)]
Check for
Updates

Sailing in the Location-Based Fairness-Bias Sphere

Erhu Hef

University of Pittsburgh
erh108@pitt.edu

Weiye Chen
University of Maryland
weiyec@umd.edu

Rahul Ghosh

University of Minnesota
ghosh128@umn.edu

ABSTRACT

As the adoption of machine learning continues to thrive, fairness of
the algorithms has become a key factor determining their long-term
success and sustainability. Among them, location-based fairness
— or spatial fairness — is critical for a variety of essential societal
applications that commonly rely on spatial data, including agri-
culture, disaster response, urban planning, etc. Spatial biases in-
curred by learning, if left unattended, may cause or exacerbate
unfair distribution of resources, spatial disparity, social division,
etc. However, very limited understanding has been developed on
location-based fairness and bias in machine learning. Compared to
traditional fairness-preserving techniques, the spatial consideration
introduces two major layers of complication: (1) Space is continuous
with no well-defined categories (e.g., categories by race or gender);
and (2) Categorizations given by space-partitionings are known
to be subject to high statistical sensitivity (e.g., gerrymandering).
Under these challenges, we formally explore and demonstrate the
fragility of learning methods in the spatial fairness-bias sphere.
Specifically, we present a set of techniques that can maneuver the
training process towards various targeted fairness-bias outcomes,
while maintaining the same level of overall prediction performance
(i.e., for "free"). Extensive experiments are carried out on two real-
world problems: crop monitoring in the US and palm oil plantation
mapping in Indonesia. The results demonstrate the effectiveness
of the manipulation algorithms and the importance of explicitly
regulating location-based fairness using a diverse set of criteria.

CCS CONCEPTS

+ Computing methodologies — Neural networks; « Informa-
tion systems — Spatial-temporal systems.
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1 INTRODUCTION

As the adoption of machine learning continues to thrive and inspire
major interests across broad applications (e.g., driving assistance
or automation, face recognition, healthcare), fairness in the data-
driven algorithms has drawn serious attention and becomes a key
factor for the sustained success in the long term.

This paper focuses on location-based fairness (a.k.a., spatial fair-
ness), which is critical for a variety of essential societal applications,
where location information is heavily used in decision and policy-
making. Spatial biases incurred by learning, if left unattended, may
cause or exacerbate unfair distribution of resources, social divi-
sion, spatial disparity, etc. In agriculture, for example, population
growth has caused immense pressure on food production and sup-
ply across the globe, which is worsened by climate change and
its consequences (e.g., extreme events and frequent disturbances).
The pressure has resulted in multiple initiatives in large-scale crop
monitoring, including NASA Harvest and G20’s GEOGLAM global
agriculture monitoring [1]. As the size of the satellite imagery that
these types of projects commonly rely on is reaching far beyond
the capacity of manual processing, they heavily rely on learning
methods to assist the generation of crop maps [12, 15]. Major de-
rived products such as acreage estimates [21] are further used to
inform critical actions such as the distribution of subsidies [3, 4, 18]
and other resources, to allow resilience against disturbances and
long-term sustainability. However, existing monitoring frameworks
largely ignored fairness issues, including location-related fairness.
To illustrate the potential implications, Fig. 1 shows the spatial
distributions of the F1 scores achieved by a deep learning model
for real-world cotton classification using satellite imagery. The
study area has a size of 80km by 80km, and is partitioned into
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Figure 1: Examples of spatial bias on cotton classification.

10km by 10km local regions. As we can see, the results across lo-
cations present clear spatial bias with large differences between
local F1-scores (the patterns of spatial bias may differ between
models trained from two separate runs). Such unattended bias in
crop mapping can lead to unfair resource distribution. For exam-
ple, it can hurt small holders representing the main production
force behind minor crops [6, 26, 27]. Similarly, maps generated by
machine learning have been increasingly applied in other critical
decision-making processes, where ignorance of location-based bias
can cause unfair estimations in disaster or insurance management
(e.g., real-time satellite-based maps of floods, damages, or risks),
unfair allocation of essential resources to the population in poverty
(e.g., urban slums in Africa), unfair carbon tax, and many more.

Fairness is a relatively new topic in machine learning but has
been widely studied in recent years given its importance. However,
existing fairness-preserving techniques have largely focused on
problems where fairness can be well-defined on classes in certain
categorical attributes such as race, gender, or income level.

Related work has explored a variety of techniques. The most
common and generally-applicable strategy is regularization-based
approach, which includes additional fairness-related losses dur-
ing the training process [13, 23, 31, 33]. Another major direction
of methods aims to learn group-invariant features [2], in which
additional discriminators are included in the training to penalize
learned features that can reveal the identity of a group (e.g., gender)
in an adversarial manner. Sensitive category de-correlation also em-
ploys the adversarial learning regime. However, instead of learning
group-invariant features, it tries to learn features that do not lead to
polarization of predictions (e.g., the sentiment of a phrase) for each
category (e.g., a language) [2, 25, 34]. From the data perspective,
strategies have also been developed for data collection and filter-
ing to reduce bias in downstream learning tasks [11, 24, 32]. More
variations have also been discussed in a recent survey [16]. These
methods have been applied to tasks where groups are well-defined
by categorical attributes (e.g., face detection [23], text analysis [25],
online bidding [19]). For spatial data, location-explicit frameworks
[28, 30] have been developed to improve prediction performance
over locations, but they do not consider fairness.

Compared to the traditional fairness-preserving techniques de-
signed for categorical groups, evaluation and enforcement of spatial
fairness introduce two major layers of complication. First, space
is continuous with no well-defined categories (e.g., categories by
race or gender). Second, location groups are commonly created by
space-partitioning. However, statistics evaluated from groups or
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categories given by space-partitionings are known to be sensitive
to changes in partitionings. In other words, a result map deter-
mined to be fair on one partitioning can easily get an opposite
conclusion from another. In statistics, this is known as the Modifi-
able Areal Unit Problem (MAUP; Def. 2), which shows the fragility
of statistical conclusions under the manipulation of partitionings.
The lack of consideration of MAUP has created major public con-
cerns. A high-profile example is gerrymandering, which refers to
the partitioning-manipulation practice used by political parties to
gain favor during an election. The growing concerns have raised
the issue to the US Supreme Court in 2019 [20] and state courts [9].

With the MAUP challenge in mind, we propose a set of tech-
niques to maneuver in the sphere of location-based fairness and
bias during the training process. Our goal is to explicitly manip-
ulate the fairness/bias of a learning model to reach a variety of
targeted outcomes (e.g., fair, biased, controlled mix with multiple
fairness criteria), all operating under the condition to maintain the
same level of overall performance (e.g., global F1-score) as that of a
base model (e.g., an LSTM trained with no fairness consideration).
Our techniques demonstrate the fragility of fairness in the spatial
setting and the feasibility of manipulating the results with high de-
grees of freedom, revealing the importance of explicit and thorough
consideration of location-based fairness in learning.

We carry out extensive experiments on two real-world prob-
lems: crop monitoring in US and palm oil plantation mapping in
Indonesia. For each problem, we evaluate the proposed fairness-
bias maneuvering techniques on top of two base neural network
architectures, i.e., densely-connected neural network (DNN) and re-
current LSTM. The results confirm the effectiveness of the proposed
algorithms under a variety of objectives and constraints.

2 PROBLEM

We first introduce the basic concepts for location-based fairness,
and then discuss the general formulation of the fairness-aware
learning problem. Finally, we present key instances of the problem,
representing different learning outcomes in the fairness-bias sphere.

2.1 Concepts

DEFINITION 1. Partitioning P and partition p. A partitioning
P splits an input space into K non-overlapping partitions {p1, ..., px}
that together cover the entire space.

DEFINITION 2. Modifiable Areal Unit Problem (MAUP). MAUP
states that statistical results and conclusions are sensitive to the choice
of space partitioning P. Specifically, given a statistic T that aggregates
information inside a partition p, MAUP entails that the distribution
of T or conclusions based on it varies as P changes. This is often
considered as a dilemma as statistical results are expected to vary if
different aggregations or groupings of locations are used.

Statistical sensitivity by MAUP has been commonly exploited
in practice, including examples of gerrymandering [9, 20]. In the
context of this work, MAUP means that the conclusion on "fair
vs. biased" is fragile to variations in #. For example, if F1-score or
error rate is used as 7, then one can easily manipulate the fairness
result by altering the partitioning as shown in Fig. 2; here different
partitionings lead to opposite conclusions in fairness evaluation
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Figure 2: Fairness on two example distributions Dist. 1 and 2.
(green: correct predictions; red: wrong predictions).

(e.g., (a) is unfair as two partitions have 100% accuracy whereas the
other two have 0%, and (b) is fair as all are at 50%).

DEFINITION 3. Performance measure m. A measure that eval-
uates the solution quality (not related to fairness) of a trained model
Fo with parameters ©. For example, m¢ can be F1-score (or a loss
function during training), mean squared errors, etc. In the rest of the
paper, mg(Fg) is used to denote the general performance of Fg, and
mg(Fo, p) ormg(Fo, P) specifically denotes the performance of Fg
on data samples in space covered by a partition p € P or an entire
partitioning P (equivalent to the entire dataset in this case).

DEFINITION 4. Fairness measure mg,;,. A statistic used to eval-
uate the fairness of a learning model’s performance across several
mutually-exclusive groups of individual locations. An example m g,
is the variance of F1-scores across groups. In this paper, groups are
defined by partitions p € P, and my4;, we use is:

Img(Fo, pi) — me(Fo, P)|
K

K
Mpair(Fo.meP) = )

i=1

)

where Fg is a learning model (e.g., a deep network) with parameters
O; K is the number of partitions p € P; mg(Fe, P) represents the
global performance across all partitions, which is equivalent to the
expectation Epcp (mg(Fo, p)-

DEFINITION 5. MAUP-aware fairness measure My ,;,. A fair-
ness measure that explicitly considers multiple partitionings {P}
during evaluation, which can be defined as:

{P}

Mfair(Fo, my {P}) = - D mpair(Fomp P (2)
i=1

{#}H
where |{P}| is the cardinality of partitionings used for MAUP-aware
fairness evaluation.

2.2 General formulation

The inputs to the problem, in general, follow a typical learning
formulation: features X and labels y, split into training, validation
and test sets (detailed in Sec. 4). The main difference here is that we
additionally include a machine learning model ¥ of user’s choice,
as well as its parameters @g, which are trained without considering
any fairness criterion. @9 is important as it sets the expected level

Location information (i.e., geo-coordinates of data samples) is not included as part of
the features X for two reasons: (1) Locations are sensitive attributes in location-based
fairness-aware learning, and a model should not treat a sample differently because of
sensitive attributes. Removal of sensitive attributes is a standard practice in fair learning
[7, 8, 14, 17]. and (2) Including geo-coordinates as features will make the trained model
not applicable at a different spatial region, with or without fairness consideration. This
is because different regions tend to have different ranges of geo-coordinates and rely
on different coordinate systems/projections.
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of the overall model performance m#(Fg,) such as F1-scores in
the free-training scenario, which can be used as a reference point
for fairness-engaged training on ¥ .

The output is a trained model # with parameters © that main-
tains the same level of overall performance m#(¥g) as m#(Fo,)
(e.g., Img(Fo) — me(Fo,)| < @), while aiming for one or more of
the following fairness-bias objectives:

e Fairness criteria Cg;y: These criteria can be evaluated based on
results from a MAUP-aware fairness measure Myg;,. The goal is
to improve location-based fairness.

e Bias injection Cp;,,: To understand location-based fairness in the
learning context, it is important to know if, where, and how bias
may be included in the model under different fairness conditions.
In practice, bias may exist due to various reasons including ma-
licious acts, manipulation, fairness-unaware training (e.g., Fig.
1), etc. The representation of bias is more diverse than fairness,
i.e., a fair model can be made unfair in multiple different ways.
For example, Cp;,5 can be represented by a high My, value or a
single partition p € P that has a low solution quality m«(Fe, p).

While Cggj and Cpiqg appear to be on the opposite sides of
an objective, they are not necessarily in conflict with each other
and can co-exist in, or be co-expressed by, a trained model for the
location-based fairness-bias problem as we will discuss next.

Finally, the scope of this problem focuses on the model-provider
side, and the scenario where manipulation often cannot be done
on the test data (e.g., in agriculture monitoring, satellite imagery is
often published by trusted sources).

2.3 Key instances

In the following, we present three key instances of the general
problem formulation in Sec. 2.2.

2.3.1 Pure fairness-driven learning. This instance focuses only on
fairness-related objectives defined by the MAUP-aware fairness
measure Mg,

m@in Mg air(Fo. mg Sp), s.t. Img(Fo) — my(Fo,)| <@  (3)

where Sp = {P} is a set of user-selected partitionings used for
MAUP-aware fairness training, y is the set of parameters trained
without fairness consideration (Sec. 2.2), m¢(Feo) and m¢(Fe,)
evaluate the global model performance on the entire data (during
training, we use validation data as a proxy of test data), and « € R*.

2.3.2  Pure bias-injection learning. Opposite to the previous in-
stance, this aims to purely inject bias into a model. Here we con-
sider two different forms of bias injection: (1) A high My, value
on a target partitioning # (here [{#}| = 1 for Mg;,, making Mg,
equivalent to its special case my,;,); and (2) A low model perfor-
mance mg(Fe, p) on one specific partition p € . The two forms
are shown in Eq. (4).

max My i (Fo, mg, P) or min mg(Fe, p)
2 e @)
s.t. Img(Fo) — my(Fo,)| < a

2.3.3 False fairness-preserving learning. The first two instances are
relatively easier for training as they have a pure objective, either
fairness- or bias-based. This instance deals with a more complex
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scenario, which hides biases under a seemingly fair model:

" ([ Mrair (Fo, m, PP1) |
Mfair (Fo, ms, S{)azr)

s.t. mg(Fo) — me(Fo,)| < @

bi Sfair
pbias 4 SP

bias

ﬁfair

) mg(Fo, pbies)
min fair
© Mpair (Fo. mg, Sy )

|

®)

As we can see, the objective includes both a fairness objective
from Eq. (3) and a bias-injection objective from Eq. (4); again, the
bias can be expressed in the same two forms in Eq. (4). For the
first form of bias (partitioning-level), we do need an additional
Pbias S]; air )

constraint, which requires that is not a member of

Finally, weights f/%" and 1% are used to combine the objectives;

in this work, we set %195 to 1 and /%" to |S];)a"|. If biases can
be injected under the coverage of the fairness objectives, it can
become much more challenging to recognize or detect them in
practice. Thus, it is important to understand the interactions to
design more robust mechanisms to avoid the bias risks.

3 METHOD

The scope of methods in this paper focuses on general deep learning
models (i.e., model-agnostic to deep networks).

3.1 Preliminaries: SPAD-based Training

As discussed in Def. 2 and 5, the statistical sensitivity caused by
the MAUP problem needs to be explicitly considered when incor-
porating location-based fairness in the training process. Thus, we
adopt the SPace-As-a-Distribution (SPAD) representation and bi-
level training framework from [29] as our base framework. Note
that [29] does not consider issues related to bias-injection. Here we
briefly summarize the key components of the SPAD framework.

3.1.1 SPAD representation and stochastic training. As statistical
conclusions from a single partitioning can hardly remain unchanged
on different space partitionings $, SPAD considers a set or distri-
bution of partitionings Sp = {1, Po, ...} and uses the aggregated
fairness scores across all P € Sp as the final score. Without loss of
generality, in this paper, the MAUP-aware fairness measure M (fair
in Def. 5 is an implementation of the SPAD-based measure, where
each P in the collection is given the same weight in the aggregation.

As it is computationally expensive to evaluate the fairness scores
using all the partitionings in each iteration, the training process
uses a stochastic strategy in which each epoch only considers one
random sample of # from the collection. This allows a significant
reduction of training time while keeping the performance of the
model similar and sometimes better because of the improved ability
to jump out of local minima without the averaging effects [29].
Following the recommendations from SPAD, all fairness-engaged
training epochs start from a base model that is trained without any
fairness consideration. This prevents the model from enforcing fair-
ness at a premature stage (e.g., low global accuracy) that constrains
its prediction quality. This is the Fg, in Sec. 2.2.

3.1.2  Bi-level training. A common training strategy in fairness-
aware learning is to add the fairness score as a regularization term
to the overall loss function [13, 31]. However, this suffers from three
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major limitations in the spatial fairness context: (1) The samples
from each training batch are often not representative of all par-
titions p € P and lead to inaccurate estimations of the fairness
measure mpq;, (Def. 5. This is different from traditional fairness
evaluation where there is only a small number of groups to consider
(e.g., genders); (2) Exact measures such as F1-scores cannot be used
to measure fairness during training as they are not differentiable,
and the approximation further decreases the quality of fairness
evaluation; and (3) Additional hyper-parameters are needed to com-
bine the loss. As a result, the regularization-based approach often
has unsatisfying outcomes, which will be shown in Sec. 4.

In the bi-level strategy [29], the loss function remains unchanged
(i.e., no addition of fairness-based regularization term) during the
training phase, concentrating on prediction performance mg¢. The
fairness is enforced by a referee, which is used at the beginning of
each epoch to set the learning rates for data samples in different
partitions p € P (an epoch uses one random sample of P as dis-
cussed in Sec. 3.1.1) by evaluating the current level of bias across
the partitions p € P. Intuitively, partitions p with higher-than-
expected performance (e.g., a positive mg(Fo, pi) — me(Fo, P);
see Eq. (2)) will be assigned with lower learning rates, while p not
meeting expectations will be given higher rates:

Bi = Bmin * Mmax (6)

Amax — Amin
where A; = mg(Fo, pi) — mg(Fo,P), and p; € P.

Since the fairness evaluation assignment is performed at the
beginning of each epoch, it can use representative samples from
all partitions p € . Moreover, as the fairness evaluation is used
to assign learning rates rather than calculating gradients, fairness
can be calculated directly with exact performance measures. Fi-
nally, there is no need for an extra hyper-parameter as there is no
regularization term.

ni =

3.2 Fairness-preserving learning

Pure fairness-preserving learning (Sec. 2.3.1) can be achieved by
applying the training strategies from Sec. 3.1. Since it is in general
difficult to apply hard constraints during the back-propagation
process, in our solution we model the constraints in Egs. (3) to (5) as
soft constraints. In order to minimize the deviation from the overall
performance (e.g., global F1-score) achieved by the unconstrained
model Fg, (no fairness consideration), we use the following tactics
to keep the training of g maneuvering around m#(Feg,).

First, when evaluating the fairness result on a single partitioning
P using mpy;, in Eq. (1), we substitute me(Fo, P) with mg(Fe,, P).
This allows m,;, to not only balance the performance on differ-
ent partitions p € P, but also encourage their performances to
converge towards m#(Fg,, P), which helps keep the overall per-
formance at a similar level. Together with this substitution, we
initiate the parameters for Fg using @y as a guidance.

Second, we introduce a new performance-reconditioning epoch:

DEFINITION 6. A performance-reconditioning epoch temporarily
ignores the fairness (or bias) criteria and focuses only on overall per-
formance m, as a mitigation strategy to move closer to mg#(Fg,, P).
In this context, this means the learning rates will be the same for all
partitions p € P. One performance-reconditioning epoch is executed
whenever the constraint [mg(Fe) — mg(Fo,)| < a is violated.
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Validation of the constraint in Def. 6 is performed by evaluation
on the training dataset with exact metrics (e.g., F1-score instead
of approximation by loss functions). The evaluation is delayed for
twair epochs (e.g., tywair = 5 in the paper) if the condition is met to
save computation, and otherwise performed immediately after each
epoch so that more execution of the reconditioning epoch may be
used to maneuver back to a similar level of overall performance.
The algorithm is summarized in Alg. 1.

Algorithm 1 Fairness-preserving learning

Require:
o Choice of architecture # and @ (trained without fairness)
o Set of partitionings Sp
o Feature X and label y
o Learning rate bound 7,4

1+ init(Fe, © = Op)
2: tywair =0
3: while not done do
4: P = get_one_partitioning(Sp)
5 Sy = get_fairness_learning_rates(¥e, Fo,, £, Mms, Nmax)
6. for (p, n;) in (P, Sy) do
7: for Xparchs Yparch) in (Xps Yp) do
8 0=0-n;" V-LT@ (Xpatch: Yvarch)
9: end for
10:  end for
11: if t\yqiz < 0 then
12: mg(Fo) = eval(Fo, X, y)
13: if |my(Fe) — mye(Fo,)| < a then
14: tywair =5
15: else
16: exec_reconditioning_epoch(¥g, X, y)
17: twair =0
18: end if
19:  end if

20: twait = twait — 1
21: end while
22: return Fo

3.3 Bias-injection learning

3.3.1 Partitioning-level bias injection. Pure bias-injection learning
for a target partitioning, i.e., maxe My (Fo. mg P) in Eq. (4)
can adopt the same high-level training process in Alg. 1. The key
difference is that the learning rates will be assigned in a different
way. Instead of pushing performances on different partitions p € P
towards m#(Fe,, P), here their discrepancies are increased by only
providing a learning rate (7max) to partitions with performances
above m#(Fe,). As allocating positive learning rates to partitions
with lower performances may narrow their distances to m¢(¥g,),
we set their rates to 0 in the bias-injection epochs.

In practice, the reconditioning epoch is often not activated much
during pure fairness-preserving learning. However, it becomes im-
portant when Alg. 1 is applied to bias-injection. The main reason is
that partitions with higher m#(¥g), in general, have less space for
further growth. This is different from the scenario in pure fairness-
preserving learning, where the training process tries to increase the
mq(Fe) onlower-performing partitions. On the other hand, during
bias-injection, lower-performing partitions that are not assigned
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learning rates often have a faster decrease in m¢(%g). Combined
together, this makes it easy for m¢(Fg) — m¢(Fe,) to be smaller
than —a. Thus, having the new reconditioning epoch in Def. 6 is
necessary during bias-injection, which was not considered in Sec.
3.1. Based on our experiments, the reconditioning epoch is often
executed for more than 50% of the epochs (lines 4-10 in Alg. 1).

3.3.2  Partition-level bias injection. As discussed in Sec. 2.3.2,
partition-level bias-injection targets performance decrease on only
a single partition p € P, i.e., ming mg(Feg, p) in Eq. (4). The con-
straint [m#(Fg) — m#(Fo,)| < « is the same. We further discuss
two related scenarios for the single partition (p) level:

e Uncontrolled decrease on m¢(Fg,p), where the only bias-
injection purpose is to reduce the performance on p;

o Controlled decrease on m¢(¥e, p), where the prediction is ma-
nipulated towards a user-specified target (e.g., from "oil palm
plantation area" to "forest").

The training strategy for both scenarios can be embarrassingly
simple. For the uncontrolled scenario, we can simply leave out data
samples from the partition during training. One may also apply
more aggressive tactics such as gradient ascent, i.e., ® =0 + 17 -
VL (Xp, yp), but based on our experiments the left-out strategy
is self-sufficient in most scenarios. For the controlled scenario, we
swap the training labels in p to the target labels. Note that for
both scenarios, the reconditioning epoch is still needed to keep the
model performance at the level of m#(¥g,). Moreover, currently
we only target on partitions with relatively small sizes (e.g., <10% of
the entire study area), and this may not be a feasible problem with
major changes in labels. For example, depending on the original
mg(Fe,) a certain proportion of change may result in a bounded
performance of m#(¥g) which is below m#(Fg,) —a. In the future,
we will explore strategies to control only a learned/optimized subset
of labels to inject location-based bias.

3.4 False fairness-preserving learning

In this section, we target the final problem defined in Sec. 2.3.3,
where the goal is to simultaneously preserve fairness and inject bias
during the training process. Such manipulations in opposite direc-
tions are often infeasible for traditional fairness problems, where
the groups (e.g., race, gender) are pre-defined. In the location-based
fairness problem, due to the existence of non-stationary groupings
(i.e., different partitionings), we will show that it is possible for a
model to have "hidden bias" under the cover of "fair results", which
may be more easily unnoticed or undetected in practice.

3.4.1 Partitioning-level. Compared to the first two problems with
pure objectives, false fairness-preserving learning is much more
challenging due to the conflicts that often exist between the
objectives in ming[f?% - (=M gir (Fo. mg, Pbiasyy 4 plair .

Mfair(Fo. mg, Sj;alr)]; as a reminder, lower Myg;, values corre-
spond to fairer results. Although we have included an additional
constraint that P15 ¢ s/ M, different partitionings are not in-
dependent and they often share certain level of overlaps. For this
reason, the attempt to directly combine the training strategies in
Sec. 3.2 and 3.3.1, as we tested, often gets stuck in a middle ground

with little progress either on S];)mr or phias
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Figure 3: Examples showing the feasibility of improving fair-
ness on one partitioning while injecting bias in another.

Thus, we propose an Agreement-driven simultaneous Fairness-
preserving And Bias-injection (A-FAB) training approach to achieve
the two goals for the same model Fg. In the following, we first
demonstrate the feasibility of the task and then present the A-FAB
algorithm.

Feasibility: Fig. 3 shows two illustrative examples of changes in
performance distributions, which make results in one partitioning
fairer while the other more biased. The grids represent different
examples of space-partitionings, and the numbers in the partitions
show the accuracy values achieved by a model. For simplicity of
illustration, we assume each partition has an equal number of data
samples. The first example consists of Fig. 3 (a) and (b), where all
four partitionings share the same overall performance (i.e., global
accuracy at 0.5). The changes from (a) to (b) make the location-
based fairness improve (perfectly fair) for the partitionings at the
top. However, they introduce more bias into the partitionings in the
second row, i.e., the values move further away from the global mean
at 0.5. Fig. 3 (c) and (d) show the second example, where similar
patterns appear when changes are made from (c) to (d). Similarly,
all partitionings share the same global accuracy at 0.4. In both cases,
the fairness results get better after the change for the partitionings
in the top row, but deteriorate for the partitionings at the bottom.
The two examples demonstrate that it is feasible to simultaneously
incur improvements and decreases on fairness.

A-FAB algorithm: To realize the feasible scenarios in Fig. 3,
the A-FAB training process executes in a paired-fashion, where
each pair (P47, Pb1a5) is a combination of a partitioning in S];)alr
(the goal is to improve fairness for partitionings in the set) and the
target partitioning for bias-injection pbias The general sequence of
training is that each epoch uses one pair from the set, and continues
to loop over it till convergence.

The key step during the training of each pair (Pf4i" pbias) js
to identify agreement between them. Specifically, A-FAB uses di-
rectional agreement (Def. 7 and 8) to determine whether a partition
should be trained in the current epoch.

DEFINITION 7. Desired direction. A desired direction of perfor-
mance change for a partition p € P is the direction that moves
its performance m¢(Feg, p) in order to help the model to improve
its objective function value. The directions are different for fairness
preservation and bias-injection. For fairness preservation, a desired
direction of p will be to increase if its score is below the global mean
mag(Fe,, P), and to decrease if its score is above the mean, which
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Figure 4: Illustrative example of directional agreement.

helps reduce My,

Torl,  ifme(Fe.p) < my(Fe,. P)

| or —1, otherwise

dirf @i (p) = { (7)

For bias-injection, the directions are the opposite in order to increase
Mfair-

DEFINITION 8. Directional agreement. Given two overlapping
partitions pf 4 ¢ PIair gnd pbias ¢ pbias g directional agreement
between them means that their desired directions of performance
change are identical for the current epoch. Note that the directional
agreements vary over epochs due to the continued updates on model
parameters.

Fig. 4 shows an example of directional agreement between
a pair (P PPias) in an epoch. Directional agreement is im-
portant as it identifies common grounds between two seem-
ingly "conflicting" objectives. For the training of each epoch, we
only carry out training on partitions from P (or PS@") that
agreed on the directions of intersecting partitions from pfair (or
pbias) The partitioning to choose partitions from is determined
based on the average number of overlapping partitions O, e.g.,

S . fair i
Ofair — |7fonr|—1 Zzlfo | |p{a1r
the smaller O will be selected.

If a partition p overlaps with multiple partitions in the other
partitioning, we use the majority vote to determine if it will be
included in training or not (ties are broken in favor of "agreement").
The reconditioning epoch is also employed here to maintain overall
performance. The A-FAB algorithm is illustrated in Alg. 2.

N Pb1as| The partitioning with

3.4.2  Partition-level. The solution at the partition-level is much
simpler. The training process is a combination of Alg. 1 for
fairness-preserving learning in Sec. 3.2 and the partition-level bias-
injection learning in Sec. 3.3.2. Specifically, for the uncontrolled
bias-injection, we perform Alg. 1 as regular, and the only difference
is that, the intersection between any partitioning /4" ¢ Sj;mr and
the single partition pb ias is skipped in training. For the controlled
bias-injection (altering prediction labels), instead of skipping the
samples in pi% for training, we use manipulated samples with
label changes for the training of the partition, following the strategy
in Sec. 3.3.2.

4 EXPERIMENTS
4.1 Dataset description

California crop mapping: Accurate mapping of crops is critical for
estimating crop areas and yield, which are often used for distribut-
ing subsidies and providing farm insurance over space. Our input
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Algorithm 2 A-FAB algorithm

Require:
e Architecture ¥ and © (no fairness consideration)

o Set of partitionings S£mr for fairness preservation
e Target partitioning 295 for fairness injection
o Feature X and label y

1: init(Fe, © = )

2: pairs = construct_partitioning_pairs(S{,mr, pbias)

3: while not done do

4 for (pfair pbiasy iy pairs do

5 mf air, mg_.ias = eval_partition_level(¥e, X, y, pfair R pbias )

F
6 dfair gbias _ get_directions(mj;mr, m?—ias’ mg(Fe,))
7. S;gree = get_agreement(d/ ", dbias)
s Xxagree yagree - get training_data(X, y, S;g ™)
9 for Xpatch» Yparen) in (X497¢¢, y*97¢¢) do

10: 0=0-7- V.C'}‘@ (Xbatchs Ybatch)

11: end for

122 end for
{Comment: Skipped the code for the reconditioning epoch, which is
the same as lines 11-20 in Alg. 1.}

13: end while

14: return Fo

X for crop and land cover classification is the multi-spectral remote
sensing data from Sentinel-2 in Central Valley, California, and the
study region has a size of 4096x4096 (~6711 km? at 20m resolution).
We use the multi-spectral data captured in August, 2018 for the
mapping, and each location has reflectance values from 10 spectral
bands, which are used as input features. The label y is from the
USDA Crop Data Layer (CDL) [5].

Mapping palm oil plantations in Indonesia: We also validate our
framework in detecting oil palm plantations, which is a key driver
for deforestation in Indonesia. Plantations have similar greenness
levels to tropical forests. Our ground truth labels are created in
Kalimantan, Indonesia in 2014 based on manually created planta-
tion mapping products RSPO [10] and Tree Plantation [22]. Each
location is labeled as one of the categories from {plantation, non-
plantation, unknown}, where the "unknown" class represents the
locations with inconsistent labels between the RSPO and Tree Plan-
tation dataset. We do not consider the "unknown" class in the classi-
fication. We utilize the 500-meter resolution multi-spectral MODIS
satellite image, which consists of 7 reflectance bands (620-2155 nm)
collected by MODIS instruments onboard NASA’s satellites, and is
collected in January, 2014.

For both problems, we randomly select 20%, 20%, and 60% loca-
tions for training, validation and testing, respectively.

4.2 Candidate methods

o Base: The base deep learning model (fully-connected DNN and
LSTM) without consideration of spatial fairness.

o REG: Regularization is a main strategy used for general fairness-
aware learning [13, 23, 31, 33]. Following this strategy, spatial
fairness is enforced using the base model with a regularization
term to the loss function. This regularization encourages the
fairness for the partitionings under protection and the bias for the
partitionings under intervention. As F1-score is not differentiable,
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we use standard approximation via the threshold-based approach,
which amplifies softmax predictions §j over a threshold y to 1
to suppresses others to 0 using 1 — ReLU(1 — A - ReLU(g — y)),
where A is a sufficiently large number (A = 10000 in our tests).
The weight of the regularizer is set to 10.

e Adversarial Discriminating-based learning (ADL): This base-
line is an extension of the discriminator-based fairness enforcing
approach [2]. We include a separate discriminator for each parti-
tioning in Sj;alr, and P95 For fairness preservation, the model
aims to learn group-invariant (or fair) features that make it dif-
ficult for a discriminator to identify the partition p € P from
which data samples come. For bias-injection, we do the opposite
to reward features that are in favor of the discriminator.

o FAIR: The proposed pure fairness-preserving learning approach
described in Sec. 3.2.

e BI: The proposed pure bias-injection learning approach described
in Sec. 3.3. There are three variants of BI: (1) Blp: partitioning-
level bias-injection; (2) BI,: partition-level bias-injection (without
label control); and (3) BI;: partition-level bias-injection with
target label control.

e A-FAB: The proposed method that simultaneously performs
fairness-preservation and bias-injection in Sec. 3.4. Similarly,
depending on the type of bias-injection, it has three variants
A-FABp, A-FAB, and A-FAB},.

4.3 Implementation details

The training algorithms developed in this paper do not require
specific types of space-partitionings (i.e., the information is not
used by any decisions in the algorithm). Without loss of general-
ity, our experiment uses the common m X n-type of partitionings
that have m rows and n columns and equal-size cells, because of
their intuitiveness and simplicity for notation. Specifically, in the
following, we use "(m, n)" to denote a m X n partitioning. We did
not use existing partitionings (e.g., voting districts grouped from
census blocks) as they are known to contain bias (e.g., debated at
both the federal and state courts [9, 20]).

Our proposed methods do not assume specific network archi-
tectures. Most results presented in this paper use an 8-layer deep
neural network (DNN) as a base model. We also test an LSTM model
using a series of remote sensing images for classification. These
models take inputs of multi-spectral data at each location and out-
put the land cover label. In our experiment, we first train an initial
DNN or LSTM base model for 300 epochs (converged) without
considering the fairness, using Adam (& = 0.001) as the optimizer.
From this base model, we further implement different candidate
approaches to improve fairness or inject bias. We train the model
for 200 epochs for each partitioning for fairness preservation or
bias injection.

4.4 Results

We evaluate the proposed method using randomly selected
partitionings for fairness-preservation and bias-injection. Here
we report the performance of each method by injecting bias
into the partitioning (4,4) while preserving fairness over dif-
ferent sets of partitionings (Fig. 5). The sets cover differ-
ent numbers of partitionings, ie., from 1 to 4, as shown in
Fig. 5 (a) to (d). We have also tested the performance over
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other random partitionings and observed similar performance
(see our code repository: https://drive.google.com/drive/folders/
1KawFcoJV_xZtifsZmYBLS__uo1P-Vg9w?usp=sharing).

4.4.1 Overall performance. In the crop mapping dataset, we can
observe several major trends according to the results. First, our
proposed methods FAIR, BI and A-FAB are able to maintain similar
global F-1 scores as the other methods. This confirms the capacity of
the training strategies in controlling the results in the fairness-bias
sphere (i.e., improving or degrading the fairness) without compro-
mising the overall classification performance, revealing the im-
portance of explicit and thorough consideration of location-based
fairness in important applications.

4.4.2  Fairness-preserving performance. Second, the proposed meth-
ods FAIR and A-FAB in general produce much better fairness scores
(lower the better; Def. 4) for partitionings under fairness-protection
compared to the base model, REG and ADL. This confirms the ef-
fectiveness of our method in maintaining the fairness by using the
learning-rate-based strategy (i.e., improved sample representative-
ness). Especially, the fairness scores obtained by A-FAB are similar
to the FAIR method, which confirms that A-FAB can simultaneously
preserve the fairness for certain partitionings while injecting bias
for a target partitioning, thanks to the use of directional agree-
ments. The ADL method focuses on reducing the distributional gap
across partitions. As a result, it treats different partitions equally in
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Figure 7: Bias injection on a specific partition ((a) shows pure
bias-injection learning).

the classification process by eliminating partition-specific informa-
tion, but it is not as effective for the enforcement of fairness across
partitions.

4.4.3 Bias-injection performance. Third, the proposed methods (A-
FAB and BI) are more effective in bias-injection at the partitioning-
level, compared to FAIR, REG, and ADL. We also observe that in
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Figure 8: Results using LSTM as the base model ((a) shows
pure bias-injection learning).

some scenarios the A-FAB method resulted in less bias on the parti-
tioning (4,4) compared to the base model, especially when we need
to preserve fairness for more partitionings, e.g., Fig. 5 (b)-(d). This
is mainly due to the fact that the base model is unconstrained and
is not bounded by the additional fairness-preserving objectives in
A-FAB (Sec. 3.4). As we decrease the number of fairness-preserving
partitionings, it becomes easier to inject bias into the target par-
titioning. In particular, if we only consider bias-injection, i.e., no
fairness-preserving partitionings, the pure bias-injection method
BI can lead to higher bias for the target partitioning. Figs. 6 (a) and
(b) show the performance of injecting bias on (4,4) and (2,3), re-
spectively. In Fig. 6 (c) and (d), we also show the distribution of F-1
score on each of the 2-by-3 partitions. It can be seen that BI (Fig. 6
(b)) can achieve a more unbalanced F-1 distribution compared to
the base model (Fig. 6 (a)). These results together suggest that it
is critical to increase the number of partitionings used in fairness
preservation, which in general leaves less room for bias-injection.
Explicit consideration of fairness on only a few partitioning may
not be able to reduce the risk of unnoticed/hidden bias.

We further tested the proposed method for injecting bias on a
specific target partition, as shown in Fig. 7. Here we randomly select
one partition from the (4,4) partitioning. We can see that both BI,
and BI;‘, can effectively degrade the F-1 score for the target partition
for intervention while maintaining the fairness for partitionings
under fairness preservation.

4.4.4 LSTM-based model performance. As our method is agnostic
of network architectures, we also tested it using the LSTM as the
base model and obtain similar results, as shown in Fig. 8. The
performance of LSTM is generally better than DNN as LSTM is
more likely to capture unique crop phenology from a series of data.
The trend of fairness-bias comparison maintains the same pattern.
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4.4.5 Palm oil plantation mapping dataset: We conduct the same
test for mapping palm oil plantations, and we can observe similar
results on this dataset (Fig. 9). In Fig. 9 (b), we notice that the
FAIR method (optimized on (3,3) and (2,1)) produces very good
fairness even for the partitioning (1,5). This is because the palm oil
plantations in this dataset are relatively homogeneous over space
and thus improving the fairness on certain partitionings could easily
promote the fairness over other partitionings. Also, according to
Fig. 9, the gap between {A-FAB,, A—FAB;‘,} and {Base, FAIR} is smaller
than that in the crop dataset. This is also due to the homogeneous
nature of the plantations, i.e., degrading the F-1 performance on
a specific partition may break the fairness on fairness-preserving
partitionings (3,3) and (2,1). Finally, Fig. 10 shows an example result
of controlled partition-level bias-injection by BI}", (highlighted a
local region inside the 5" partition), where palm oil plantation area
is largely changed to the forest (the global F1 score of the entire
area remains at a similar level as shown in Fig. 9 (c)).

5 CONCLUSIONS

We proposed a set of methods for maneuvering the training process
towards various targeted fairness-bias outcomes, while maintaining
the same level of overall prediction performance (i.e., for "free"). Our
proposed methods were evaluated on two real-world applications
with great societal relevance, crop mapping in California and palm
oil plantation mapping in Indonesia. The results demonstrated the
effectiveness of the proposed methods in preserving fairness and
injecting bias over target partitionings or specific partitions. We
also observed that our methods can maintain the similar overall
performance during the manipulation of fairness. One promising
future direction is to optimize the fairness-preserving partitionings
to mitigate bias injection for sound policy making. We will also
carry out more experiments on other types of spatial data.
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