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ABSTRACT

Collecting large annotated datasets in Remote Sensing is often ex-
pensive and thus can become a significant obstacle for training
advanced machine learning models. Standard techniques for ad-
dressing this issue, based on the underlying idea of pre-training the
Deep Neural Networks (DNN) on freely available large datasets,
cannot be used for Remote Sensing due to the unavailability of such
large-scale labeled datasets and the heterogeneity of data sources
caused by the varying spatial and spectral resolution of different
sensors. Self-supervised learning is an alternative approach that
learns feature representation from unlabeled images without hu-
man annotations. In this paper, we introduce a new method for land
cover mapping by using a clustering-based pretext task for self-
supervised learning. We demonstrate the method’s effectiveness in
two societally relevant applications from the aspect of segmenta-
tion performance, discriminative feature representation learning,
and the underlying cluster structure. We also show the effective-
ness of the active sampling using the clusters obtained from our
method in improving the mapping accuracy given a limited budget
for annotating. Finally, a real-world application of the developed
framework in identifying intra-class categories of well-managed
and poorly-managed plantations demonstrates its utility in a prob-
lem of considerable societal importance.
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1 INTRODUCTION

Global demand for land resources to support human livelihoods
and well-being through food, fiber, energy, and living space will
continue to grow due to population expansion and socioeconomic
development. This poses a significant challenge to human society,
given the increasing competition for land from the need to maintain
other essential ecosystem services. Addressing this challenge will
require timely information on land use and land cover changes,
e.g., the conversion of forest to farmland or plantations, the loss of
productive cropland due to urbanization, and soil degradation due
to inappropriate management practices.

Recent advances in storing and processing remote sensing data
collected by sensors onboard aircraft or satellites provide tremen-
dous potential for mapping a variety of land covers, including plan-
tations [11], agricultural facilities [7], roads [37], buildings [21], and
many more [13]. Accurate mapping of these land covers can provide
critical information at desired spatial and temporal scales to assist
in decision-making for development investment and sustainable
resource management.

Given the success of machine learning, especially deep learning,
in computer vision (e.g., image segmentation), researchers have
found much promise for using these techniques in large-scale auto-
mated land cover mapping through analysis of remote sensing data.
Existing works have primarily focused on the supervised learning
setup, which requires ample labeled data. However, collecting land
cover labels is often expensive and requires expert staff, equip-
ment, and in-field measurements and thus can become a significant
obstacle for training advanced machine learning models.

One common approach to deal with the limited availability of
labeled datasets is to pre-train an ML model on existing large labeled
data sets for a related problem and then refine it using a small
number of labeled samples for the problem of interest. For example,
models for image recognition are first trained using large-scale
datasets like ImageNet [3] and then are fine-tuned on the limited-
size dataset for the downstream task [9]. However, such approaches
cannot be used for remote sensing due to the difference in the
spectral bands captured by different satellites. In addition, such
large-scale labeled datasets for capturing all the data modalities
are either unavailable or these efforts are still in the nascent stage,
resulting in the need for more research.
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Figure 1: (a) Examples of high density Cashew plantations,
low density Cashew plantations and other trees. We also show
the decision boundaries (b) learned by traditional methods
and (c) after the clustering structure is informed.

Self-supervised learning is an alternative approach that learns
feature representation from unlabeled images. Numerous methods
have been proposed under this paradigm, where the central idea
is to propose various pretext tasks for the network to solve. The
hope is that the network will learn meaningful feature represen-
tations by minimizing the objective function of the pretext task,
such as inpainting patches [26] and image colorization [15]. The
representation learned by these techniques can be transferred to a
classification/segmentation model.

However, existing self-supervised learning methods can be less
helpful for remote sensing data since the pretext tasks they create,
e.g., colorization [35], do not make full use of all the spectral bands
of remote sensing data to capture the land cover heterogeneity. For
example, the identification of cashew plantations (Fig. 1 (a)) requires
differentiating other trees from all types of cashew plantations with
varying densities. High-density plantations are easily separable
from other trees, while low-density plantations are more likely
to be confused with other trees. These self-supervised learning
methods can learn similar representations between low-density
plantations and other trees, which can cause potential confusion
amongst classes. This poses a challenge for the segmentation model
to learn a decision boundary that can correctly classify all the modes
in each class during the fine-tuning process (Fig. 1 (b)). Intuitively,
suppose we can detect these modes by leveraging the information
from all the spectral bands and inform the segmentation model of
the obtained clustering structure. In that case, the segmentation
model can quickly learn decision boundaries to separate different
classes as long as we have a few representative samples from each
mode (Fig. 1 (c)).

In this paper, we develop a self-supervised learning framework,
Clustering-Augmented Segmentation (CAS), which uses cluster-
ing to capture underlying land cover heterogeneity. In particular,
our clustering algorithm is inspired by DEC [36], which is a rep-
resentation learning method for image classification. Although
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optimizing the clustering at the image-patch level improves the
classification, it results in the loss of fine-level details and severely
degrades segmentation performance. To address this issue, we build
an auto-encoder-based framework that promotes discriminative
representation learning by optimizing the clustering structure over
image patches while preserving the local pixel-wise information for
reconstruction. Here the clustering structure helps better represent
heterogeneous land covers, while the pixel-wise information is es-
sential for improving the segmentation accuracy. We define a loss
function that combines the image patch-level clustering and pixel-
level reconstruction loss and then iteratively refines the obtained
clustering and learning representations. It is noteworthy that our
proposed method can also incorporate other clustering methods to
capture land cover heterogeneity.

We show the superiority of our method over existing self-supervised
learning methods in two societally relevant applications, cashew
plantation mapping, and crop detection. We have demonstrated the
effectiveness of the proposed method in learning both discrimina-
tive feature representation and the underlying clustering structure.
We also conduct active sampling to show the potential of achieving
high mapping accuracy given a limited annotation budget.

Our contributions can be summarized as follows:

o We develop a self-supervised learning framework that lever-
ages DEC to capture land cover heterogeneity.

e We have demonstrated the effectiveness of the proposed
method in learning with small labeled data in the context of
two applications of great societal relevance.

e We release the code and dataset used in this work to promote
reproducibility 1.

2 RELATED WORK

2.1 Land Use and Land Cover mapping

Mapping land use and land cover (LULC) changes is essential for
managing natural resources and monitoring the impact of chang-
ing climate. Recent works [4] have explored deep learning tech-
niques like feed-forward neural networks (FFNN) [40], CNN [8, 31],
and LSTM [11] for LULC mapping. CNNs effectively extract both
spectral and spatial information, whereas RNN and LSTM use tem-
poral information in modeling land cover transitions and have
shown promising performance in sequence labeling. Land cover
mapping can also be framed as a semantic segmentation problem
[30, 32, 33], where each pixel in an aerial/satellite image is classi-
fied as a land cover class. One of the most widely used models in
semantic segmentation is Fully Convolutional Network (FCN) [18],
which supplements the output of the deeper layers with that of
the shallower layers to increase the resolution of the prediction.
Based on this idea, several modifications to FCN were proposed in
recent years such as SegNet [1], DeconvNet [23] and UNet [29]. In
this work, we adopt the UNet architecture, consisting of two paths,
the contraction path (encoder) and the symmetric expanding path
(decoder). The encoder consists of a stacked set of convolutional
and max-pooling layers that captures the context and a semantic
understanding of the image. The decoder involves convolutional

https://drive.google.com/drive/folders/
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and upconvolutional layers to generate precise label maps from the
output of the encoder.

LULC mapping differs from standard semantic segmentation in
several ways. First, due to the heterogeneity in the land covers,
the same class can look different in different areas, and thus each
class can have multiple modes/subclasses. Many of these land cover
classes/subclasses cannot be easily distinguished using only RGB
channels but require information from other spectral bands pro-
vided in remote sensing datasets. Moreover, existing segmentation
methods require a large amount of labeled data, which is often
scarce in remote sensing. Several methods have been proposed to
address this issue via pre-training [22]. Amongst these approaches,
self-supervised learning has shown much success in improving the
accuracy of using limited annotated satellite images [10, 35].

2.2 Representation Learning

Unsupervised and self-supervised learning is commonly used to
generate feature representation without requiring labor-intensive
annotations. Most unsupervised learning methods focus on recon-
structing unlabeled data, such as auto-encoders [17, 28, 34] and
deep belief networks (DBN) [16]. In the self-supervised setting,
the networks learn discriminative representations after training
with pseudo labels created from pretext tasks. The representations
learned from such pretext tasks can then be transferred to the
downstream tasks. Numerous pretext tasks have been explored in
previous literature. For example, image colorization [15] aims to pre-
dict the correct color version of a photograph, given its gray-scale
version as input. Effectively colorizing an image requires extracting
visual features to capture the semantic understanding of the objects;
therefore, visual features can be learned by accomplishing this task.
Several deep-learning approaches have been proposed for deep
image colorization models [14, 15, 39]. Recently this technique has
been adopted in the RS domain [35], where an auto-encoder is used
to predict RGB channels given the input from other channels.

Another direction for the pretext task, which is commonly used
in Natural Language Processing, is the representation learning
based on context-similarity [20, 27], where the central idea is that
words that appear in similar contexts should have similar represen-
tations. By redefining context as spatial neighborhoods, Tile2Vec
[10] used this idea in the RS domain, where it promotes nearby tiles
to have more similar representations than the tiles that are far apart.
Other popular pretext tasks used in computer vision include image
inpainting [26], solving image-jigsaw [24], learning by counting
[25], predicting rotations [6], etc. For a comprehensive understand-
ing of Self-supervised representation learning, we would like to
redirect the reader to this survey [12].

Clustering has also been used for representation learning. In
[38], the authors propose a recurrent framework for clustering
and optimizing a triplet loss for joint representation learning and
clustering. DEC [36] starts with an initial feature representation and
cluster assignment and then iteratively refines both based on the
confident samples based on the Kullback-Leibler (KL) divergence
loss. One major drawback of these approaches is their tendency
to map arbitrary data samples into the same cluster due to the
lack of criteria that respect the local information in image patches.
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We introduce a reconstruction loss that helps preserve the local
information, which is essential for semantic segmentation.

3 PROBLEM DEFINITION AND
PRELIMINARIES

In this section, we will introduce the available data and our ob-
jective. We will also briefly describe the general structure of the
segmentation network.

3.1 Problem setting

We consider the task of land cover mapping and frame it as a
semantic segmentation problem, with the goal of predicting the land
cover class of each pixel using multi-spectral satellite/aerial imagery.
In particular, we aim to predict the land cover class I € {1,...,L} of
each pixel in an image. During the training process, we have access
to limited labeled data and sufficient unlabeled data, which can be
described as follows:

1. Limited labeled dataset with features and ground truth la-
bels given as x! = [X{, . "’XII\I,] where Xl.l € REXWXC j¢
an aerial/satellite image of size (H, W) and having C multi-
spectral channels, and Yl = [Yll, e Yll\ll] where Yl.l € RHXWXL
and L is the number of land-cover classes.

2. Unlabeled dataset with features givenas X" = [X¥, ..., X]'\‘,u]

where, X¥ € RIXWXC_ Dye to the relatively high cost in-
volved in labeling, it is more likely that Ny, >> Nj.

3.2 Segmentation network

A segmentation network f(Xj; 0) aims to predict the label of each
pixel for an image X;. The parameter 0 is estimated through a train-
ing process on a fully labeled dataset by minimizing an objective
function of empirical risk, such as the pixel-wise cross-entropy, as
follows:

1
LOX YY) =~ 37 > D (W og f(Xi )5, (1)
i (hw) ¢
where, f(Xj; 0)2 ., is the likelihood of the (h, w)’th pixel belong-
ing to class ¢ as predicted by the fully-convolutional network and
(Yi); w1 if the (h, w)’th pixel of image i belongs to the class c.
4 METHOD

In this section, we will describe our proposed method CAS. Anno-
tating the multi-spectral images is a labor-intensive process and
often the labeled dataset does not capture the heterogeneity of the
earth due to differences in atmospheric conditions, geography, and
season when the image was captured. As a result, the DNN model
fails to generalize over the earth’s surface. We start with describing
the proposed self-supervised learning method CAS using large-
scale unlabeled data. We then discuss fine-tuning the pre-trained
network using a limited labeled dataset and the applications in
few-shots learning and active learning.

In this paper, we use the UNet architecture [29] which consists
of an encoder and a decoder, thus, formulating the segmentation
function f(X;; 6) as a composition of two functions as follows:

f(Xi;6) = g(h(Xi; 01); 69) ()
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Figure 2: Illustration of the self-supervised pre-trained architecture(best viewed in color). The components that are specifically
present during the Pre-training and Fine-tuning stage are drawn in blue and red respectively, while the common components
of these two stages are drawn in black. During the self-supervised pre-training step, the skip connections are removed and
the classification layer is replaced by a reconstruction layer. These components, highlighted in red, are added back while

fine-tuning using the limited labeled samples.

where, h(Xj; 0y,) is the encoder function with parameters 0, which
map the input image X; to an embedding space and, g( - ; 8,) is the
decoder functions with parameters ; which maps the embeddings
back to the image domain.

4.1 Clustering-Augmented Self-supervised
Learning (CAS)

The UNet model trained from scratch using limited labeled samples
can easily overfit the training data. Hence, the learned embeddings
become less informative which leads to poor generalizability of the
UNet model. We propose to use a clustering-based pretext learning
task to help extract meaningful representation that helps address
the land cover heterogeneity. In particular, we adapt DEC as the
clustering method, which uses the clustering structure obtained
at the image-patch level to naturally separate different land cover
modes. We also use additional reconstruction loss to preserve fine-
level image details and avoid degenerate solutions (e.g., collapsed
clusters) resulting from the standard DEC. Both the DEC and the
reconstruction objective are optimized during the self-supervised
learning (i.e., model pre-training). In the following, we will describe
the details of these involved components.

4.1.1 Representation Learning with Clustering. The objective of
self-supervised training is to pre-train the segmentation model
to extract embeddings that naturally separate image patches with

different land cover distributions. In CAS, such representation learn-
ing is conducted using a large unlabeled dataset in two steps: Phase
1 - model initialization and Phase 2 - representation learning with
clustering objective. In the first phase, we use the encoder-decoder
from our UNet model and modify it by removing the skip connec-
tions and replacing the last classification layer by a reconstruction
layer. This modified UNet model is tasked to reconstruct input
images. By removing the skip connections, we handicap the use
of input information in the reconstruction process, which forces
the encoder-decoder model to extract better quality embeddings
that fully capture representative features to reconstruct the image
without additional help from the skip connections. In this phase
the model is trained by minimizing the following loss function:

N:
o1
min - 3 lg(A(Xi; 04); 6) = Xl 3)
i=1

where X; € X! U X% and N; = (N + N,,). Given the obtained
embeddings, we conduct KMeans clustering in the embedding space
by minimizing the following loss function:

Nt
1
min - 3 lg(A(Xi; 04); 09) — Msill
i=1

st si € {0,1}5,1Ts; = 1vi,
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where s; is the assignment vector for the i’th data point, K is the
number of clusters, and the k’th column of M is the centroid of
the k’th cluster. The pre-trained autoencoder along with the clus-
ter centroids provide a good initialization point for the encoder
parameters 6y, and cluster centroids M.

In the second phase, the encoder parameters and the centroids
are refined by learning from the high confidence assignments us-
ing an Expectation-Maximisation (EM) style algorithm inspired by
the previous work [36]. In the E step, the cluster assignment and
the target assignment are computed while keeping the encoder
parameters and cluster centroids fixed. Specifically, we use a soft
assignment based on the similarity of the embedded data point with
the cluster centroid, measured using the Student’s t-distribution
[19]. Specifically, the soft-assignment of data i to cluster j is com-
puted as follows:

(1+11h(Xi; 65) - My /) *F

%= ¢ ) ®)
5o (L4 (X5 0p) = My |12 /o) 2

where h(Xj; 0y) is the embedded data point, « is the degree of free-
dom which is set as 1 in our experiments, and g;; is the probability
of assigning the i’th data point to the j’th cluster. To strengthen
prediction and to promote learning from data points that are as-
signed with high confidence, the target assignment is computed
as:
» q?j/ i Gij ©)
P M —
LK (& /B
Once the cluster assignment and the target assignment are com-
puted, in the M step we estimate the encoder parameters and the
cluster centroids using gradient descent while keeping the cluster
and the target assignment fixed. The objective is defined as the
KL divergence loss between the soft assignments and the target
assignment as follows:

min KL(P||Q) = mm— ZZPU log— 7)
i=1 j=1

The proposed method faces a number of issues for its use in the
semantic-segmentation problem setting. First, there is no provision
to avoid degenerate solutions, where the model parameters learned
for cluster centroids lead to a trivial solution with the clusters
collapsed to a single entity and the representations being zeroed.
Second, this approach cannot handle the special scenario where
arbitrary data samples are mapped to tight clusters. Finally, since
this approach is only to optimize the clustering performance, it
forces the embeddings of the data points in the same cluster to be
very similar, where we start to lose the finer details of the original
input images. This is evident from the similar reconstruction of the
embedding vectors from two different images from the same class
as shown in figure 3 (a). This loss of fine-level image details becomes
a serious issue in the semantic segmentation problem since we aim
to assign a label to each pixel in the image instead of assigning a
single label to the entire image as in the image classification setting.

4.1.2  Preserving fine-level details. To enable learning from the con-
fident samples while also preserving the finer details and overcome
the issues mentioned in the previous subsection, CAS augments
the KL Divergence based clustering loss with the reconstruction
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loss. Specifically, we add a decoder that reconstructs the data point
using the embeddings while the clustering task is performed at the
bottleneck layer. The encoder parameters, decoder parameters, and
the cluster centroids are refined according to the objective:

N: [ K

LZNLtZ Zszlogp

i=1 \j=1

+ Allg(h(Xis 6n); 6g) = Xillz |~ (8)

where A is a hyper-parameter to balance the clustering loss and the
reconstruction loss.

The proposed modifications provide a number of benefits. First,
reconstruction loss prevents the model from collapsing to a de-
generate solution by ensuring that the decoder can reconstruct
the data point using the embeddings. Second, since the decoder
has to reconstruct the images from the embeddings, it prevents
the embeddings from losing the fine-level details thus helping in
the segmentation. Finally, the trained decoder provides as a good
initialization for the decoder of the segmentation network.

(a) Top 10 images from a cluster formed using DEC [36]. Top: Input
image. Bottom: Reconstructed Image. Note the similar reconstructed
images for different input images, which shows the loss of fine-level

5.. z I

(b) Top 10 images from a cluster obtained by CAS. Top: Input image.
Bottom: Reconstructed Image. Here we see that the reconstructed
images preserve fine-level details.

Figure 3: The reconstructed images for the same class using
the embeddings learned by (a) DEC and (b) CAS.

4.2 Downstream applications

After obtaining the pre-trained model through self-supervised learn-
ing, we describe two downstream applications where we use labeled
data to fine-tune the model.

4.2.1 Few-shots segmentation. After training the encoder-decoder
model, we feed the learned weight parameters to the U-Net segmen-
tation model with skip connections (see Fig. 2). This model can be
fine-tuned using pixel-wise labels by minimizing the cross-entropy
loss using labeled data (see Eq. 1).

4.2.2  Active learning. The clustering structure extracted by the
proposed method also enables actively select query image patches
so as to reduce the manual efforts in data labeling. The objective is
to select a small number of query image patches to ask for labeling
so that the performance of the segmentation model is optimized
after it is trained with these labeled patches. In particular, we uni-
formly select image patches from different clusters that are closest
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to cluster centroids. Since the clustering structure automatically
divides the whole data space into K disjoint set of data points,
uniformly selected patches are representative samples that cover
different types of data in the entire data space.

Furthermore, we can extend this approach to handle the scenario
where the budget (i.e., the number of query samples) is not divisible
by the number of clusters. In this case, we aim to take more samples
from clusters of higher uncertainty. Intuitively, each cluster contains
images with similar data distribution and thus the labels predicted
by a well-trained segmentation model should be similar for all the
images within a cluster. Specifically, we first predict pixel-wise
labels for all the images and then estimate the majority class for
each image. We measure the uncertainty of each cluster k as the
entropy of these obtained majority classes.

5 EXPERIMENTAL RESULTS

We evaluate our proposed strategy for semantic segmentation on
two real-world applications of great societal impacts. In the first
example, we aim to map cashew plantations in Benin, which con-
tribute nearly 10% of the country’s export income. The Benin gov-
ernment is actively looking for cashew inventory information to
assist in the distribution of their recent $100 million loan from the
World Bank, aiming at further developing the cashew industry. In
the second example, we investigate crop mapping in the US Mid-
west, the world’s bread basket. Mapping crops is a key step toward
many applications, such as forecasting yield, guiding sustainable
management practices, and evaluating progress in conservation
efforts.

5.1 Datasets

D1: Cashew Plantation Mapping We use the multi-spectral
images captured by AIRBUS in 2018 to study a region of area
1000km? in Benin, Africa, where cashew tree crops are a
significant source of income for farmers. The images have
four spectral bands, red, green, blue, and NIR (near infrared),
at a spatial resolution of 0.5 meters. For our experiment, we
divide our study region into patches of size 68 X 68, and
each pixel within this patch is assigned a class label [ € {
Cashew, Forest, Urban, Background }. The ground truth was
created using manual annotation over the entire study region
provided by our collaborators in Benin, Africa 2

D2: Crop Mapping We used publicly available multi-spectral im-
ages observed by the Sentinel-2 Constellation. The Sentinel-2
data product taken on August 8, 2019, has 13 spectral bands 3
at three different spatial resolutions of 10, 20, and 60 meters.
For consistency, bands with 20- and 60-meter resolution are
resampled using the nearest neighbor method to 10 meters.
For our experiment, we consider the region of southwestern
Minnesota, US, with the AOI corresponding to the Sentinel
tile T11SKA of 10980 x 10980 pixels. We aim to classify each
pixel to a class label I € { Corn, Soybean, Sugarbeets, Water,
Urban }. The labels are obtained from the USDA Crop Data
Layer product [2].

2Given the proprietary nature of the Planet Lab composite and the Airbus imagery,
we do not have permission to make this data publicly available.
3https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_
SR#bands
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In both datasets D1 and D2, we divide the whole image into equal
vertical train and test halves. All the methods are implemented
using PyTorch and trained on a single NVIDIA Tesla P100 GPU. All
models are trained for 300 epochs using the Adam optimizer with a
weight decay of 0.0001 and momentum of 0.9. The learning rate is
initialized to 0.001, which decays by a factor of 10 after ten epochs.

5.2 Baselines

We use the UNet architecture as the base model for semantic seg-
mentation and compare our representation learning strategy against
the following baselines. Here all the representation learning meth-
ods are trained on the entire training set (labeled + unlabeled data).

(1) OnlyLabeled This method considers training a UNet from
scratch, only using the labeled dataset.
(2) AutoEncoder We pre-train the UNet model by transform-
ing it into an autoencoder structure by removing the skip
connections and conducting reconstruction in the final layer
(described in Section 4).
Tile2Vec We adopt this method [10] to learn representation
by leveraging spatial contextual similarities. To prevent the
model from collapsing and providing a degenerate solution,
we initialize the model using the AutoEncoder baseline. The
model is optimized using a triplet loss among the anchor,
neighbors, and distant patches.
Colorization [35] The segmentation model has two indepen-
dent branches which take in the spectral bands and the RGB
channels, respectively. The first branch is pre-trained using
the colorization task and the second branch is pre-trained
on ImageNet [3]. As proposed by the authors, both of the
branches are fine-tuned separately on the limited labeled
samples and we average their predictions as final outputs.
(5) DEC We adopt the method presented in [36] to learn rep-
resentations that optimize a clustering-based loss. This op-
timization is performed at the image patch level and thus
disregards the fine-level image details.

—
SY)
=

—~
N
=

5.3 Few-Shot Learning

Here we evaluate the methods for a few-shot learning setting where
we progressively increase the number of labeled samples for train-
ing. The average accuracy and standard deviation of 5 runs for all
the algorithms are reported in Table 1. The model trained from
scratch using only labeled instances (OnlyLabeled) performs the
worst. AutoEncoder takes advantage of the larger unlabeled dataset
in learning the representations and thus shows an increase in per-
formance over OnlyLabeled. The representations learned by Only-
Labeled and AutoEncoder do not capture discriminative information
of land covers and thus they do not perform as well as DEC. The
next baselines of Tile2Vec and Colorization makes use of alternate
ways of representation learning on the unlabeled data as described
in section 5.2. Each of these provides a limited improvement over
AutoEncoder. Tile2Vec uses assumptions that the nearby spatial
tiles are similar and far away are different which can sometimes
be inaccurate. Colorization learns representations by learning to
colorize the images which can sometimes be ineffective in distin-
guishing the regions where the color is not distinctive. Next, we
see that our adaptation of DEC, which captures information about
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Table 1: Comparison with baselines in terms of Mean F1 Score (and standard deviation) with the increasing number of samples.
The last row (All Data) shows the performance of using all the available data for supervised training (without pre-training).

D1: Cashew Plantation Mapping D2: Crop Mapping
Method 10 | 20 [ 40 | 120 [ 160 | 200 10 | 20 [ 50 | 100 [ 150 | 200
OnlyLabeled 0.402 | 0.572 | 0.609 | 0.704 | 0.712 | 0.724 || 0.426 | 0.634 | 0.700 | 0.788 | 0.809 | 0.837
(0.098) | (0.059) | (0.050) | (0.021) | (0.018) | (0.017) || (0.121) | (0.073) | (0.047) | (0.016) | (0.015) | (0.014)
AutoEncoder 0.481 | 0.629 | 0.663 | 0.717 | 0.737 | 0.743 || 0.508 | 0.666 | 0.722 | 0.798 | 0.814 | 0.839
(0.098) | (0.053) | (0.035) | (0.026) | (0.018) | (0.016) || (0.139) | (0.054) | (0.051) | (0.016) | (0.013) | (0.007)
Tile2Vec 0.507 | 0.632 | 0.686 | 0.739 | 0.740 | 0.745 || 0.566 | 0.688 | 0.757 | 0.800 | 0.825 | 0.841
(0.048) | (0.021) | (0.024) | (0.008) | (0.008) | (0.008) || (0.057) | (0.026) | (0.026) | (0.017) | (0.014) | (0.004)
Colorization 0.609 | 0.660 | 0.710 | 0.756 | 0.762 | 0.776 || 0.543 | 0.678 | 0.729 | 0.789 | 0.823 | 0.837
(0.044) | (0.037) | (0.013) | (0.008) | (0.004) | (0.004) || (0.055) | (0.046) | (0.039) | (0.014) | (0.011) | (0.007)
DEC 0.628 | 0.688 | 0.709 | 0.747 | 0.751 | 0.756 || 0.600 | 0.723 | 0.763 | 0.814 | 0.837 | 0.843
(0.024) | (0.016) | (0.016) | (0.008) | (0.008) | (0.007) || (0.043) | (0.023) | (0.019) | (0.008) | (0.007) | (0.007)
CAS(ours) 0.674 | 0.721| 0.736 | 0.767 | 0.774 | 0.783 || 0.656 | 0.759 | 0.792 | 0.831 | 0.845 | 0.847
(0.030) | (0.020) | (0.008) | (0.007) | (0.008) | (0.002) || (0.058) | (0.024) | (0.010) | (0.007) | (0.004) | (0.002)
All Data 0.795 (1500 patches) 0.87 (700 patches)
-
Satellite Ground S
Images Truth CAS DEC Colorization OnlyLabeled

'
LI
¥

[ [ cashew [ Other Trees

B Urban [] Barren Land J

Figure 4: Examples of land cover mapping made by different methods. The first column shows the reference RGB images and
the second column shows the manually-created ground-truth data.

different types of land covers via clustering, is able to do nearly as
well or better (especially for a small number of samples) than the
schemes such as Colorization that are able to explicitly preserve
fine levels details. Finally, our proposed scheme CAS outperforms
all these baselines.

In Fig. 4, we show the mapping results of different methods in
several example regions from D1. The segmentation results shown
are obtained from the models trained using 40 labeled samples. We
can see the detection results produced by CAS are more consistent
to the ground truth and the satellite images. In contrast, other
self-supervised learning methods (DEC and Colorization) often

cannot precisely delineate land cover boundaries. This is because
the plantations that are close to the boundary commonly have lower
density and thus are more likely to be confused with other land
covers.

5.3.1 Effect of more labeled training samples: Due to the limited
number of labeled samples in the downstream task, the performance
of the models trained from scratch depends on the representability
of that small subset of data points. The limited data samples do not
capture the whole data domain and thus the representations learned
using them are not robust. Self-supervised learning aims to decouple
the representation learning phase and the classification phase. CAS
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Figure 5: Average entropy of the clusters obtained by different
methods on Dataset (a) D1 and (b) D2.
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Figure 6: First three columns are separate clusters formed by
CAS which clearly show clusters of high, medium, and low
density. The last two columns are one of the clusters formed
by AutoEncoder and Colorization respectively.

DENSITY DENSITY DENSITY

tries to leverage the unlabeled data to capture the representations
and then learn the classification rules using the limited dataset. With
the increase in the number of labeled instances, the representations
learned using them become increasingly more robust. This results
in a reduction in the gain obtained by using the unlabeled data in
the representation learning manner. This is evident from the result
shown in Table 1, where we increase the number of labeled patches
for both datasets. We observe that the accuracy of all methods
increases with the increase in the number of labeled patches.

5.4 Clustering-based Evaluation of
Representations

Here we evaluate the quality of representation produced by dif-
ferent approaches using the quality of clustering produced using
them. Specifically, we measure the clustering performance using
aggregated labels of image patches. For each image patch, we de-
fine the aggregated label as the majority label from all the pixels
of this image patch. Intuitively, we expect image patches within a
cluster to have the same aggregated labels. Hence, we estimate the
clustering performance using the weighted entropy of aggregated
labels. Specifically, given a clustering structure, we first compute
the entropy of aggregated labels for each cluster. Then we com-
pute the weighted average of entropy values over all the clusters
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Figure 7: Our method is compared with the next best method

while using active learning on Dataset (a) D1 and (b) D2.
CAS_CLUSTER represents the method to actively sample
from clusters obtained from CAS.

based on their cluster sizes. The lower value of the average entropy
indicates better clustering performance.

We compare the clusters extracted by the baselines with our
proposed method (Fig. 5). In AutoEncoder and Colorization, KMeans
clustering is conducted on the obtained embeddings. It can be seen
that the proposed method significantly outperforms Autoencoder
and Colorization in both datasets. DEC achieves very pure clusters,
even while using no more than five clusters, due to the sole opti-
mization of the clustering objective. Besides, CAS achieves similar
performance with DEC even though we simultaneously optimize
the clustering performance and the reconstruction error. Although
DEC achieves good clusters, it is plagued with the issues highlighted
in Fig. 3, which hampers its segmentation performance.

An example of the clusters formed by the methods is shown
in Fig. 6. We observe that the clusters formed by CAS capture the
intra-class heterogeneity and form pure clusters, while the other
cluster formed by the other methods highlight several issues which
we motivated in the introduction. As shown in Fig. 6, one of the
clusters formed by AutoEncoder has a mixture of high, medium,
and low-density clusters which points toward intra-class confusion.
The images of the cluster formed by Colorization are covered by
other trees, low-density cashew, and a mixture of other trees and
cashew respectively. This highlights the inter-class confusion due
to plantations being confused with other trees.

5.5 Using Clusters for Active Sampling

Here we show the effectiveness of the active learning strategy. In
particular, we use obtained clusters to query patches rather than
randomly sampling patches for labeling. Fig. 7 shows the segmen-
tation performance when we label different amounts of samples
either using our active learning approach or by using random sam-
pling. We also show the performance of random sampling both for
the CAS model and the best-performing baseline in each dataset
(Colorization in D1 and DEC in D2).

According to the segmentation performance, we can observe that
the active learning method leads to better performance, especially
when we only label a small number of samples. This demonstrates
the effectiveness of using the clustering structure obtained from
CAS to select the most representative samples given a limited bud-
get. When we label a sufficient amount of samples (>200 samples),
all the methods achieve similar performance.
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Figure 8: (a) The Collines department represents Benin’s central production region for cashews; (b) The six communes in the
Collines department; (c) The spatial distribution of different cashew plantation management styles for each commune in
2021; (d) The spatial distribution of well-managed cashew and poorly-managed cashew for each commune in 2021 using 50%
threshold, and; (¢) Zoom-in regions for different intra-class management styles of cashew plantation in 2021. The VHR images

are from Airbus/Maxar satellites.

Table 2: The cashew area (in hectares) of well-managed and
poorly-managed cashew for six communes in the department
of Collines.

Department Bante | Savalou | Glazoué | Dassa-Zoumeé | Ouéssé | Savé
Well managed area 55670 26530 4925 2545 23550 | 10701
Poolry managed area | 24318 11938 15952 16558 13144 | 39054

6 CAS AT WORK

Cashews by nearly 200K smallholder farming families represent
nearly 10% of Benin’s national export earnings. The Collines depart-
ment is an important region for cashew nut production in South
Benin. The Benin government is thus actively developing policies to
increase cashew production and processing sustainably. Accurate
mapping of these cashew farms at desired spatial scales is critical in
guiding investments for sustainable development programs. More-
over, to achieve the Benin government’s cashew nut yield goal,
without establishing new cashew plantations, improving cashew
plantation management practices is crucial. Improper management
practices would hurt the growth of the cashew tree crop and further
impair cashew nut yield. To this end, we mapped the cashew plan-
tations in Benin’s central production region Collines department,
leveraging the 3m sub-daily Planet Basemaps for 2021. We further
distinguished different intra-class management styles of cashew
plantation (i.e., well-managed cashew plantation versus poorly-
managed cashew plantation) to show how cashew trees are grown.
The information on cashew plantation distribution and intra-class
management styles will allow the Benin government to prioritize
their help for smallholder farmers owning poorly-managed cashew
plantations.

This study is conducted in two steps: Phase 1 - Cashew farm
identification and Phase 2 - Cashew farm categorization. In the
first phase, we use a segmentation model proposed in our prior
work [5], the Spatio-Temporal segmentation network with AT Ten-
tion (STATT), to extract spatio-temporal features from ~3m Planet

Basemaps and classify each imagery pixel into four classes, namely,
cashew, forest, urban and barren land. The second phase includes
collecting the cashew patches and categorizing them into well-
managed and poorly-managed cashew plantations. Specifically, we
collect all the cashew patches of size 32x32 pixels, i.e., patches with
more than 90% cashew pixels, from 25 planet tiles to train our CAS
method with STATT as the base model. A significant contribution
of CAS is that it is agnostic of the base model used, which means
that the choices of models can be arbitrarily complex. The STATT
model allows us to extract spatio-temporal features from the time-
series imagery. We initialize our CAS method with ten clusters and
then fine-tune the clusters using Eq. 8. Once trained, the model is
used to assign clusters to each cashew patch, and the clusters are
grouped into well-managed and poorly-managed categories using
visual inspection. Finally, we apply the model to all of Benin, and
each farm is given a score from 0 to 100, as shown below,
number of well-managed patches in farm i

score; = 100 X 9
! total number of patches in farm i ©)

Figure 8 shows the spatial distribution of well-managed and poorly-
managed cashew plantations for each commune of the Collines
department in 2021. We set the threshold as 50% to distinguish
between good and poor management. Table 2 shows the proportion
of well-managed and poorly-managed cashew plantations for six
communes in our study region. Our results show that in communes
Bante, Ouésse, and Savalou, more than 50% of the cashew plantation
area is well-managed. However, for communes Glazoué, Save, and
Dassa-Zoumé, most cashew plantations are poorly managed. This
management style map can guide the Benin government to focus on
communes with a low percentage of good management plantations.
For example, agronomy experts and financial assistance may tilt
toward these communes. This application indicates that our CAS
method is promising in large-scale land cover mapping.
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7 CONCLUSION

In this paper, we propose the use of clustering-based self-supervised
learning to pre-train the model for few-shot segmentation. This
method is able to preserve fine-level details while also extracting
a clustering structure to naturally separate heterogeneous land
cover modes. The obtained clustering structure can also be used
in an active learning setting. We conduct experiments on two real-
world datasets related to land-cover mapping to show the benefits
brought by using the abundant unlabeled data. Further, we compare
our method with other forms of self-supervised learning strategies
adopted in the Remote Sensing domain, namely Colorization and
Tile2Vec, to show the effectiveness of our proposed strategy. Given
the effectiveness of our proposed method in mapping heteroge-
neous land covers using limited labels, our framework has the
potential for creating large-scale (e.g., global) land-cover maps us-
ing satellite imagery and a small amount of manually-created labels.
Moreover, our proposed framework can be generally applied to a
variety of spatial datasets (e.g., traffic and crime data) which exhibit
strong heterogeneity. An important further direction is to combine
the pretext task of clustering with pretext tasks that are defined to
reflect land cover distinctions based on domain knowledge.
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