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Abstract
Spatial data are ubiquitous, massively collected, and widely used to support critical decision-
making in many societal domains, including public health (e.g., COVID-19 pandemic
control), agricultural crop monitoring, transportation, etc. While recent advances in machine
learning and deep learning offer new promising ways to mine such rich datasets (e.g., satel-
lite imagery, COVID statistics), spatial heterogeneity—an intrinsic characteristic embedded
in spatial data—poses a major challenge as data distributions or generative processes often
vary across space at different scales, with their spatial extents unknown. Recent studies (e.g.,
SVANN, spatial ensemble) targeting this difficult problem either require a known space-
partitioning as the input, or can only support very limited number of partitions or classes
(e.g., two) due to the decrease in training data size and the complexity of analysis. To address
these limitations, we propose a model-agnostic framework to automatically transform a deep
learning model into a spatial-heterogeneity-aware architecture, where the learning of arbi-
trary space partitionings is guided by a learning-engaged generalization of multivariate scan
statistic and parameters are shared based on spatial relationships. Moreover, we propose a
spatial moderator to generalize learned space partitionings to new test regions. Finally, we
extend the framework by integrating meta-learning-based training strategies into both spa-
tial transformation and moderation to enhance knowledge sharing and adaptation among
different processes. Experiment results on real-world datasets show that the framework can
effectively capture flexibly shaped heterogeneous footprints and substantially improve pre-
diction performances.
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1 Introduction

Spatial datasets are ubiquitous and collected at ever-growing scale, resolution, frequency
and variety. Common types of spatial data include satellite/UAV imagery, points-of-interest
(POI), GPS locations/trajectories, geo-tagged tweets, census data, maps (e.g., land cover,
crimes, traffic accidents, COVID statistics), and many more. These data are critical in a wide
range of critical applications, such as Earth observation (e.g., crop monitoring [1]), public
health (e.g., COVID-19 scenarios [2, 3]), public safety, transportation, etc.

While spatial datasets are both important and widely used, they have two intrinsic
properties—spatial autocorrelation and heterogeneity—that often undermine the traditional
independent and identical distribution (i.i.d.) assumption of data samples [4–7]. Spatial auto-
correlation violates the independence assumption as nearby data samples (e.g., landcover,
temperature,mobility) tend to share higher similarity. Spatial heterogeneity, on the other hand,
violates the identical distribution assumption as the data generative processes often vary over
space. Even more challenging, such differences in distributions may not be reflected by vari-
ations in observed features [6], and the spatial footprints of the generative processes could be
arbitrary in shape due to complex social and physical contexts. For example, in satellite-based
crop monitoring, relationships between observed spectral characteristics and crop types are
affected by many unobserved or hard-to-collect information such as each farmer’s adoption
of land management practices (e.g., tillage type, applications of phosphorous and pesticides,
etc.); these choices often depend on personal experience, planned crop rotation, and local
exchanges with other farmers. Similarly, in COVID human mobility projection, travel pat-
terns often differ across regions due to mixed differences in local policy and implementation,
social culture, events, community setting (e.g., rural, urban), etc. Unknown spatial footprints
of these heterogeneous processes pose significant challenges to applications beyond a very
local focus.

In related work (more in Sect. 6), the wide adoption of convolutional kernels [8, 9] in
deep learning architectures have explicitly filled the missing representation to capture spatial
autocorrelation (e.g., local connections and maintained spatial relationships between cells).
However, the complex spatial heterogeneity challenge has not been sufficiently addressed. In
a recent study, a spatial-variability aware neural network (SVANN) approach was developed
[10, 11]. SVANN mainly demonstrates the benefit (e.g., increase in accuracy) of separating
out training data subsets belonging to known different distributions, but it requires the spatial
footprints of heterogeneous processes to be known as an input, which is often unavailable in
real applications. Explicit spatial ensemble approaches aim to adaptively partition a dataset
[12, 13], but the algorithm and its variation are specifically designed for two-class classifi-
cation problems and only allow two partitions; both training and prediction are performed
separately for each partition. Outside recent literature on deep learning, a traditional approach
to handle spatial heterogeneity is geographically weighted regression (GWR) [14, 15]. How-
ever, GWR ismainly designed for inference and linear regression, and cannot handle complex
prediction tasks commonly addressed by deep learning. Most existing methods also require
dense training data across space to train models for individual partitions or locations. Finally,
they cannot be applied to other regions outside the spatial extent of the training data. As
emphasized in a recent PNAS article [6], spatial heterogeneity is a major gap to be filled for
the success of machine learning algorithms in broad applications involving spatial data.

To address the limitations and bridge the gap, we propose a model-agnostic Spatial
Transformation And modeRation framework with meta-learning (meta-STAR), which is an
extension of our conference paper [16]. Specifically, our contributions are:
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• We propose a spatial transformation approach to capture arbitrarily shaped footprints of
spatial heterogeneity at multiple scales during deep network training, and synchronously
transform the network into a new “spatialized” architecture. The transformation is guided
by a dynamic and learning-engaged generalization of multivariate scan statistic;

• We propose a spatial moderator to generalize the learned spatial patterns and transformed
network architecture from the original region to new test regions;

• We extend the STAR framework by integrating meta-learning-based training strategies
into both spatial transformation and moderation (meta-STAR) to enhance knowledge
sharing and adaptation among different processes;

• We implement the model-agnostic STAR and meta-STAR frameworks using both snap-
shot and time-series-based input network architectures (i.e., DNN and LSTM), and
present the statistically guided transformation module for both classification and regres-
sion tasks.

Through experiments on real world datasets, i.e., satellite-based crop monitoring and
COVID-19 human mobility projection, we show that the proposed framework can substan-
tially improvemodel performance, capture flexibly shaped spatial footprints of heterogeneous
processes, and can be effectively applied to prediction tasks in new test regions.Moreover, the
integration of meta-learning further improves the model performance with better adaptation.

The rest of the paper is organized as follows: Sect. 2 presents the formal problem defini-
tion; Sect. 3 summarizes the STAR framework in our conference paper [16]; Sect. 4 extends
STARwith the integration ofmeta-learning in both the spatial transformation andmoderation
processes; Sect. 5 shows the experiment results; and finally, Sect. 7 concludes the paper with
future work.

2 Problem formulation

The general problem is formulated as follows:
, Inputs:

– Geo-located feature X and label y in a spatial domain D;
– Spatial locations L of data samples;
– A deep learning model F selected for the task;
– A significance level α;

Outputs:

– A flexibly shaped space-partitioning scheme Dpart of D;
– A spatially transformed F : Fspatial on Dpart;

Objective: The goal is to improve solution for:

– Classification (e.g., precision, recall, F1-scores);
– Regression (e.g., MAE, RMSE).

As our spatial transformation and moderation framework aims to incorporate awareness
of spatial heterogeneity into a deep learning model selected by the user, input data to this
framework need to contain location information, which can be either explicitly recorded (e.g.,
POI visits; trajectories) or implicitly inferred (e.g., pixels in a satellite imagery). Inmany real-
world use cases, ground-truth labels (e.g., crop types) are collected through field surveys only
at certain sample locations (i.e., not a completemap), so location information also allows those
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labels to be matched onto the observed features (e.g., spectral bands in satellite imagery).
Based on the prediction task and data types, a user can specify a desired deep learning
model (e.g., DNN, LSTM, CNN) as an input. Using this as a base model, our framework
will simultaneously capture the spatial heterogeneity in the data via flexibly shaped space-
partitioning, and transform the base model into its spatial version. The significance level α

will be used to guide decisions during the transformation.

3 Network transformation andmoderation

3.1 Spatially heterogeneous processes

In this section, we first define basic concepts on spatial heterogeneity and then outline key
questions to address it.

Definition 1 (Spatial process�)A function� : X �→ y governing data generation in a spatial
region, which may involve observed and unobserved (or unknown) features as variables. The
process at a smaller/finer scale may be an aggregation of itself and processes at larger scales.

Definition 2 (Spatial heterogeneity) An intrinsic property of spatial data [4–7] stating that
data are generated by different spatial processes {�} across space. Spatial heterogeneity leads
to different data distributions in different regions.

While deep networks can function as universal approximators for data following iden-
tical distributions [17], spatial heterogeneity commonly existed in spatial data violates this
assumption (e.g., spatial data generated by two simple scalar functions y = x and y = −x
across space cannot be approximated by a single network). As a result, the heterogeneous pro-
cesses {�} will cause confusion on data distribution during training, and hamper prediction
performance and stability.

Moreover, another complicating factor we need to consider is the hierarchy of spatial
processes across scales and their corresponding heterogeneity. For example, higher-level
heterogeneity in the hierarchy may be caused by policies at larger scales, climate zones,
major geographical barriers (e.g., mountains), whereas lower-level processes may vary by
local policies, demographics, social/cultural contexts, and personal decisions. In addition,
the spatial footprints of these different processes may be arbitrary in shape. Fig. 1a, b shows
an example of mixtures of spatial processes at two different scales/levels, and this hierarchy
is formally defined in Definition 3.

Definition 3 (Spatial hierarchy of processes H) A multi-scale representation of spatial het-
erogeneity [18]. H represents the input spatial domain D as a tree; each node Hi

j ∈ H is a
partition ofD, where i denotes the level in the hierarchy, and j is the unique ID for each parti-
tion at level-i . Children of a partitionHi

j share the same lower-level processes (processes {�}
at levels i ′ < i). The processes {�} are homogeneous within leaf-nodes and heterogeneous
across leaf-nodes.

Based on the definitions and concepts, there are three key questions we need to address
to transform an input deep learning model F into a spatial-heterogeneity-aware Fspatial:

– What is a learning representation to utilize spatial relationships among data samples to
allow: (1) samples following heterogeneous processes to contribute to different models,
and (2) effective weight-sharing among models?
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Fig. 1 Spatial processes, hierarchy and network architecture

– How to adaptively learn the often arbitrarily shaped footprints of spatially heterogeneous
processes, which may contain a mixture of processes across multiple scales?

– How to generalize Fspatial and space-partitioning learned in one region to be effectively
used in other test regions?

In the following Sects. 3.2 to 3.4, we will address the questions with a representation
choice, a statistically guided spatial transformation of F , and a spatial moderator.

3.2 Representation choice: hierarchical multi-task learning

To handle spatial heterogeneity, the representation needs to be specified at both data and
deep network model levels. Fortunately, the spatial hierarchy defined in Definition 3 [18]
not only provides a natural way to represent spatial heterogeneity across scales, but also an
effective structure to hierarchically group deep network parameters for the training process.
To illustrate this, Fig. 1c shows an example of spatial hierarchyH, where each nodeHi

j ∈ H
can be considered as a spatial region with a spatial process �i

j ; here i is the level in the
hierarchy and j is a unique ID of a node at this level. Based on this hierarchical representation
of spatial partitions, Fig. 1d shows the deep network representation that synchronizes the
structure of H, where each unique path from the input to output has the same architecture
as the input deep network F . Using this representation, model parameters at each layer are
shared by all leaf nodes branched out from the layer. This means nodes that share more
common parent nodes in the spatial hierarchyH also share more common weights. Another
intuitive interpretation is that spatial partitions that share the same parentHi

j inherit the same

higher level spatial process �i
j . The learning at each leaf-node can be considered as a task

in this multi-task learning context.
For the hierarchy-network synchronization (Fig. 1), a final detail is the selection of the

layer, at which the following layers will be split into two parallel branches. To make this
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Fig. 2 Illustrative example of the spatial transformation framework with dynamic and learning-engaged MSS

more formal, we use an optional parameter β (β ≤ 1; default to 1/2) to denote the proportion
of the layers to split.

3.3 Statistically guided deep network transformation

While transforming an input network F into the hierarchical spatial representation Fspatial

is straightforward, the most critical task is to actually learn this spatial hierarchy in the first
place. We propose a statistically guided transformation algorithm to adaptively capture the
hierarchy H and the synchronized network architecture Fspatial.

Following the spatial hierarchical structure (Definition 3), the space-partitioning (and
network transformation) will propagate in a hierarchical bi-partitioning fashion, where at
each step, a partition or node Hi

j ∈ H at the current level will be split into two children

Hi+1
j1 and Hi+1

j2 with arbitrarily shaped spatial footprints. As shown in Fig. 2, this process is
governed and automated by spatial statistical tests on the following overarching hypotheses:
(1) Null hypothesis H0: The spatial process �i

j at nodeH
i
j is homogeneous (i.e., no need for

partitioning), and (2) Alternative hypothesis H1: �i
j is a mixture of heterogeneous spatial

processes.
Our transformation framework is a dynamic and learning-engaged generalization of the

multivariate scan statistic [19–21] as we will discuss over the next two sections.

3.3.1 Multivariate scan statistic (MSS)

MSS [19, 20] is a widely applied spatial statistical approach in event detection (e.g., disease
surveillance) [21]. It identifies if there exists a spatial regionwith a significantly higher rate of
generating incidents or cases of certain events (e.g., disease, crime) compared to the rest. To
better illustrate the formulation of MSS, denote ck,m and bk,m as the observed and expected
(baseline) number of cases or incidents of event m at spatial location sk , respectively; where
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m = 1, . . . , M , and the expectation bk,m can be calculated using the total number of cases
Cm of event m and the proportion of “base population” at location sk . For example, using
COVID-19 as the event, the “base population” can be the total number of tested people,
and the number of cases will cover those tested positive. Next, the null hypothesis H0 states
that the data generative process is homogeneous across the whole space (the expectation or
baseline bk,m is calculated under this hypothesis); and H1 states that there exists a region S
where the rate of generating instances of an event is qm times the expected rate under H0, i.e.,
the expectation in S is qm ·bk,m . As there exist a large number of spatial regions S, MSS finds
the most “divergent” region by maximizing the Poisson-based log likelihood ratio [20]:

S∗ = argmax
S

�mss(S) = argmax
S

log
Likelihood(H1, S)

Likelihood(H0)

= argmax
S

log
∏

sk∈S

M∏

m=1

Pr(ck,m ∼ Poisson(qm · bk,m))

Pr(ck,m ∼ Poisson(bk,m))

(1)

For each specific candidate region S, qm is estimated by maximizing Likelihood(H1, S),
yielding:

S∗ = argmax
S

M∑

m=1

(
Cm,S · log

(
Cm,S

Bm,S

)
+ Bm,S − Cm,S

)
(2)

where Cm,S = ∑
sk∈S ck,m ; Bm,S = ∑

sk∈S bk,m ; qm is replaced by its maximum likelihood

estimate: max{Cm,S
Bm,S

, 1}.
In MSS, after S∗ is identified from the observed dataset, it evaluates the statistical signif-

icance of S∗ through Monte Carlo estimation with T trials (e.g., 999): MC1, . . . , MCT . In
each trial MCt , a simulation data is generated using H0, and the optimal S∗

t and its score
Likelihood(H1,S∗

t )

Likelihood(H0)
are extracted from it. Finally, given an input significance level α, S∗ is sig-

nificant (i.e., the data generative process is heterogeneous) if its score Likelihood(H1,S∗)
Likelihood(H0)

is in

the top α portion of the optimal scores S∗ ∪ {S∗
t | t = 1, . . . , T }. The enumeration of region

candidates S will be discussed later.

3.3.2 A dynamic and learning-engaged generalization of MSS (DL-MSS)

There are three gaps in integrating MSS into the spatial-heterogeneity-aware deep learning
transformation process: (1) Data compatibility: Input data to a deep learning model are

featuresX ∈ R
N×d (using 1D data samples as an example) and labels y ∈ Z

N (orRN ), which
are not directly compatible with MSS inputs (e.g., observed and expected cases (ck,m, bk,m)

at a location sk); (2) Significance in action: In MSS, the statistical test is performed using
Monte Carlo estimation, which is more “descriptive” about the past or presence. However, we
are more interested in “futuristic” impact of a spatial pattern S∗, i.e., our real goal is to know
if the partitioning based on the pattern can truly make a statistically significant improvement
on the learning; and (3) Dynamics of learning: As the complex relationships between X and
y are not known in input data (unlike MSS), footprints of heterogeneous spatial processes
{�} need to be dynamically captured as new partitions inH are created and new parameters
are learned.

We propose a Dynamic and Learning-engagedMSS (DL-MSS) to bridge the gaps through
three phases.
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DL-MSS Phase-1: Prediction error distribution as a proxy to heterogeneous processes �.
To transform input features X and labels y to a “observation vs. expectation” distribution as
needed by MSS, we use the spatial distribution of prediction errors as a proxy to the spatial
processes. Here we will use classification as an example to illustrate the modeling and the
regression variation will be discussed in Sect. 3.3.5.

There are two main reasons of using error distribution as the proxy for spatial processes:
(1) If all data belonging to a partition Hi

j ∈ H are generated by a homogeneous spatial

process �i
j , we expect the error distribution for each class—that are predicted by a single

model at node Hi
j—to followa homogeneous distribution aswell.Otherwise, errors following

spatially heterogeneous distributions would indicate that the data generative process �i
j is

heterogeneous (i.e., X �→ y are different across locations within partition Hi
j ); and (2) The

use of prediction errors enables the use of deep learners to generate statistics (MSS inputs)
to describe processes � : X �→ y, which are otherwise unavailable or hidden from the input
data.

Denote ŷk,m as the predicted labels for samples with class m (i.e., true labels are m) at
spatial location sk (e.g., a cell in a grid-partitioning of space). The number of misclassified
samples of class m at sk is then errk,m = |ŷk,m 
= m|. Further, denote nk,m as the number
of samples of class m at location sk ; and ERRm and Nm as the number of misclassified and
all samples of class m in the entire space. Using nk,m as the “base population”, the expected
number of misclassified samples at location sk is then E(errk,m) = ERRm · nk,m

Nm
. With this

modeling, the error distribution across space can be now characterized by MSS by replacing
ck,m in Eq. (1) with errk,m and bk,m with E(errk,m). In other words, we are trying to find a
spatial region S that has the most divergent error distribution from the rest of the space.

The optimal solution S∗ can still be given by Eq. (2), and a worth-mentioning property
is that the multivariate likelihood ratio in Eq. (2) automatically adjusts for sample size in a
spatial region S, improving the flexibility of the approach.

Once the optimal S∗ is identified, the current node Hi
j will be temporarily split into two

children Hi+1
j1 and Hi+1

j2 , where one child corresponds to S∗ and the other for the rest of the

space inHi
j . The temporary split will only be implemented inH if it passes the significance

test in the next phase.
DL-MSS Phase-2: Active significance testing with learning. As described in Sect. 3.3.1,

MSS performs significance testing via expensive Monte Carlo simulation. More importantly,
the result is by design “descriptive”, meaning it only intends to tell if the error distribution
in S∗ differs from the rest for “the current H-node and model”.

As our goal is to know whether a node-split suggested by Phase-1 really partitions the

current�i
j : X �→ y into two distinct processes�i+1

j1 and�i+1
j2 that lead to a statistically sig-

nificant improvement on learning, inDL-MSS,we change theMonte-Carlo-based descriptive
test to a learning-engaged active test. Denote �i

j as deep network parameters for partition

Hi
j ∈ H; note that �i

j shares part of the parameters with other partitions having common
parents (Sect. 3.2). DL-MSS carries out two sets of learning-engaged experiments to prepare
for the statistical test:

– Split scenario Using the temporary split (Hi
j → (Hi+1

j1 ,Hi+1
j2 )) from Phase-1, DL-MSS

trains their network parameters (�i+1
j1 ,�i+1

j2 ) separately using training samples from
the two partitions, evaluates the element-wise loss separately on validation samples, and
concatenates the two sets of loss to losssplit ∈ R

n , where n is the number of validation
samples in Hi

j .
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– Base scenarioDL-MSS trains parameters�i
j for the base node (unsplit) with all training

samples from the node together, and evaluates the element-wise loss lossbase ∈ R
n on

validation samples. The order of validation samples are kept the same as in the split
scenario. In addition, we also output loss′

base, which is the loss before the extra training
is performed here (to get lossbase).

Then, DL-MSS performs significance testing using lossbase and losssplit as the observed
measurements of learning performance on the samples. As both lossbase and losssplit refer
to the same set of samples, evaluation of their statistical difference needs to be done using
dependent statistical tests to adjust for “same-group” comparisons. Specifically, we use the
upper-tailed dependent T-test [18], where lossbase and losssplit are considered as the scores
“before” and “after” the split, and we are only interested in the case where the performance
improves. The test statistic is then:

diff = μ(losssplit − lossbase)

σ (losssplit − lossbase) · (DF + 1)− 1
2

(3)

where μ(·) and σ(·) are the mean and standard deviation, DF = n − 1 is the degree of
freedom.

The significance of diff can be tested directly using standard upper-tailed T-test table with
DF and significance level α. In addition, to improve the robustness of the testing, we add
another effect size test to evaluate the size of improvement:

es = μ(losssplit − lossbase)

μ(lossbase − loss′base)
(4)

Here the denominator measures the improvement achieved purely by the additional training
itself, whereas the numerator measures the extra improvement gained from the node split. In
our implementation, the threshold on es is defaulted to 1.

DL-MSS Phase-3: MSS in a dynamic and learning-engaged spatial hierarchy H. The
original MSS is more of a run-and-done algorithm that aims to detect all heterogeneous
regions directly on the input dataset. In other words, it assumes all heterogeneous processes
in the current data are readily detectable. However, in our problem, although the underlying
spatial heterogeneity is fixed in input dataX and y, delineation of the heterogeneous footprints
needs to: (1) engage learning so that the processes � : X �→ y become observable (e.g., via
the error distribution); and (2) follow the dynamic construction process of the hierarchy H,
because parameters learned at H-nodes needs to be dynamically refined as new nodes are
created to gradually capture heterogeneity at finer scales.

Thus, to capture the spatial heterogeneity in a hierarchical manner, DL-MSS performs the
first two phases as a sub-routine at new nodes added toH. If a node-split is determined to be
significant, theDL-MSSwill further expand that branch ofH; otherwise, DL-MSS terminates
the exploration at the node and mark it as a leaf-node with a homogeneous process.

3.3.3 Computation and implementation

So far we have outlined the three phases of DL-MSS. From a computational perspective,
the remaining key question is how to efficiently enumerate candidate regions {S} in order to
identify S∗ ∈ {S} at each node throughout the construction of H as well as its synchronized
network architecture Fspatial.

First, for general input datasets with location information (L defined in Sect. 2), we use a
g1 × g2 grid G to represent the space at each node inH. The resolution of the grid gradually
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increases as the depth of the hierarchy H increases so that heterogeneity at larger scales
are captured at lower resolution and finer-scale heterogeneity are captured in more details.
Specifically, when DL-MSS starts at the root ofH, G adopts the original g1 × g2 resolution
(e.g., 8×8). Then, as shown in Fig. 2 (Phase-3), each cell is divided into four equal size cells
(i.e., doubling the resolution) if two node-splits have been made at the current resolution,
which keeps the average number of cells per node similar for levels i ∈ {i | i mod 3 = 0}
(same if children nodes are constrained to have equal number of cells when split).

In DL-MSS, grid cells are used as spatial locations {sk} during the optimization of S∗, so
the observed and expected number of misclassified samples ck,m and bk,m in Eq. (1) can be
calculated as aggregated counts at cell levels.

Next, to identify arbitrarily shaped S∗, the computational challenge is that the number of
candidate regions |{S}| (i.e., different subsets of locations) is exponential to the number n of
locations or cells—O(en). Thus, we utilize the linear-time subset scanning (LTSS) property
to reduce the search space:

Definition 4 (LTSS property [22]) Given: (1) a set of spatial locations {sk}, and (2) a score
function �(S) for region-ranking where S ⊆ {sk} is a spatial region, the LTSS property holds
if there exists a priority function γ (sk) so that:

max
S

�(S) = max
ŝ

�

( ⋃

γ (sk )≥γ (ŝ),∀sk
sk

)
(5)

When LTSS holds, all spatial locations can be pre-sorted using the priority function γ (sk)
in a descending order. Then, by Definition 4, only a linear scan on the sorted list is needed to
find the optimal ŝ to partition the locations into two sets, where S∗ = {sk | γ (sk) ≥ γ (ŝ)}. This
reduces the search cost from O(en) to O(n log n + n), where O(n log n) is for pre-sorting.

Fortunately, the likelihood ratio function we use here in DL-MSS (Eq. 1) has been shown
to satisfy the LTSS property [20], with the priority function given by:

γ (sk) =
M∑

m=1

(ci,m log qm + bi,m(1 − qm)) (6)

where M is the total number of classes.
As introduced in Eqs. (1) and (2), qm here represents howmany times the error generation

rate in a region S is as high as the expected rate under H0, and it is an unknown variable in
H1 that need to be estimated. Thus, for LTSS to work, values for qm must be assigned before
the optimal S∗ is identified in order to use the priority function in Eq. (6).

To address this issue, we modify a coordinate ascent type of strategy used with LTSS to
optimizeqm and S∗ in an alternatingmanner over iterations (Algorithm1). In the algorithmwe
change the initialization method used by [20], which uses qm = eu with u ∼ Uniform[0, 2]
and did not perform stably in our experiments as the randomly generated values are far outside
the normal qm value ranges in our input data. Instead, we initialize qm values using observed
sample values in input:

qm = argmax
qm

∏

sk∈Stop

M∏

m=1

Pr(ck,m ∼ Poisson(qm · bk,m))

=
⎛

⎝
∑

sk∈Stop
ck,m

⎞

⎠ /

⎛

⎝
∑

sk∈Stop
bk,m

⎞

⎠
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where m is the class ID, Stop = {sk | ck,m
bk,m

≥ τ, ∀sk}, and τ is the median of ck,m
bk,m

at all
locations.This initialization canbe interpreted as optimizing the values ofqm (samemaximum
likelihood estimator as used for Eq. (2) and coordinate ascent iterations) using locations in
Stop, whose members are selected using ck,m

bk,m
as a heuristic priority function (initialization

only).

Algorithm 1 Coordinate ascent for qm and S∗
Require:
1: • c_list : List of all ck,m values for input locations
2: • b_list : List of all bk,m values for input locations
3: • score function � and priority function γ

4: for m = 1 to M do � Initialization
5: Stop = get_top_cells (c_list , b_list , m)
6: q[m] = optimize_q (Stop , c_list , b_list , m)
7: end for
8: for i = 1 to max_i teration do � Coordinate ascent: S∗ followed by q
9: γ _list = get_priority (q, c_list , b_list , priority_func: γ )
10: γ _list = γ _list .sort (‘desc’)
11: S∗ = maximize_score_by_LTSS (γ _list , c_list , b_list , score_func: �)
12: for m = 1 to M do
13: q[m] = optimize_q (S∗, c_list , b_list , m)
14: end for
15: end for
16: return S∗

Finally, as the region S∗ detected by LTSS in Algorithm 1may not be necessarily spatially
contiguous (i.e., locations that are consecutive by priority γ may not be spatially adjacent),
we refine the partition with extra spatial smoothing (the localized scan in [20] does not work
for our purpose as it tends to limit partitions to small and localized footprints). Specifically,
at the final iteration of Algorithm 1, connected components in S∗ (i.e., subsets of grid cells)
with a size that are smaller than a tolerance (defaulted to 3 cells) are swapped to the other
partition S′ = Sij\S∗ where Sij is the entire space at node Hi

j . Similarly, for S′, we do the
same swap of tiny components.

3.3.4 Complexity analysis

Here we provide the time complexity for Algorithm 1 at a H-node. Denote n as the total
number of samples and grid cells at the node,m as the number of classes, and t as the number
of iterations (e.g., 1000). The complexity is then O(t · (n log n + n + mn)) (the cost of
initialization and contiguity refinement is minimal and skipped here). Here the number of
classes can be often considered as a constant, so the complexity reduces to O(t · n log n). As
described in Phase-3 of DL-MSS (Sect. 3.3.2), the number of cells of the grid is often very
small at each node (e.g., 10 s to 100s). Overall, we noticed that the total time spent on S∗
optimization is mostly negligible compared to the training time of network parameters in our
experiments (e.g., second/minute vs. hour).

3.3.5 Regression version of DL-MSS

For regression, the general flow remains the same and the major differences are for the score
function �(S) and priority function γ (sk), which are needed as the prediction changes from
multi-class labels to continuous values.

123



Y. Xie et al.

pcIn this paper we focus on the scenario where each sample has one target label, i.e.,
y ∈ R

N×1, where N is the number of samples. Also, instead of classification errors, we use
mean squared errors ek for regression. For the score function �(S), we select the normal-
based likelihood ratio [23] (Poisson is used for classification), where the null hypothesis H0

states that ek ∼ Normal(μall, σ
2
all) at all locations and H1 states that there exists a region S

where ek ∈ S ∼ Normal(μS, σ
2
both), and ek ∈ S′ ∼ Normal(μS′ , σ 2

both) for all other locations
S′ (a common variance σ 2

both is used for both). To avoid redundancy, the simplified �(S) and
S∗ are (e.g., used by [23]):

�(S) = N ln
σall

σboth
− N

2
+

∑

sk∈S∪S′

(ek − μall)
2

2σ 2
all

(7)

S∗ = argmax
S

�(S) = argmin
S

σboth (8)

where only N ln σ−1
both in �(S) depends on S so maximizing �(S) is equivalent to minimizing

σboth or the variance σ 2
both.

Based on Eq. (7), we have the following lemma:

Lemma 1 For �(S) given in Eq. (7), the following priority function satisfies the LTSS prop-
erty:

γ (sk) = ek (9)

Proof The set of {ek} for locations {sk} is equivalent to a set of points distributed on a one-
dimensional line. Moreover, the maximum likelihood estimators for the means and variances
are μS = |S|−1 ∑

sk∈S ek , μS′ = |S′|−1 ∑
sk∈S′ ek , and σ 2

both = N−1(
∑

sk∈S(ek − μS)
2 +∑

sk∈S′(ek − μS′)2). Thus, minimizing the variance σ 2
both (or σboth > 0) is equivalent to

minimizing the k-means loss with k = 2. So for the two groups to be optimal, there should
be nooverlap in their ek value ranges on the 1Dspace, i.e.,minsk∈S ek ≥ maxsk∈S′ ek assuming
μS ≥ μS′ (proof is symmetric for the other direction). Otherwise, swapping the minimum
ek ∈ S and maximum ek ∈ S′ must reduce the k-means loss (i.e., Nσ 2

both), either by center
assignments or re-estimation. ��

3.4 A spatial moderator for generalization

The spatial hierarchyH and “spatialized” deep network Fspatial learned and trained from the
transformation step aim to capture spatial heterogeneity for the spatial extent of the input X
and y. However, the partitions cannot be directly applied to a new spatial region. To bridge
this gap, we propose a spatial moderator,1 which translates the learned network branches in
Fspatial to prediction tasks in a new region.

The key idea of the spatial moderator is to learn and predict a weight matrix W for all
branches in Fspatial (corresponding to all leaf-nodes in the spatial hierarchy H), and then
use the weights to ensemble the prediction results from the branches to get the final result.
As an example, suppose the output ŷi for a sample xi is in 1D. Then, in the weight matrix
W ∈ R

L×M , the L rows each corresponds to a network branch in Fspatial (or a leaf node in
H), where the M columns correspond to the M labels (one-hot encoding for classification;

1 The spatial “moderator” or “moderation” in this paper is independent and different from the “moderation”
in statistics, which is used to describe scenarios where the relationship between two variables depends on a
third one.
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Fig. 3 Illustrative example of the spatial moderator

M = 1 for regression in this paper). Thus, every column in W is a weight vector w ∈ R
L

that gives the weight distribution across the branches for each of the M labels.
In the spatial moderator, W is not stationary but predicted dynamically using each input

data sample xi . Fig. 3 shows the general architecture of the moderator. The left side shows
an example of “spatialized” network Fspatial and the right side shows the corresponding
spatial moderator. For a given sample xi , the original Fspatial only generates predictions for
the branch that xi spatially belongs to, i.e., ŷi ∈ R

M . In this moderated version, Fspatial

will generate predictions from all L branches for a sample xi , i.e., ŷi ∈ R
L×M . Then, the

moderator predicts the weight matrix W ∈ R
L×M using the same sample xi , and the final

moderated prediction is:

ŷmod,i = softmax(1T (ŷi � W)) (10)

where 1 ∈ R
L is a vector of ones [1,1…,1], and � is element-wise (or Hadarmad) product.

The layer structure of the moderator we use here is a network with four densely connected
layers with ReLU activations. If input xi is a time-series rather than a snapshot of features,
the final layer is replaced with a LSTM layer (i.e., the first three layers are used to construct
new features from the original input features, regardless of the timestamps, and the temporal
patterns are learned through the final LSTM layer [24]). During the training of the moderator,
all parameters from Fspatial will be frozen, and the moderator only needs to learn the weights
for itself (the right side of Fig. 3).

4 STARwithmeta-learning

The spatial transformation and moderation (STAR) framework spatializes an input deep
network F using the automatically learned spatial hierarchy H. This can be considered as
exploration phase during which the model does not yet have the knowledge of, and is trying
to figure out, the set S� of different processes (or data generation functions) � : X → y
existing in the data. Thus, S� is not determined until full completion of this phase (i.e., when
H is completed). In a transfer learning context, this means the set of tasks ST in the space is
unknown, where each task corresponds to a process in S�. As a result, meta-learning-based
enhancements, which can learn common knowledge from multiple known tasks and enable
fast adaptation in limited data scenarios, cannot be leveraged during the exploration phase. On
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the other hand, such enhancements can be largely beneficial due to the following reasons: (1)
As the spatial transformation process dives deeper into the spatial hierarchyH to distinguish
heterogeneous processes, the spatial coverage of each node or partition becomes smaller. As a
consequence, the amount of training data quickly reduces; and (2) The spatial moderator may
often be needed in spatial regions where data samples available for fine-tuning are limited.

Thus, in this section, we present a meta-phase that executes after the spatial hierarchy H
is learned by the exploration phase to integrate meta-learning into both the spatial transfor-
mation and moderation processes to improve knowledge-sharing and adaptation with limited
samples.

4.1 Meta-learning for spatial transformation

As the STAR framework is designed for general input network architectures F , we maintain
the flexibility of the meta-learning-enabled STAR (meta-STAR) using the model-agnostic
meta-learning (MAML). As its name suggests, MAML is a general gradient descent frame-
work that does not assume specific deep network architectures [25]. In the following, we first
briefly demonstrate the basic concepts of MAML and its update rules.

The goal ofMAML is to learn common knowledge from a distribution of tasks p(T ), such
that the trained model can be quickly adapted to a new task with limited training samples.
To achieve this, each gradient descent step in MAML simulates this application scenario by
the following:

– Create copies of the original model parameters θ and update each to �′
t using a mini-

batch Dt—a batch with limited data samples—from a randomly sampled task Tt in p(T )

(Eq. 11). This creates a set of models learned from existing tasks.

�′
t = � − ηtask · ∇�L(F�, Dt ) (11)

where ηtask is the learning rate.
– Next, to measure the effects of the updated parameters in {�′

t } to the performance of a
newmini-batch D′

t from task Tt , MAML evaluates the losses of {�′
t } on D′

t and computes
the gradients (i.e., second-order derivatives with respect to the original model parameters
�). The gradients are then propagated back to � using:

�′ = � − ηmeta ·
∑

Tt∈p(T )

∇�L(F�′
t
, D′

t )

= � − ηmeta ·
∑

Tt∈p(T )

∇�L(F�−ηtask·∇�L(F�,Dt ), D
′
t )

(12)

where ηmeta is the learning rate for themeta-update. Themeta-update rule of each gradient
descent step in MAML is summarized in Algorithm 2.

Next, we discuss the integration of MAML in the hierarchical spatial transformation
process. Upon completion of transformation (Sect. 3.3.2), the set of tasks ST for MAML
can be determined by the leaf-nodes in H, i.e., spatial partitions in which the process � is
homogeneous. The probability distribution p(T ) over the tasks can be calculated as p(Tt ) =
|Tt |/∑

Ti
|Ti |, where |Ti | is the number of data samples in task Ti ; note that the distribution

can also be estimated by users using other approaches or additional auxiliary information.
As the spatially transformed input network architecture Fspatial follows the hierarchical

structure from H (Fig. 1), we integrate MAML into the training process following the same
spatial hierarchy. Specifically, we restart the training following the same steps from the
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Algorithm 2MAML update in each gradient descent step
Require: Distribution of tasks p(T )

1: Sample a batch of tasks {Tt } ∼ p(T )

2: for Tt in {Tt } do
3: Sample a meta-training batch Dt
4: Create a temporary copy of model parameters �t = �

5: Update temporary copy: �′
t = � − ηtask · ∇�L(F�, Dt )

6: end for
7: Sample meta-testing batches {D′

t }
8: Update model parameters: �′ = � − ηmeta · ∑

Tt∈p(T ) ∇�L(F�′
t
, D′

t )

9: return �′

spatial transformation phase, except that we no longer need to perform the DL-MSS-based
partitioning-optimization and significance testing, which can already been determined byH.
In addition, since we already know the task distribution at this point, MAML-based updates
will be used (Algorithm 2) instead of the traditional gradient descent.

Given that the number of tasks available at a node inH gradually decreases aswe propagate
deeper into the hierarchy, the set of tasks to include for MAML update is scoped dynamically
based on the following scope:

Definition 5 The scope of tasks at each node Hi
j ∈ H includes all the leaf-nodes in H that

are the children of Hi
j .

Fig. 4 illustrates the MAML training process using examples at several nodes in H. The
spatial hierarchy used is the same as the example from Fig. 1, where there are four distinct
tasks captured by the spatial transformation, as indicated by the four colors. The MAML
training starts with all the tasks at the root node of H, and gradually narrows the scope to
subsets of tasks as the training proceeds to finer nodes.

Finally, we discuss the fine-tuning strategy used to dynamically re-condition the meta-
learned parameters (or “commonknowledge”) as the trainingmoves deeper into the hierarchy.
As themain purpose ofMAML is to learn an initial set of weights among a set of tasks that can
be quickly adapted or fine-tuned to new tasks, the adaptation needs to happen to fully harvest
the enhancements. Thus, each time the training stage moves to a child node (e.g., fromH0 to
H1

1 in Fig. 4), we will first fine-tune the weights inherited from the parent node that are still
freshMAML-initializations, using the new tasks in the scope of the child node (Definition 5).
Then, we switch back to MAML to meta-update the weights in the corresponding layers of
the new branches (e.g., layers in the two gray-rectangles in Fig. 4b) based on the new tasks.
If the child node is a leaf node (e.g., Fig. 4c, d), then we only perform the fine-tune step for
the remaining single task. The process is illustrated in Algorithm 3.

4.2 Meta-learning for spatial moderation

The MAML training process for the spatial moderator is more straightforward, as all the
parameters in moderator are shared by all data samples. Thus, for the moderator, we just
need to use the full task distribution p(T ) from H to perform MAML updates in each
step according to Algorithm 2 (instead of using Algorithm 3, which is needed for spatial
transformation to handle hierarchical updates). Note that here the MAML learned meta-
weights will only be used for adaptation or finetuning with data from a new spatial region,
and will no longer be finetuned for each task in p(T ) from the original region. The reason
is by design the moderator is for scenarios where the locations of samples are not inside the
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Fig. 4 Example steps during hierarchical MAML training

spatial coverage of the training data. As a result, location information should not used to
determine which branch, or which set of parameters, to use during the prediction; otherwise,
the moderator is not applicable to a new area and lost its original purpose. Thus, when the
moderator is applied to samples inside the spatial coverage of the training data, we just train
one set of parameters using all data (MAML will not be helpful in this case). In comparison,
when limited labeled samples are available from a new region, we use MAML to train a
meta-moderator with training data from the original region, and then adapt it to the new area.
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Algorithm 3MAML-based hierarchical training for spatial transformation
Require:

• Training data X, y
• Input deep network architecture F
• Learned spatial hierarchyH

1: p(T ) = get_task_distribution (H, X, y)
2: Fspatial = init_network(F )

3: MAML_train (Fspatial .all_layers, [X, y], p(T )) � Training at the root nodeH0

4: for i = 1 to H.depth do
5: create_new_branches (Fspatial , H, level=i) � Spatial transformation (Fig. 4)
6: for node inH.get_nodes (level = i) do
7: finetune_MAML(Fspatial .get_branch_layers(node.parent), node.X_y)
8: if not is_leaf_node (node) then
9: p(T )′ = update_task_scope(p(T ), node) � Definition 5
10: MAML_train (Fspatial .get_branch_layers(node), node.X_y, p(T )′)
11: end if
12: end for
13: end for
14: return Fspatial

5 Experiments

5.1 Real-world datasets

5.1.1 California land-cover classification

We use multi-spectral data from Sentinel-2 satellites in two regions in Central Valley, Cali-
fornia. The first regionDori has a size of 8192× 4096 (∼ 13422km2 in 20m resolution), and
the secondDnew has a size of 4096 × 4096. The regions contain a wide variety of crops with
strong heterogeneous patterns, resulting in a challenging classification task. The classes of
Dori and Dnew are listed in Tables 1, 2, 3 and 4. Note that several land cover types have very
low number of samples in region Dnew (i.e., smaller than 0.025%), which are excluded from
the table (no impact on the ranking of methods). We first learn the spatial partitioning using
the data from regionDori and then use the moderator to transfer it toDnew. We use composite
image series from May to October in 2018 (2 images/month) for time-series models, and
one snapshot from August, 2018 for DNN. The labels are from the USDA Crop Data Layer
(CDL) [26]. The training (and validation) set has 5% data at sampled locations in Dori, and
5% data in Dnew is used for fine-tuning. The rest is used for testing.

5.1.2 Boston COVID-19 humanmobility prediction

Human mobility provides critical information to COVID-19 transmission dynamics models.
We acquired the Boston COVID-19 mobility dataset shared by [3], which includes data
from US census, CDC COVID statistics, and SafeGraph patterns data. In this dataset, human
mobility y is represented by the number of visits to points-of-interest (POIs; e.g., grocery
stores, restaurants) and the counting is based smartphone trajectories. We keep the same
features X used in [3], including population, weekly COVID-19 cases and deaths, number
of POIs, week ID and income. The spatial representation of the data is a grid-partitioning
(37 × 48) of the Boston area, and each cell is a data sample. Note that grid cells here are
used to model the input data (similar to pixels in the California land-cover data), and is
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independent from the grid G we used in our partition-optimization approach (Sect. 3.3.2).
The dataset contains 12 weeks of data, and according to [3], we use the first 11 weeks for
training/validation and the final week for testing.

5.2 BasemodelsF , Implementation and Training

We implemented the spatial transformation and moderation framework for both snapshot-
and time-series-based network models. Specifically, for snapshot models, we use densely
connected network (DNN) to learn from data labels sampled at a subset of locations (com-
monly used in real-world field surveys for ground-truth collection). For time-series models,
we use LSTM thatwas a common architecture choice for land-covermappingwith a sequence
of satellite imagery [24, 27]. All the models have 7 hidden layers, each with 10 neurons and
a ReLU activation, to learn and construct new features from raw inputs. For LSTM, an extra
LSTM layer is added at the end to learn temporal patterns. A softmax layer is used for the
output layer in classification.

Both DNN and LSTM are used as base network architectures F . We obtain the learned
spatial hierarchyH and synchronized architectureFH (same asFspatial; used to save space in
result tables). As here DNN and LSTM share the same static feature processing architecture,
we train DNNfirst and use the DNNweights to initialize LSTM training. Two versions ofFH
are used in comparison, where one is trained with MAML (Sect. 4.1) and the other trained
with regular gradient descent (i.e., regular updates instead of MAML updates). Similarly,
spatial moderators are also implemented in two forms, i.e., MAML-based and non-MAML-
based versions. For training, we use the Adam optimizer with initial learning rate set to 0.01.
All the model parameters in F and FH (regardless of branches) are trained with 600 epochs.
All the models, when fine-tuned (e.g., for region Dnew in California data), are allocated with
an extra 200 epochs. For candidate methods with spatial moderator, only moderator weights
are fine-tuned. The loss functions for classification and regression are cross-entropy and
mean-squared errors, respectively. Code is available at: https://github.com/yqthanks/STAR.

5.3 Candidate methods

For California land-cover classification, we have the following candidate methods for each
base model (i.e., DNN or LSTM): (1) Base model F itself; (2) Four versions of clustering-
enhanced models. The goal of additional clustering is to create better baselines that use
data partitioning to learn different functions for different clusters. Here the data samples
are clustered based on their feature similarity, and a model is learned for each cluster by
finetuningF with the cluster’s contained data subset. We consider two clustering algorithms:
K -means++ and Deep Embedding Clustering (DEC) [28], each with two different numbers
of clusters 10 and 20. We denote the models as: F10

km, F20
km, F10

dec, and F20
dec, respectively. (3)

Two versions of spatially transformed F : FH without MAML and Fmeta
H with MAML; and

(4) Two versions of moderator: FM without MAML and Fmeta
M with MAML. As described

in Sect. 4.2, Fmeta
M is only needed for prediction in the new region Dnew. The two versions

of the spatial moderator are trained using the same spatially transformed model (i.e., FH or
Fmeta
H ) for direct comparison; we chooseFmeta

H in experiments as it has a better performance.
For Boston COVID-19 humanmobility regression, we have the following candidate meth-

ods for comparison: the geographically weighted regression (GWR), which is a traditional
linear inference model with consideration of spatial heterogeneity; base deep learning model
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Table 1 RegionDori: F1-scores of land-cover classification using sentinel-2multi-spectral imagery (snapshot)

Classes F F10
km F20

km F10
dec F20

dec FH Fmeta
H

Corn 0.00 0.00 0.00 0.00 0.00 0.02 0.09

Cotton 0.46 0.14 0.20 0.37 0.43 0.47 0.49

Sorghum 0.78 0.75 0.71 0.49 0.68 0.77 0.78

Wheat 0.08 0.03 0.01 0.03 0.01 0.27 0.27

Alfa Alfa 0.01 0.00 0.02 0.00 0.00 0.13 0.14

Peaches 0.41 0.34 0.34 0.31 0.35 0.42 0.45

Grapes 0.00 0.00 0.01 0.00 0.00 0.02 0.01

Tree crops 0.57 0.35 0.37 0.38 0.43 0.58 0.59

Citrus 0.00 0.00 0.00 0.00 0.00 0.14 0.15

Almonds 0.00 0.00 0.00 0.00 0.00 0.20 0.24

Walnut 0.52 0.32 0.28 0.35 0.34 0.55 0.58

Pistachio 0.27 0.03 0.04 0.01 0.01 0.30 0.32

Oranges 0.54 0.44 0.37 0.33 0.43 0.59 0.63

Nectarines 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Onions and tomatoes 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Garlic 0.14 0.06 0.02 0.05 0.06 0.33 0.39

Cherries 0.06 0.00 0.00 0.04 0.02 0.37 0.42

Forest and shrubland 0.55 0.44 0.25 0.40 0.28 0.59 0.62

Grasslands and wetlands 0.72 0.66 0.70 0.62 0.69 0.73 0.74

Misc crops and veg 0.15 0.01 0.01 0.00 0.02 0.26 0.31

Barren land/idle 0.54 0.44 0.48 0.49 0.40 0.55 0.57

Water 0.50 0.39 0.40 0.23 0.05 0.52 0.55

Urban 0.46 0.39 0.39 0.36 0.29 0.50 0.52

Mean (weighted) 0.52 0.41 0.41 0.40 0.41 0.55 0.57

The best results are highlighted in bold

(DNN) F ; clustering-enhanced models F10
km, F20

km, F10
dec and F20

dec; spatially transformed
FH (without MAML) and Fmeta

H (with MAML). As this dataset contains one single spatial
region for different timestamps (Sect. 5.1), the space-partitioning learned during training can
be directly applied on the test samples, which is the same as the scenario in Dori for land
cover classification. Thus, here we use FH and Fmeta

H instead of FM and Fmeta
M .

5.4 Results

5.4.1 Land-cover classification

Tables 1, 2, 3 and 4 show the F1-scores of the 10 candidate methods for the two spatial
regions Dori (5% for training and 5% for validation) and Dnew (5% of data for fine-tuning),
respectively. Both class-wise F1 scores and the overall weighted average are included in
the tables. For the STAR and meta-STAR (Sect. 5.3), the spatial hierarchy are learned with
training data in region Dori. Then, in region Dnew, the learned weights in FH and Fmeta

H are
kept frozen and only each corresponding moderator is finetuned with the 5% samples. This
helps evaluate if the heterogeneous spatial processes {�} learned in Dori can be generalized
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Table 2 Region Dori: F1-scores of land-cover classification using sentinel-2 multi-spectral imagery (time-
series)

Classes F F10
km F20

km F10
dec F20

dec FH Fmeta
H

Corn 0.11 0.09 0.08 0.06 0.07 0.25 0.35

Cotton 0.69 0.68 0.68 0.68 0.68 0.70 0.71

Sorghum 0.82 0.87 0.87 0.87 0.87 0.88 0.89

Wheat 0.30 0.25 0.25 0.24 0.27 0.41 0.48

Alfa Alfa 0.33 0.41 0.40 0.41 0.42 0.52 0.56

Peaches 0.70 0.72 0.72 0.72 0.72 0.73 0.75

Grapes 0.00 0.28 0.29 0.28 0.29 0.33 0.34

Tree crops 0.70 0.74 0.74 0.74 0.74 0.76 0.78

Citrus 0.00 0.16 0.17 0.16 0.16 0.33 0.34

Almonds 0.00 0.48 0.46 0.48 0.46 0.54 0.56

Walnut 0.67 0.72 0.72 0.72 0.72 0.75 0.78

Pistachio 0.12 0.51 0.52 0.51 0.51 0.58 0.61

Oranges 0.65 0.73 0.73 0.73 0.73 0.79 0.82

Nectarines 0.00 0.03 0.08 0.09 0.07 0.33 0.35

Onions and tomatoes 0.00 0.01 0.01 0.00 0.00 0.02 0.07

Garlic 0.75 0.77 0.77 0.77 0.77 0.79 0.82

Cherries 0.56 0.60 0.58 0.57 0.59 0.66 0.71

Forest and shrubland 0.67 0.67 0.67 0.68 0.67 0.69 0.70

Grasslands and wetlands 0.69 0.76 0.77 0.76 0.77 0.79 0.80

Misc crops and veg 0.43 0.44 0.44 0.44 0.44 0.51 0.56

Barren land/idle 0.61 0.64 0.64 0.64 0.64 0.68 0.69

Water 0.40 0.55 0.55 0.54 0.54 0.64 0.68

Urban 0.45 0.55 0.55 0.55 0.55 0.60 0.61

Mean (weighted) 0.60 0.66 0.66 0.66 0.66 0.70 0.72

The best results are highlighted in bold

to the new region Dnew with the moderator, which re-mixes the processes {�} based on
characteristics of test data samples.

The general trend is that the “spatialized” network architectures overall achieved bet-
ter F1-scores for both snapshot- and time-series-based models in both regions. Moreover,
the integration of MAML-based hierarchical training strategies further improved the perfor-
mances and achieved the highest F1 scores. The performance differences in region Dnew

are smaller as forests and grasslands cover the majority of the landscape in this new region,
making the classification problem relatively easier. The performance improvement achieved
by the clustering-enhancedmodels were not very stable. For example, they all led to improve-
ments over the base model F in Table 2, but had similar or reduced scores compared to F
in the other scenarios. This is potentially because clustering does not consider the functional
relationships X → y between X and y. As a result, data samples within a cluster can still
have different distributions and those from different clusters may have the same distribution,
making the learning not as effective. The performances were similar between models based
on K -means and DEC, and between 10 and 20 clusters. We also tested out other numbers
of clusters (e.g., 5) and other clustering methods such as spectral clustering and hierarchical
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Table 3 Region Dnew: F1-scores of land-cover classification using sentinel-2 multi-spectral imagery (snap-
shot)

Classes F F10
km F20

km F10
dec F20

dec FM Fmeta
M

Corn 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Cotton 0.00 0.11 0.24 0.18 0.16 0.45 0.49

Sorghum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wheat 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Alfa Alfa 0.00 0.21 0.21 0.00 0.16 0.05 0.11

Peaches 0.00 0.06 0.01 0.02 0.02 0.21 0.22

Grapes 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tree crops 0.33 0.50 0.49 0.46 0.48 0.50 0.52

Citrus 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Almonds 0.00 0.06 0.06 0.00 0.08 0.01 0.08

Walnut 0.00 0.41 0.36 0.39 0.34 0.35 0.41

Pistachio 0.00 0.12 0.36 0.02 0.11 0.00 0.00

Oranges 0.00 0.39 0.45 0.39 0.38 0.46 0.45

Nectarines 0.00 0.04 0.01 0.03 0.00 0.00 0.01

Onions and tomatoes 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Garlic 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cherries 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Forest and shrubland 0.88 0.85 0.85 0.84 0.86 0.85 0.86

Grasslands and wetlands 0.81 0.76 0.78 0.77 0.77 0.82 0.83

Misc crops and veg 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Barren land/idle 0.00 0.00 0.01 0.00 0.00 0.05 0.05

Water 0.00 0.34 0.62 0.71 0.51 0.69 0.70

Urban 0.44 0.38 0.46 0.46 0.40 0.52 0.52

Mean (weighted) 0.67 0.67 0.68 0.67 0.68 0.70 0.71

The best results are highlighted in bold
*FH and Fmeta

H are not applicable here in Dnew

density-based clustering (HDBSCAN) [29], which did not perform as well, so we used the
current four versions in the tables.

We additionally included Fig. 5 and 6 to better visualize the performance improvements by
the spatial-heterogeneity-awareness and meta-learning. Figure5 shows the decreases of loss
values for bothFH andFmeta

H in each node (or partition) as the spatial transformation process
proceeds to separate out heterogeneous processes�. This illustrative graph is generated using
DNNas the basemodel. In the tuning columns in Fig. 5, the solid lines show the decrease from
theMAML-basedFmeta

H and the dash line represent traditional gradient based updates inFH.
To reduce the crowdedness in Fig. 5 (e.g., the last column), we used binary-encoding to mark
different nodes. For example, “0” and “1” refer to the two level-1 nodes in H after the first
split (i.e.,H1

1 andH1
2, and ”01” means child-“1” in level-2 of node “0” in level-1. We can see

that the MAML-basedFmeta
H reaches better performances as the amounts of training samples

decrease as the model dives deeper into the hierarchy. Furthermore, combined together with
the F1-score results in Fig. 6, which shows the F1-scores on test data samples (aggregated
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Table 4 Region Dnew: F1-scores of land-cover classification using sentinel-2 multi-spectral imagery (time-
series)

Classes F F10
km F20

km F10
dec F20

dec FM Fmeta
M

Corn 0.00 0.00 0.00 0.00 0.00 0.06 0.06

Cotton 0.01 0.00 0.01 0.00 0.05 0.25 0.31

Sorghum 0.00 0.00 0.00 0.00 0.02 0.01 0.02

Wheat 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Alfa Alfa 0.00 0.00 0.02 0.19 0.09 0.31 0.45

Peaches 0.00 0.21 0.24 0.26 0.00 0.21 0.40

Grapes 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tree Crops 0.46 0.34 0.37 0.12 0.33 0.29 0.57

Citrus 0.00 0.00 0.00 0.00 0.00 0.04 0.01

Almonds 0.31 0.14 0.27 0.28 0.00 0.10 0.00

Walnut 0.27 0.13 0.15 0.08 0.00 0.50 0.52

Pistachio 0.00 0.00 0.00 0.00 0.00 0.29 0.28

Oranges 0.41 0.03 0.04 0.21 0.01 0.05 0.45

Nectarines 0.15 0.06 0.11 0.21 0.00 0.00 0.00

Onions And Tomatoes 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Garlic 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cherries 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Forest And Shrubland 0.88 0.78 0.79 0.82 0.78 0.84 0.90

Grasslands And Wetlands 0.81 0.79 0.79 0.75 0.79 0.83 0.83

Misc Crops And Veg 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Barren Land/Idle 0.03 0.00 0.00 0.00 0.01 0.23 0.28

Water 0.01 0.42 0.15 0.00 0.00 0.63 0.63

Urban 0.48 0.24 0.27 0.28 0.30 0.43 0.53

Mean (weighted) 0.70 0.63 0.63 0.63 0.62 0.69 0.74

*FH and Fmeta
H are not applicable here in Dnew

The best results are highlighted in bold

from all the local nodes at each level), we can see that the overall F1-scores of bothFmeta
H and

FH improve as spatial heterogeneity are captured through the spatial transformation process.
For regionDori, the results F , FH and Fmeta

H for each base model can be used for ablation
analysis. The general trend is that the results of a base model F gradually improve with the
addition of spatial transformation FH, and the MAML-based meta learning Fmeta

H .
In addition, Fig. 7 shows the hierarchical process of space-partitioning with DL-MSS

(Sect. 3.3.2) for the first two levels. In the first level (largest scale), for example,H1
1 is a mix

of urban and suburban areas, whereas H1
2 contains more rural and mountainous areas. Note

that some partitions (e.g., H2
3) are not further split, as determined by significance testing.

Also, a partition is allowed to contain multiple disconnected areas as long as they satisfy
the minimum footprint size enforced for contiguity (Sect. 3.3.3). Nonetheless, we can see
the automatically captured footprints are in general spatially contiguous as a result of spatial
auto-correlation. Finally, Fig. 8 visualizes the weights predicted by the moderator for two
example network branches in Fmeta

H for DNN (paths from input to output layers; Fig. 3) for
all locations in region Dnew. For each branch, the weight is averaged over all classes in the
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Fig. 5 The decreases of loss values during spatial transformation for FH (dashed-lines) and Fmeta
H (solid

lines)

Fig. 6 The increases of F1-scores on test data during spatial transformation forFH (dashed-lines) andFmeta
H

(solid lines)

predicted W at each location. As we can see, in the new region Dnew, branch-17 is given
higher weights for the left-side of the region, which is a mountainous area. Branch-6 receives
higher weights in the top-left corner, which contains large flat farmlands. In contrast, branch-
4 is not assigned high weights by nearly all locations in Dnew. In the original region Dori,
this branch represents large flat barren lands, which has limited appearance in Dnew.

5.4.2 COVID-19 mobility regression

Table 5 shows the results of the five candidate methods, where we used three measures for the
evaluation: mean absolute errors (MAE), root mean squared errors (RMSE), and symmetric
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Fig. 7 Spatial hierarchy learned in region Dori (the first two levels)

Fig. 8 Learned branch weights across space (across samples)

mean absolute percentage error (sMAPE). We used sMAPE instead of MAPE because there
are many locations—especially during the COVID-19 scenario—with very few or zero POI
visits. This makes the results of MAPE frequently undefined (e.g., positive number divided
by zero) for the candidate methods. In contrast, sMAPE addresses this issue by including
the predicted values in the denominator for percentage calculation. We used the version of
sMAPE that has a range from 0 to 100%. The values for sMAPE are relatively high for all
methods, and this is mainly caused by many locations with very small numbers of POI visits.
Fig9 shows maps of the ground truth, GWR, F (DNN), FH and Fmeta

H . Several potential
causes of spatial heterogeneity here include different mobility patterns in the more populous
downtown area versus the suburban regions, and several “hotspot” areas of POI visits that
are a bit abnormal compared to the rest.

As we can see, overall FH and Fmeta
H achieved better results for the three measures, and

Fmeta
H obtained further improvements with meta-learning. The improvements are relatively

smaller (e.g., RMSE) compared to the California land cover classification task, which is
potentially due to the smaller number of tasks. Although GWR performs spatially localized
regression, it can only handle linear relationships using input variables and apply the same
spatial neighborhood for all locations, which cannot well capture non-stationary mobility
hotspots and variation in the data. Moreover, the data-reduction problem caused by local-
regression in GWR frequently causes existing standard libraries to run into ill-conditioned
problems if small band-widths are used. Three out of the four clustering-enhanced models
achieved improvements over the basemodelF , but the improvementswere limited potentially
due to the lack of consideration on the functional relationships betweenX and y. Similarly, we
tested out other numbers of clusters (e.g., 5) and clustering methods, which did not provide
better results. Finally, the spatial transformation automatically identified three heterogeneous
partitions (other splits are statistically insignificant) and branched out downtown, suburban
and several mobility hotspots (our method allows large footprints at multiple locations to be
in one node), greatly improving the performance on both types of measures.
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Table 5 COVID-19 human mobility projection

GWR F F10
km F20

km F10
dec F20

dec FH Fmeta
H

MAE 160 159 157 150 152 155 139 117

RMSE 388 405 376 371 373 372 341 337

sMAPE (%) 68.5 36.2 60.1 57.3 59.9 60.2 28.5 27.3

The best results are highlighted in bold

Ground ref.

0 9164

Legend
POI visits

Fig. 9 Visualization of human mobility maps

6 Other related work

Existing methods for handling heterogeneity can be generally divided into two categories.
The first class aims to transfer parameters learned from one source to another, such as domain
adaptation [30–32] and meta-learning (e.g., MAML) [25, 33, 34]. However, these methods
mainly focus on the learning of robust features and fast adaptation, and may yield degraded
performance when spatial regions have large discrepancy. Moreover, they require a pre-
defined space-partitioning of heterogeneous processes. It is worth-mentioning though that
these methods and the proposed STAR framework are complementary and can be integrated
for further enhancements. For example, meta-learning has been incorporated into the STAR
framework as shown in Sect. 4. The second direction is based on explicit data partitioning. For
example, researchers have separately trained individual localmodels for different data clusters
[35, 36] and have shown improved performance against a single global model. However, the
clustering only uses input features that are not sufficient to capture underlying heterogeneous
processes. Similarly, local training has been used for manually defined spatial regions, e.g.,
ANN [10] andRNN [37]. Furthermore, all thesemethods can significantly reduce the training
data available for local models, making it difficult to train complex models. Spatial-Net also
uses the hierarchical multi-task representation for parameter sharing [18], but cannot handle
irregular partitionings (i.e., spatial footprints with arbitrary shapes) or be generalized to new
regions; it does guarantee each partition’s spatial contiguity. Finally, mixture process mining
[38] can find regions where data are generated by homogeneous-mixture processes {�} but
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cannot handle deep learning inputs where {� : X → y} are often unknown and cannot be
directly defined by statistical models (e.g., Poisson).

7 Conclusions and future work

We proposed a model-agnostic meta-STAR framework for spatial data and problems, which
is an extension of STAR in [16]. The STAR framework can: (1) simultaneously learn arbi-
trarily shaped space-partitionings of heterogeneous processes and a “spatialized” network
architecture; and (2) generalize learned spatial structures to new regions. We extended the
STAR framework with meta-learning (meta-STAR) to further improve knowledge sharing
and adaptation. Experiments on real world datasets showed that the framework can substan-
tially improve the performance of base networks on spatial problems, and that meta-learning
can enhance knowledge adaptation.

In future work, we will explore the use of the framework on other types of network
architectures such as GAN, CNN and GCN, and traditional machine learning methods. Fur-
thermore, we plan to investigate specific characteristics of each type of network architecture
in the context of spatial heterogeneity and identify dedicated customizations of the current
framework. Finally, we will explore generalizations with other types of space-partitioning
schemes, statistical formulations, etc.
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