

1 **Heat shock protein gene expression varies among tissues and populations in free-living
2 birds.**

3
4 Mary J. Woodruff^{1a*}, Cedric Zimmer², Daniel R. Ardia³, Maren N. Vitousek², Kimberly A.
5 Rosvall¹

6 ¹Biology, Indiana University

7 ²Ecology and Evolutionary Biology, Cornell University

8 ³Biology, Franklin & Marshall College

9 ^aCurrent address: 1001 E. 3rd St, Rm A318, Bloomington, IN 47405

10 *Corresponding author: woodrufm@iu.edu

11
12 **ACKNOWLEDGEMENTS**

13 We thank S.D. Myers, M.S. Izzo, K.J. Philippi, E.M. George, and C. Kallenberg for assistance in
14 the field; Indiana Department of Natural Resources, Indiana University Research and Teaching
15 Preserve, and Cornell University for access to field sites; and E.K. Dossey Curole and D.
16 Sinkiewicz for assistance in the lab.

17
18 **Funding Statement:** Funding came from the North American Bluebird Society (to M.J.W.),
19 National Science Foundation (#1656109 to K.A.R. and #1457151 to M.N.V. and D.R.A.), and
20 DARPA (D17AP00033 to M.N.V.). Funders had no input into the content of the manuscript, and
21 did not require their approval of the manuscript before submission or publication.

22
23 **Ethics Statement:** All methods were approved by the Indiana University, Bloomington and
24 Cornell Institutional Animal Care and Use Committee (IU protocol #15-004, Cornell protocol
25 #2001-0051) and conducted with appropriate state and federal permits.

26
27 **Author Contributions:** M.J.W. and K.A.R. formulated questions; M.J.W, C.Z., M.N.V.,
28 D.R.A., and K.A.R collected data; K.A.R. supervised research, M.J.W. and K.A.R. analyzed
29 data; M.J.W. and K.A.R. wrote the paper with feedback from all authors.

30
31 **Data Availability:** Data will be deposited in Dryad upon acceptance for publication.

32
33 **ABSTRACT**

34 Climate change is dramatically altering our planet, yet our understanding of mechanisms of
35 thermal tolerance is limited in wild birds. We characterized natural variation in heat shock
36 protein (HSP) gene expression among tissues and populations of free-living Tree Swallows
37 (*Tachycineta bicolor*). We focused on HSPs because they prevent cellular damage and promote
38 recovery from heat stress. We used quantitative PCR to measure gene expression of three HSPs,
39 including those in the HSP70 and HSP90 families that have robust experimental connections to
40 heat in past literature. First, to evaluate how tissues and, by extension, the functions that they
41 mediate, may vary in their thermal protection, we compared HSP gene expression among neural
42 and peripheral tissues. We hypothesized that tissues with particularly vital functions would be
43 more protected from heat as indicated by higher HSP gene expression. We found that brain
44 tissues had consistently higher HSP gene expression compared to the pectoral muscle. Next, we
45

Population and tissue variation in HSP gene expression

46 compared HSP gene expression across four distinct populations that span over 20 degrees of
47 latitude (>2300 km). We hypothesized that the more southern populations would have higher
48 HSP gene expression, suggesting greater tolerance of, or experience with, warmer local
49 conditions. We observed largely higher HSP gene expression in more southern populations than
50 northern populations, although this pattern was more striking at the extremes (southern Indiana
51 vs. Alaska) and it was stronger in some brain areas than others (ventromedial telencephalon vs.
52 hypothalamus). These results shed light on the potential mechanisms that may underlie thermal
53 tolerance differences among populations or among tissues.

54 *Keywords:* Thermal tolerance, gene expression, heat shock proteins, populations, brain, ovary,
55 muscle.

56

57 LAY SUMMARY

- 58 • Birds can be internally protected from heat by elevated production of heat shock proteins
59 (HSPs), which prevent damage and promote recovery from heat stress.
- 60 • We characterized natural variation in heat shock protein gene expression in wild Tree
61 Swallows (*Tachycineta bicolor*), a songbird undergoing a southward expansion in its
62 breeding range.
- 63 • We found that the brain had consistently higher HSP gene expression compared to the
64 flight muscle.
- 65 • We also observed higher neural HSP gene expression in more southern populations than
66 northern populations, although this pattern was more striking at the extremes (southern
67 Indiana vs. Alaska), and it was stronger in some brain areas than others.
- 68 • These results shed light on potential mechanisms of thermal tolerance in birds, including
69 variation among tissues or variation among populations.

Population and tissue variation in HSP gene expression

70 INTRODUCTION

71 Anthropogenic climate change is dramatically altering conditions across the globe as
72 temperatures become increasingly hot and variable (Meehl and Tebaldi 2004; Bathiany et al.
73 2018). Even at sub-lethal temperatures that are common during summers in the temperate zone
74 (35°C), heat can negatively affect body condition (Gardner et al. 2016), brain development
75 (Shiota and Kayamura 1989), and other traits that influence survival and reproductive success
76 (Conrey et al. 2016). While birds are able to regulate internal temperatures (Wolf and McKechnie
77 2010), rising environmental temperatures may push animals to their limit of thermoregulatory
78 capabilities (McKechnie and Wolf 2019). Understanding mechanisms of thermal tolerance is
79 critical for wild birds as it may allow for improved predictions of population persistence. Such
80 predictions could be instrumental in conserving the many birds that face the urgent threat of
81 rising temperatures alongside population declines (Rosenberg et al. 2019).

82 While the best protection against heat stress is arguably avoidance of high temperatures,
83 animals have evolved a range of coping mechanisms when heat is unavoidable (Etches et al.
84 2008; Angilletta 2009). As the next line of defense, animals initiate heat dissipation behaviors
85 such as panting or wing spreading in birds (Etches et al. 2008; McKechnie et al. 2021), and they
86 also shed heat via appendages, such as the bill or legs (Tattersall et al. 2017). Physiologically,
87 birds may lessen the effect of environmental heat via facultative hyperthermia that reduces the
88 thermal gradient between environmental and internal temperatures (Gerson et al. 2019), or they
89 may initiate selective cooling of some critical tissues, such as the brain (Jessen 2001). However,
90 at some point heat starts to have detrimental effects on the organism. For instance, it may
91 negatively impact motor function (Angilletta 2009; Racinais et al. 2019), in part by slowing
92 muscle twitch speed (Yamaguchi et al. 2010). High temperatures also may disrupt reproduction,
93 for example, by changing odor profiles that impact mate choice or by increasing abnormalities in
94 spermatogenesis (Fuller et al. 2019; Walsh et al. 2019). Further, heat may impair cognitive
95 function, including song discrimination in birds (Coomes et al. 2019) and memory in both mice
96 and humans (Lee et al. 2015; Martin et al. 2019). However, key issues still to understand are
97 whether and how heat affects different components of the phenotype (Campos and Fedigan
98 2009; Angilletta 2009; de Andrade Ferrazza et al. 2017; Danner et al. 2017) including the
99 molecular underpinnings of such variation. Strides have been made in recent years to advance
100 the study of thermal tolerance in free-living birds from hot and dry regions (e.g. Xie et al. 2018;
101 Smit et al. 2018; McKechnie et al. 2021), but more work is needed to expand our understanding
102 across ecosystems.

103 Among the many physiological traits that facilitate thermal tolerance are heat shock
104 proteins (HSPs). HSPs are an evolutionarily conserved response to stress – they serve to prevent
105 cellular damage and promote recovery (Lindquist and Craig 1988; Feder and Hofmann 1999);
106 therefore, HSP abundance may lend insight into the mechanisms of thermal tolerance. HSPs
107 recognize non-native protein conformations and facilitate their folding, breakdown, or removal
108 (Feder and Hofmann 1999). While there are many HSPs that respond to a range of stressors,
109 genes in the HSP90 and HSP70 families have been specifically linked to hyperthermia
110 (Lindquist and Craig 1988; Xie et al. 2014). Across species that have been studied so far, high
111 HSP gene expression is associated with both direct responses to sudden heat and built-up
112 resistance to chronic heat (Feder and Hofmann 1999; Kenkel et al. 2013; Xie et al. 2014).
113 Therefore, cells or tissues with higher HSP mRNA or protein abundance are thought to have a
114 higher level of protection from the negative effects of heat, compared to those with lower HSP
115 abundance (Murugesan et al. 2017; Xie et al. 2018).

Population and tissue variation in HSP gene expression

116 The timing of HSP responses to heat varies among studies (Tomanek and Somero 2000;
117 Foster et al. 2015; Wan et al. 2017), but even in captivity, baseline expression of some HSPs
118 may track heat tolerance among populations (Fangue et al. 2006; Xie et al. 2018). At the
119 individual level, variation in HSP expression has also been documented among tissues collected
120 at the same moment in endotherms, including goats, rats, and chickens (Flanagan et al. 1995; Xie
121 et al. 2014; Varasteh et al. 2015; Rout et al. 2016). Such variation suggests that some tissues -
122 and by extension, the functions that they mediate - may be more protected from heat than others.
123 For example, in domestic goats (*Capra aegagrus hircus*), HSP70 gene expression is higher in the
124 liver and brain compared to the spleen and kidney (Rout et al. 2016), suggesting perhaps that
125 metabolism, behavior, or cognition may be especially protected against heat stress. Despite
126 potential tissue differences, HSP gene expression has been shown to be consistent within an
127 individual or population measured two times in the same environment (Tomanek and Somero
128 2000; Kenkel et al. 2011), though this can vary among genes and species. The study of avian
129 thermal tolerance, particularly HSP responses, has been greatly advanced by poultry science
130 because heat stress is a primary economic concern in broiler and layer production (reviewed in:
131 Etches et al. 2008; see also: Wang et al. 2013; Xie et al. 2014; Murugesan et al. 2017; Wan et al.
132 2017; Greene et al. 2019). For instance, HSP gene expression was higher in a breed derived from
133 a warmer environment than a breed derived from a cooler region (Wan et al. 2017), and
134 expression varies among tissues after both acute (24 hours) and chronic (8 weeks) heat (Xie et al.
135 2014). What remains unclear, is whether and how patterns of HSP abundance apply to wild,
136 outbred birds rather than domesticated or captive subjects.

137 Tree Swallows are of interest to thermal physiology because of their breeding distribution
138 across a large climatic gradient, from Alabama to Alaska (Winkler et al. 2020). This broad range
139 has facilitated a number of key insights on latitudinal variation in life history (e.g. Dunn and
140 Robertson 1992; Dunn et al. 2000; Stenzler et al. 2009; Akçay et al. 2016), behavior (Sellick et
141 al. 2009; Knight et al. 2018) and physiology (reviewed in: Jones 2003; e.g. Ardia 2006; 2007;
142 Miles et al. 2018; Zimmer et al. 2020; Winkler et al. 2020). Further, the Tree Swallow range is
143 also interesting because while ~80% of animals are shifting their range to more northern latitudes
144 or higher altitudes due to climate change (Root et al. 2003), the Tree Swallow breeding range is
145 expanding to the *south* (McCaslin and Heath 2020). In the last 20 years, for example, Tree
146 Swallows have increased in prevalence in southern Indiana, Kentucky, Tennessee and North
147 Carolina, and in the last three decades, have begun breeding as far south as South Carolina and
148 Alabama (Shutler et al. 2012; McCaslin and Heath 2020). Tree swallows are migratory,
149 wintering in the Southern USA, Mexico, and Central America (Knight et al. 2018). Nevertheless,
150 they are also philopatric, with typical natal dispersal distances of 8.38 km for females and 2.44
151 km for males (Winkler et al. 2005), suggesting the potential for a population to be acclimated or
152 adapted to a particular thermal regime during the warmest summer months, despite variation in
153 wintering habitats (Knight et al. 2018; Gow et al. 2019).

154 Here, we examine the pattern of natural variation in gene expression of three heat shock
155 proteins, comparing among tissues and populations. All birds were free-living and
156 unmanipulated, such that their HSP gene expression could integrate both plastic and evolved
157 responses to the environment. While the processes that generate HSP variation could be
158 influenced by sex, recent temperatures, migration length, or wintering location, distinguishing
159 among these predictors first requires the characterization of natural differences among tissues
160 and populations. Therefore, in this study, we focused on the pattern of HSP gene expression. We
161 hypothesized that HSP gene expression would vary among tissues, with higher expression in

Population and tissue variation in HSP gene expression

tissues that serve especially vital functions, suggesting these tissues are better protected from heat. Therefore, we predicted that HSP abundance would be higher in the brain than in the ovary or the pectoral muscle. Within the brain, we predict that the hypothalamus, which mediates many vital functions including thermoregulation (Murugesan et al. 2017), would have higher HSP gene expression compared to other brain regions. Variation in HSP gene expression among brain regions could suggest that some neural functions are more protected from heat than others. However, if we observed no difference in HSP abundance among tissues, that would suggest that protection from heat is more uniform across the body. Next, focused solely on the brain, we hypothesized that HSP gene expression would vary geographically, with individuals breeding in warmer climates having higher HSP gene expression than individuals breeding in cooler climates.

173 METHODS

174 Study Populations and Thermal Environments

175 We collected samples from breeding females, captured during the Spring of 2016-2018 in
176 four different populations, shown in Figure 1: Bloomington, Indiana (IN) (39°9 N, 86°31 W,
177 235m elevation), Ithaca, New York (NY) (42.5°N, 76.5°W, 340m elevation), Burgess Junction,
178 Wyoming (WY) (44.5°N, 107.3°W, 2451m elevation) and Anchorage, Alaska (AK) (61.3°N,
179 149.7°W, 40m elevation). Based on these latitudes and altitudes, we expected populations to
180 represent a gradient of ambient temperatures. To evaluate thermal regimes in each population,
181 we used NOAA weather data (www.ncdc.noaa.gov) to generate two key variables: First, we
182 recorded maximum daily temperatures for the 25 years preceding this study (1991-2016) for
183 each population. To account for missing data or offline NOAA stations, we concatenated data
184 from the nearest NOAA station with data (distance from field site to weather station = $20.1 \pm$
185 14.3 km). We focused our analysis on breeding months in each population: May to July in
186 Alaska and Wyoming; April to June in New York and Indiana. This 25-year spring average
187 provides a window into the thermal environment in which these populations develop or evolve.
188 Second, we recorded the maximum temperature the day before collection. Because the birds in
189 this study were predominantly collected in the morning (see below), the highest temperature that
190 the birds would have experienced recently is the maximum temperature of the day before
191 collection.

192 Over the past 25 years, our four focal populations significantly differed in maximum
193 daily temperatures during the breeding season (LMM with fixed effects of state and day of the
194 year and population and controlling for the random effect of year. Population: $F_{3, 8796} = 2181.9$, $p < 0.0001$;
195 Day of year: $F_{1, 8796} = 4889.9$, $p > 0.0001$; Year Wald $p = 1.00$). These 25-year values
196 were, on average, 8°C warmer in Indiana compared to Alaska (Table 1). Similarly, the
197 populations differed in the maximum temperature the day before collection (i.e., highest
198 temperatures experienced recently; GLM: $F_{3, 63} = 15.71$, $p < 0.0001$). This recent temperature
199 metric is positively correlated with 25-year average temperatures (Pearson $r = 0.29$, $p = 0.02$). It
200 is unclear which of these (or other) temporal scales of temperature should best predict HSP
201 variation: the day of collection, day before, previous ten days, bird's lifetime or early life
202 experiences, or some longer scale that may reflect or drive evolutionary processes (i.e., decades
203 or more). A full analysis is beyond the scope of this project; however, we begin to explore this
204 question using the 25-year average maximum temperature and the maximum temperature on the
205 day before each sample was collected. These supplementary analyses show that 25-year
206 maximum temperatures are a better predictor of gene expression variation than the maximum

Population and tissue variation in HSP gene expression

207 temperature on the day before each sample was collected. See Supplementary Methods and SI
208 Tables S1-3 for details.

209 Field and Tissue Collection

210 We capitalized on already-collected samples to learn about an additional, important question in
211 avian biology. All birds were originally collected as part of ongoing research efforts on
212 behavioral genomics (Bentz et al. 2019) and glucocorticoid stress responses (e.g. Zimmer et al.
213 2020). Because we wanted to measure baseline HSP expression, our study only used
214 unmanipulated or control birds. As a result, we have a limited sample size from populations in
215 which researchers were testing glucocorticoid stress responses (Alaska, Wyoming, and New
216 York).

217 We used similar field methods in all populations, except where noted. We captured birds
218 in their nest boxes by hand or by using a nest box entrance trap, between 0600-1330hr. Within 3
219 min of capture, females were euthanized with an overdose of isoflurane, decapitated, and then
220 the brain was dissected from the skull using sterile, RNase-free techniques. In Indiana, we
221 reserved additional tissues including the ovary and pectoral muscle. We excised the muscle from
222 the right pectoralis, just distal to the midline ($< 1 \text{ cm}^3$). We immediately froze each tissue on dry
223 ice and then transferred to -80°C freezer in the lab

224 In the lab, brains were microdissected into functional regions using clear anatomic
225 landmarks, following (Bentz et al. 2019). Our study focused on the hypothalamus (HYPO),
226 ventromedial telencephalon (VmT, which includes the avian medial amygdala or nucleus
227 taeniae), and hippocampus (HPC, dissected bilaterally and pooled). We focused on these regions
228 because they represent key behavioral centers (Goodson 2005; O'Connell and Hofmann 2012).
229 HYPO, for example, influences the production of different hormones, such as sex steroids,
230 corticosterone, and dopamine (Mikami 1986). HYPO also influences a range of parental, sexual,
231 and aggressive behaviors, and it aids in thermoregulation (Murugesan et al. 2017). VmT is
232 involved in social valence and aggression (Mikami 1986; Rosvall et al. 2012; Hong et al. 2014).
233 HPC plays a role in spatial memory and navigation (Bingman et al. 2003; Pravosudov et al.
234 2006), traits that likely influence success at migrating or locating nest boxes. Thus, investigating
235 HSP gene expression in these regions has the potential to inform how cognitive and behavioral
236 functions may be affected by heat.

237 We collected all females from New York, Wyoming, and Alaska during incubation (NY
238 n=4, WY n=4, AK n=4). In Indiana, we collected half of the females during territory
239 establishment (n=5) and half during incubation (n=5). We found no significant difference in gene
240 expression between breeding stages (GLM with stage as a fixed effect and individual as a
241 random variable: all HSPs $F_{1,7.36-8.21} \leq 1.17$, $p \geq 0.31$), so we pooled data by stage for analyses.

242 RNA Extraction and Quantitative PCR

243 We extracted RNA from each sample using the phenol-chloroform-based Trizol method,
244 following the manufacturer's instructions (Invitrogen, Carlsbad, California, USA). We then
245 resuspended total RNA in water and analyzed quality and quantity with Epoch Microplate
246 Spectrophotometer (Biotek, Winooski, Vermont, USA). We later treated 1 μg RNA with DNase
247 (Promega, Madison, Wisconsin, USA) and RNasin Ribonuclease Inhibitor (Promega, Madison,
248 Wisconsin, USA) for reverse-transcription with oligo dT primers and Superscript III (Invitrogen,
249 Carlsbad, California, USA).

Population and tissue variation in HSP gene expression

250 The resulting cDNA was used in quantitative real-time PCR (qPCR) to measure mRNA
251 abundance of HSP90AA1, HSP90B1, and HSPA2. We focused on these HSPs because we
252 verified that these genes were expressed in Tree Swallow transcriptomes (Bentz et al. 2019) and
253 because they have been linked to tolerance of hyperthermia in prior experimental work (e.g.
254 Wissing and Jäättelä 1996; Feder and Hofmann 1999; Wang et al. 2013). The HSPs in this study
255 belong to different families: HSPA2 is in the HSP70 family, while HSP90AA1 and HSP90B1
256 are in the HSP90 family. As a consequence, there are regulatory differences between these
257 families and further, between members of the same family (Stelzer et al. 2016). Members of the
258 HSP70 family refold or break down proteins damaged by stress exposure (Lindquist and Craig
259 1988; Burel et al. 1992; Stelzer et al. 2016). HSPA2, is upregulated following experimental heat
260 stress (Wang et al. 2013; Xie et al. 2014) and is also involved in steroid signaling (Ma et al.
261 2019) and spermatogenesis (MacPhee 2017). Members of the HSP90 family bind to steroid
262 receptors, act as a protein transporter within the cell, and refold damaged proteins, though exact
263 functionality varies among genes (Lindquist and Craig 1988; Burel et al. 1992; Li and Srivastava
264 2003; Stelzer et al. 2016). Both HSP90AA1 and HSP90B1 have been shown to be induced by
265 experimental heat stress (Xie et al. 2014; Wan et al. 2017; Finger et al. 2018), and they serve
266 additional cellular functions as well (Lindquist and Craig 1988; Feder and Hofmann 1999; Li and
267 Srivastava 2003). All three candidate genes have been linked to interspecific variation in thermal
268 tolerance in other species (Singh et al. 2014; Wan et al. 2017; Archana et al. 2017; Xie et al.
269 2018). Therefore, expression of these genes is likely to integrate evolved and plastic
270 environmental response factors that influence heat tolerance mechanisms, although we cannot
271 distinguish among these processes in this study.

272 We designed primers based on the Tree Swallow transcriptome (Bentz et. al., 2019) and
273 validated them with serial dilution (efficiencies: $105.93\% \pm 5.13$). All qPCR reactions were run
274 on a 384 well plate in triplicate, alongside no template controls (NTCs), in a QuantStudio 5
275 thermocycler (Thermo Fisher Scientific, Waltham, Massachusetts, USA) using PerfeCta SYBR
276 Green FastMix with low ROX (Quanta Biosciences, Gaithersburg, Maryland, USA). In each well
277 we added 3 μ L of cDNA diluted 1:50, or 3 μ L water for NTCs, and 7 μ L of mix (1.94uL water,
278 0.03 μ L forward primer, 0.03 μ L reverse primer, and 5 μ L SYBR) for a 10 μ L total. We set the
279 thermocycling condition to be: 10 min at 95°C, then 40 cycles of 95°C for 30s, 60°C for 30s, and
280 70°C for 30s. A final dissociation phase (95°C for 1 min, 55°C for 30s, and 95°C for 30s)
281 confirmed single-product specificity. For 7 of 84 samples, RNA concentrations were low (< 110
282 ng/ μ L) and so we modified our cDNA recipe and qPCR dilution to equalize the amount of
283 material loaded into the qPCR reaction. Specifically, we used 400 ng of RNA for reverse
284 transcriptase and later during qPCR, we used a 1:20 rather than 1:50 dilution qPCR to account
285 for the lower concentration – this process closely equalized the amount of material loaded in the
286 reaction. All samples fell within the standard curves.

287 We used QuantStudio Design and Analysis software v 1.5.1 (Thermo Fisher Scientific,
288 Waltham, Massachusetts, USA) to calculate relative mRNA abundance using the comparative Ct
289 method ($2^{-\Delta Ct}$), which reports mRNA abundance for each gene of interest as the fold change in
290 expression that is normalized to an internal reference gene. Ct values refer to the qPCR cycle
291 number at which fluorescence exceeds background, and Ct values are therefore inversely
292 proportional to abundance. We tested multiple reference genes, including HMBS, RPL4, and
293 MRPS25, which have been shown to be reliable reference genes in birds (Zinzow-Kramer et al.
294 2014). For our first question on tissue variation in HSP gene expression, we used MRPS25 as a
295 reference gene because it did not differ in its expression among tissues ($F_{4, 44} = 0.32$, $p = 0.86$).

Population and tissue variation in HSP gene expression

296 For our second question on population variation in HSP gene expression in the brain, we instead
297 used both HMBS and PPIA as reference genes because they did not significantly differ in
298 expression among populations ($F_{3,60} < 1.29$ and $p > 0.29$) nor among our three brain tissues ($F_{2,61} \leq 1.71$ and $p \geq 0.19$). In this case, the geometric mean of HMBS and PPIA was used to
299 calculate relative gene expression ($2^{-\Delta Ct}$) for the comparative Ct method. On each plate, we
300 included intra- and inter-plate control samples (a cDNA pool derived from Tree Swallow RNA).
301 Average intra-plate CV was 1.4% and inter-plate was 1.3%. We use standard criterion to exclude
302 data in cases where triplicate values are too variable (i.e. >1 Ct difference among replicates). This
303 process led us to exclude two samples (one Wyoming VmT and one Indiana VmT).
304

305 Statistics

306 We performed statistical analyses with JMP v14 (SAS Institute, Cary, North Carolina, USA).
307 Our total sample sizes were $n=64$ tissues and $n=22$ individuals. Total sample numbers are
308 reflected in Table 2.

309 To determine our analytical approach, we first evaluated correlations in IN, where we had
310 a larger sample size for each tissue. Within each tissue, we found some evidence of correlations
311 among the 3 HSPs (absolute value median Pearson $r = 0.65$, range: 0.02 to 0.96). However, we
312 found no strong evidence of correlations among tissues within one HSP (absolute value median
313 Pearson $r = 0.26$, range: 0.03 to 0.76). In light of the functional and regulatory differences among
314 our genes of interest (Burel et al. 1992; Stenzler et al. 2009) and the lack of published research
315 on variation in HSP gene expression in songbirds, we used separate linear mixed models (LMM)
316 per HSP. This approach avoids overfitting, by limiting the number of parameters per candidate
317 model to no more than 1 per 10 observations while allowing for robust testing of our predictions
318 regarding tissue and population variation because we had no *a priori* knowledge as to how each
319 gene might track thermal regimes (Xie et al. 2014; Finger et al. 2018), in conserved or unique
320 ways among tissues or among populations.

321 Specifically, for the question of how HSP gene expression varies among tissues, we
322 entered tissue as a fixed effect and individual as a random effect, predicting relative gene
323 expression ($2^{-\Delta Ct}$) for each of the three HSPs. For the question of how HSP gene expression
324 varies among populations, we included fixed effects of population, tissue, and their interaction,
325 while controlling for the random effect of individual. Model residuals were visually inspected for
326 normality, and this process led to a \log_2 transformation of gene expression data for all of models
327 that include population. Initially, we explored potentially confounding variables that may
328 contribute to variation across populations, including date, time since sunrise, max ambient
329 temperatures the day before, or day of incubation. Due to limited sample sizes in this initial study
330 characterizing HSP variation, we could not include all of these parameters in a single model.
331 Instead, we evaluated each variable separately to determine whether to retain the variable in our
332 final analyses. We found that HSP gene expression was unrelated to the day of the year the bird
333 was collected ($F_{1,0.01-0.5} \leq 2.65$, $p \geq 0.12$), amount of time since sunrise ($F_{1,0.03-1.66} \leq 3.48$, $p \geq$
334 0.08), or day of incubation ($F_{1,11-12} \leq 1.72$, $p \geq 0.21$) (Tables S5-7). Therefore, we did not retain
335 these variables in our final models.

336 Because of our limited sample sizes and the potential for Type I error, we used Cook's D
337 to evaluate our gene expression data for influential (outlier) samples. All values fall below 1, a
338 common cutoff to indicate whether a value was potentially influential, and most fall below 0.5, a
339 more conservative cutoff (Haubrick 2018). Across all comparisons, Cook's D = 0.05 ± 0.004 ,

Population and tissue variation in HSP gene expression

340 and detailed Cook's D values are included in the Supplemental (Figure S1, S2). These data
341 suggest that, while our sample sizes are small, our results are not driven by outlying points.

342 We report degrees of freedom adjusted using the Satterthwaite approximation. P-values
343 for the fixed effects of each model were adjusted via the Benjamini-Hochberg false discovery
344 rate. Significant pairwise comparisons (post-hoc Tukey test) are also shown in the figures. We
345 also report marginal R^2 (R^2_m : proportion of variance explained by just the fixed effects),
346 conditional R^2 (R^2_c : proportion of variance explained by both fixed and random effects), and
347 Wald p of the random effect for our two main research questions.

348 RESULTS

349 HSP Gene Expression Across Tissues

350 In Indiana birds, we found a significant effect of tissue on HSP90AA1 mRNA abundance ($F_{4, 35.55} = 7.47$, adj. p = 0.0002, $R^2_m = 0.38$, $R^2_c = 0.40$; Figure 2). A post-hoc Tukey test showed
351 that ventromedial telencephalon, hippocampus, and ovary differed significantly from pectoral
352 muscle, though there was no difference between the hypothalamus and pectoral muscle. There
353 was a significant effect of tissue on HSP90B1 mRNA abundance ($F_{4, 35.69} = 34.98$, adj. p =
354 0.0002, $R^2_m = 0.75$, $R^2_c = 0.75$); ovarian levels were higher than other tissues, and again, the
355 ventromedial telencephalon and hippocampus were higher than the pectoral muscle. We also
356 found a significant effect of tissue on HSPA2 mRNA abundance ($F_{4, 35.17} = 34.10$, adj. p =
357 0.0002, $R^2_m = 0.73$, $R^2_c = 0.74$). The Tukey test indicated higher expression in the ovary and all
358 three neural tissues compared to pectoral muscle. Across all models, there was no significant
359 random effect of individual (Wald p > 0.71), consistent with the observation that tissues vary
360 independently from one another in their HSP gene expression.

362 HSP Gene Expression Across Populations

363 HSP gene expression in the brain also differed across populations, as detailed in Table 3 and
364 Figure 4. In all three HSPs, we found no effect of brain region. For HSP90B1, we found a
365 significant main effect of population. For HSP90AA1 and HSPA2, we found a population by
366 tissue interaction. Post-hoc Tukey tests indicated several significant pairwise population
367 differences within each tissue, which were generally more common at the extremes (i.e., Indiana
368 vs. Alaska, see Table 3). There was no effect of individual on HSP gene expression (Wald p >
369 0.22), and the random effect of individual did not explain much variation in HSP gene
370 expression (HSP90AA1: $R^2_m = 0.47$ and $R^2_c = 0.50$; HSP90B1: $R^2_m = 0.41$ and $R^2_c = 0.41$;
371 HSPA2: $R^2_m = 0.36$ and $R^2_c = 0.36$.).

372 DISCUSSION

373 We found marked tissue- and population-level differences in HSP gene expression, despite
374 limited sampling in some populations. Across all three HSPs studied here, most brain tissues had
375 significantly higher HSP gene expression compared to the pectoral muscle, consistent with the
376 view that neural functions may be especially well protected from heat. Ovarian HSP gene
377 expression was comparably high, except for HSP90B1 which showed ovarian levels even higher
378 than the brain. Neural HSP gene expression also varied among populations. In particular, there
379 was a main effect of population on HSP90B1 gene expression in which Indiana was higher
380 compared to Alaska. For HSP90AA1, populations also differed in the ventromedial

Population and tissue variation in HSP gene expression

381 telencephalon and hippocampus, but for HSPA2, this effect was limited to the ventromedial
382 telencephalon. Therefore, not only does the brain have consistently higher HSP gene expression
383 than the pectoral muscle, but populations also differ in neural HSP gene expression.
384 Furthermore, measuring one gene may not provide the full picture when asking questions about
385 putative biomarkers of thermal tolerance. Although we cannot yet identify the processes driving
386 these patterns, these findings in unmanipulated free-living birds nevertheless add to our
387 understanding of the molecular framework of thermal tolerance in wild animals.

388 Interpreting HSP Gene Expression as a Biomarker

389 While animals have a plethora of behavioral and physiological responses to unavoidable heat
390 (Etches et al. 2008; Angilletta 2009; McKechnie et al. 2021), HSP abundance is a classic thermal
391 tolerance mechanism used to assess exposure and resistance to heat stress (Feder and Hofmann
392 1999). HSPs are stress-responsive and have protective qualities; thus, the leading interpretation
393 of high HSP gene expression is that it indicates greater heat *protection* in a tissue or individual
394 compared to those with lower HSP gene expression (Feder and Hofmann 1999; Rout et al. 2016;
395 Murugesan et al. 2017). While less studied, a related, but not mutually exclusive interpretation of
396 high HSP abundance is that a tissue or individual is more *sensitive* to heat (Varasteh et al. 2015;
397 Wan et al. 2017). To the degree that such sensitivity allows for a small amount of heat to trigger
398 a protective HSP response, this sensitivity may act as a buffer against the potentially negative
399 effects of heat. Therefore, elevated levels could indicate higher responsiveness to heat, but most
400 work suggests higher HSPs indicate an adaptive level of protection from heat (Feder and
401 Hofmann 1999; Hoffmann et al. 2003; Sørensen 2010; Murugesan et al. 2017; Louis et al. 2020).
402 However, heat-induced and baseline HSP levels are not necessarily correlated (Mezquita et al.
403 2001; Li et al. 2019), and there are few studies that report pre- and post-heat gene expression
404 levels within an individual. Finally, differences in HSP abundance could indicate varying
405 *exposure* to heat (Flanagan et al. 1995), made more complex by observations that the time-course
406 and temperature sensitivity varies among HSP genes and species (Fangue et al. 2006; Wan et al.
407 2017; Finger et al. 2018; Xie et al. 2018).

408 The birds in our study were not experimentally exposed to heat beyond their natural
409 environmental temperatures, which differ among populations (Table 1). Environmental
410 temperatures can alter HSP gene expression (Foster et al. 2015; Wan et al. 2017) and species,
411 populations, or breeds that originate from different climates may diverge in HSP expression,
412 even when exposed to the same thermal regimes (Fangue et al. 2006; Singh et al. 2014; Wan et
413 al. 2017; Xie et al. 2018). Thus, we cannot yet determine whether the differences seen here
414 reflect variation in constitutive or inducible HSP gene expression. Furthermore, because the
415 subjects in this study were free-living birds, there are many uncontrolled variables that may
416 influence HSP gene expression, even beyond those variables that we did explore (see
417 Supplementary Methods). In sum, we observed clear population and tissue-level variation in a
418 breeding songbird. To the degree that gene expression patterns reflect protein abundance (Li and
419 Biggin 2015), our results suggest that some tissues and some populations are poised to be
420 protected from heat.

421 Variation Among Tissues and Genes

422 Variation in HSP gene expression among tissues can shed light on the functions that are more or
423 less protected from heat. Across HSPs, most neural tissues had higher gene expression compared
424 to the pectoral muscle, perhaps related to particularly vital neural functions that must be

Population and tissue variation in HSP gene expression

425 protected regardless of ambient temperature. We identified region-specific expression for
426 HSP90AA1 mRNA, which was higher in the ventromedial telencephalon compared to the
427 hypothalamus. The functional interpretation of this result is hard to disentangle, considering that
428 the hypothalamus and ventromedial telencephalon both contain interconnected nodes of the
429 social behavior network (Goodson 2005; O'Connell and Hofmann 2012). Otherwise, HSP gene
430 expression was largely similar among brain regions, suggesting that neural mediated functions
431 such as hormone production, spatial memory, and social behavior may be, in general, well
432 protected from heat.

433 We found comparatively lower levels of HSP gene expression in muscle than the brain,
434 suggesting more limited protection from heat in the muscle (Feder and Hofmann 1999;
435 Murugesan et al. 2017). Previous literature suggests that heat negatively impacts muscle
436 functioning (Racinais et al. 2019; He et al. 2021). As the pectoralis is the major flight muscle
437 (Marden 1987), its performance may be particularly relevant for swallows, who spend 80% of
438 their day in flight (Ricklefs 1971; Rosvall 2008). Furthermore, swallow foraging (Winkler et al.
439 2020), migration (Gow et al. 2019), and social interactions (Rosvall et al. 2020) all rely on
440 acrobatic flight. These flight-dependent characteristics highlight how many fitness-related traits
441 have the potential to be affected by heat.

442 Some of our results varied from one gene to the next, consistent with observations that
443 genes vary in the timing and degree of their sensitivity to heat (Feder and Hofmann 1999;
444 Sørensen et al. 2003; Finger et al. 2018). Gene-specific results were especially evident in the
445 ovary. In particular, HSP90B1 mRNA levels were much higher in the ovary than the brain, while
446 HSP90AA1 and HSPA2 gene expression in the ovary was similar to levels in the brain. This
447 gene-specific variation may be linked to the functional significance of each HSP, bearing in
448 mind that functionality can vary within and among members of the same HSP family (Stenzler et
449 al. 2009; Burel et al. 1992). Variation among genes also highlights the need for experimental
450 work in wild birds, since each of these genes has been linked to heat in past work in
451 domesticated poultry (Xie et al. 2014; Murugesan et al. 2017).

452 Implications of Population Variation in Neural HSP Gene Expression

453 Our data also showcase population variation in HSP gene expression. Females breeding in
454 warmer climates had higher HSP gene expression compared to populations from colder climates,
455 at least for some genes in some brain regions. While our within-population sample sizes are
456 limited, our results mirror similar findings in other species, showing higher HSPs in populations
457 in warmer environments in plants, ectotherms, humans, and domesticated birds (e.g. Lindquist
458 and Craig 1988; Sørensen et al. 2003; Wan et al. 2017; Louis et al. 2020).

459 Although the underlying processes generating the patterns we observed will require more
460 experimental work (e.g., a common garden), we speculate that these population differences may
461 reflect some combination of plastic or evolved responses to different thermal environments. For
462 example, early developmental processes may prime individuals to cope with heat (Wada 2015;
463 Kelly 2019), and even if populations do not vary in thermal tolerance, they may simply vary in
464 their exposure to heat (Crickenberger et al. 2015), affecting HSP levels. Notably, though, we did
465 not find any significant differences within Indiana birds sampled during territorial establishment
466 vs. incubation (1-2 months later), and in our population analyses, we also found no relationship
467 with sampling date, time since sunrise, day of incubation, or maximum temperature the day
468 before collection. Of course, populations differ in other factors that could not be quantified in
469 this study (e.g. wintering location, timing of breeding, and ambient temperatures at various

Population and tissue variation in HSP gene expression

470 temporal scales in the past), and our relatively limited sampling regime is not well suited to
471 robustly testing these questions. Additionally, local climate regimes at breeding or over-
472 wintering locations may generate different levels of HSP gene expression. Such differences in
473 thermal tolerance have the potential to be genetic as well, as suggested by research in, for
474 example domesticated chickens, rainbow darters, and coral (Wan et al. 2017; Oliveira et al.
475 2020; Louis et al. 2020). Future work is needed to tease apart these possible drivers of HSP
476 variation among populations, including data from adult males and developing young as well.

477 Tree Swallows are among the first migratory species to arrive in North America in the
478 Spring, and they breed across a broad range of environments, as far north as Alaska. Because of
479 this, Tree Swallows are thought to be resilient to cold stress (Wang and Beissinger 2009). Our
480 among-population results on HSP gene expression extend this idea into heat tolerance. Notably,
481 Tree Swallows are expanding their breeding range in the American southeast (Shutler et al.
482 2012; McCaslin and Heath 2020), though our study did not reach the most southern portion of
483 the range. While there may be other, non-heat related hypotheses for the Tree Swallow's
484 southward expansion, our HSP gene expression results suggest a potential role of heat tolerance.

485 Conclusion

486 Our data reveal both tissue and population variation in HSP gene expression in Tree Swallows.
487 Previous work laid the foundation for how heat impacts Tree Swallow behavior and reproductive
488 success (Ardia et al. 2009; Ardia 2013; Windsor et al. 2013). Here, we extend this line of inquiry
489 by demonstrating standing variation in gene expression levels of multiple HSPs, suggesting that
490 mechanisms of thermal tolerance may vary within the body and among populations. Continued
491 experimentation should explore how HSPs respond to experimental heat within particular tissues
492 and across populations breeding at different latitudes. Such data would have the power to reveal
493 how geographically distant, genetically distinct individuals might adapt or acclimate to their
494 environment in similar or contrasting ways.

495 LITERATURE CITED

496 Akçay, Ç., Á. Z. Lendvai, M. Stanback, M. Haussmann, I. T. Moore, and F. Bonier (2016).
497 Strategic adjustment of parental care in tree swallows: life-history trade-offs and the role
498 of glucocorticoids. *R Soc Open Sci* 3:160740.
499 Angilletta, M. J. (2009). *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford
500 Univ Press.
501 Archana, P., J. Aleena, P. Pragna, M. Vidya, A. Niyas, M. Bagath, G. Krishnan, A. Manimaran,
502 V. Beena, and E. Kurien (2017). Role of heat shock proteins in livestock adaptation to
503 heat stress. *J Dairy Vet Anim Res* 5:00127.
504 Ardia, D. R. (2006). Geographic Variation in the Trade-Off between Nestling Growth Rate and
505 Body Condition in the Tree Swallow. *The Condor* 108.
506 Ardia, D. R. (2007). The ability to mount multiple immune responses simultaneously varies
507 across the range of the tree swallow. *Ecography* 30:23.
508 Ardia, D. R. (2013). The effects of nestbox thermal environment on fledging success and
509 haematocrit in Tree Swallows. *Avian Bio Research* 6:99.
510 Ardia, D. R., J. H. Perez, E. K. Chad, M. A. Voss, and E. D. Clotfelter (2009). Temperature and
511 life history: experimental heating leads female tree swallows to modulate egg
512 temperature and incubation behaviour. *J Anim Ecol* 78:4.

Population and tissue variation in HSP gene expression

513 Bathiany, S., V. Dakos, M. Scheffer, and T. M. Lenton (2018). Climate models predict
514 increasing temperature variability in poor countries. *Sci Adv* 4:eaar5809.

515 Bentz, A., G. W. Thomas, D. B. Rusch, and K. A. Rosvall (2019). Tissue-specific expression
516 profiles and positive selection analysis in the tree swallow (*Tachycineta bicolor*) using a
517 de novo transcriptome assembly. *Sci Reports* 9:1.

518 Bingman, V. P., G. E. Hough II, M. C. Kahn, and J. J. Siegel (2003). The Homing Pigeon
519 Hippocampus and Space: In Search of Adaptive Specialization. *Brain, Behavior and*
520 *Evolution* 62:117.

521 Burel, C., V. Mezger, M. Pinto, M. Rallu, S. Trigon, and M. Morange (1992). Mammalian heat
522 shock protein families. *Expression and functions. Experientia* 48:629.

523 Campos, F. A., and L. M. Fedigan (2009). Behavioral adaptations to heat stress and water
524 scarcity in white-faced capuchins (*Cebus capucinus*) in Santa Rosa National Park, Costa
525 Rica. *Amer J of Physical Anthro* 138:101.

526 Conrey, R. Y., S. K. Skagen, A. A. Yackel Adams, and A. O. Panjabi (2016). Extremes of heat,
527 drought and precipitation depress reproductive performance in shortgrass prairie
528 passerines. *Ibis* 158:614.

529 Coomes, C. M., R. M. Danner, and E. P. Derryberry (2019). Elevated temperatures reduce
530 discrimination between conspecific and heterospecific sexual signals. *Anim Behav* 147:9.

531 Crickenberger, S., K. Walther, S. Marchant, P. B. Marko, and A. L. Moran (2015). Population-
532 dependent acclimatization capacity of thermal tolerance in larvae of the rocky-shore
533 barnacle *Pollicipes elegans*. *Invert Bio* 134:291.

534 Danner, R. M., E. R. Gulson-Castillo, H. F. James, S. A. Dzielski, D. C. Frank III, E. T. Sibbald,
535 and D. W. Winkler (2017). Habitat-specific divergence of air conditioning structures in
536 bird bills. *The Auk* 134:65.

537 de Andrade Ferrazza, R., H. D. M. Garcia, V. H. V. Aristizábal, C. de Souza Nogueira, C. J.
538 Veríssimo, J. R. Sartori, R. Sartori, and J. C. P. Ferreira (2017). Thermoregulatory
539 responses of Holstein cows exposed to experimentally induced heat stress. *J Therm Bio*
540 66:68.

541 Dunn, K. J. Thusius, K. Kimber, and D. W. Winkler (2000). Geographic and ecological variation
542 in clutch size of tree swallows. *The Auk* 117:215.

543 Dunn, P. O., and R. J. Robertson (1992). Geographic-Variation in the Importance of Male
544 Parental Care and Mating Systems in Tree Swallows. *Behav Ecol* 3:291.

545 Etches, R., T. John, and A. V. Gibbins (2008). Behavioural, physiological, neuroendocrine and
546 molecular responses to heat stress. *Poultry Production in Hot Climates*:31.

547 Fangue, N. A., M. Hofmeister, and P. M. Schulte (2006). Intraspecific variation in thermal
548 tolerance and heat shock protein gene expression in common killifish, *Fundulus*
549 *heteroclitus*. *J Exp Bio* 209:2859.

550 Farrar, V. S., R. M. Harris, S. H. Austin, B. M. N. Ultreras, A. M. Booth, F. Angelier, A. S.
551 Lang, T. Feustel, C. Lee, and A. Bond (2021). Prolactin and prolactin receptor expression
552 in the HPG axis and crop during parental care in both sexes of a biparental bird (*Columba*
553 *livia*). *Gen Comp Endocr* 113:940.

554 Feder, M. E., and G. E. Hofmann (1999). Heat-shock proteins, molecular chaperones, and the
555 stress response: Evolutionary and ecological physiology. *Annu Rev Physiol* 61:243.

556 Finger, J. W., A. J. Hoffman, and H. Wada (2018). Temporal variation in constitutive and
557 inducible heat shock proteins in the Zebra Finch *Taeniopygia guttata*. *Ibis* 160:390.

Population and tissue variation in HSP gene expression

558 Flanagan, S., A. Ryan, C. Gisolfi, and P. Moseley (1995). Tissue-specific HSP70 response in
559 animals undergoing heat stress. *Am J Physiol Regul Integr Comp Physiol* 268:R28.

560 Foster, N. L., K. Lukowiak, and T. B. Henry (2015). Time-related expression profiles for heat
561 shock protein gene transcripts (HSP40, HSP70) in the central nervous system of
562 *Lymnaea stagnalis* exposed to thermal stress. *Comm Integ Bio* 8:e1040954.

563 Fuller, A., S. K. Maloney, D. Blache, and C. Cooper (2019). Endocrine and metabolic
564 consequences of climate change for terrestrial mammals. *Current Opinion in Endocrine
565 and Metabolic Research*.

566 Gardner, J. L., T. Amano, W. J. Sutherland, M. Clayton, and A. Peters (2016). Individual and
567 demographic consequences of reduced body condition following repeated exposure to
568 high temperatures. *Ecol* 97:786.

569 Gerson, A. R., A. E. McKechnie, B. Smit, M. C. Whitfield, E. K. Smith, W. A. Talbot, T. J.
570 McWhorter, and B. O. Wolf (2019). The functional significance of facultative
571 hyperthermia varies with body size and phylogeny in birds. *Func Ecol* 33:597.

572 Goodson, J. L. (2005). The vertebrate social behavior network: evolutionary themes and
573 variations. *Horm Behav* 48:11.

574 Gow, E. A., S. M. Knight, D. W. Bradley, R. G. Clark, M. Bélisle, T. Blake, D. W. Winkler, E.
575 S. Bridge, L. Burke, and R. D. Dawson (2019). Effects of spring migration distance on
576 tree swallow reproductive success within and among flyways. *Front Ecol Evol* 7:380.

577 Greene, E. S., H. Rajaei-Sharifabadi, and S. Dridi (2019). Feather HSP70: a novel non-invasive
578 molecular marker for monitoring stress induced by heat exposure in broilers. *Poult Sci*
579 98:3400.

580 Haubrick, J. (2018). Identifying Influential Data Points. *Applied Regression Analysis*.

581 He, J., X. Tang, P. Pu, T. Zhang, Z. Niu, F. Meng, L. Xi, M. Ma, J. Wu, M. Ma, and Q. Chen
582 (2021). Influence of High Temperatures and Heat Wave on Thermal Biology, Locomotor
583 Performance, and Antioxidant System of High-Altitude Frog *Nanorana pleskei* Endemic
584 to Qinghai-Tibet Plateau. *Front Ecol Evol* 9.

585 Hoffmann, A. A., J. G. Sørensen, and V. Loeschke (2003). Adaptation of *Drosophila* to
586 temperature extremes: bringing together quantitative and molecular approaches. *J Therm
587 Bio* 28:175.

588 Hong, W., D.-W. Kim, and D. J. Anderson (2014). Antagonistic control of social versus
589 repetitive self-grooming behaviors by separable amygdala neuronal subsets. *Cell*
590 158:1348.

591 Jessen, C. (2001). Selective brain cooling in mammals and birds. *The Japanese journal of phys.*
592 51:291.

593 Johnson, A. L. (2011). Chapter 3 - Organization and Functional Dynamics of the Avian Ovary.
594 Hormones and Reproduction of Vertebrates (Norris, D. O., and K. H. Lopez, Norris, D.
595 O., and K. H. LopezNorris, D. O., and K. H. Lopezzs). Academic Press, London 71.

596 Jones, J. (2003). Tree swallows (*Tachycineta bicolor*): a new model organism? *The Auk*
597 120:591.

598 Kelly, M. (2019). Adaptation to climate change through genetic accommodation and assimilation
599 of plastic phenotypes. *Philosophical Transactions R Soc B* 374:20180176.

600 Kenkel, C., E. Meyer, and M. Matz (2013). Gene expression under chronic heat stress in
601 populations of the mustard hill coral (*P. orites astreoides*) from different thermal
602 environments. *Mol Eco* 22:4322.

Population and tissue variation in HSP gene expression

603 Kenkel, C. D., G. Aglyamova, A. Alamaru, R. Bhagooli, R. Capper, R. Cunning, A. deVillers, J.
604 A. Haslun, L. Hédouin, and S. Keshavmurthy (2011). Development of gene expression
605 markers of acute heat-light stress in reef-building corals of the genus *Porites*. *PLoS one*
606 6:e26914.

607 Knight, S. M., D. W. Bradley, R. G. Clark, E. A. Gow, M. Belisle, L. L. Berzins, T. Blake, E. S.
608 Bridge, L. Burke, R. D. Dawson, P. O. Dunn, et al. (2018). Constructing and evaluating a
609 continent-wide migratory songbird network across the annual cycle. *Ecol Mono* 88:445.

610 Lee, W., M. Moon, H. G. Kim, T. H. Lee, and M. S. Oh (2015). Heat stress-induced memory
611 impairment is associated with neuroinflammation in mice. *J Neuroinflammation* 12:1.

612 Li, A., L. Li, W. Wang, and G. Zhang (2019). Evolutionary trade-offs between baseline and
613 plastic gene expression in two congeneric oyster species. *Bio Lett* 15:20190202.

614 Li, J. J., and M. D. Biggin (2015). Statistics requantitates the central dogma. *Science* 347:1066.

615 Li, Z., and P. Srivastava (2003). Heat-shock proteins. *Curr Protocols Immunol* 58:A. 1T. 1.

616 Lindquist, S., and E. A. Craig (1988). The heat-shock proteins. *Annual Rev Gen* 22:631.

617 Louis, Y. D., R. Bhagooli, D. Seveso, D. Maggioni, P. Galli, M. Vai, and S. D. Dyall (2020).
618 Local acclimatisation-driven differential gene and protein expression patterns of Hsp70 in
619 *Acropora muricata*: Implications for coral tolerance to bleaching. *Mol Ecol* 29:4382.

620 Ma, D., T. Yu, L. Peng, L. Wang, Z. Liao, and W. Xu (2019). PIM1, CYP1B1, and HSPA2
621 Targeted by Quercetin Play Important Roles in Osteoarthritis Treatment by Achyranthes
622 bidentata. *eCAM* 2019.

623 MacPhee, D. J. (2017). The Role of Heat Shock Proteins in Reproductive System Development
624 and Function. Springer.

625 Marden, J. H. (1987). Maximum lift production during takeoff in flying animals. *J Exp Bio*
626 130:235.

627 Martin, K., E. McLeod, J. Périard, B. Rattray, R. Keegan, and D. B. Pyne (2019). The impact of
628 environmental stress on cognitive performance: a systematic review. *Human Factors*
629 61:1205.

630 McCaslin, H. M., and J. A. Heath (2020). Patterns and mechanisms of heterogeneous breeding
631 distribution shifts of North American migratory birds. *J Avian Bio* 51.

632 McKechnie, A. E., A. R. Gerson, and B. O. Wolf (2021). Thermoregulation in desert birds:
633 scaling and phylogenetic variation in heat tolerance and evaporative cooling. *Journal of
634 Exp. Biology* 224.

635 McKechnie, A. E., and B. O. Wolf (2019). The physiology of heat tolerance in small
636 endotherms. *Physiol* 34:302.

637 Meehl, G. A., and C. Tebaldi (2004). More intense, more frequent, and longer lasting heat waves
638 in the 21st century. *Sci* 305:994.

639 Mezquita, B., J. Mezquita, M. Durfort, and C. Mezquita (2001). Constitutive and heat-shock
640 induced expression of Hsp70 mRNA during chicken testicular development and
641 regression. *J Cell Biochem* 82:480.

642 Mikami, S.-i. (1986). Immunocytochemistry of the avian hypothalamus and adenohypophysis.
643 *Int Rev Cytol* 103:189.

644 Miles, M. C., M. N. Vitousek, J. F. Husak, M. A. Johnson, L. B. Martin, C. C. Taff, C. Zimmer,
645 M. B. Lovorn, and M. J. Fuxjager (2018). Standing variation and the capacity for change:
646 are endocrine phenotypes more variable than other traits? *Int Comp Bio* 58:751.

Population and tissue variation in HSP gene expression

647 Murugesan, S., R. Ullengala, and V. Amirthalingam (2017). Heat Shock Protein and thermal
648 stress in chicken. In *Heat Shock Proteins in Veterinary Medicine and Sciences*. Springer
649 179.

650 O'Connell, L. A., and H. A. Hofmann (2012). Evolution of a vertebrate social decision-making
651 network. *Sci* 336:1154.

652 Oliveira, D. R., B. N. Reid, and S. W. Fitzpatrick (2020). Genome-wide diversity and habitat
653 underlie fine-scale phenotypic differentiation in the rainbow darter (*Etheostoma*
654 *caeruleum*). *Evol App*.

655 Pravosudov, V. V., A. S. Kitaysky, and A. Omanska (2006). The relationship between migratory
656 behaviour, memory and the hippocampus: an intraspecific comparison. *Proc R Soc B:
657 Biol Sci* 273:2641.

658 Racinais, S., M. Ihsan, and J. D. Périard (2019). Neural and Muscular Function in the Heat. In
659 *Heat Stress in Sport and Exercise*. Springer 67.

660 Ricklefs, R. E. (1971). Foraging behavior of mangrove swallows at Barro Colorado Island. *The
661 Auk* 88:635.

662 Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds (2003).
663 Fingerprints of global warming on wild animals and plants. *Nature* 421:57.

664 Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C.
665 Stanton, A. Panjabi, L. Helft, and M. Parr (2019). Decline of the North American
666 avifauna. *Sci* 366:120.

667 Rosvall, K. (2008). Sexual selection on aggressiveness in females: evidence from an
668 experimental test with tree swallows. *Anim Behav* 75:1603.

669 Rosvall, K., C. Bergeon Burns, J. Barske, J. Goodson, B. Schlänger, D. Sengelaub, and E.
670 Ketterson (2012). Neural sensitivity to sex steroids predicts individual differences in
671 aggression: implications for behavioural evolution. *Proc R Soc B: Bio Sci* 279:3547.

672 Rosvall, K. A., A. B. Bentz, and E. M. George (2020). How research on female vertebrates
673 contributes to an expanded challenge hypothesis. *Horm Behav* 123:104565.

674 Rout, P., R. Kaushik, and N. Ramachandran (2016). Differential expression pattern of heat shock
675 protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress
676 period. *Cell Stress Chaperones* 21:645.

677 Sellick, M. J., T. K. Kyser, M. B. Wunder, D. Chipley, and D. R. Norris (2009). Geographic
678 variation of strontium and hydrogen isotopes in avian tissue: implications for tracking
679 migration and dispersal. *PLoS One* 4:e4735.

680 Shiota, K., and T. Kayamura (1989). Effects of Prenatal Heat-Stress on Postnatal-Growth,
681 Behavior and Learning-Capacity in Mice. *Biol Neonate* 56:6.

682 Shutler, D., D. J. T. Hussell, D. R. Norris, D. W. Winkler, R. J. Robertson, F. Bonier, W. B.
683 Rendell, M. Bélisle, R. G. Clark, R. D. Dawson, N. T. Wheelwright, et al. (2012).
684 Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North
685 America. *Avian Conserv Ecol* 7.

686 Singh, A., R. Upadhyay, D. Malakar, S. Kumar, and S. Singh (2014). Effect of thermal stress on
687 HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries)
688 cattle. *J Therm Bio* 43:46.

689 Smit, B., M. C. Whitfield, W. A. Talbot, A. R. Gerson, A. E. McKechnie, and B. O. Wolf
690 (2018). Avian thermoregulation in the heat: phylogenetic variation among avian orders in
691 evaporative cooling capacity and heat tolerance. *J Exp Bio* 221:jeb174870.

Population and tissue variation in HSP gene expression

692 Sørensen, J. G. (2010). Application of heat shock protein expression for detecting natural
693 adaptation and exposure to stress in natural populations. *Curr Zool* 56:703.

694 Sørensen, J. G., T. N. Kristensen, and V. Loeschke (2003). The evolutionary and ecological role
695 of heat shock proteins. *Ecol Lett* 6:1025.

696 Stelzer, G., R. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T. Iny Stein, R.
697 Nudel, I. Lieder, Y. Mazor, S. Kaplan, et al. (2016). The GeneCards Suite: From Gene
698 Data Mining to Disease Genome Sequence Analysis. *Curr Protoc Bioinform* 54.

699 Stenzler, L. M., C. A. Makarewicz, A. Coulon, D. R. Ardia, I. J. Lovette, and D. W. Winkler
700 (2009). Subtle Edge-of-Range Genetic Structuring in Transcontinentally Distributed
701 North American Tree Swallows. *The Condor* 111:470.

702 Tattersall, G. J., B. Arnaout, and M. R. E. Symonds (2017). The evolution of the avian bill as a
703 thermoregulatory organ. *Biol Rev* 92:1630.

704 Tomanek, L., and G. N. Somero (2000). Time course and magnitude of synthesis of heat-shock
705 proteins in congeneric marine snails (genus *Tegula*) from different tidal heights. *Physiol
706 Biochem Zool* 73:249.

707 Varasteh, S., S. Braber, P. Akbari, J. Garssen, and J. Fink-Gremmels (2015). Differences in
708 susceptibility to heat stress along the chicken intestine and the protective effects of
709 galacto-oligosaccharides. *PLoS One* 10:e0138975.

710 Wada, H. (2015). Developmental plasticity of individual variation in stress responses. *Ibis*
711 160:390.

712 Walsh, B. S., S. R. Parratt, A. A. Hoffmann, D. Atkinson, R. R. Snook, A. Bretman, and T. A.
713 Price (2019). The impact of climate change on fertility. *Trends Ecol Evol* 34:249.

714 Wan, Y., C. Ma, P. Wei, Q. Fang, X. Guo, B. Zhou, and R. Jiang (2017). Dynamic expression of
715 HSP90B1 mRNA in the hypothalamus of two Chinese chicken breeds under heat stress
716 and association analysis with a SNP in Huainan chickens. *Czech J Anim Sci* 62:82.

717 Wang, J. M., and S. R. Beissinger (2009). Variation in the onset of incubation and its influence
718 on avian hatching success and asynchrony. *Anim Behav* 78:601.

719 Wang, SH., Cheng, P Tang, CChen, HChen, Y Lee, and SHuang (2013). Differential gene
720 expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.
721 *Theriogenology* 79:374.

722 Windsor, R. L., J. L. Fegely, and D. R. Ardia (2013). The effects of nest size and insulation on
723 thermal properties of tree swallow nests. *J Avian Bio* 44:305.

724 Winkler, D., K. K. Hallinger, D. R. Ardia, R. J. Robertson, B. J. Stutchbury, and R. R. Cohen
725 (2020). Tree Swallow (*Tachycineta bicolor*). The Cornell Lab of Ornithology Birds of the
726 World Version: 1.0.

727 Winkler, D. W., P. H. Wrege, P. E. Allen, T. L. Kast, P. Senesac, M. F. Wasson, and P. J.
728 Sullivan (2005). The natal dispersal of tree swallows in a continuous mainland
729 environment. *J Anim Ecol* 74:1080.

730 Wissing, D., and M. Jäättelä (1996). HSP27 and HSP70 increase the survival of WEHI-S cells
731 exposed to hyperthermia. *Int J Hyperthermia* 12:125.

732 Wolf, B. O., and A. E. McKechnie (2010). Climate change increases the likelihood of
733 catastrophic avian mortality events during extreme heat waves. *Integr Comp Biol*
734 50:E192.

735 Xie, J., L. Tang, L. Lu, L. Y. Zhang, L. Xi, H. C. Liu, J. Odle, and X. G. Luo (2014). Differential
736 Expression of Heat Shock Transcription Factors and Heat Shock Proteins after Acute and
737 Chronic Heat Stress in Laying Chickens (*Gallus gallus*). *PLoS One* 9.

Population and tissue variation in HSP gene expression

738 Xie, S., R. Tearle, and T. J. McWhorter (2018). Heat shock protein expression is upregulated
739 after acute heat exposure in three species of Australian desert birds. *Avian Biol Research*
740 11:263.

741 Yamaguchi, T., T. Suzuki, H. Arai, S. Tanabe, and Y. Atomi (2010). Continuous mild heat stress
742 induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow.
743 *Amer J of Physiol-Cell Physiol* 298:C140.

744 Zimmer, C., C. C. Taff, D. R. Ardia, A. P. Rose, D. A. Aborn, L. S. Johnson, and M. N. Vitousek
745 (2020). Environmental unpredictability shapes glucocorticoid regulation across
746 populations of tree swallows. *Sci Reports* 10:1.

747 Zinzow-Kramer, W. M., B. M. Horton, and D. L. Maney (2014). Evaluation of reference genes
748 for quantitative real-time PCR in the brain, pituitary, and gonads of songbirds. *Horm
749 Behav* 66:267.

750

Population and tissue variation in HSP gene expression

Population	25-yr average max daily temperature °C ± SD	25-yr range of daily max temperatures ⁷⁵¹ ⁷⁵² ⁷⁵³
Alaska	15.12 ± 5.97	-2.78 - 30.58 ⁷⁵⁴
Wyoming	15.90 ± 7.25	-6.67 - 36.11 ⁷⁵⁵
New York	19.15 ± 7.73	-4.44 - 35.56 ⁷⁵⁶
Indiana	23.12 ± 6.36	0.56 - 40.0 ⁷⁵⁷ ⁷⁵⁸

Table 1: The study populations differ in maximum temperatures across the previous 25 years breeding seasons.

759

Population	Individuals (N)	Tissue (N)				
		Pectoral Muscle	Ovary	Hypothalamus	Hippocampus	Ventromedial Telencephalon
Alaska	4	-	-	4	4	4
Wyoming	4	-	-	4	4	3
New York	4	-	-	4	4	4
Indiana	10	10	10	10	10	9

760

Table 2: Sample sizes per population and per tissue.

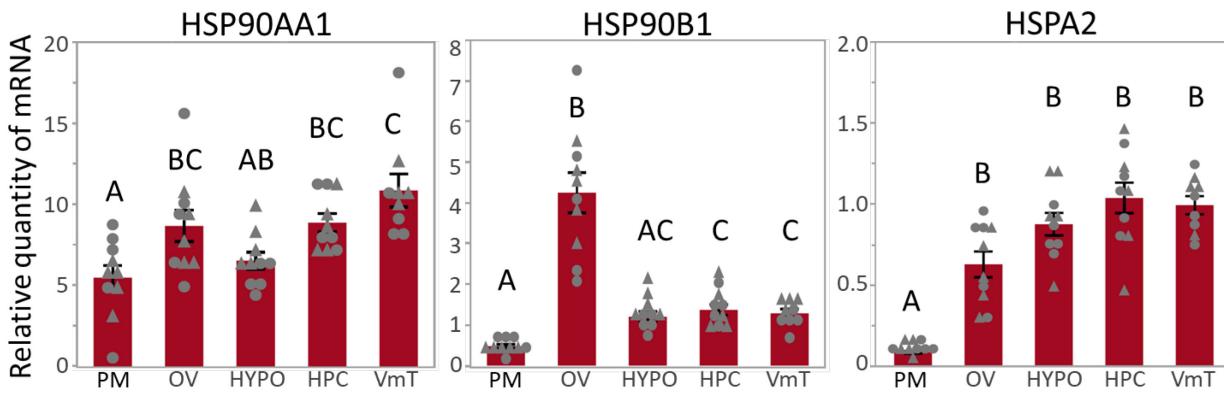
761

Gene expression	Population	Tissue	Population*tissue	Tukey post-hoc test
HSP90AA1	F_{3, 15.45} = 12.27, adj. p = 0.002	F _{2, 32.49} = 0.5, adj. p = 0.78	F_{6, 32.42} = 2.92, adj. p = 0.035	HPC: IN > WY, AK VmT: IN, NY > AK
HSP90B1	F_{3, 15.09} = 13.05, adj. p = 0.0009	F _{2, 32.7} = 0.04, adj. p = 0.95	F _{6, 32.61} = 0.84, adj. p = 0.78	IN > AK
HSPA2	F _{3, 16.1} = 2.33, adj. p = 0.073	F _{2, 33.97} = 0.05, adj. p = 0.95	F_{6, 33.89} = 4.74, adj. p = 0.008	VmT: IN, NY, WY > AK

762

Table 3: Neural heat shock protein gene expression across populations. Bold text indicates significant results.

763

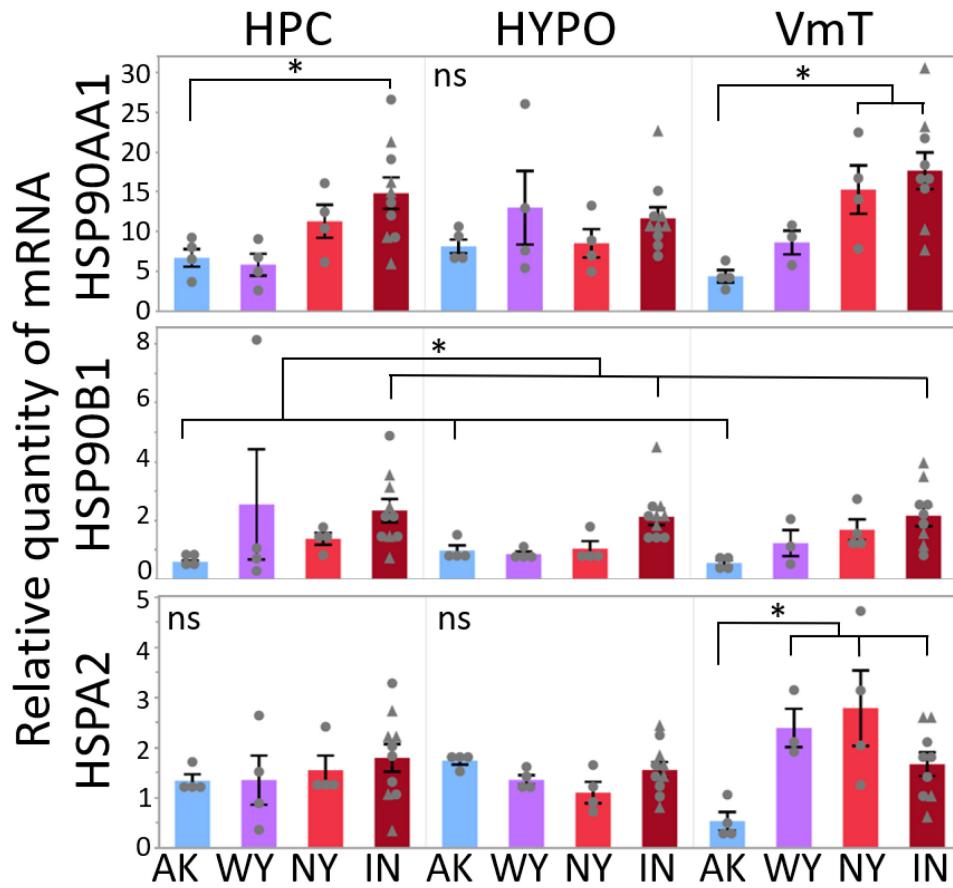

Population and tissue variation in HSP gene expression

764

Figure 1: Map of sampled populations of breeding Tree Swallows.

765

766


Figure 2: Relative heat shock protein gene expression ($2^{-\Delta Ct}$) in female tree swallows breeding in southern Indiana, by tissue: pectoral muscle (PM), ovary (OV), hypothalamus (HYPO), hippocampus (HPC), ventromedial telencephalon (VmT). Triangles denote birds collected during territorial establishment, and circles denote birds collected during incubation. Gene expression is relative to reference gene MRPS25. Letters denote significant pairwise comparisons for each gene.

767

768

769

Population and tissue variation in HSP gene expression

770

Figure 3: Relative heat shock protein gene expression ($2^{-\Delta ct}$) for hippocampus (HPC), hypothalamus (HYPO), and ventromedial telencephalon (VmT). Asterisks denote significant pairwise comparisons, including a population*tissue interaction for HSP90AA1 and HSPA2, and a main effect of population for HSP90B1. Open circles denote birds collected during territorial establishment, and closed circles denote birds collected during incubation. See Table 1 for details. Gene expression is relative to the geometric mean of reference genes HMBS and PPIA.

771