.

[41] Oberbichler T, Wüchner R, Bletzinger K-U. Efficient computation of non-
linear isogeometric elements using the adjoint method and algorithmic
differentiation. Comput Methods Appl Mech Engrg 2021;381:113817. http:
//dx.doi.org/10.1016/j.cma.2021.113817.

[42] Unger E, Hall L. The use of automatic differentiation in an aircraft design
problem. In: 5th symposium on multidisciplinary analysis and optimiza-
tion. Panama City Beach,FL,U.S.A.: American Institute of Aeronautics and
Astronautics; 1994, p. 64–72. http://dx.doi.org/10.2514/6.1994-4260.

[43] Cho H-N, Min D-H, Lee K-M, Kim H-K. Multi-Level and Multi-Objective
Optimization of Framed Structures Using Automatic Differentiation. In:
Proceedings of the computational structural engineering institute con-
ference. Computational Structural Engineering Institute of Korea; 2000
URL https://koreascience.kr/article/JAKO200010102436328.view.

[44] Cuvilliers P. The constrained geometry of structures: optimization methods
for inverse form-finding design (Ph.D. thesis), Massachusetts Institute of
Technology; 2020, URL http://dspace.mit.edu/handle/1721.1/7582.

[45] Pastrana R, Ohlbrock PO, D’Acunto P, Parascho S. Supplementary data
for the paper constrained form-finding of tension-compression structures
using automatic differentiation. 2021, URL https://github.com/arpastrana/
cem_ad_cad.

[46] Maxwell JC. On Reciprocal Figures, Frames, and Diagrams of Forces.
Trans R Soc Edinb 1870;26(1):1–40. http://dx.doi.org/10.1017/
S0080456800026351.

[47] Beghini LL, Carrion J, Beghini A, Mazurek A, Baker WF. Structural optimiza-
tion using graphic statics. Struct Multidiscip Optim 2014;49(3):351–66.
http://dx.doi.org/10.1007/s00158-013-1002-x.

[48] Liew A, Avelino R, Moosavi V, Van Mele T, Block P. Optimising the
load path of compression-only thrust networks through independent sets.
Struct Multidiscip Optim 2019;60(1):231–44. http://dx.doi.org/10.1007/
s00158-019-02214-w.

[49] Nocedal J. Updating quasi-Newton matrices with limited storage.
Math Comp 1980;35(151):773. http://dx.doi.org/10.1090/S0025-5718-
1980-0572855-7.

[50] Kraft D. Algorithm 733: TOMP–Fortran modules for optimal control cal-
culations. ACM Trans Math Software 1994;20(3):262–81. http://dx.doi.org/
10.1145/192115.192124.

[51] Dembo RS, Steihaug T. Truncated-Newton algorithms for large-scale un-
constrained optimization. Math Program 1983;26(2):190–212. http://dx.
doi.org/10.1007/BF02592055.

[52] Wengert RE. A simple automatic derivative evaluation program. Commun
ACM 1964;7(8):463–4. http://dx.doi.org/10.1145/355586.364791.

[53] Bauer FL. Computational graphs and rounding error. SIAM J Numer Anal
1974;11(1):87–96, URL http://www.jstor.org/stable/2156433.

[54] Griewank A, Walther A. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM; 2008, http://dx.doi.org/
10.1137/1.9780898717761, URL https://epubs.siam.org/doi/abs/10.1137/1.
9780898717761.

[55] Oktay D, McGreivy N, Aduol J, Beatson A, Adams RP. Random-
ized Automatic Differentiation. In: International conference on learning
representations. 2020, p. 1–19, URL https://openreview.net/forum?id=
xpx9zj7CUlY.

[56] Pastrana R, Ohlbrock PO, D’Acunto P, Parascho S. COMPAS CEM: The Com-
binatorial Equilibrium Modeling framework for COMPAS. 2021, http://dx.
doi.org/10.5281/zenodo.5705740, URL https://arpastrana.github.io/compas_
cem.

[57] The Python Software Foundation. Python. 2021, URL https://www.python.
org/.

[58] Mele TV, et al. COMPAS: A framework for computational research in
architecture and structures. 2017-2021, http://dx.doi.org/10.5281/zenodo.
2594510, http://compas.dev.

[59] Liew A, Mendez-Echenagucia T, Ranaudo F, Van Mele T. COMPAS FEA:
Finite element analysis using Abaqus, Ansys, or OpenSEES. 2021, URL
https://https://compas.dev/compas_fea/.

[60] Bernhard M, Van Mele T, Casas G, Clemente R, Feihl N. COMPAS VOL:
Volumetric modelling with signed distance functions. 2021, URL https:
//github.com/dbt-ethz/compas_vol.

[61] Rust R, Casas G, Parascho S, Jenny D, Dörfler K, Helmreich M, Gan-
dia A, Ma Z, Ariza I, Pacher M, Lytle B, Huang Y. COMPAS FAB: Robotic
fabrication package for the COMPAS framework. 2018, http://dx.doi.org/
10.5281/zenodo.3469478, Gramazio Kohler Research, ETH Zürich. https:
//github.com/compas-dev/compas_fab/.

[62] Ohlbrock PO, D’Acunto P. CEM: Combinatorial Equilibrium Modeling. 2021,
Release 2.00. URL http://github.com/OleOhlbrock/CEM.

[63] Rutten D. Grasshopper. 2007, URL https://www.grasshopper3d.com/.

[64] Blender Online Community. Blender - free and open 3D creation software.
2021, URL http://www.blender.org.

[65] Robert McNeel & Associates. Rhinoceros3d. 2007, URL https://www.
rhino3d.com/.

[66] Johnson SG. The NLopt nonlinear-optimization package. 2021, URL https:
//github.com/stevengj/nlopt.

[67] Maclaurin D, Duvenaud D, Adams RP. Autograd: Effortless gradients in
numpy. In: ICML 2015 AutoML workshop, Vol. 238. 2015, p. 5, URL
https://github.com/HIPS/autograd.

[68] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M,
Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH,
Pedregosa F, van Mulbregt P, SciPy 10 Contributors. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python. Nature Methods
2020;17:261–72. http://dx.doi.org/10.1038/s41592-019-0686-2.

[69] Oberbichler T. HyperJet. 2021, http://dx.doi.org/10.5281/zenodo.5093152.

[70] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S,
Willing C, development team J. Jupyter Notebooks - a publishing for-
mat for reproducible computational workflows. In: Loizides F, Scmidt B,
editors. Positioning and power in academic publishing: players, agents
and agendas. IOS Press; 2016, p. 87–90, URL https://eprints.soton.ac.uk/
403913/.

16

http://dx.doi.org/10.1016/J.CAD.2019.102802
http://dx.doi.org/10.3929/ETHZ-B-000478732
http://dx.doi.org/10.3929/ETHZ-B-000182853
http://dx.doi.org/10.3929/ETHZ-B-000182853
http://dx.doi.org/10.3929/ETHZ-B-000182853
http://dx.doi.org/10.1145/2461912.2461958
http://dx.doi.org/10.1145/2461912.2461958
http://dx.doi.org/10.1145/2461912.2461958
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb28
http://dx.doi.org/10.1016/j.ijsolstr.2005.10.011
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb30
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb30
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb30
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb31
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb31
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb31
http://dx.doi.org/10.12989/SEM.2012.42.2.191
http://dx.doi.org/10.1016/j.ijsolstr.2013.03.009
https://www.ingentaconnect.com/content/iass/piass/2017/00002017/00000015/art00013
https://www.ingentaconnect.com/content/iass/piass/2017/00002017/00000015/art00013
https://www.ingentaconnect.com/content/iass/piass/2017/00002017/00000015/art00013
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb35
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb35
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb35
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb35
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb35
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb36
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb37
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb37
http://refhub.elsevier.com/S0010-4485(22)00168-3/sb37
http://dx.doi.org/10.1007/978-3-0348-8233-0_10
http://dx.doi.org/10.1007/978-3-0348-8233-0_10
http://dx.doi.org/10.1007/978-3-0348-8233-0_10
https://link.springer.com/book/10.1007/978-1-4613-0075-5
https://link.springer.com/book/10.1007/978-1-4613-0075-5
https://link.springer.com/book/10.1007/978-1-4613-0075-5
http://arxiv.org/abs/1502.05767
http://dx.doi.org/10.1016/j.cma.2021.113817
http://dx.doi.org/10.1016/j.cma.2021.113817
http://dx.doi.org/10.1016/j.cma.2021.113817
http://dx.doi.org/10.2514/6.1994-4260
https://koreascience.kr/article/JAKO200010102436328.view
http://dspace.mit.edu/handle/1721.1/7582
https://github.com/arpastrana/cem_ad_cad
https://github.com/arpastrana/cem_ad_cad
https://github.com/arpastrana/cem_ad_cad
http://dx.doi.org/10.1017/S0080456800026351
http://dx.doi.org/10.1017/S0080456800026351
http://dx.doi.org/10.1017/S0080456800026351
http://dx.doi.org/10.1007/s00158-013-1002-x
http://dx.doi.org/10.1007/s00158-019-02214-w
http://dx.doi.org/10.1007/s00158-019-02214-w
http://dx.doi.org/10.1007/s00158-019-02214-w
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1145/192115.192124
http://dx.doi.org/10.1145/192115.192124
http://dx.doi.org/10.1145/192115.192124
http://dx.doi.org/10.1007/BF02592055
http://dx.doi.org/10.1007/BF02592055
http://dx.doi.org/10.1007/BF02592055
http://dx.doi.org/10.1145/355586.364791
http://www.jstor.org/stable/2156433
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1137/1.9780898717761
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://openreview.net/forum?id=xpx9zj7CUlY
https://openreview.net/forum?id=xpx9zj7CUlY
https://openreview.net/forum?id=xpx9zj7CUlY
http://dx.doi.org/10.5281/zenodo.5705740
http://dx.doi.org/10.5281/zenodo.5705740
http://dx.doi.org/10.5281/zenodo.5705740
https://arpastrana.github.io/compas_cem
https://arpastrana.github.io/compas_cem
https://arpastrana.github.io/compas_cem
https://www.python.org/
https://www.python.org/
https://www.python.org/
http://dx.doi.org/10.5281/zenodo.2594510
http://dx.doi.org/10.5281/zenodo.2594510
http://dx.doi.org/10.5281/zenodo.2594510
http://compas.dev
https://https://compas.dev/compas_fea/
https://github.com/dbt-ethz/compas_vol
https://github.com/dbt-ethz/compas_vol
https://github.com/dbt-ethz/compas_vol
http://dx.doi.org/10.5281/zenodo.3469478
http://dx.doi.org/10.5281/zenodo.3469478
http://dx.doi.org/10.5281/zenodo.3469478
https://github.com/compas-dev/compas_fab/
https://github.com/compas-dev/compas_fab/
https://github.com/compas-dev/compas_fab/
http://github.com/OleOhlbrock/CEM
https://www.grasshopper3d.com/
http://www.blender.org
https://www.rhino3d.com/
https://www.rhino3d.com/
https://www.rhino3d.com/
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://github.com/HIPS/autograd
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.5281/zenodo.5093152
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/

R. Pastrana, P.O. Ohlbrock, T. Oberbichler et al. Computer-Aided Design 155 (2023) 103435

[71] Conn AR, Gould NIM, Toint P. A Globally Convergent Augmented La-
grangian Algorithm for Optimization with General Constraints and Simple
Bounds. SIAM J Numer Anal 1991;28(2):545–72. http://dx.doi.org/10.1137/
0728030.

[72] Zordan T, Briseghella B, Siviero E. The Fourth Bridge over the Grand
Canal in Venice: From Idea to Analysis and Construction. Struct Eng Int
2010;20(1):6–12. http://dx.doi.org/10.2749/101686610791555667.

17

http://dx.doi.org/10.1137/0728030
http://dx.doi.org/10.1137/0728030
http://dx.doi.org/10.1137/0728030
http://dx.doi.org/10.2749/101686610791555667

	Constrained Form-Finding of Tension–Compression Structures using Automatic Differentiation
	Introduction
	The CEM framework
	Limitations of the CEM framework
	Strict topological modeling rules
	Approximate gradient computation

	Automatic differentiation
	Outline and contribution

	Theoretical background
	Topology diagram
	Trails
	Sequences

	Design parameters
	Form-finding algorithm
	Sequential equilibrium
	Iterative equilibrium

	Constrained form-finding
	Optimization parameters
	System solution
	Constraints
	Objective function
	Gradient-based optimization
	Optimization convergence

	Extensions to the CEM framework
	Auxiliary trails
	Automatic and exact computation of the gradient
	Example

	Design tool

	Numerical validation
	Auxiliary trails in 2D
	Auxiliary trails in 3D
	Auxiliary trails in 3D and additional constraints

	Case study
	Design task
	Topology diagram
	Design constraints
	Constrained form diagram

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

