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Abstract:  8 

Like Darwin’s tangled bank of biodiversity, the endocrine mechanisms that give rise to 9 
phenotypic diversity also exhibit nearly endless forms. This tangled bank of mechanistic 10 
diversity can prove problematic as we seek general principles on the role of endocrine 11 
mechanisms in phenotypic evolution. A key unresolved question is therefore: to what degree are 12 
specific endocrine mechanisms re-used to bring about replicated phenotypic evolution? Related 13 
areas of inquiry are booming in molecular ecology, but behavioral traits are underrepresented in 14 
this literature. Here, I leverage the rich comparative tradition in evolutionary endocrinology to 15 
evaluate whether and how certain mechanisms may be repeated hotspots of behavioral 16 
evolutionary change. At one extreme, mechanisms may be parallel, such that evolution 17 
repeatedly uses the same gene or pathway to arrive at multiple independent (or, convergent) 18 
origins of a particular behavioral trait. At the other extreme, the building blocks of behavior may 19 
be unique, such that outwardly similar phenotypes are generated via lineage-specific 20 
mechanisms. This review synthesizes existing case studies, phylogenetic analyses, and 21 
experimental evolutionary research on mechanistic parallelism in animal behavior. These 22 
examples show that the endocrine building blocks of behavior can have some elements of 23 
parallelism across replicated evolutionary events. However, support for parallelism is variable 24 
among studies, at least some of which relates to the level of complexity at which we consider 25 
sameness (i.e. pathway vs. gene level). Moving forward, we need continued experimentation 26 
and better testing of neutral models to understand whether, how – and critically, why – 27 
mechanism A is used in one lineage and mechanism B is used in another. We also need 28 
continued growth of large-scale comparative analyses, especially those that can evaluate which 29 
endocrine parameters are more or less likely to undergo parallel evolution alongside specific 30 
behavioral traits. These efforts will ultimately deepen understanding of how and why hormone-31 
mediated behaviors are constructed the way that they are.  32 
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“It is interesting to contemplate a tangled bank, clothed with many plants of 37 
many kinds, with birds singing on the bushes, with various insects flitting 38 

about, and with worms crawling through the damp earth, and to reflect that 39 
these elaborately constructed forms, so different from each other, and 40 

dependent upon each other in so complex a manner, have all been produced 41 
by laws acting around us. … There is grandeur in this view of life… from so 42 
simple a beginning endless forms most beautiful and most wonderful have 43 

been, and are being, evolved.” 44 

 – Charles Darwin, On the Origin of Species, p.49045 

1. Introduction 46 
Evolutionary biologists seek to understand the origins of diversity – the ‘endless forms’ of 47 

Darwin’s ‘tangled bank’. Proximate mechanisms have the potential to play an important role in 48 
this diversity because they give rise to variation that can be shaped by natural selection (Adkins-49 
Regan, 2008; Hau, 2007; Hofmann et al., 2014; Ketterson et al., 2009) (Cox et al., 2016; 50 
Fuxjager and Schuppe, 2018; Lema, 2020; Ricklefs and Wikelski, 2002; Rosvall, 2013; Rosvall 51 
et al., 2016a; Taborsky et al., 2021). As we begin to consider diversity in complex multi-52 
dimensional traits like behavior, it becomes clear that many different mechanisms lie between 53 
the genotype and phenotype, including gene activity, neuron firing, hormone secretion, and 54 
sensorimotor factors, to name just a few (Adkins-Regan, 2005; Mackay et al., 2009; Sapolsky, 55 
2017; Schlinger et al., 2018). Many of these mechanisms interact with one another, they vary 56 
among cell types and tissues, and they vary with age, experience, and other environmental 57 
factors (Fischer et al., 2021a). Indeed, there may be mechanisms we have not yet discovered. 58 
These endless forms beneath the surface present a challenge as we seek to uncover general 59 
principles on the role of mechanisms in phenotypic evolution; beneath outwardly similar 60 
phenotypes, there can still exist a tangled bank of mechanistic diversity by which even a single 61 
phenotype has evolved.  62 

Most of what we know about this issue comes from molecular ecology. This field includes an 63 
already large and growing body of literature exploring the degree to which the repeated, 64 
independent origin of a particular phenotype is derived via unique or similar mechanisms 65 
(reviewed in Arendt and Reznick, 2008; Blount et al., 2018; Bolnick et al., 2018; Rosenblum et 66 
al., 2014; Waters and McCulloch, 2021). At one extreme, mechanisms may be identical, such 67 
that evolution repeatedly uses the same internal mechanisms or toolkit – for instance, parallel 68 
changes in gene sequence or expression – to arrive at a particular trait (Rittschof et al., 2014; 69 
Toth et al., 2010). At the other extreme, the building blocks of a trait may be unique, such that 70 
outwardly similar phenotypes are generated via lineage-specific mechanisms across repeated 71 
evolutionary origins (Foote et al., 2015; Mikheyev and Linksvayer, 2015; Warner et al., 2019). 72 
These cases are referred to as non-parallel. If ancient, conserved mechanisms generate 73 
behavioral variation, then we may also see similarities stemming from deep homology and 74 
limited divergence (O'Connell and Hofmann, 2011; Waters and McCulloch, 2021). Resolution of 75 
these hypotheses lies in robust experimental and comparative analyses of whether and how 76 
mechanisms are re-used across evolutionary time.  77 

There is hearty debate over terminology in this area of research (reviewed in Arendt and 78 
Reznick, 2008; Blount et al., 2018; Bolnick et al., 2018; Rosenblum et al., 2014; Waters and 79 
McCulloch, 2021). Some researchers use the terms ‘parallel’ and ‘convergent’ almost 80 
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interchangeably. Many use ‘convergent’ when the lineages in question are distantly related and 81 
a particular trait arises independently, whereas ‘parallel’ is used when lineages more recently 82 
share a common ancestor, such as congeners or conspecifics. There is no clear demarcation 83 
between the two terms, yielding some recommendations to drop the term ‘parallel’ altogether 84 
(Arendt and Reznick, 2008); however, in the intervening 15 years, the number of publications 85 
using ‘parallel’ to describe cases in which the same gene(s) are re-used in trait evolution has 86 
only increased. Here, I follow the convention proposed by Rosenblum et al. (2014), who noted 87 
that convergent evolution may describe a phenotypic pattern, whereas parallel more aptly 88 
describes the mechanisms that underlie phenotypic convergence among lineages. These are 89 
the operational definitions use here.  90 

In this synthesis, I highlight important knowns and unknowns related to mechanistic 91 
parallelism in behavioral evolution, with a focus on endocrine systems that may serve as 92 
important building blocks of behavioral variation. Evolutionary endocrinology has already greatly 93 
advanced our understanding of the evolution of hormonal systems (reviewed in Baker, 2019; 94 
Hau, 2007; Ketterson et al., 2009; Thornton, 2001; Wingfield, 2018; Zera et al., 2007, and many 95 
other reviews cited throughought the current manuscript). With exceptions noted below, it is 96 
generally unresolved whether certain components of endocrine systems are re-used to facilitate 97 
the repeated evolution of particular behavioral traits. My goal is determine whether the same (or 98 
different) mechanisms are employed repeatedly when a particular behavioral phenotype evolves 99 
in different taxonomic lineages. In doing so, I hope to reveal the tangled bank that lies beneath 100 
the skin, to better understand exactly how hormones give rise to behavioral variation in nature. 101 

2. Building blocks in the endocrine-molecular architecture of behavior 102 
Let’s first consider what neuroendocrine building blocks could be used by natural selection to 103 
bring about changes in behavior. Homologous brain structures and circuitry certainly play a role 104 
(Goodson, 2005), but this review concentrates on signals and the endocrine systems in which 105 
they are produced and received. In behavioral endocrinology, we tend to focus on a few specific 106 
endocrine systems that appear to influence both microevolutionary processes – those acting 107 
within a single population – and macroevolutionary processes – those that arise over vast 108 
periods of time, differentiating the behavior of species and other higher orders of taxonomic 109 
diversity.  110 

For example, let’s start with testosterone. This sex steroid hormone often promotes 111 
aggressive, sexual, and other reproductive-related behaviors. Testosterone was featured in one 112 
of the first evolutionary frameworks in vertebrate endocrinology – the challenge hypothesis, 113 
which led to a set of predictions linking testosterone to variation in other traits (Wingfield, 2012; 114 
Wingfield et al., 2020; Wingfield et al., 1990), including inter-specific variation in aggression and 115 
mating competition, at least in some vertebrate groups. The challenge hypothesis continues to 116 
be tested, extended, and revised (Archer, 2006; Goymann et al., 2019; Moore et al., 2020; 117 
Rosvall et al., 2020), and we continue to gain insight on testosterone and its relationship with 118 
ecology, life history, and behavior (Garamszegi et al., 2005; Garamszegi et al., 2008; George 119 
and Rosvall, in press; Husak et al., 2021; Lipshutz and Rosvall, 2021). 120 

Glucocorticoids, such as corticosterone or cortisol, also have strong connections to a variety 121 
of fitness related traits, including behavior (Martin, 2009; Sapolsky et al., 2000). Glucocorticoids 122 
facilitate the mobilization of resources under challenging conditions (Hau et al., 2010; Jessop et 123 
al., 2013; Schoenle et al., 2021; Vitousek et al., 2019), and they have some relationship to 124 
survival and reproduction (Bonier et al., 2009; Breuner and Berk, 2019; Cox et al., 2016; 125 
Ouyang et al., 2013; Schoenle et al., 2021), suggesting that these steroid hormones also may 126 
play some role in behavioral divergence. 127 
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Considering these many connections between hormones, behavior, and fitness-related 128 
traits, it is tempting to speculate that testosterone and corticosterone may form evolutionary 129 
‘hotspots’ of behavioral change. In the context of molecular evolution, hotspots are defined as 130 
the ‘repeated occurrence of de novo mutations at orthologous loci, causing similar phenotypic 131 
variation’ (Martin and Orgogozo, 2013). In the context of behavioral endocrinology, we might 132 
view hotspots as endocrine components (or, building blocks) that repeatedly bring about the 133 
same behavioral changes across many lineages. How might this occur? 134 

In some endocrine systems, the hormone itself is a building block and direct gene product, 135 
for instance oxytocin, encoded by the OXT gene, or vasopressin, encoded by the AVP gene. 136 
Within each of these systems, there are still multiple building blocks that may affect behavioral 137 
variation, including peptide release and multiple cross-reactive receptors (Donaldson and 138 
Young, 2009; Kelly and Goodson, 2014; Kelly and Ophir, 2015; Young, 1999).  139 

Steroid hormones also appear to have some genetic basis (King et al., 2004; Mills et al., 140 
2009; Pottinger and Carrick, 1999; Stedman et al., 2017), but they are not direct gene products. 141 
Instead, steroid production depends on an endocrine cascade across multiple tissues and 142 
enzymatic pathways. Within the hypothalamo-pituitary-adrenal (HPA) and hypothalamo-143 
pituitary-gonadal (HPG) axes – we see an incredible array of potential building blocks (Adkins-144 
Regan, 2005; Fuxjager and Schuppe, 2018). Including brain, pituitary, adrenal, and gonad, 145 
there are numerous interacting hormones and receptors affecting one another, any one of which 146 
could potentially be use in behavioral evolution. Enzymes regulating hormone synthesis can be 147 
behaviorally potent (e.g. aromatase; Forlano et al., 2006), and different metabolites can have 148 
unique downstream effects (Frankl-Vilches and Gahr, 2018). Hormones must be transported 149 
from their site of production to their site of action, a process facilitated by binding globulins 150 
(Deviche et al., 2001; Swett and Breuner, 2008). At the target cells, further conversion may 151 
occur towards more potent or less potent hormones (Schmidt et al., 2008). Also at the target 152 
tissue, transduction involves positive co-factors, negative co-factors, and tissue specific effects 153 
on gene expression (Peterson et al., 2013; Schuppe and Fuxjager, 2019; van Nas et al., 2009), 154 
including interactions with other important signaling systems (Heinlein and Chang, 2002). 155 
Receptor abundance and affinity also may vary, oftentimes independently of circulating levels of 156 
the hormone itself (Hunter et al., 2018; Lattin et al., 2015; Lipshutz et al., 2019; Rosvall et al., 157 
2012), and different types of receptors may have different behavioral effects (Alward et al., 158 
2020). Sequence variation in regulatory regions of the genome can affect when and how much 159 
each of these building blocks is expressed (Klinge, 2001), and sequence variation in coding 160 
regions can affect interactions among building blocks, such as binding affinity between hormone 161 
and receptor in behaviorally relevant tissues (Schuppe et al., 2020). Steroid hormones also may 162 
affect behavior via non-receptor mediated effects on secondary messenger systems (Remage-163 
Healey et al., 2008; Stahn and Buttgereit, 2008) or via membrane-bound steroid hormone 164 
receptors (Balthazart, 2021). There are also interactions among the HPA and HPG axes, 165 
interactions with non-steroidal mechanisms of behavior, and interactions with other components 166 
of the body, such as the liver, gut, fat stores, and so on.  167 

This list continues to grow as we learn more, leaving a truly massive tangled bank of 168 
endocrine-molecular building blocks that could change and affect behavioral evolution. Which, if 169 
any, of these building blocks are used repeatedly to elicit behavioral evolutionary change, and 170 
why?   171 
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3. Hypotheses on why re-use of particular mechanisms may occur  172 
Given this almost absurdly large set of options, it may seem remarkable for evolution to use the 173 
same endocrine-molecular mechanisms to bring about behavioral change again and again, but 174 
there are also biological phenomenon that may favor re-use of the same mechanisms.  175 

For instance, building blocks may vary in their mutability. Certain areas of the genome are 176 
more prone to mutation, with even some nucleotide substitutions being more probable than 177 
others (Storz, 2016). Given time and drift, these mutations may spread or go to fixation. Looking 178 
at androgen receptor as one example, regulatory domains appear more evolutionarily labile 179 
than functional domains (Schuppe et al., 2020). In androgen-dependent cancers, certain 180 
mutations are more likely than expected by chance (Gottlieb et al., 2012), and androgen 181 
receptor DNA binding sites also show elevated mutational rates (Morova et al., 2020), indicating 182 
some mutational biases in both coding and non-coding regions.  183 

Even if the probability of a mutation in two building blocks is equally likely, changes in 184 
certain mechanisms may be better for some reason. This can occur if the mechanism itself is 185 
associated with some fitness benefit or cost. Well-known examples in molecular biology stem 186 
from epistasis (when the effect of one gene depends upon another gene) or pleiotropy (when 187 
one gene affects multiple phenotypes). Related ideas have been considered in evolutionary 188 
endocrinology for some time, sensu Hau (2007)’s evolutionary potential vs. constraint and 189 
Ketterson et al. (2009)’s integration vs. independence. Returning again to testosterone, its 190 
marked pleiotropic effects mean that selection may ‘see’ the behavioral mechanism (Dantzer 191 
and Swanson, 2017; Rosvall et al., 2020) via effects on genetic correlations (Cox, 2020; Cox et 192 
al., 2016) and many different fitness-related traits (Ketterson et al., 1992). Consistent with this 193 
view, some organisms seasonally switch away from behavioral mechanisms that depend on 194 
gonadal testosterone (Canoine et al., 2007; Demas et al., 2007; Quintana et al., 2021; Soma et 195 
al., 2015). This seasonal switch is thought to be adaptive, tied to a need for territorial aggression 196 
in the non-breeding season, alongside high costs and limited benefits of testosterone outside of 197 
the breeding season (Wingfield et al., 2001). There is also some evidence that females – who, 198 
like a wintering animal, have low testosterone but may nonetheless experience selection for 199 
higher aggression – also facilitate aggression via mechanisms that do not necessarily require 200 
high levels of testosterone in circulation (Bentz et al., 2021; Duque-Wilckens and Trainor, 2017; 201 
Munley et al., 2018; Rosvall, 2013; Rosvall et al., 2020). 202 

These examples suggest that the adaptive value of the mechanism itself is important. 203 
These examples also show that different mechanisms can facilitate a particular behavior even 204 
within a single species, prompting the question as to whether similar ideas apply over 205 
macroevolutionary time. 206 

With these concepts in mind, I envision at least three hypotheses in need of further testing. 207 
These hypotheses are illustrated via cartoon (Figure 1) in which evolution (depicted as Darwin) 208 
has different sets of building blocks to choose from in a bag, as he ‘decides’ how evolution 209 
should proceed (none of this is conscious, of course; this is a metaphor). Each building block is 210 
a unique endocrine parameter in the tangled bank of mechanisms described in §2 – a particular 211 
receptor, co-factor, enzyme, etc. Each building block has the potential to affect behavioral 212 
expression.  213 

In one option (A), there may be many different building blocks, and their probability of use 214 
in each independent evolutionary origin of a trait may be random – yellow blocks are just as 215 
likely as any other color in the set of blocks in Darwin’s bag. By example, we might see that 216 
paternal care is associated with a change in oxytocin receptor expression in one lineage, and a 217 
change in vasopressin peptide release in another. With this option, if parallelism does occur, it 218 
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essentially stems from the fact that even rare, neutral events can occur repeatedly given 219 
enough time, and they may go to fixation in finite populations (i.e. neutral theory, Kimura, 1983). 220 
Next (B), some mechanisms may be more likely to occur – yellow is more frequent in the pool of 221 
building blocks, but it is no more fit than other building blocks. Adding to this toy example, 222 
oxytocin may be more commonly associated with paternal care if the OTXR gene is hyper-223 
mutable, compared to other possible endocrine mechanisms that also affect paternal care. 224 
Finally (C), one mechanism may be better (or less likely to be deleterious); now, yellow is a 225 
superior building block. Here, parallelism may occur from the adaptive value of this particular 226 
mechanistic vs. others.  227 

 228 
FIGURE 1. Colors denote different building blocks in the endocrine molecular architecture of 229 
behavior. Evolution, depicted by Darwin, ‘chooses’ building blocks from the bag of possible 230 
blocks. Options A, B, and C show different sets of building blocks within the bag of possibilities. 231 
Note how yellow blocks switch from equally probable in (A), to more probable but equally fit in 232 
(B), to equally probable but more fit in (C). Illustration by Dr. Tamanash Bhattacharya 233 

 234 
There are many methods for evaluating parallelism, building from past work (reviewed in 235 

Arendt and Reznick, 2008; Blount et al., 2018; Bolnick et al., 2018; Rosenblum et al., 2014; 236 
Waters and McCulloch, 2021). We can quantify rates of molecular evolution at the gene level, 237 
say, in coding regions that affect enzyme efficiency or receptor binding, perhaps finding certain 238 
genes that consistently show signs of positive selection, typically measured as the rate of non-239 
synonymous vs. synonymous nucleotide substitutions. We can also examine concordance (or, 240 
similarity) in gene expression, receptor abundance, or any other building block listed above, 241 
looking among lineages to see if the same components of endocrine systems are up- or down-242 
regulated in relation to a particular behavior. We can scale these questions to higher levels of 243 
complexity, asking whether the same functions or pathways repeatedly co-occur with macro-244 
evolutionary patterning in a particular behavioral trait. We can also compare across these 245 
mechanistic levels, asking whether parallelism is more likely to occur at the level of the amino 246 
acid, gene, or pathway (Rosenblum et al., 2014). In endocrine systems, we might further 247 
categorize building blocks into their functional role, such as receptor vs. enzyme, or HPA vs. 248 
HPG.  249 
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4. Evidence on mechanistic parallelism, non-parallelism, and the gray 250 

areas in between 251 
This section reviews select examples in behavioral evolution, focusing on the degree of 252 
mechanistic parallelism underlying similar changes seen in different lineages. Examples are 253 
grouped by approach, first covering case studies using (a) a limited set of candidate 254 
mechanisms or (b) whole genome analyses; these first two sets do not use phylogenetic 255 
methods. Next, I discuss related research that more explicitly considers evolutionary history, 256 
including (c) phylogenetic comparative analyses and (d) experimental evolutionary approaches. 257 
Via this overview, my goal is not to understand the evolution of all endocrine systems per se, 258 
but rather, to understand whether, how, and eventually why, certain endocrine parameters are 259 
re-used in behavioral evolution across the tree of life. 260 
a. Case studies 261 
Paired comparisons of species that differ in their life history or ecology can tell us about how 262 
convergence or divergence proceeded in the past (Goymann and Schwabl, 2021). These case 263 
studies provide some evidence of mechanistic parallelism; however, they also demonstrate 264 
interspecific variation in endocrine systems, which we now know to be widespread.  265 

It is clear, for example, that experimental treatment with a particular hormone can have 266 
different effects in different species (Bonier and Cox, 2020; Cox et al., 2009; Stiver and Alonzo, 267 
2009). Behaviorally, androgens have opposing effects on communication signals in different 268 
weakly electric fish species (Smith, 2013), and supplemental testosterone inhibits parental care 269 
in some songbirds, but not in others (Lynn, 2008). With caveats for methodological variation 270 
such as dosage, these interspecific differences suggest that some components of the 271 
androgenic signaling system diverge over evolutionary time. Species do appear to share some 272 
commonalities in the gene networks that are activated by supplemental testosterone; these 273 
similarities are more striking at the pathway level, for instance with testosterone affecting 274 
pathways related to innate immunity, but different genes in different species (Newhouse and 275 
Vernasco, 2020; Peterson et al., 2013; van Nas et al., 2009). 276 

Sex steroid hormone receptors appear to be commonly-used building blocks of sexual and 277 
social behaviors. Several studies link individual differences in aggression to variation in sex 278 
steroid sensitivity or metabolism in the brain (Goodson et al., 2012; Horton et al., 2014; Rosvall 279 
et al., 2012), suggesting there is standing variation upon which selection might act to bring 280 
about changes in behavior over evolutionary time. Across the songbird radiation, we know that 281 
the avian song system has diverged in its neural expression of androgen receptor and even 282 
more so estrogen receptor (Frankl-Vilches and Gahr, 2018), potentially accounting for some 283 
species-specific variation in behavior (Brenowitz and Beecher, 2005; Gahr, 2014). Androgen 284 
receptor mRNA abundance is also high in the longus colli ventralis (neck) muscle in two 285 
woodpecker species compared to a different species that does not use this neck muscle in 286 
sexually selected communication (Schuppe and Fuxjager, 2019). More analyses are needed to 287 
understand how sex steroid receptors are repeatedly used by evolution to enhance sexually 288 
selected traits (see also §4c). Examples from elaborate or acrobatic displays suggests that this 289 
may be true for androgen receptor (Fuxjager et al., 2022; Fuxjager et al., 2013; Schlinger et al., 290 
2013), though evidence on the avian song system also reveals inter-specific variation in the 291 
molecular architecture connecting hormone receptors to behavior (Frankl-Vilches and Gahr, 292 
2018). 293 

Case studies on invasion dynamics and urban adaptation provide another set of replicated 294 
selective pressures, and several such examples point to the HPA axis as one source of 295 
repeatedly used building blocks for boldness, aggression, or other proactive behavioral traits. 296 



8 
 

Several studies report higher corticosterone secretion, at baseline or in response to a 297 
standardized stressor, in (i) invasive species (Brown et al., 2015; Liebl and Martin, 2012; Martin 298 
et al., 2017), (ii) populations that have moved into more urban areas (Atwell et al., 2012; 299 
Ouyang et al., 2019), and (iii) other naturally occurring range expansions (Duckworth and 300 
Badyaev, 2007; Dunlap and Wingfield, 1995; Walker et al., 2015). However, many other studies 301 
report the opposite or no difference (Fokidis et al., 2011; French et al., 2008), despite many 302 
examples of convergent behavioral traits. These mixed results were highlighted recently in a 303 
large comparative analysis on birds and reptiles, showing that, at least in the context of urban 304 
adaptation, changes in corticosterone are not predictable (Injaian et al., 2020). Of course, as 305 
populations diverge into species, we also may see differences in receptor expression (Liebl and 306 
Martin, 2013; Rosvall et al., 2016a), steroidogenic enzymes (Rosvall et al., 2016b), and 307 
negative feedback (Zimmer et al., 2020), indicating that changes among multiple building blocks 308 
can occur. However, we do not yet have a good understanding of whether one or another 309 
endocrine building block contributes consistently to behavioral variation each time populations 310 
diverge in response to colonization of new habitats.  311 

Interspecific variation in social grouping and mating systems is also thoroughly researched 312 
for its neuroendocrine mechanisms, especially building blocks in the vasopressin/oxytocin family 313 
of genes (Kelly and Ophir, 2015; Potticary and Duckworth, 2021; Soares et al., 2019). For 314 
example, looking at areas of the social behavior network in the brains of Estrilid finches, 315 
Goodson and colleagues showed that highly gregarious species have more vasotocin 316 
immunoreactive neurons compared to territorial species, and these neurons are activated by 317 
affiliative stimuli (Goodson and Wang, 2006). Comparable findings were also found among 318 
other groups of birds, rodents, and frogs (Anacker and Beery, 2013; Fischer et al., 2019; 319 
Goodson et al., 2012; Turner et al., 2010; Young et al., 1998). Yet in the details, these examples 320 
reveal multiple paths to a particular behavioral phenotype (e.g. change receptor expression in 321 
one group, change peptide signaling in another).  322 

b. Omics case studies 323 
Massively parallel sequencing and gene expression analyses are useful for integrating 324 
mechanistic approaches into a hypothesis-driven framework (Travisano and Shaw, 2013; Zuk 325 
and Balenger, 2014). Qualitatively, many early transcriptomic analyses of non-model systems 326 
pointed to aspects of neuroendocrine systems as repeatedly used building blocks of behavioral 327 
variation (reviewed in Harris and Hofmann, 2014; Rittschof and Robinson, 2016).  328 

Quantitatively, this bears out in pairs of comparisons that ask whether the genomic 329 
signatures of a behavioral trait in one species are concordant in another species. For example, 330 
in colonies of honeybees, some individuals show muted behavioral responses to otherwise 331 
provocative stimuli; the brains of these socially unresponsive bees share transcriptomic 332 
similarities to humans diagnosed with autism-spectrum disorder (ASD), a set of phenotypes also 333 
characterized by social avoidance (Shpigler et al., 2017). This suggests that ASD-like behaviors 334 
either share a deeply conserved genomic signature, or they arose independently via parallel 335 
genomic mechanisms.  336 

Many studies have measured gene activity to understand how social behavior affects the 337 
brain. Drnevich et al. (2012) combined several of these in songbirds and found marked 338 
heterogeneity in the neurogenomic response to each of six different experiments in which birds 339 
heard or interacted with a conspecific. With caveats for the brain areas and developmental 340 
stages across the six experiments, these findings suggest that different mechanisms respond to 341 
similar behavioral stimuli in different species. Using a broader taxonomic scale and RNAseq, 342 
two later analyses measured gene expression in bees, fish, and mice (Rittschof et al., 2014; 343 
Saul et al., 2019), and reported widespread similarities in the brain’s response to social 344 
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challenge across these distantly related taxa. Notably, these similarities operate at the pathway 345 
level; the specific genes that respond to social challenges and the time course of those 346 
responses are not fully parallel. In addition, these analyses do not formally use a phylogenetic 347 
framework, leaving uncertainty as to whether similarities stem from convergence or shared use 348 
of ancestral patterns. 349 
c. Phylogenetic comparative data 350 
Over the past 15 years, explicitly phylogenetic comparisons have vastly expanded data on 351 
mechanistic parallelism in phenotypic evolution. In animals, well known morphological examples 352 
include repeated evolutionary changes in body size, which are associated with different genetic 353 
loci (Wilches et al., 2021) or convergent evolutionary changes in pigmentation that are 354 
associated with parallel changes in melanocortin signaling (Hubbard et al., 2010). Physiological 355 
traits also show some mechanistic parallelism, including salinity tolerance (Reid et al., 2016) 356 
and altitude tolerance (Lu et al., 2020; Witt and Huerta-Sanchez, 2019), although the degree of 357 
conservation varies among taxonomic groups and the level at which sameness is considered, 358 
with several examples of lineage-specific changes at the gene level.  359 

Quantitative phylogenetic approaches have been historically neglected in animal behavior 360 
(Price et al., 2011), but this is changing rapidly (e.g. Antonson et al., 2020; Cowen et al., 2020; 361 
Mason et al., 2017; Miles et al., 2020; Odom et al., 2014). Similarly, behavioral endocrinology 362 
was slower to adopt formal phylogenetic analyses (but see Garamszegi et al., 2005; 363 
Garamszegi et al., 2008) though this too has shifted, particularly in the last few years following 364 
the publication of HormoneBase (Vitousek et al., 2018). Despite these gains, we are still in the 365 
early days of robust phylogenetic analyses that co-consider the evolution of endocrine systems 366 
alongside behavior. 367 

Most phylogenetic research on the molecular mechanisms that facilitate behavioral evolution 368 
has focused on a few discrete or extreme behavior differences, such as loss of flight (Pan et al., 369 
2019) or transitions to subterranean living (Davies et al., 2018). Among the most interesting 370 
examples is a comparative analysis of marine adaptation in three mammalian lineages (walrus, 371 
manatee, cetacean), vs. 17 non-marine lineages (Foote et al., 2015). Results highlight 44 372 
parallel non-synonymous amino acid substitutions in the three marine lineages, and nearly all 373 
stemmed from the exact same nucleotide change. Roughly a third of these substitutions also 374 
showed evidence of positive selection (i.e. non-synonymous substitutions) in at least one 375 
marine lineage. However, this incredible case of phenotypic and molecular convergence is not 376 
the full story – the authors identified even higher rates of molecular convergence among the 377 
non-marine sister lineages (cow, dog, elephant). Thus, parallel molecular evolution may be 378 
common as a neutral background process. A subsequent paper also showed that adding more 379 
species to this analysis erodes support for parallelism, eliminating ~80% of the previously 380 
identified parallel substitutions (Thomas et al., 2017). These complexities highlight a number of 381 
methodological considerations, such as the null hypotheses against which we test mechanistic 382 
parallelism, a topic I will unpack further below (see §5a).  383 

Eusociality has also arisen independently at least 10 times in bees, wasps, ants, and 384 
termites. Some studies find eusociality-associated similarities in sequence evolution (Woodard 385 
et al., 2011) and caste-related brain gene expression (Toth et al., 2010), providing evidence of 386 
mechanistic parallelism. However, most evidence suggests that the molecular toolkit for 387 
eusociality is ‘loose’ (Berens et al., 2015), with lineage-specific solutions at the gene level 388 
coupled and greater similarities at higher levels of organization (Rehan and Toth, 2015; 389 
Woodard et al., 2011). These conclusions apply within the Hymenoptera (Kapheim et al., 2015) 390 
and Isoptera (termites) (Harrison et al., 2018). Both groups show signatures of positive selection 391 
on genes related to chemoreception, but they differ in the specific class of receptors that are 392 
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affected. Although some of these analyses point to endocrine-related building blocks of 393 
eusociality, their utility for questions in evolutionary endocrinology is more related to the sheer 394 
complexity of these systems. Like endocrine systems, they involve many interacting and 395 
redundant parts, each of which has pleiotropic and epistatic effects that may shape exactly how 396 
each building block is used over evolutionary time.  397 

Focused broadly on animal communication, the data thus far point to high degrees of 398 
mechanistic parallelism across different lineages. Hawaiian swordtail crickets have diverged in 399 
their mating song, and Blankers et al. (2019) found striking parallel molecular evolution involving 400 
the same regions of the genome across three separate pairs of Laupala species that differ in 401 
song pulse rate. Electric communication has evolved in three separate lineages of fishes, which 402 
show convergent amino acid substitutions (Wang and Yang, 2021) and similar transcriptomic 403 
profiles at the pathway level, with fewer similarities at the gene level (Liu et al., 2019). Vocal 404 
learning has also arisen independently in several mammalian and avian lineages (Petkov and 405 
Jarvis, 2012). When four such lineages were compared (humans, songbirds, parrots, and 406 
hummingbirds), their brains showed significant similarities in transcriptional profiles (Pfenning et 407 
al., 2014). Here, the details include building blocks related to amine signaling, including MAOB, 408 
DRD1, and HTR1B.  409 

Analyses on other aspects of social behavior, including mating and parenting, provide mixed 410 
support for mechanistic parallelism. On the one hand, asexual reproduction shows marked 411 
similarity in its transcriptomic profiles across five independent origins in stick insects (Timema 412 
spp) (Parker et al., 2019). On the other hand, a comparative analysis of four pairs of cichlid 413 
species found no consistent relationship between cooperative breeding and mRNA expression 414 
for five key genes in the oxytocin-vasopressin family (isotocin, vasotocin, and receptors) 415 
(O'Connor et al., 2015). In other words, different species arrive at cooperative breeding via 416 
different endocrine-molecular mechanisms, albeit all of those related to nonapeptide signaling. 417 
Somewhere in the middle between non-parallelism and parallelism is a comparative analysis on 418 
the evolution of monogamy across multiple, deeply diverged vertebrate lineages (Young et al., 419 
2019). Among ~2000 orthologous gene groups expressed in all 5 species pairs, about 6% 420 
shared consistent expression patterns in the brains of monogamous vs. non-monogamous 421 
species. This is statistically more than expected by chance, thought it bears repeating that tens 422 
of thousands of genes were not expressed in parallel among monogamous lineages. In addition, 423 
the common building blocks of social behavior – such as biogenic amines, sex steroids, 424 
glucocorticoids, and related receptors –  were not present in this shared signature of 425 
monogamy, and targeted analyses of these neuroendocrine parameters show limited 426 
concordance in their expression among the monogamous vs. non-monogamous species pairs.  427 

Other phylogenetic analyses focused on androgen receptor do find support for the 428 
hypothesis that neuroendocrine parameters may be hotspots of behavioral evolution. For 429 
instance, androgen receptor is more highly expressed in the forelimb muscles of frogs that have 430 
independently derived foot flagging as a sexually selected display behavior (Anderson et al., 431 
2021). Androgen receptor expression in forelimb muscles also correlates with display frequency 432 
in anoles (Johnson et al., 2018), and this gene is upregulated in association with the wing-snap 433 
display in manakins (Pease et al., 2022). 434 

These diverse phylogenetic analyses provide some evidence that genomic parallelism 435 
underlies behavioral convergence, though parallelism is more marked at higher levels of 436 
complexity. Critically, there are gray areas in our consideration of parallel mechanistic evolution. 437 
If only a tiny portion of the genome shows parallel evolution, is that parallelism? Functional 438 
experimentation with candidate building blocks will be key to understanding whether even small 439 
degrees of parallelism matter, behaviorally. More importantly, classical differential expression 440 
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analyses may not appropriately estimate null models of background drift, and phylogenetically 441 
informed analyses are a key advance (see Pease et al., 2022). Moving forward, I urge future 442 
research to investigate cases of non-parallelism and why they occur, in addition to small but 443 
statistically significant cases of parallelism. 444 
d. Experimental evolution 445 
Artificial selection provides an especially powerful tool for identifying the scope of changes that 446 
could occur over evolutionary time (reviewed in Garland et al., 2016). These experiments 447 
typically mirror the process of divergence because they begin with the same starting population. 448 
Despite this non-independence in ancestral states, these experiments have been useful in 449 
drawing inferences on the mechanisms that facilitate the evolution of complex traits like 450 
behavior. For instance, in great tits (Parus major), females from lines selected for a bolder (fast) 451 
coping style exhibited more robust elevation of estradiol in response to a GnRH challenge (Caro 452 
et al., 2019), suggesting that one or more components of the HPG axis have diverged alongside 453 
selection for boldness. These bold vs. shy lines do not differ in glucocorticoid responses to a 454 
novel object (Baugh et al., 2017), in contrast to artificial selection on bank voles (Myodes 455 
glareolus), which leads to muted elevation of corticosterone in a line selected for predatory 456 
boldness (Lipowska et al., 2020). Artificial selection on aggression in mice involves changes in 457 
corticotropin-releasing hormone-binding protein (CRHBP) and in adrenergic receptors (D'Anna 458 
et al., 2008; Gammie et al., 2006; Scotti et al., 2011). Similarly in cattle, selective breeding for 459 
aggression is associated with changes in the promotor region of monoamine oxidase A (MAOA) 460 
(Eusebi et al., 2020) as well as differences in brain gene expression for DRD2, IGF2, BDNF, 461 
and CRHBP (Eusebi et al., 2021). Eusebi and colleagues also combine their analysis with a set 462 
of ~1700 genes previously linked with aggression in other species (Zhang-James et al., 2019). 463 
Across humans, rodents, foxes, cattle, and dogs, mechanistic parallelism was low: zero genes 464 
were associated with aggression in all contrasts, and fewer than 10% of genes appear in just 465 
two contrasts, most notably AVPR1A and MAOA. Via these examples, we see some 466 
commonalities in the endocrine building blocks that change alongside artificial selection on 467 
specific behavioral traits, but we also see differences and we do not yet know why. 468 

Replicated selection experiments allow us to take these inferences a step further, using an 469 
‘evolve and re-sequence’ (or, evolve and re-assay) approach, which is key to quantitative 470 
evaluation of mechanistic parallelism. Garland’s replicated selection lines for high levels of 471 
wheel-running in mice reveal some consistent endocrine differences, including plasma levels of 472 
adiponectin and corticosterone (Malisch et al., 2007; Vaanholt et al., 2007). In fruit flies, Dierick 473 
and Greenspan (2006) found several hundred differentially expressed genes between any 474 
paired comparison of lines selected for high aggression vs. control lines, but only 80 of these 475 
genes consistently differed in the same direction in replicate high vs. control lines. Also in 476 
Drosophila, Edwards et al. (2006) reported ~1500 differentially expressed genes that 477 
consistently differed in relation to selection on aggressiveness in flies. Notably, there were 478 
differences in the specific genes and the scope of parallelism in these two Drosophila 479 
experiments, suggesting some degree of non-parallelism, at least when the ancestral states are 480 
non-identical (i.e. different stock populations). Malki et al. (2014), working with three 481 
independently derived and artificially selected populations of mice found 70 genes were 482 
consistently differentially expressed in the brains of all three contrasts of high vs. low aggression 483 
mice; however each replicate also had its own unique set of aggression-related genes. Only 7 of 484 
these genes (~10%) were also differentially expressed in the brains of fish exposed to 485 
aggressive experiences (Malki et al., 2016), suggesting that there may be some building blocks 486 
of behavior that are repeatedly used, but genetic background, standing variation, and stochastic 487 
processes play a role in the degree of mechanistic parallelism (Robin et al., 2007).  488 
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Replicated domestication can also shed light on the mechanisms underlying behavioral 489 
convergence because domesticated animals often display diminished anxiety or aggression. 490 
Work in foxes and dogs indicates that serotonin receptors may be differentiated during 491 
domestication, though each independent case reports expression or sequence divergence in a 492 
different serotonin receptor (Akey et al., 2010; Bence et al., 2017; Kukekova et al., 2011; Li et 493 
al., 2013; Wang et al., 2018). Hou et al. (2020) extends similar comparisons to the domesticated 494 
vs. wild chicken, cat, cattle, horse, and rabbit, finding only 26 genes that were concordantly 495 
expressed among any two pairs of contrasts. At higher levels of complexity, though, mechanistic 496 
similarities emerge. For instance, 7 pathways involving neurotransmission were enriched in 497 
domesticated species, but each lineage varied in exactly how that was achieved (i.e. 498 
endocannabinoids vs. catecholamines). Again, mechanistic parallelism appears stronger at the 499 
pathway or functional levels than at the gene level. 500 

5. Next steps in applying this framework to evolutionary endocrinology 501 

There is intuitive appeal to the hypothesis that mechanisms of behavior are tailored to specific 502 
life history and ecological contexts, just as there is appeal to the hypothesis that nature 503 
repeatedly uses the same, or parallel, mechanisms in replicated cases of phenotypic evolution. 504 
The historically separate study of function and mechanism in animal behavior has limited 505 
progress on these hypotheses, though there is fast progress on this integration in behavioral 506 
endocrinology, as summarized above. As the discipline moves towards larger and more 507 
quantitative analyses in the age of big data, we are well poised to unveil further insights on the 508 
degree of sameness in behavioral evolution. In this final section, I propose greater attention to 509 
asking: If there is mechanistic parallelism, then why? And if not, why not? 510 

a. Robust testing of adaptive hypotheses  511 
Modern behavioral ecology was born from early insights that behavior can evolve – that life 512 
history and ecological factors shape behavioral diversity among species (Birkhead and 513 
Monaghan, 2010; Cullen, 1957; Tinbergen, 1963), a perspective that is also woven through the 514 
incredible successes of early evolutionary endocrinology (Wingfield, 2018; Zera et al., 2007). 515 
Now is an exciting time to learn more about how this same ‘ecology of selection’ shapes what 516 
lies beneath the skin. Summarized above, it is clear that the building blocks of behavior can 517 
have some elements of parallelism across replicated evolutionary events. However, support for 518 
parallelism is variable among studies, at least some of which relates to the level of complexity at 519 
which we consider sameness (i.e. pathway vs. gene level). Now is a good time to extend these 520 
areas of inquiry, asking: why exactly do we see mechanism A in one lineage and mechanism B 521 
in another?  522 

Key to these efforts will be devising adaptive hypotheses and testing them against 523 
alternatives. Why do we see the same mechanisms used repeatedly for some behaviors or for 524 
some species, but not for other behaviors or other species? Is there something adaptive about 525 
one particular mechanism in a particular context? In an intriguing example related to hypoxia, 526 
Natarajan et al. (2018) synthesized different intermediary forms of hemoglobin, asking how each 527 
affected oxygen binding affinity. One variant was superior, suggesting parallel molecular 528 
evolution would be adaptive; however, that variant does not occur in wild geese adapted to 529 
high-altitudes (Natarajan et al., 2015). This example is analogous to using pharmacological 530 
experimentation to understand functional effects of one or another endocrine building block, and 531 
asking whether those experimental manipulations mirror what occurs during natural phenotypic 532 
differentiation in the wild. For instance, Ketterson and Nolan’s now classic work on testosterone 533 
in juncos showed us why testosterone levels are not higher in nature (Gerlach and Ketterson, 534 
2013; Reed et al., 2006). Comparable experiments manipulating a range of endocrine-molecular 535 
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building blocks will allow us to better see when and why experimental and natural variation 536 
align. In essence, this will formally test hypotheses A, B, and C from Figure 1, ultimately 537 
shedding light on if, then, and why selection ‘cares’ exactly how particular traits are built. 538 

We already have some evidence that the distribution of hormone receptors is less 539 
evolutionarily labile than ligands (O’Connell and Hofmann, 2012). Likewise, there is a rich 540 
history on the molecular evolution of steroid receptors and steroidogenic enzymes (Baker, 2019; 541 
Thornton, 2001), but these analyses have not yet been broadly layered atop behavioral 542 
variation. Are metabolic enzymes more or less likely to predict behavioral variation than 543 
receptors or co-factors? To what degree are the components of sex steroid signaling systems 544 
more or less likely to undergo parallel evolution, compared to say, nonapeptide systems? 545 
Answering these questions will help us to resolve which building blocks (if any) are 546 
overrepresented during phenotypic evolution and why (see Figure 1). I imagine, as others have 547 
noted before (see §3), that some mechanisms may better generate adaptive pleiotropy or better 548 
minimize maladaptive pleiotropy. This is an empirical question we can address. 549 

b. Clarifying neutral expectations 550 
It is also critical that we better account for the background occurrence of neutral molecular 551 
evolution, even without layering on hypotheses of adaptation. This will require revised statistical 552 
tools, large phylogenetic comparisons of multiple endocrine parameters, and appropriate null 553 
models, a potentially tall order in a comparative, largely field-based discipline. Carefully devised 554 
species comparisons can help us to achieve this goal, clarifying null expectations on 555 
mechanistic parallelism (see discussion of Foote et al., 2015, above). Evolutionary distance also 556 
may shape these null hypotheses. Time and drift may lead to the accumulation of lineage-557 
specific mechanisms, or alternatively, they also may allow lineages to acquire the same 558 
mechanistic solution, the latter of which finds some support in both guppies (Fischer et al., 559 
2021b; Ghalambor et al., 2015) and stickleback (Kingman et al., 2021). In addition, the number 560 
of building blocks we analyze is related to the probability of finding parallelism (Conte et al., 561 
2012). Therefore, evaluation of specific, functional candidates may be an important step 562 
towards understanding the scope of parallelism (Marcovitz et al., 2019). Though there are 563 
certainly undiscovered mechanisms that will eventually warrant inclusion, endocrinology is well 564 
positioned to remain focused on a core set of biologically relevant candidates, informed by past 565 
experimental knowledge on the building blocks that alter behavioral expression. 566 

Sources of variation also shape inferences on mechanistic parallelism in a number of ways. 567 
Mutation across the genome is non-random (Storz, 2016), and we need more analyses on how 568 
this plays out across the diverse neuroendocrine building blocks of behavior if we are to robustly 569 
test deviations from this null. Standing variation is a related factor (Barrett and Schluter, 2008) 570 
because is not always clear whether: (i) there was pre-existing variation in the common 571 
ancestor that was later (independently) shaped by drift or selection; (ii) new mutations arose 572 
(independently) and were later shaped by natural selection; or (iii) lineages hybridized leading to 573 
parallelism via introgression (Lee and Coop, 2019; Waters and McCulloch, 2021). Evolutionary 574 
endocrinology can address these questions in new and interesting ways, integrating micro-575 
evolutionary questions on individual differences with comparative analyses that can evaluate 576 
how functional axes of behavior change over evolutionary time. Natural variation (within and 577 
among species) is ideally suited to explore these problems because it can tell us how evolution 578 
has proceeded when faced with an incredible array of options like what we see in 579 
neuroendocrine systems. 580 

This tangled bank adds one final complication: the pace of evolution is generally thought to 581 
be inversely related to complexity (Mauro and Ghalambor, 2020). In endocrine systems, though, 582 
there is support that hormones can both constrain or facilitate adaptive evolution (Hau, 2007; 583 
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Ketterson et al., 2009). For instance, a change in testosterone secretion may hasten evolution if 584 
testosterone’s pleiotropic effects change many different traits at once; however, if pleiotropy is 585 
costly, then the very same change may impede the pace of evolution, more so than say, a 586 
targeted change in androgen receptor in one tissue. Complexity also introduces the potential for 587 
redundancy and epistasis, which can reduce the potential for convergence (Zou and Zhang, 588 
2017). By example, a mutation that affects the final step of steroidogenesis may have limited 589 
phenotypic consequences unless it occurs alongside (or subsequent to) a change in earlier, 590 
rate-limited steps in steroidogenesis. Classic neuroendocrine experimentation may again help to 591 
resolve these unknowns as we see what combinations of mechanisms do or do not change 592 
behavior in repeatable ways across species. In doing so, we can better understand whether 593 
endocrine systems play any sort of unique role in behavioral evolution. 594 

6. Conclusion 595 
Evolutionary endocrinology is well poised to unveil the degree to which parallel mechanisms 596 

generate variation in behavior across scales. The field has already plunged deeply into the 597 
functional effects of hormones and how these processes vary within and among species. 598 
Continued synthesis with molecular ecology and use of nature’s diversity as a natural laboratory 599 
will be central as we move towards a functional understanding of behavioral mechanisms and 600 
their role in evolutionary processes. This is how we will disentangle the tangled bank.  601 
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