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ABSTRACT

As the adoption of machine learning continues to thrive, fairness of

the algorithms has become a key factor determining their long-term

success and sustainability. Among them, location-based fairness

ś or spatial fairness ś is critical for a variety of essential societal

applications that commonly rely on spatial data, including agri-

culture, disaster response, urban planning, etc. Spatial biases in-

curred by learning, if left unattended, may cause or exacerbate

unfair distribution of resources, spatial disparity, social division,

etc. However, very limited understanding has been developed on

location-based fairness and bias in machine learning. Compared to

traditional fairness-preserving techniques, the spatial consideration

introduces twomajor layers of complication: (1) Space is continuous

with no well-defined categories (e.g., categories by race or gender);

and (2) Categorizations given by space-partitionings are known

to be subject to high statistical sensitivity (e.g., gerrymandering).

Under these challenges, we formally explore and demonstrate the

fragility of learning methods in the spatial fairness-bias sphere.

Specifically, we present a set of techniques that can maneuver the

training process towards various targeted fairness-bias outcomes,

while maintaining the same level of overall prediction performance

(i.e., for "free"). Extensive experiments are carried out on two real-

world problems: crop monitoring in the US and palm oil plantation

mapping in Indonesia. The results demonstrate the effectiveness

of the manipulation algorithms and the importance of explicitly

regulating location-based fairness using a diverse set of criteria.

CCS CONCEPTS

· Computing methodologies→ Neural networks; · Informa-

tion systems → Spatial-temporal systems.
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1 INTRODUCTION

As the adoption of machine learning continues to thrive and inspire

major interests across broad applications (e.g., driving assistance

or automation, face recognition, healthcare), fairness in the data-

driven algorithms has drawn serious attention and becomes a key

factor for the sustained success in the long term.

This paper focuses on location-based fairness (a.k.a., spatial fair-

ness), which is critical for a variety of essential societal applications,

where location information is heavily used in decision and policy-

making. Spatial biases incurred by learning, if left unattended, may

cause or exacerbate unfair distribution of resources, social divi-

sion, spatial disparity, etc. In agriculture, for example, population

growth has caused immense pressure on food production and sup-

ply across the globe, which is worsened by climate change and

its consequences (e.g., extreme events and frequent disturbances).

The pressure has resulted in multiple initiatives in large-scale crop

monitoring, including NASA Harvest and G20’s GEOGLAM global

agriculture monitoring [1]. As the size of the satellite imagery that

these types of projects commonly rely on is reaching far beyond

the capacity of manual processing, they heavily rely on learning

methods to assist the generation of crop maps [12, 15]. Major de-

rived products such as acreage estimates [21] are further used to

inform critical actions such as the distribution of subsidies [3, 4, 18]

and other resources, to allow resilience against disturbances and

long-term sustainability. However, existing monitoring frameworks

largely ignored fairness issues, including location-related fairness.

To illustrate the potential implications, Fig. 1 shows the spatial

distributions of the F1 scores achieved by a deep learning model

for real-world cotton classification using satellite imagery. The

study area has a size of 80km by 80km, and is partitioned into
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Figure 1: Examples of spatial bias on cotton classification.

10km by 10km local regions. As we can see, the results across lo-

cations present clear spatial bias with large differences between

local F1-scores (the patterns of spatial bias may differ between

models trained from two separate runs). Such unattended bias in

crop mapping can lead to unfair resource distribution. For exam-

ple, it can hurt small holders representing the main production

force behind minor crops [6, 26, 27]. Similarly, maps generated by

machine learning have been increasingly applied in other critical

decision-making processes, where ignorance of location-based bias

can cause unfair estimations in disaster or insurance management

(e.g., real-time satellite-based maps of floods, damages, or risks),

unfair allocation of essential resources to the population in poverty

(e.g., urban slums in Africa), unfair carbon tax, and many more.

Fairness is a relatively new topic in machine learning but has

been widely studied in recent years given its importance. However,

existing fairness-preserving techniques have largely focused on

problems where fairness can be well-defined on classes in certain

categorical attributes such as race, gender, or income level.

Related work has explored a variety of techniques. The most

common and generally-applicable strategy is regularization-based

approach, which includes additional fairness-related losses dur-

ing the training process [13, 23, 31, 33]. Another major direction

of methods aims to learn group-invariant features [2], in which

additional discriminators are included in the training to penalize

learned features that can reveal the identity of a group (e.g., gender)

in an adversarial manner. Sensitive category de-correlation also em-

ploys the adversarial learning regime. However, instead of learning

group-invariant features, it tries to learn features that do not lead to

polarization of predictions (e.g., the sentiment of a phrase) for each

category (e.g., a language) [2, 25, 34]. From the data perspective,

strategies have also been developed for data collection and filter-

ing to reduce bias in downstream learning tasks [11, 24, 32]. More

variations have also been discussed in a recent survey [16]. These

methods have been applied to tasks where groups are well-defined

by categorical attributes (e.g., face detection [23], text analysis [25],

online bidding [19]). For spatial data, location-explicit frameworks

[28, 30] have been developed to improve prediction performance

over locations, but they do not consider fairness.

Compared to the traditional fairness-preserving techniques de-

signed for categorical groups, evaluation and enforcement of spatial

fairness introduce two major layers of complication. First, space

is continuous with no well-defined categories (e.g., categories by

race or gender). Second, location groups are commonly created by

space-partitioning. However, statistics evaluated from groups or

categories given by space-partitionings are known to be sensitive

to changes in partitionings. In other words, a result map deter-

mined to be fair on one partitioning can easily get an opposite

conclusion from another. In statistics, this is known as the Modifi-

able Areal Unit Problem (MAUP; Def. 2), which shows the fragility

of statistical conclusions under the manipulation of partitionings.

The lack of consideration of MAUP has created major public con-

cerns. A high-profile example is gerrymandering, which refers to

the partitioning-manipulation practice used by political parties to

gain favor during an election. The growing concerns have raised

the issue to the US Supreme Court in 2019 [20] and state courts [9].

With the MAUP challenge in mind, we propose a set of tech-

niques to maneuver in the sphere of location-based fairness and

bias during the training process. Our goal is to explicitly manip-

ulate the fairness/bias of a learning model to reach a variety of

targeted outcomes (e.g., fair, biased, controlled mix with multiple

fairness criteria), all operating under the condition to maintain the

same level of overall performance (e.g., global F1-score) as that of a

base model (e.g., an LSTM trained with no fairness consideration).

Our techniques demonstrate the fragility of fairness in the spatial

setting and the feasibility of manipulating the results with high de-

grees of freedom, revealing the importance of explicit and thorough

consideration of location-based fairness in learning.

We carry out extensive experiments on two real-world prob-

lems: crop monitoring in US and palm oil plantation mapping in

Indonesia. For each problem, we evaluate the proposed fairness-

bias maneuvering techniques on top of two base neural network

architectures, i.e., densely-connected neural network (DNN) and re-

current LSTM. The results confirm the effectiveness of the proposed

algorithms under a variety of objectives and constraints.

2 PROBLEM

We first introduce the basic concepts for location-based fairness,

and then discuss the general formulation of the fairness-aware

learning problem. Finally, we present key instances of the problem,

representing different learning outcomes in the fairness-bias sphere.

2.1 Concepts

Definition 1. Partitioning P and partition 𝑝 . A partitioning

P splits an input space into𝐾 non-overlapping partitions {𝑝1, ..., 𝑝𝐾 }

that together cover the entire space.

Definition 2. Modifiable Areal Unit Problem (MAUP).MAUP

states that statistical results and conclusions are sensitive to the choice

of space partitioning P. Specifically, given a statistic 𝜏 that aggregates

information inside a partition 𝑝 , MAUP entails that the distribution

of 𝜏 or conclusions based on it varies as P changes. This is often

considered as a dilemma as statistical results are expected to vary if

different aggregations or groupings of locations are used.

Statistical sensitivity by MAUP has been commonly exploited

in practice, including examples of gerrymandering [9, 20]. In the

context of this work, MAUP means that the conclusion on "fair

vs. biased" is fragile to variations in P. For example, if F1-score or

error rate is used as 𝜏 , then one can easily manipulate the fairness

result by altering the partitioning as shown in Fig. 2; here different

partitionings lead to opposite conclusions in fairness evaluation
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(a) Dist. 1: Unfair (b) Dist. 1: Fair (c) Dist. 2: Fair (d) Dist. 2: Unfair

Figure 2: Fairness on two example distributions Dist. 1 and 2.

(green: correct predictions; red: wrong predictions).

(e.g., (a) is unfair as two partitions have 100% accuracy whereas the

other two have 0%, and (b) is fair as all are at 50%).

Definition 3. Performance measure𝑚F . A measure that eval-

uates the solution quality (not related to fairness) of a trained model

FΘ with parameters Θ. For example,𝑚F can be F1-score (or a loss

function during training), mean squared errors, etc. In the rest of the

paper,𝑚F (FΘ) is used to denote the general performance of FΘ, and

𝑚F (FΘ, 𝑝) or𝑚F (FΘ,P) specifically denotes the performance of FΘ
on data samples in space covered by a partition 𝑝 ∈ P or an entire

partitioning P (equivalent to the entire dataset in this case).

Definition 4. Fairness measure𝑚𝑓 𝑎𝑖𝑟 . A statistic used to eval-

uate the fairness of a learning model’s performance across several

mutually-exclusive groups of individual locations. An example𝑚𝑓 𝑎𝑖𝑟

is the variance of F1-scores across groups. In this paper, groups are

defined by partitions 𝑝 ∈ P, and𝑚𝑓 𝑎𝑖𝑟 we use is:

𝑚𝑓 𝑎𝑖𝑟 (FΘ,𝑚F,P) =

𝐾
∑︁

𝑖=1

|𝑚F (FΘ, 𝑝𝑖 ) −𝑚F (FΘ,P)|

𝐾
(1)

where FΘ is a learning model (e.g., a deep network) with parameters

Θ; 𝐾 is the number of partitions 𝑝 ∈ P;𝑚F (FΘ,P) represents the

global performance across all partitions, which is equivalent to the

expectation 𝐸𝑝∈P (𝑚F (FΘ, 𝑝).

Definition 5. MAUP-aware fairness measure 𝑀𝑓 𝑎𝑖𝑟 . A fair-

ness measure that explicitly considers multiple partitionings {P}

during evaluation, which can be defined as:

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, {P}) =
1

|{P}|
·

| {P } |
∑︁

𝑖=1

𝑚𝑓 𝑎𝑖𝑟 (FΘ,𝑚F,P𝑖 ) (2)

where |{P}| is the cardinality of partitionings used for MAUP-aware

fairness evaluation.

2.2 General formulation

The inputs to the problem, in general, follow a typical learning

formulation: features X and labels y, split into training, validation

and test sets (detailed in Sec. 4). The main difference here is that we

additionally include a machine learning model F of user’s choice,

as well as its parameters Θ0, which are trained without considering

any fairness criterion. Θ0 is important as it sets the expected level

Location information (i.e., geo-coordinates of data samples) is not included as part of
the features X for two reasons: (1) Locations are sensitive attributes in location-based
fairness-aware learning, and a model should not treat a sample differently because of
sensitive attributes. Removal of sensitive attributes is a standard practice in fair learning
[7, 8, 14, 17]. and (2) Including geo-coordinates as features will make the trained model
not applicable at a different spatial region, with or without fairness consideration. This
is because different regions tend to have different ranges of geo-coordinates and rely
on different coordinate systems/projections.

of the overall model performance𝑚F (FΘ0
) such as F1-scores in

the free-training scenario, which can be used as a reference point

for fairness-engaged training on F .

The output is a trained model F with parameters Θ that main-

tains the same level of overall performance𝑚F (FΘ) as𝑚F (FΘ0
)

(e.g., |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼), while aiming for one or more of

the following fairness-bias objectives:

• Fairness criteria 𝐶𝑓 𝑎𝑖𝑟 : These criteria can be evaluated based on

results from a MAUP-aware fairness measure𝑀𝑓 𝑎𝑖𝑟 . The goal is

to improve location-based fairness.

• Bias injection𝐶𝑏𝑖𝑎𝑠 : To understand location-based fairness in the

learning context, it is important to know if, where, and how bias

may be included in the model under different fairness conditions.

In practice, bias may exist due to various reasons including ma-

licious acts, manipulation, fairness-unaware training (e.g., Fig.

1), etc. The representation of bias is more diverse than fairness,

i.e., a fair model can be made unfair in multiple different ways.

For example,𝐶𝑏𝑖𝑎𝑠 can be represented by a high𝑀𝑓 𝑎𝑖𝑟 value or a

single partition 𝑝 ∈ P that has a low solution quality𝑚F (FΘ, 𝑝).

While 𝐶𝑓 𝑎𝑖𝑟 and 𝐶𝑏𝑖𝑎𝑠 appear to be on the opposite sides of

an objective, they are not necessarily in conflict with each other

and can co-exist in, or be co-expressed by, a trained model for the

location-based fairness-bias problem as we will discuss next.

Finally, the scope of this problem focuses on the model-provider

side, and the scenario where manipulation often cannot be done

on the test data (e.g., in agriculture monitoring, satellite imagery is

often published by trusted sources).

2.3 Key instances

In the following, we present three key instances of the general

problem formulation in Sec. 2.2.

2.3.1 Pure fairness-driven learning. This instance focuses only on

fairness-related objectives defined by the MAUP-aware fairness

measure𝑀𝑓 𝑎𝑖𝑟 :

min
Θ

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, 𝑆P ), 𝑠 .𝑡 . |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼 (3)

where 𝑆P = {P} is a set of user-selected partitionings used for

MAUP-aware fairness training, Θ0 is the set of parameters trained

without fairness consideration (Sec. 2.2),𝑚F (FΘ) and𝑚F (FΘ0
)

evaluate the global model performance on the entire data (during

training, we use validation data as a proxy of test data), and 𝛼 ∈ R+.

2.3.2 Pure bias-injection learning. Opposite to the previous in-

stance, this aims to purely inject bias into a model. Here we con-

sider two different forms of bias injection: (1) A high𝑀𝑓 𝑎𝑖𝑟 value

on a target partitioning P (here |{P}| = 1 for𝑀𝑓 𝑎𝑖𝑟 , making𝑀𝑓 𝑎𝑖𝑟

equivalent to its special case𝑚𝑓 𝑎𝑖𝑟 ); and (2) A low model perfor-

mance𝑚F (FΘ, 𝑝) on one specific partition 𝑝 ∈ P. The two forms

are shown in Eq. (4).

max
Θ

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F,P) or min
Θ

𝑚F (FΘ, 𝑝)

𝑠 .𝑡 . |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼

(4)

2.3.3 False fairness-preserving learning. The first two instances are

relatively easier for training as they have a pure objective, either

fairness- or bias-based. This instance deals with a more complex
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scenario, which hides biases under a seemingly fair model:

min
Θ

[

𝛽𝑏𝑖𝑎𝑠

𝛽 𝑓 𝑎𝑖𝑟

]𝑇
( [

−𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, P
𝑏𝑖𝑎𝑠 )

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, 𝑆
𝑓 𝑎𝑖𝑟

P
)

]

or

[

𝑚F (FΘ, 𝑝
𝑏𝑖𝑎𝑠 )

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, 𝑆
𝑓 𝑎𝑖𝑟

P
)

] )

𝑠.𝑡 . |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼

P𝑏𝑖𝑎𝑠
∉ 𝑆

𝑓 𝑎𝑖𝑟

P
(5)

As we can see, the objective includes both a fairness objective

from Eq. (3) and a bias-injection objective from Eq. (4); again, the

bias can be expressed in the same two forms in Eq. (4). For the

first form of bias (partitioning-level), we do need an additional

constraint, which requires that P𝑏𝑖𝑎𝑠 is not a member of 𝑆
𝑓 𝑎𝑖𝑟

P
.

Finally, weights 𝛽 𝑓 𝑎𝑖𝑟 and 𝛽𝑏𝑖𝑎𝑠 are used to combine the objectives;

in this work, we set 𝛽𝑏𝑖𝑎𝑠 to 1 and 𝛽 𝑓 𝑎𝑖𝑟 to |𝑆
𝑓 𝑎𝑖𝑟

P
|. If biases can

be injected under the coverage of the fairness objectives, it can

become much more challenging to recognize or detect them in

practice. Thus, it is important to understand the interactions to

design more robust mechanisms to avoid the bias risks.

3 METHOD

The scope of methods in this paper focuses on general deep learning

models (i.e., model-agnostic to deep networks).

3.1 Preliminaries: SPAD-based Training

As discussed in Def. 2 and 5, the statistical sensitivity caused by

the MAUP problem needs to be explicitly considered when incor-

porating location-based fairness in the training process. Thus, we

adopt the SPace-As-a-Distribution (SPAD) representation and bi-

level training framework from [29] as our base framework. Note

that [29] does not consider issues related to bias-injection. Here we

briefly summarize the key components of the SPAD framework.

3.1.1 SPAD representation and stochastic training. As statistical

conclusions from a single partitioning can hardly remain unchanged

on different space partitionings P, SPAD considers a set or distri-

bution of partitionings 𝑆P = {P1,P2, ...} and uses the aggregated

fairness scores across all P ∈ 𝑆P as the final score. Without loss of

generality, in this paper, the MAUP-aware fairness measure 𝑀𝑓 𝑎𝑖𝑟

in Def. 5 is an implementation of the SPAD-based measure, where

each P in the collection is given the same weight in the aggregation.

As it is computationally expensive to evaluate the fairness scores

using all the partitionings in each iteration, the training process

uses a stochastic strategy in which each epoch only considers one

random sample of P from the collection. This allows a significant

reduction of training time while keeping the performance of the

model similar and sometimes better because of the improved ability

to jump out of local minima without the averaging effects [29].

Following the recommendations from SPAD, all fairness-engaged

training epochs start from a base model that is trained without any

fairness consideration. This prevents the model from enforcing fair-

ness at a premature stage (e.g., low global accuracy) that constrains

its prediction quality. This is the FΘ0
in Sec. 2.2.

3.1.2 Bi-level training. A common training strategy in fairness-

aware learning is to add the fairness score as a regularization term

to the overall loss function [13, 31]. However, this suffers from three

major limitations in the spatial fairness context: (1) The samples

from each training batch are often not representative of all par-

titions 𝑝 ∈ P and lead to inaccurate estimations of the fairness

measure𝑚𝑓 𝑎𝑖𝑟 (Def. 5. This is different from traditional fairness

evaluation where there is only a small number of groups to consider

(e.g., genders); (2) Exact measures such as F1-scores cannot be used

to measure fairness during training as they are not differentiable,

and the approximation further decreases the quality of fairness

evaluation; and (3) Additional hyper-parameters are needed to com-

bine the loss. As a result, the regularization-based approach often

has unsatisfying outcomes, which will be shown in Sec. 4.

In the bi-level strategy [29], the loss function remains unchanged

(i.e., no addition of fairness-based regularization term) during the

training phase, concentrating on prediction performance𝑚F . The

fairness is enforced by a referee, which is used at the beginning of

each epoch to set the learning rates for data samples in different

partitions 𝑝 ∈ P (an epoch uses one random sample of P as dis-

cussed in Sec. 3.1.1) by evaluating the current level of bias across

the partitions 𝑝 ∈ P. Intuitively, partitions 𝑝 with higher-than-

expected performance (e.g., a positive𝑚F (FΘ, 𝑝𝑖 ) −𝑚F (FΘ,P);

see Eq. (2)) will be assigned with lower learning rates, while 𝑝 not

meeting expectations will be given higher rates:

𝜂𝑖 =
Δ𝑖 − Δ𝑚𝑖𝑛

Δ𝑚𝑎𝑥 − Δ𝑚𝑖𝑛
· 𝜂𝑚𝑎𝑥 (6)

where Δ𝑖 =𝑚F (FΘ, 𝑝𝑖 ) −𝑚F (FΘ,P), and 𝑝𝑖 ∈ P.

Since the fairness evaluation assignment is performed at the

beginning of each epoch, it can use representative samples from

all partitions 𝑝 ∈ P. Moreover, as the fairness evaluation is used

to assign learning rates rather than calculating gradients, fairness

can be calculated directly with exact performance measures. Fi-

nally, there is no need for an extra hyper-parameter as there is no

regularization term.

3.2 Fairness-preserving learning

Pure fairness-preserving learning (Sec. 2.3.1) can be achieved by

applying the training strategies from Sec. 3.1. Since it is in general

difficult to apply hard constraints during the back-propagation

process, in our solution we model the constraints in Eqs. (3) to (5) as

soft constraints. In order to minimize the deviation from the overall

performance (e.g., global F1-score) achieved by the unconstrained

model FΘ0
(no fairness consideration), we use the following tactics

to keep the training of FΘ maneuvering around𝑚F (FΘ0
).

First, when evaluating the fairness result on a single partitioning

P using𝑚𝑓 𝑎𝑖𝑟 in Eq. (1), we substitute𝑚F (FΘ,P)with𝑚F (FΘ0
,P).

This allows𝑚𝑓 𝑎𝑖𝑟 to not only balance the performance on differ-

ent partitions 𝑝 ∈ P, but also encourage their performances to

converge towards𝑚F (FΘ0
,P), which helps keep the overall per-

formance at a similar level. Together with this substitution, we

initiate the parameters for FΘ using Θ0 as a guidance.

Second, we introduce a new performance-reconditioning epoch:

Definition 6. A performance-reconditioning epoch temporarily

ignores the fairness (or bias) criteria and focuses only on overall per-

formance𝑚F , as a mitigation strategy to move closer to𝑚F (FΘ0
,P).

In this context, this means the learning rates will be the same for all

partitions 𝑝 ∈ P. One performance-reconditioning epoch is executed

whenever the constraint |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼 is violated.
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Validation of the constraint in Def. 6 is performed by evaluation

on the training dataset with exact metrics (e.g., F1-score instead

of approximation by loss functions). The evaluation is delayed for

𝑡𝑤𝑎𝑖𝑡 epochs (e.g., 𝑡𝑤𝑎𝑖𝑡 = 5 in the paper) if the condition is met to

save computation, and otherwise performed immediately after each

epoch so that more execution of the reconditioning epoch may be

used to maneuver back to a similar level of overall performance.

The algorithm is summarized in Alg. 1.

Algorithm 1 Fairness-preserving learning

Require:

• Choice of architecture F and Θ0 (trained without fairness)

• Set of partitionings 𝑆P
• Feature X and label y

• Learning rate bound 𝜂𝑚𝑎𝑥

1: init(FΘ, Θ = Θ0)

2: 𝑡𝑤𝑎𝑖𝑡 = 0

3: while not done do

4: P = get_one_partitioning(𝑆P )

5: 𝑆𝜂 = get_fairness_learning_rates(FΘ, FΘ0
, P,𝑚F , 𝜂𝑚𝑎𝑥 )

6: for (𝑝 , 𝜂𝑖 ) in (P, 𝑆𝜂 ) do

7: for (X𝑏𝑎𝑡𝑐ℎ , y𝑏𝑎𝑡𝑐ℎ) in (X𝑝 , y𝑝 ) do

8: Θ = Θ − 𝜂𝑖 · ∇LFΘ
(X𝑏𝑎𝑡𝑐ℎ, y𝑏𝑎𝑡𝑐ℎ)

9: end for

10: end for

11: if 𝑡𝑤𝑎𝑖𝑡 ≤ 0 then

12: 𝑚F (FΘ) = eval(FΘ, X, y)

13: if |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼 then

14: 𝑡𝑤𝑎𝑖𝑡 = 5

15: else

16: exec_reconditioning_epoch(FΘ, X, y)

17: 𝑡𝑤𝑎𝑖𝑡 = 0

18: end if

19: end if

20: 𝑡𝑤𝑎𝑖𝑡 = 𝑡𝑤𝑎𝑖𝑡 − 1

21: end while

22: return FΘ

3.3 Bias-injection learning

3.3.1 Partitioning-level bias injection. Pure bias-injection learning

for a target partitioning, i.e., maxΘ𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F,P) in Eq. (4)

can adopt the same high-level training process in Alg. 1. The key

difference is that the learning rates will be assigned in a different

way. Instead of pushing performances on different partitions 𝑝 ∈ P

towards𝑚F (FΘ0
,P), here their discrepancies are increased by only

providing a learning rate (𝜂𝑚𝑎𝑥 ) to partitions with performances

above𝑚F (FΘ0
). As allocating positive learning rates to partitions

with lower performances may narrow their distances to𝑚F (FΘ0
),

we set their rates to 0 in the bias-injection epochs.

In practice, the reconditioning epoch is often not activated much

during pure fairness-preserving learning. However, it becomes im-

portant when Alg. 1 is applied to bias-injection. The main reason is

that partitions with higher𝑚F (FΘ), in general, have less space for

further growth. This is different from the scenario in pure fairness-

preserving learning, where the training process tries to increase the

𝑚F (FΘ) on lower-performing partitions. On the other hand, during

bias-injection, lower-performing partitions that are not assigned

learning rates often have a faster decrease in𝑚F (FΘ). Combined

together, this makes it easy for𝑚F (FΘ) −𝑚F (FΘ0
) to be smaller

than −𝛼 . Thus, having the new reconditioning epoch in Def. 6 is

necessary during bias-injection, which was not considered in Sec.

3.1. Based on our experiments, the reconditioning epoch is often

executed for more than 50% of the epochs (lines 4-10 in Alg. 1).

3.3.2 Partition-level bias injection. As discussed in Sec. 2.3.2,

partition-level bias-injection targets performance decrease on only

a single partition 𝑝 ∈ P, i.e., minΘ 𝑚F (FΘ, 𝑝) in Eq. (4). The con-

straint |𝑚F (FΘ) −𝑚F (FΘ0
) | ≤ 𝛼 is the same. We further discuss

two related scenarios for the single partition (𝑝) level:

• Uncontrolled decrease on 𝑚F (FΘ, 𝑝), where the only bias-

injection purpose is to reduce the performance on 𝑝;

• Controlled decrease on𝑚F (FΘ, 𝑝), where the prediction is ma-

nipulated towards a user-specified target (e.g., from "oil palm

plantation area" to "forest").

The training strategy for both scenarios can be embarrassingly

simple. For the uncontrolled scenario, we can simply leave out data

samples from the partition during training. One may also apply

more aggressive tactics such as gradient ascent, i.e., Θ = Θ + 𝜂 ·

∇LFΘ (X𝑝 , y𝑝 ), but based on our experiments the left-out strategy

is self-sufficient in most scenarios. For the controlled scenario, we

swap the training labels in 𝑝 to the target labels. Note that for

both scenarios, the reconditioning epoch is still needed to keep the

model performance at the level of𝑚F (FΘ0
). Moreover, currently

we only target on partitions with relatively small sizes (e.g., <10% of

the entire study area), and this may not be a feasible problem with

major changes in labels. For example, depending on the original

𝑚F (FΘ0
), a certain proportion of change may result in a bounded

performance of𝑚F (FΘ) which is below𝑚F (FΘ0
)−𝛼 . In the future,

we will explore strategies to control only a learned/optimized subset

of labels to inject location-based bias.

3.4 False fairness-preserving learning

In this section, we target the final problem defined in Sec. 2.3.3,

where the goal is to simultaneously preserve fairness and inject bias

during the training process. Such manipulations in opposite direc-

tions are often infeasible for traditional fairness problems, where

the groups (e.g., race, gender) are pre-defined. In the location-based

fairness problem, due to the existence of non-stationary groupings

(i.e., different partitionings), we will show that it is possible for a

model to have "hidden bias" under the cover of "fair results", which

may be more easily unnoticed or undetected in practice.

3.4.1 Partitioning-level. Compared to the first two problems with

pure objectives, false fairness-preserving learning is much more

challenging due to the conflicts that often exist between the

objectives in minΘ [𝛽
𝑏𝑖𝑎𝑠 · (−𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F,P

𝑏𝑖𝑎𝑠 )) + 𝛽 𝑓 𝑎𝑖𝑟 ·

𝑀𝑓 𝑎𝑖𝑟 (FΘ,𝑚F, 𝑆
𝑓 𝑎𝑖𝑟

P
)]; as a reminder, lower 𝑀𝑓 𝑎𝑖𝑟 values corre-

spond to fairer results. Although we have included an additional

constraint that P𝑏𝑖𝑎𝑠 ∉ 𝑆
𝑓 𝑎𝑖𝑟

P
, different partitionings are not in-

dependent and they often share certain level of overlaps. For this

reason, the attempt to directly combine the training strategies in

Sec. 3.2 and 3.3.1, as we tested, often gets stuck in a middle ground

with little progress either on 𝑆
𝑓 𝑎𝑖𝑟

P
or P𝑏𝑖𝑎𝑠 .
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(a) Global F1: 0.5 (b) Global F1: 0.5 (c) Global F1: 0.4 (d) Global F1: 0.4

Figure 3: Examples showing the feasibility of improving fair-

ness on one partitioning while injecting bias in another.

Thus, we propose an Agreement-driven simultaneous Fairness-

preserving And Bias-injection (A-FAB) training approach to achieve

the two goals for the same model FΘ. In the following, we first

demonstrate the feasibility of the task and then present the A-FAB

algorithm.

Feasibility: Fig. 3 shows two illustrative examples of changes in

performance distributions, which make results in one partitioning

fairer while the other more biased. The grids represent different

examples of space-partitionings, and the numbers in the partitions

show the accuracy values achieved by a model. For simplicity of

illustration, we assume each partition has an equal number of data

samples. The first example consists of Fig. 3 (a) and (b), where all

four partitionings share the same overall performance (i.e., global

accuracy at 0.5). The changes from (a) to (b) make the location-

based fairness improve (perfectly fair) for the partitionings at the

top. However, they introduce more bias into the partitionings in the

second row, i.e., the values move further away from the global mean

at 0.5. Fig. 3 (c) and (d) show the second example, where similar

patterns appear when changes are made from (c) to (d). Similarly,

all partitionings share the same global accuracy at 0.4. In both cases,

the fairness results get better after the change for the partitionings

in the top row, but deteriorate for the partitionings at the bottom.

The two examples demonstrate that it is feasible to simultaneously

incur improvements and decreases on fairness.

A-FAB algorithm: To realize the feasible scenarios in Fig. 3,

the A-FAB training process executes in a paired-fashion, where

each pair (P 𝑓 𝑎𝑖𝑟 ,P𝑏𝑖𝑎𝑠 ) is a combination of a partitioning in 𝑆
𝑓 𝑎𝑖𝑟

P
(the goal is to improve fairness for partitionings in the set) and the

target partitioning for bias-injection P𝑏𝑖𝑎𝑠 . The general sequence of

training is that each epoch uses one pair from the set, and continues

to loop over it till convergence.

The key step during the training of each pair (P 𝑓 𝑎𝑖𝑟 ,P𝑏𝑖𝑎𝑠 ) is

to identify agreement between them. Specifically, A-FAB uses di-

rectional agreement (Def. 7 and 8) to determine whether a partition

should be trained in the current epoch.

Definition 7. Desired direction. A desired direction of perfor-

mance change for a partition 𝑝 ∈ P is the direction that moves

its performance 𝑚F (FΘ, 𝑝) in order to help the model to improve

its objective function value. The directions are different for fairness

preservation and bias-injection. For fairness preservation, a desired

direction of 𝑝 will be to increase if its score is below the global mean

𝑚F (FΘ0
,P), and to decrease if its score is above the mean, which

(a) P𝑏𝑖𝑎𝑠 directions (b) 𝑆
𝑓 𝑎𝑖𝑟

P
directions (c) Agreement

Figure 4: Illustrative example of directional agreement.

helps reduce𝑀𝑓 𝑎𝑖𝑟 :

𝑑𝑖𝑟 𝑓 𝑎𝑖𝑟 (𝑝) =

{

↑ or 1, if𝑚F (FΘ, 𝑝) ≤ 𝑚F (FΘ0
,P)

↓ or − 1, otherwise
(7)

For bias-injection, the directions are the opposite in order to increase

𝑀𝑓 𝑎𝑖𝑟 .

Definition 8. Directional agreement. Given two overlapping

partitions 𝑝 𝑓 𝑎𝑖𝑟 ∈ P 𝑓 𝑎𝑖𝑟 and 𝑝𝑏𝑖𝑎𝑠 ∈ P𝑏𝑖𝑎𝑠 , a directional agreement

between them means that their desired directions of performance

change are identical for the current epoch. Note that the directional

agreements vary over epochs due to the continued updates on model

parameters.

Fig. 4 shows an example of directional agreement between

a pair (P 𝑓 𝑎𝑖𝑟 ,P𝑏𝑖𝑎𝑠 ) in an epoch. Directional agreement is im-

portant as it identifies common grounds between two seem-

ingly "conflicting" objectives. For the training of each epoch, we

only carry out training on partitions from P𝑏𝑖𝑎𝑠 (or P 𝑓 𝑎𝑖𝑟 ) that

agreed on the directions of intersecting partitions from P 𝑓 𝑎𝑖𝑟 (or

P𝑏𝑖𝑎𝑠 ). The partitioning to choose partitions from is determined

based on the average number of overlapping partitions 𝑂 , e.g.,

𝑂 𝑓 𝑎𝑖𝑟 = |P 𝑓 𝑎𝑖𝑟 |−1
∑ |P 𝑓 𝑎𝑖𝑟 |
𝑖=0 |𝑝

𝑓 𝑎𝑖𝑟
𝑖 ∩ P𝑏𝑖𝑎𝑠 |. The partitioning with

the smaller 𝑂 will be selected.

If a partition 𝑝 overlaps with multiple partitions in the other

partitioning, we use the majority vote to determine if it will be

included in training or not (ties are broken in favor of "agreement").

The reconditioning epoch is also employed here to maintain overall

performance. The A-FAB algorithm is illustrated in Alg. 2.

3.4.2 Partition-level. The solution at the partition-level is much

simpler. The training process is a combination of Alg. 1 for

fairness-preserving learning in Sec. 3.2 and the partition-level bias-

injection learning in Sec. 3.3.2. Specifically, for the uncontrolled

bias-injection, we perform Alg. 1 as regular, and the only difference

is that, the intersection between any partitioningP 𝑓 𝑎𝑖𝑟 ∈ 𝑆
𝑓 𝑎𝑖𝑟

P
and

the single partition 𝑝𝑏𝑖𝑎𝑠 is skipped in training. For the controlled

bias-injection (altering prediction labels), instead of skipping the

samples in 𝑝𝑏𝑖𝑎𝑠 for training, we use manipulated samples with

label changes for the training of the partition, following the strategy

in Sec. 3.3.2.

4 EXPERIMENTS

4.1 Dataset description

California crop mapping: Accurate mapping of crops is critical for

estimating crop areas and yield, which are often used for distribut-

ing subsidies and providing farm insurance over space. Our input
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Algorithm 2 A-FAB algorithm

Require:

• Architecture F and Θ0 (no fairness consideration)

• Set of partitionings 𝑆
𝑓 𝑎𝑖𝑟

P
for fairness preservation

• Target partitioning P𝑏𝑖𝑎𝑠 for fairness injection

• Feature X and label y

1: init(FΘ, Θ = Θ0)

2: 𝑝𝑎𝑖𝑟𝑠 = construct_partitioning_pairs(𝑆
𝑓 𝑎𝑖𝑟

P
, P𝑏𝑖𝑎𝑠 )

3: while not done do

4: for (P 𝑓 𝑎𝑖𝑟 , P𝑏𝑖𝑎𝑠 ) in 𝑝𝑎𝑖𝑟𝑠 do

5: 𝑚
𝑓 𝑎𝑖𝑟

F
,𝑚𝑏𝑖𝑎𝑠

F
= eval_partition_level(FΘ, X, y, P

𝑓 𝑎𝑖𝑟 , P𝑏𝑖𝑎𝑠 )

6: 𝑑 𝑓 𝑎𝑖𝑟 , 𝑑𝑏𝑖𝑎𝑠 = get_directions(𝑚
𝑓 𝑎𝑖𝑟

F
,𝑚𝑏𝑖𝑎𝑠

F
,𝑚F (FΘ0

))

7: 𝑆
𝑎𝑔𝑟𝑒𝑒
𝑝 = get_agreement(𝑑 𝑓 𝑎𝑖𝑟 , 𝑑𝑏𝑖𝑎𝑠 )

8: X𝑎𝑔𝑟𝑒𝑒 , y𝑎𝑔𝑟𝑒𝑒 = get_training_data(X, y, 𝑆
𝑎𝑔𝑟𝑒𝑒
𝑝 )

9: for (X𝑏𝑎𝑡𝑐ℎ , y𝑏𝑎𝑡𝑐ℎ) in (X𝑎𝑔𝑟𝑒𝑒 , y𝑎𝑔𝑟𝑒𝑒 ) do

10: Θ = Θ − 𝜂 · ∇LFΘ
(X𝑏𝑎𝑡𝑐ℎ, y𝑏𝑎𝑡𝑐ℎ)

11: end for

12: end for

{Comment: Skipped the code for the reconditioning epoch, which is

the same as lines 11-20 in Alg. 1.}

13: end while

14: return FΘ

X for crop and land cover classification is the multi-spectral remote

sensing data from Sentinel-2 in Central Valley, California, and the

study region has a size of 4096×4096 (∼6711 km2 at 20m resolution).

We use the multi-spectral data captured in August, 2018 for the

mapping, and each location has reflectance values from 10 spectral

bands, which are used as input features. The label y is from the

USDA Crop Data Layer (CDL) [5].

Mapping palm oil plantations in Indonesia: We also validate our

framework in detecting oil palm plantations, which is a key driver

for deforestation in Indonesia. Plantations have similar greenness

levels to tropical forests. Our ground truth labels are created in

Kalimantan, Indonesia in 2014 based on manually created planta-

tion mapping products RSPO [10] and Tree Plantation [22]. Each

location is labeled as one of the categories from {plantation, non-

plantation, unknown}, where the "unknown" class represents the

locations with inconsistent labels between the RSPO and Tree Plan-

tation dataset. We do not consider the "unknown" class in the classi-

fication. We utilize the 500-meter resolution multi-spectral MODIS

satellite image, which consists of 7 reflectance bands (620-2155 nm)

collected by MODIS instruments onboard NASA’s satellites, and is

collected in January, 2014.

For both problems, we randomly select 20%, 20%, and 60% loca-

tions for training, validation and testing, respectively.

4.2 Candidate methods

• Base: The base deep learning model (fully-connected DNN and

LSTM) without consideration of spatial fairness.

• REG: Regularization is a main strategy used for general fairness-

aware learning [13, 23, 31, 33]. Following this strategy, spatial

fairness is enforced using the base model with a regularization

term to the loss function. This regularization encourages the

fairness for the partitionings under protection and the bias for the

partitionings under intervention. As F1-score is not differentiable,

we use standard approximation via the threshold-based approach,

which amplifies softmax predictions 𝑦 over a threshold 𝛾 to 1

to suppresses others to 0 using 1 − ReLU(1 −𝐴 · ReLU(𝑦 − 𝛾)),

where 𝐴 is a sufficiently large number (𝐴 = 10000 in our tests).

The weight of the regularizer is set to 10.

• Adversarial Discriminating-based learning (ADL): This base-

line is an extension of the discriminator-based fairness enforcing

approach [2]. We include a separate discriminator for each parti-

tioning in 𝑆
𝑓 𝑎𝑖𝑟

P
, and P𝑏𝑖𝑎𝑠 . For fairness preservation, the model

aims to learn group-invariant (or fair) features that make it dif-

ficult for a discriminator to identify the partition 𝑝 ∈ P from

which data samples come. For bias-injection, we do the opposite

to reward features that are in favor of the discriminator.

• FAIR: The proposed pure fairness-preserving learning approach

described in Sec. 3.2.

• BI: The proposed pure bias-injection learning approach described

in Sec. 3.3. There are three variants of BI: (1) BIP : partitioning-

level bias-injection; (2) BI𝑝 : partition-level bias-injection (without

label control); and (3) BI∗𝑝 : partition-level bias-injection with

target label control.

• A-FAB: The proposed method that simultaneously performs

fairness-preservation and bias-injection in Sec. 3.4. Similarly,

depending on the type of bias-injection, it has three variants

A-FABP , A-FAB𝑝 and A-FAB∗𝑝 .

4.3 Implementation details

The training algorithms developed in this paper do not require

specific types of space-partitionings (i.e., the information is not

used by any decisions in the algorithm). Without loss of general-

ity, our experiment uses the common𝑚 × 𝑛-type of partitionings

that have𝑚 rows and 𝑛 columns and equal-size cells, because of

their intuitiveness and simplicity for notation. Specifically, in the

following, we use "(𝑚, 𝑛)" to denote a𝑚 × 𝑛 partitioning. We did

not use existing partitionings (e.g., voting districts grouped from

census blocks) as they are known to contain bias (e.g., debated at

both the federal and state courts [9, 20]).

Our proposed methods do not assume specific network archi-

tectures. Most results presented in this paper use an 8-layer deep

neural network (DNN) as a base model. We also test an LSTMmodel

using a series of remote sensing images for classification. These

models take inputs of multi-spectral data at each location and out-

put the land cover label. In our experiment, we first train an initial

DNN or LSTM base model for 300 epochs (converged) without

considering the fairness, using Adam (𝛼 = 0.001) as the optimizer.

From this base model, we further implement different candidate

approaches to improve fairness or inject bias. We train the model

for 200 epochs for each partitioning for fairness preservation or

bias injection.

4.4 Results

We evaluate the proposed method using randomly selected

partitionings for fairness-preservation and bias-injection. Here

we report the performance of each method by injecting bias

into the partitioning (4,4) while preserving fairness over dif-

ferent sets of partitionings (Fig. 5). The sets cover differ-

ent numbers of partitionings, i.e., from 1 to 4, as shown in

Fig. 5 (a) to (d). We have also tested the performance over
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(a) Fairness preserving (1,3), bias injection (4,4) (b) Fairness preserving (2,2) and (1,5), bias injection (4,4)

(c) Fairness preserving (2,4), (2,3), and (1,5), bias injection (4,4) (d) Fairness preserving (2,5), (2,4) (1,3), and (1,2), bias injection (4,4)

Figure 5: The fairness and overall performance with a different number of fairness-preserving partitionings (from 1 to 4). For

each test, we show three results for all themethods: left - obtained fairness scores (𝑚𝑓 𝑎𝑖𝑟 in Def. 2) for each of fairness-preserving

partitionings, middle - the obtained fairness scores for the bias-injecting partitioning, and right - the overall performance. The

higher fairness score indicates worse fairness performance.

(a) Bias injection (4,4) (b) Bias injection (2,3) (c) Base on (2,3) (d) BIP on (2,3)

Figure 6: (a)(b) The fairness and overall predictive performance on the target partition (4,4) or (2,3) after applying bias injection.

(c)(d) The obtained F-1 scores over different partitions in (2,3) using (c) Base and (d) BIP .

other random partitionings and observed similar performance

(see our code repository: https://drive.google.com/drive/folders/

1KawFcoJV_xZtifsZmYBLS__uo1P-Vg9w?usp=sharing).

4.4.1 Overall performance. In the crop mapping dataset, we can

observe several major trends according to the results. First, our

proposed methods FAIR, BI and A-FAB are able to maintain similar

global F-1 scores as the other methods. This confirms the capacity of

the training strategies in controlling the results in the fairness-bias

sphere (i.e., improving or degrading the fairness) without compro-

mising the overall classification performance, revealing the im-

portance of explicit and thorough consideration of location-based

fairness in important applications.

4.4.2 Fairness-preserving performance. Second, the proposed meth-

ods FAIR and A-FAB in general produce much better fairness scores

(lower the better; Def. 4) for partitionings under fairness-protection

compared to the base model, REG and ADL. This confirms the ef-

fectiveness of our method in maintaining the fairness by using the

learning-rate-based strategy (i.e., improved sample representative-

ness). Especially, the fairness scores obtained by A-FAB are similar

to the FAIR method, which confirms that A-FAB can simultaneously

preserve the fairness for certain partitionings while injecting bias

for a target partitioning, thanks to the use of directional agree-

ments. The ADL method focuses on reducing the distributional gap

across partitions. As a result, it treats different partitions equally in

(a) Bias injection to the 11𝑡ℎ partition in (4,4)

(b) Bias injection to the 1𝑠𝑡 partition in (4,4) while preserving fairness on (1,5) and (2,2)

Figure 7: Bias injection on a specific partition ((a) shows pure

bias-injection learning).

the classification process by eliminating partition-specific informa-

tion, but it is not as effective for the enforcement of fairness across

partitions.

4.4.3 Bias-injection performance. Third, the proposed methods (A-

FAB and BI) are more effective in bias-injection at the partitioning-

level, compared to FAIR, REG, and ADL. We also observe that in
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(a) Bias injection (4,4)

(b) Fairness preserving (3,1) and (1,2), bias injection (4,4)

(c) Fairness preserving (3,2), (1,3) and (1,2), bias injection (4,4)

Figure 8: Results using LSTM as the base model ((a) shows

pure bias-injection learning).

some scenarios the A-FAB method resulted in less bias on the parti-

tioning (4,4) compared to the base model, especially when we need

to preserve fairness for more partitionings, e.g., Fig. 5 (b)-(d). This

is mainly due to the fact that the base model is unconstrained and

is not bounded by the additional fairness-preserving objectives in

A-FAB (Sec. 3.4). As we decrease the number of fairness-preserving

partitionings, it becomes easier to inject bias into the target par-

titioning. In particular, if we only consider bias-injection, i.e., no

fairness-preserving partitionings, the pure bias-injection method

BI can lead to higher bias for the target partitioning. Figs. 6 (a) and

(b) show the performance of injecting bias on (4,4) and (2,3), re-

spectively. In Fig. 6 (c) and (d), we also show the distribution of F-1

score on each of the 2-by-3 partitions. It can be seen that BI (Fig. 6

(b)) can achieve a more unbalanced F-1 distribution compared to

the base model (Fig. 6 (a)). These results together suggest that it

is critical to increase the number of partitionings used in fairness

preservation, which in general leaves less room for bias-injection.

Explicit consideration of fairness on only a few partitioning may

not be able to reduce the risk of unnoticed/hidden bias.

We further tested the proposed method for injecting bias on a

specific target partition, as shown in Fig. 7. Here we randomly select

one partition from the (4,4) partitioning. We can see that both BI𝑝
and BI∗𝑝 can effectively degrade the F-1 score for the target partition

for intervention while maintaining the fairness for partitionings

under fairness preservation.

4.4.4 LSTM-based model performance. As our method is agnostic

of network architectures, we also tested it using the LSTM as the

base model and obtain similar results, as shown in Fig. 8. The

performance of LSTM is generally better than DNN as LSTM is

more likely to capture unique crop phenology from a series of data.

The trend of fairness-bias comparison maintains the same pattern.

4.4.5 Palm oil plantation mapping dataset: We conduct the same

test for mapping palm oil plantations, and we can observe similar

results on this dataset (Fig. 9). In Fig. 9 (b), we notice that the

FAIR method (optimized on (3,3) and (2,1)) produces very good

fairness even for the partitioning (1,5). This is because the palm oil

plantations in this dataset are relatively homogeneous over space

and thus improving the fairness on certain partitionings could easily

promote the fairness over other partitionings. Also, according to

Fig. 9, the gap between {A-FAB𝑝 , A-FAB
∗
𝑝 } and {Base, FAIR} is smaller

than that in the crop dataset. This is also due to the homogeneous

nature of the plantations, i.e., degrading the F-1 performance on

a specific partition may break the fairness on fairness-preserving

partitionings (3,3) and (2,1). Finally, Fig. 10 shows an example result

of controlled partition-level bias-injection by BI∗𝑝 (highlighted a

local region inside the 5𝑡ℎ partition), where palm oil plantation area

is largely changed to the forest (the global F1 score of the entire

area remains at a similar level as shown in Fig. 9 (c)).

5 CONCLUSIONS

We proposed a set of methods for maneuvering the training process

towards various targeted fairness-bias outcomes, while maintaining

the same level of overall prediction performance (i.e., for "free"). Our

proposed methods were evaluated on two real-world applications

with great societal relevance, crop mapping in California and palm

oil plantation mapping in Indonesia. The results demonstrated the

effectiveness of the proposed methods in preserving fairness and

injecting bias over target partitionings or specific partitions. We

also observed that our methods can maintain the similar overall

performance during the manipulation of fairness. One promising

future direction is to optimize the fairness-preserving partitionings

to mitigate bias injection for sound policy making. We will also

carry out more experiments on other types of spatial data.
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