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1 | INTRODUCTION

Kimberly A. Rosval
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Abstract

Trade-offs between growth and self-maintenance are common in nature, such that
early-life effects on growth can generate lasting consequences on survival and
longevity. Telomeres—putative biomarkers of self-maintenance—may link early
growth with these later phenotypic effects, but evidence for growth-telomere trade-
offs is mixed. Null or even positive relationships between growth and telomeres may
be driven by heterogeneity in resource availability or invariable allocation towards
telomere maintenance within a population. We used nestling tree swallows
(Tachycineta bicolor) to assess the directionality and timing of relationships between
growth and telomere length in several tissues. We focused on two important phases
of growth: first, the peak of postnatal growth occurring around 6 days old when
nestlings grow by ~33% in a single day, and subsequently, the later phase of growth
occurring as body mass plateaus near adult size at 12 days old. We quantified
telomere attrition in blood during postnatal growth, as well as telomere length in the
blood, brain, adrenals, and liver at 12 days old. Growth was unrelated to telomere
length in the liver and telomere dynamics in blood. However, brain telomere length
was positively correlated with peak growth, and adrenal telomere length was posi-
tively related to later growth, particularly for chicks that had experienced a tem-
porary stressor. These observations suggest that variation in resource availability
may mask trade-offs, generating positive correlations between growth and telomere
length at the population level. They also provide insights into complex relationships
between growth and self-maintenance that can be revealed by looking in multiple

tissues.
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lifespan (Lee et al., 2013; Metcalfe & Monaghan, 2003; Rollo, 2002).
These apparent shifts in resource allocation may be driven by in-

Life-history theory predicts that accelerated early life growth may
confer reproductive and survival advantages (Dmitriew, 2011);
however, trade-offs among growth, self-maintenance, and re-
production may also generate fitness costs to rapidly attaining a large
adult size (Blanckenhorn, 2000; Stearns, 1992; Williams, 1966). For
instance, experimental increases in growth rates may trade off with

creases in metabolic rate (Criscuolo et al., 2008; Stier et al., 2014) and
oxidative stress (Smith et al., 2016). However, life-history trade-offs
can become masked at the phenotypic level when individuals vary in
resource availability (Van Noordwijk & de Jong, 1986). This can
generate positive relationships between growth and lifespan, in that
individuals with greater access to resources are better able to excel at
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both traits simultaneously (Hamel et al., 2009). Alternatively, invari-
able resource allocation to one or more traits may effectively de-
couple growth and self-maintenance, masking any connection
between the two (i.e., canalization; Waddington, 1942). In essence,
life-history trade-offs are not simply the product of resource alloca-
tion rules, but must be viewed in the context of resource availability;
therefore, it comes as no surprise that observed patterns between
growth and lifespan are mixed.

The telomere has started to emerge as a putative biomarker of
self-maintenance used to explore these trade-offs, because notably,
telomeres often predict lifespan (Tricola et al., 2018; Wilbourn
et al., 2018). Telomeres are ribonucleoprotein structures that buffer
the ends of chromosomes from erosion during cellular replication
(Allsopp et al., 1995; Zakian, 2012). Stress exposure can promote
telomere loss (Chatelain et al., 2020), likely via increases in gluco-
corticoids (Angelier et al, 2018) and oxidative damage (von
Zglinicki, 2002; see also Boonekamp et al., 2017, Reichert &
Stier, 2017). Theoretically, telomere loss should therefore become
accelerated during metabolically-taxing periods, such as rapid growth
(Geiger et al., 2012; Monaghan & Ozanne, 2018), generating trade-
offs between growth and longevity. Faster growth is often associated
with shorter telomeres (e.g., Boonekamp et al., 2014; McLennan
et al., 2016), but many other observational studies and experimental
manipulations of resource availability show a positive relationship or
no relationship between growth and telomere length (reviewed in
Monaghan & Ozanne, 2018; Vedder et al., 2017).

Adding further complication, work on the growth-telomere link is
usually limited to a single-tissue focus (e.g., blood in birds or fin in
fish), which may not represent processes occurring in other survival-
oriented tissues for several reasons. First, telomere length covaries
among some tissues, but this is not always the case (Kesiniemi
et al., 2019; Power et al., 2021; Reichert et al, 2013; Rollings
et al., 2019; Wolf et al., 2021b), and covariation may differ among
life-history stages (Schmidt et al., 2016). For example, tissues may
vary in age-related telomere dynamics (Cherif et al., 2003; Prowse &
Greider, 1995; Tarry-Adkins et al., 2021) and responses to stress
(Cattan et al., 2008; Ludlow et al., 2012), likely driven by tissue-
specific regulation of telomeres (Haussmann et al., 2003; Haussmann
et al., 2007; Ulaner et al., 2001). Second, tissues may vary in postnatal
timing of development (Ricklefs, 1979, 1983). Therefore, each tissue
may have critical periods during which it relates most to structural
growth, leading to tissue-specific variation in growth-related telo-
mere dynamics. Third, resource allocation to self-maintenance may
also differ under normal versus resource-limited conditions (sensu
Barker, 2007; Nowicki et al., 2002), setting the stage for telomere
trajectories that diverge among tissues throughout the body. Al-
though past work on telomere dynamics in single tissues has been
critical to understanding formative concepts of ageing in the wild
(Monaghan, 2014; Olsson et al., 2018), we must also look across the
body to understand functional connections between telomeres,
growth, and lifespan.

Here, we studied the relationship between growth and telomere

length in multiple tissues of nestling tree swallows (Tachycineta
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bicolor). We focused on two important phases of growth: first, the
peak of postnatal growth that occurs around 6 days old when nest-
lings grow by ~33% in a single day, and second, the subsequent phase
of growth occurring as body mass plateaus near adult size at 12 days
old. We quantified telomere attrition in blood from 5 to 12 days old,
as well as telomere length in 12-day-old blood, brain, adrenals, and
liver. Importantly, past work suggests that telomere length can
change within these several days (Nettle et al., 2015; Stier
et al.,, 2016; Wolf et al., 2021a), especially during this period of in-
credible somatic growth. First, we assessed the directionality of
growth-telomere relationships. If increased investment in growth
limits resource availability for telomere maintenance, we may expect
a negative relationship between growth and telomere length. Alter-
natively, heterogeneity in resource availability among individuals may
mask such trade-offs or generate a positive relationship between
growth and telomere length. We next used model comparisons to ask
about the timing of relationships between growth and telomere
length, or specifically, whether peak growth or later growth better
predicts telomere length in each tissue. Although these two growth
phases are not independent, they do capture biologically unique
periods that may shed light on previous mixed results linking growth
and telomere dynamics. Specifically, postnatal growth and a tissue's
telomere length may more likely covary during a period when max-
imal development and resource demands are occurring in the focal
tissue. Due to limited sample sizes for these terminally collected
tissues, we used separate analyses of each tissue to shed light on
growth-telomere dynamics. As we elaborate below, a single-tissue
view of the putative links between growth and telomere dynamics
may mask complex relationships occurring in other survival-oriented

tissues.

2 | METHODS

2.1 | Study species and sample collection
We conducted this experiment during spring 2018 in Monroe
County, Indiana, USA (39.1851° N, 86.4997° W). We used a nest box
population of tree swallows that we regularly monitored to de-
termine lay and hatch dates. Our primary goal was to assess the
relationship between postnatal growth and telomere length in several
tissues. The peak of postnatal growth occurs at 6 + 1 days old (Wolf
et al., 2021b). Growth then begins to slow after 6 days old and pla-
teaus near adult size by 12 days of age, concurrent with the timing of
accelerated feather development. Faster growth rates are commonly
implicated in greater chances of short-term survival (Arendt, 1997).
Likewise, large adult body size is linked to future survival and fe-
cundity (Haywood & Perrins, 1992; Magrath, 1991; McCarty, 2001).
We initially attempted to manipulate chick growth by injecting
mothers with lipopolysaccharide (LPS) because it tends to decrease
provisioning; however, the treatment had limited effects on nestling
growth (see below). We began our experiment on day 5.1 £ 0.1 of the
nestling period (hatch day = day 1, range = 5-6 days). We measured
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nestling mass to the nearest 0.1g, collected blood from the meta-
tarsal vein (30-50 pl), and gave each chick a unique nail trimming for
later identification (n = 119 chicks from 27 nests). The following day,
we weighed chicks again to quantify peak growth. We weighed
chicks a final time when they were 12 days old, a time when chicks do
not prematurely fledge in response to research activities at their nest.
At Day 12, we also banded chicks with one numbered USGS band
and collected <50 ul blood from the alar vein, to quantify telomere
attrition in blood over the study period. Peak growth (5-6 days old)
and later growth (6-12 days old) was quantified relative to initial
mass as (mass;+1 — mass;)/mass;. We acknowledge that peak and later
growth phases are therefore not statistically independent, and ad-
ditionally, are not biologically independent, as each growth phase can
be influenced by prior embryonic and postnatal growth.

To assess the relationship between postnatal growth and telo-
mere length in nonblood tissues, we euthanized one chick from each
nest at the end of the study, i.e., 12 days old (n =12 saline, n=12
LPS), except for 3 nests due to permit limitations. We chose the chick
with the median mass (relative to siblings) at 5 days old, which pre-
sumably experienced a typical growth trajectory, although we cannot
completely control for remaining differences in pre- and postnatal
environments among nests. Chicks were euthanized with an over-
dose of isoflurane, followed by decapitation and collection of blood,
brain, liver, and adrenals. Samples were snap frozen on dry ice in the
field and stored at -80°C. All protocols were approved by Indiana
University's IACUC #18-004.

2.2 | Quantifying variation in maternal care
We attempted to enhance variation in peak nestling growth via
manipulations to maternal care using LPS, a nonreplicating piece of
bacterial cell wall that temporarily triggers an immune response and
induces “sickness” behaviors, e.g., lethargy, weight loss, and reduced
parental care (Dantzer et al, 2008; Palacios et al, 2011; Wolf
et al., 2021a). We administered a subcutaneous injection of either
saline or LPS saline-oil emulsion (0.4 mg/kg body weight) in the right
dorsal apterium (saline: n= 14, LPS: n = 13). The LPS saline-oil emul-
sion consisted of LPS from Escherichia coli (serotype 055:B5, lot
#086M4146V; Sigma-Aldrich) dissolved in 0.9% sterile saline. We
then emulsified the solution at a 1:1 ratio with Freund's incomplete
adjuvant (Sigma-Aldrich), which prolongs the expression of sickness
symptoms up to 48 h (Owen-Ashley & Wingfield, 2006). We injected
all control birds with a saline-oil emulsion. We recaptured 23 of the
27 females 24-48 h later (n=21 within ~24 h, saline: n=10, LPS:
n=11) and reweighed them to quantify fluctuations in body mass.
We also quantified changes in maternal visitation rate, which is a
reliable indicator of feeding rates (McCarty, 2002). All females were
banded with a colored PIT tag, with which we used radiofrequency
identification (RFID) boards to measure visitation rate. Nest boxes
were equipped with RFID readers, which recorded a female's ID and
time stamp every time her PIT tag passed through the antennae at
the box entrance (Bonter & Bridge, 2011; Lendvai et al., 2015). We
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determined the number of visits by filtering out continuous reads
occurring within 3 s of another read of the same individual, as seen
when a bird is perched at the nest entrance. We halved the number
of remaining reads to account for entrances and exits. Because LPS-
induced effects peak around 3-6h postinjection (Dantzer
et al., 2008), we focused our analyses on visitation rate occurring
3-6 h post-injection (average hourly number of visits). Baseline visi-
tation rates were taken the day prior during the same window of time

(n=15; n=9 excluded due to equipment malfunction).

2.3 | Telomere measurement

We quantified relative telomere length using quantitative PCR
(adapted from Cawthon, 2009; Criscuolo et al., 2009). We extracted
DNA from blood, brain, liver, and adrenals. We used the automated
Maxwell® RSC Instrument (Promega) and Whole Blood DNA Kit (No.
AS1520; Promega) to extract DNA from <25 ul whole blood. Non-
blood tissues were manually homogenized on a sterile chilled block
and an aliquot of the homogenate was used for DNA extraction with
the Tissue DNA kit (No. AS1610; Promega). We quantified DNA
concentration using the Epoch microplate spectrophotometer
(BioTek).

Relative telomere length was measured as the ratio (T/S) of
telomere repeat copy number (T) to a single gene copy number (S),
relative to a pooled reference sample present on all plates. We am-
plified our single copy gene, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) using primers GAPDH-F (5'-AACCAGCA
AAGTACGATGACAT-3') and GAPDH-R (5'-CCATCAGCAGCAGCCT
TCA-3'). We amplified telomeres using primers telg (5'-ACACTA
AGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-3') 4 and telc
(5'-TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA-3').
We conducted qPCR on 384-well plates (ABI Quantstudio 5). For each
sample, we ran GAPDH and telomere reactions on the same plate.

Before plating, we diluted DNA samples to 3.33 ng/ul using ultra-pure
water. Each reaction had a total volume of 10 ul containing 5 pl Per-
feCTA SYBR Green SuperMix Low ROX (Quanta Biosciences), 200 nM
each GAPDH-F/GAPDH-R or 200 nM each telc/telg, and 3 ul DNA
extract (10 ng total). gPCR reaction conditions were: 10 min at 95°C,
followed by 30 cycles of 10s at 95°C, 1 min at 62°C, and 30s at 72°C,
followed by 1 min at 95°C, 30s at 55°C, and 30s at 95°C. All samples
fell within the bounds of the standard curve and reaction efficiencies
were 98.72+2.77 (GAPDH) and 107.55+8.22 (telomere). Samples
were run in triplicate, and mean values were used to calculate T/S

ratios for each sample using the formula: 2722t where AAC;=(

| APDI I AP
Ctte omere _ CtG Ctte lomere _ CtG

M) reference ~ PH) reference: Telomere
attrition was corrected for regression to the mean (Verhulst
et al., 2013), where more negative values indicate greater telomere
loss. During initial assay optimization, the repeatability of the T/S ratio
was calculated using 28 samples run across two plates (Wolf
et al., 2021b). The intraclass correlation coefficient for the T/S ratio
was 0.86 (95% confidence interval: 0.73-0.93). For analysis of the

change in blood telomere length over time, both samples from an
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FIGURE 1 Peak postnatal growth of nestlings within the 24 h following maternal injections of either saline (gray, circle) or lipopolysaccharide
(LPS; black, triangle), in relation to (a) maternal treatment and both change in maternal (b) mass and (c) visitation rate following maternal
injections. Each point represents one nestling, and analyses control for the random effect of nest ID

individual were included on the same plate, and plates (n=7) were
balanced by treatment, hatch date, and brood size. Each non-blood
tissue was run on a separate plate, which along with limited sample
sizes, prevents us from directly comparing growth-telomere relation-

ships across tissues.

2.4 | Statistical analyses
LPS injections did not significantly affect maternal change in body
mass (Fq 19 =2.64, p=0.12) or visitation rate (F;13=0.10, p =0.76).
LPS treatment of mothers also did not affect peak nestling growth in
the 24 h following injections (F4 3 =0.10, p=0.76, controlling for #
siblings and nest ID, Figure 1a). However, we also found an inter-
action between treatment and chick mass at the start of the ex-
periment in predicting the magnitude of peak growth (F1 77 =12.77,
p =0.006, see Figure S1). As expected, the initially smallest 5 day old
control chicks grew faster during estimated peak growth compared to
initially larger age-matched individuals. Chicks of LPS-injected mo-
thers, however, did not show this pattern: initially smaller and larger
chicks grew similarly during peak growth. In addition, peak growth
was also positively associated with changes in maternal body mass
(F120=5.83, p=0.03, Figure 1b) and marginally so for changes in
visitation rate (Fy 14 =4.24, p = 0.06, Figure 1c). Therefore, maternal
treatment showed no main effect on nestling growth, although in-
direct effects of treatment are possible via changes in maternal
phenotypes, and so we did not ignore treatment in our main analyses.
We used an information-theoretic approach to evaluate sup-
port for competing hypotheses on the relationship between growth
and telomere dynamics. For global models (below), we assessed
multicollinearity and removed redundant variables with variable
inflation factors =5 (Fox & Weisberg, 2011). We used Akaike In-
formation Criterion (AIC.—to correct for sample size) for model

comparisons (Burnham & Anderson, 2002), and we present AAIC.
(AIC; = AlChest model) and AIC weights (weight of evidence for
model) for models within 6 AIC. of the top model (Burnham
et al., 2011; Harrison et al., 2018). We then interpreted our top
model sets using model averaging (Barton, 2019) and report full and
conditional-averaged coefficients for each predictor variable in-
cluded within the top model set. A full average assumes that each
predictor is included in every model and detects robust effects on
response variables, whereas conditional averages are calculated
using only models containing the predictor and they, therefore,
detect weaker effects (Grueber et al., 2011). All statistical analyses
were performed in R (version 3.5.3, RStudio Team, 2019).

To ask whether specific growth periods had more overall support
in predicting telomere dynamics within each tissue, we directly
compared models including peak growth (5-6 days old) or later
growth (6-12 days old). The global model for each tissue assumed a
gaussian distribution and included treatment, growth (peak or later),
and their interaction; as well as, hatch date, # siblings, and changes to
maternal mass. All competing models predicting blood telomere dy-
namics included random effects of nest ID and qPCR plate. While we
saw no major effects of treatment, we included treatment in the
global model to account for potentially unseen effects of LPS on
parental behavior (e.g., brooding, begging, food quality) and conse-
quently, chick growth and telomere dynamics. Similarly, we included
maternal mass fluctuations during peak nestling growth because
maternal care at this time likely increases variation in growth and may
slow or advance the pace at which nestlings approach asymptotic
mass. We used dredge (Barton, 2019) to create model sets from the
global model, in which all models for a given tissue included the same
subset of data, had a maximum of three parameters (to avoid over-
parameterization), and only included one growth period per model to
avoid multicollinearity of statistically-related variables. Blood telo-

mere metrics were log-transformed to achieve normality. From the
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n =119 nestlings in the study, n =82 survived to 12 days old (saline:
n=45; LPS: n=37), had 5- and 12-day-old blood samples, and were
not missing data on any variables included in the global model. After
removal of euthanized nestlings with missing data, the final sample
sizes were n =18 brain, n =19 adrenals, and n =19 liver.

3 | RESULTS

Coefficients estimated using full and conditional averaging of top
model sets are shown in Table 1 and Table S1, respectively. All
models within AAIC. <6 are reported in Supporting Information
Material.

Relative telomere length was not significantly correlated be-
tween tissues (Pearson r<|0.58 |, p > 0.15; Figure S2). However, we
observed significant relationships between growth and telomeres in
some tissues.

Specifically, in blood, the full average models indicate no re-
lationship between Day 12 telomere length and any component of
growth (Figure 2a,b, see Table S2 for AIC.). While blood telomere
length significantly shortened from 5 to 12 days old (8=-0.23,
t=-4.54, df =81, p <0.0001), this change in telomere length in the
blood was similarly unrelated to either peak growth or later postnatal
growth (Figure 2c,d, see Table S3 for AIC.). However, treatment was
the top-ranking model for both blood telomere variables, followed by
the intercept-only model, suggesting that LPS treatment of mothers
may have had some effect on blood telomere length. Consistent with
this view, conditional-averaged estimates support that chicks of LPS-
injected mothers exhibited shorter blood telomere lengths at 12 days
old (z=2.41, p=0.02, Table S1A) and experienced higher rates of
telomere attrition from 5 to 12 days old in blood (z=2.30, p =0.02,
Table S1B).

Brain telomere length at the end of the growth period was
related to the pace of peak growth. Full-averaged coefficients
show a significant positive relationship (z=3.23, p=0.001),
where chicks who grew the most during the peak of growth ex-
hibited longer brain telomere length at the end of the study
(Figure 2e, see Table S4 for AIC.). Brain telomere lengths were
also shortest for chicks whose mothers lost the least mass during
the peak of nestling growth (z=3.11, p = 0.002). Brain telomeres
were unrelated to later nestling growth or maternal treatment
(Figure 2f).

For adrenal telomere length, a single model containing later
nestling growth, treatment, and their interaction had a AAIC, < 6.
Here, we see a significant interaction between later growth and
treatment (z=2.87, p=0.004, Figure 2gh, see Table S5 for AIC,),
where faster-growing chicks of LPS-injected mothers had sig-
nificantly longer adrenal telomeres.

For liver telomere length, the top model set included both peak
and later growth (see Table Sé for AIC.). However, model averaging
showed no relationship between liver telomeres and either peak
nestling growth (z=0.26, p =0.79, Figure 2i) or later nestling growth
(z=0.47, p =0.64, Figure 2j).
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TABLE 1 Full model-averaged coefficients for the top model
sets (<6 AAIC,) investigating the role of postnatal growth on chick

telomere length
Estimate SE AdjSE z p

(A) Blood relative telomere length (n =82 chicks)

Intercept 0.01 0.14 0.15 0.10 0.92
Treatment (LPS) -0.13 014 0.14 093 0.35
# Siblings 0.008 0.03 0.03 0.28 0.78

(B) Change in blood relative telomere length (n = 82 chicks)

Intercept -0.40 022 0.22 1.83 0.07
Treatment (LPS) -0.18 0.19 0.19 0.95 0.34
# Siblings 0.02 0.05 0.05 0.35 0.73

(C) Brain relative telomere length (n = 18 chicks)

Intercept -0.51 0.83 0.89 0.57 057
Peak growth 0.04 0.01 0.01 3.23 0.001
Treatment (LPS) -0.01 0.06 0.07 0.19 0.85
Mom mass -0.010 0.03 0.03 3.11 0.002
Hatch 0.00 0.00 0.00 0.13 0.90
# Siblings 0.10 0.10 0.10 1.03 0.30

(D) Adrenal relative telomere length (n =19 chicks)

Intercept -1.03 0.556 0.59 1.76 0.08

Later growth 0.01 0.004 0.005 291 0.004
Treatment (LPS) -1.89 0.63 0.66 2.85 0.004
Later -0.02 0.005 0.006 2.87 0.004

growth x treatment

(E) Liver relative telomere length (n =19 chicks)

Intercept 1.17 0.96 1.02 1.14 0.25
Peak growth 0.002 0.006 0.006 0.26 0.79
Later growth 0.001 0.003 0.003 047 0.64

Treatment (LPS) -0.009 0.08 0.09 0.10 0.92

Mom mass -0.0008 0.009 0.01 0.08 0.94
Hatch 0.00 0.00 0.0001 0.12 091
# Siblings 0.02 0.05 0.05 031 076

Abbreviation: LPS, lipopolysaccharide.

4 | DISCUSSION

Because telomere length has been connected with longevity (Tricola
etal., 2018; Wilbourn et al., 2018), the telomere is a potentially useful
biomarker for testing the hypothesis that early-life growth generates
lasting consequences on lifespan. Past work tests this idea in limited
tissue types—both within and among taxon—which may contribute to
the inconsistent relationships reported between growth and telo-
meres (reviewed in Monaghan & Ozanne, 2018). In this study, we
assessed this relationship in multiple tissues in a wild system. We
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FIGURE 2 Postnatal growth and telomere dynamics in 12-day-old nestlings of females injected with either saline (gray, circle) or
lipopolysaccharide (LPS; black, triangle) when nestlings were 5 days old. Relationships between peak growth (i.e., 5-6 days old) or later postnatal
growth (i.e., 6-12 days old) and relative telomere length in several tissues: blood (a,b); change in blood from 5 to 12 days old (cd); brain (e,f);
adrenals (g,h); and liver (i,j). Blood telomere data is log-transformed. Each point represents one nestling, and models control for the random
effect of nest. Predicted lines are shown for significant main effects of growth (solid line) and growth by treatment interactions (dashed line) on

relative telomere length

found that postnatal growth and telomeres were not related in the
blood or liver. However, we did find that brain telomere length was
positively correlated with peak growth, and adrenal telomere length
was positively related to later growth, particularly so for chicks whose
mothers had experienced an immune challenge. These observations
collectively suggest that variation in resource availability can mask
trade-offs in some tissues and generate positive correlations be-
tween growth and telomere length at the population level. That this
latter pattern was only present in the adrenals of chicks at manipu-
lated nests, but not controls, suggests that these relationships can

remain hidden until a challenge. Moreover, a single-tissue view of
telomere dynamics can miss important information gained from
multiple tissues regarding links with early-life growth.

If increased investment in growth limits resource allocation to
self-maintenance, we might expect a negative relationship between
growth and telomere length (e.g., Burraco et al., 2017; Herborn
et al., 2014; Jennings et al., 1999). However, in our study, early life
growth was positively related to telomere length in two tissues: the
brain and adrenals, which may suggest a “scaling” of resource allo-
cation as resource availability increases (Van Noordwijk & de
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Jong, 1986). Under this scenario, a nestling with more resources
would be able to allocate additional energy towards both growth and
telomere maintenance, relative to a resource-limited chick. However,
these dynamics are difficult to assess directly given the necessity of
terminal sampling in some tissues. Alternatively, the absence of
growth-telomere relationships, as shown in liver and blood, could
occur under several scenarios: first, with canalization of investment
towards one trait (Waddington, 1942), which lowers its variation and
decreases the possibility of correlations with other life history traits
(asin Vedder et al., 2017); second, due to delayed responses that take
longer to accumulate following a change in resource availability
(Salmén et al., 2021); and third, with a lack of power to detect pat-
terns. That blood and liver telomeres were not related to growth in
either treatment suggests that telomeres in these tissues are less
sensitive to early life stress; however, stronger manipulations are
needed to separate this outcome from alternatives, e.g., measure-
ment error or low power. Together, our results do not show trade-
offs between growth and telomeres, but rather, they reveal some
degree of coordinated investment in growth and telomere main-
tenance, at least in the brain and adrenals.

We also observed variation in the specific timing over which
growth related to telomeres within each tissue. We predicted that
telomere length would most likely covary with postnatal growth
during periods of increased development in each focal tissue. As
explored above, this could result in positive or negative relationships
between body growth and telomere length, if body growth tracks
resource availability or reflects increasing resource competition
within the body, respectively (Ricklefs, 2003). In this study, we find
that brain telomere length is better predicted by peak growth instead
of later growth. Altricial birds experience extraordinary postnatal
brain growth (Bennett & Harvey, 1985), much of which occurs during
the peak of postnatal growth (lyengar & Pilo, 1981a; lyengar &
Pilo, 1981b; Pilo & lyengar, 1981). Therefore, it follows that brain
telomere length covaries best with body growth occurring during its
own maximal development, although we cannot rule out delayed
effects of earlier developmental factors, such as genetic, maternal, or
other environmental effects. Adrenocorticoid responses, on the other
hand, can develop later into the postnatal period and even into
adulthood (Rensel et al., 2010; Tilgar et al., 2009; Wada et al., 2007;
Wada, 2008). Consistent with this timing of adrenal development, we
found that adrenal telomere length was unrelated to peak growth at
~5-6 days old, but was instead positively correlated with later
growth. To effectively link telomeres to variation in growth, we ad-
vocate for a shift from using overall postnatal growth to growth
occurring during important developmental periods, the timing of
which may vary among tissues.

While treatment of mothers with LPS had a negligible effect on
maternal phenotypes and nestling growth, our results hint at treat-
ment effects on telomeres in select tissues. Conditional model
averaging suggests that maternal LPS treatment led to shorter telo-
meres and higher rates of telomere attrition in nestling blood; how-
ever, full model averages do not, meaning the effect is weak. While

significant decreases in blood telomere length have been shown at
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similar timescales in developing birds (Nettle et al., 2015; Stier
et al,, 2016; Wolf et al., 2021a), apparent telomere dynamics could
also be driven by shifts in blood cell composition (Epel, 2012). Fur-
thermore, a mother's change in mass, but not her treatment, pre-
dicted nestling growth. This suggests that maternal LPS did not
robustly manipulate resource availability across nests, in contrast to
other work (Dantzer et al, 2008; Palacios et al., 2011; Wolf
et al, 2021a). For blood telomere length, top models included
treatment, but not maternal mass or nestling growth, suggesting that
at least in this tissue, telomere maintenance responds more strongly
to some unmeasured aspect of stress exposure as opposed to re-
source availability. Indeed, past work shows that LPS treatment re-
duces adult body temperature and activity levels (Owen-Ashley
et al, 2006), which could translate into stressful alterations in
brooding and parental presence for chicks. Adrenal telomere length,
on the other hand, was positively related to later growth, but only for
chicks of immune-challenged mothers. This result suggests that
covariation between telomere length and growth emerges in re-
sponse to a challenge, even when that challenge does not directly
impact growth per se. Similar interactions occur in jackdaws (Corvus
monedula), in that body mass predicted telomere length only upon
brood enlargement and presumably, with increased variation in re-
source availability among individuals (Boonekamp et al., 2014). The
weak effects of LPS make it unclear whether mediation of telomeres
occurred via stress or growth-related pathways, although this may
differ by tissue. Regardless, these findings allude to complex inter-
actions in which changes to resource availability via stress can muddy
the links between growth and telomeres.

5 | CONCLUSION

As apparent biomarkers of health and lifespan, telomeres are
often quantified using noninvasive sampling in longitudinal re-
search. This body of work has been vital for testing formative
hypotheses about the role of telomeres in survival and ageing in
the wild (Monaghan, 2014; Olsson et al., 2018), but the general
prioritization of only some taxon-specific “tissues of choice”
limits our knowledge of tissue-specific telomere dynamics that
set the trajectory for later success in wild animals. In the last
decade, a large body of work has uncovered inconsistent patterns
(Monaghan &

Ozanne, 2018), and it has become increasing clear that the

relating growth and telomere dynamics
“rules” of ageing differ among tissues (Tarry-Adkins et al., 2021).
While this study cannot directly address tissue-specific patterns,
our work nevertheless suggests that telomere dynamics may
be influenced by early-life growth. Furthermore, this work
hints at complex relationships among developmental timing,
resource availability, and telomeres that should not be ignored in
future research. We therefore encourage greater focus on
growth-telomere relationships in multiple tissues that may play
pivotal roles in responding to early life conditions and setting

ageing trajectories.
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