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Abstract—Prediction of response to input drivers by un-
monitored entities has been recognized as one of the most
important problems in many scientific problems. This problem
is challenging due to the non-stationary processes that underlie
the dynamics of data observations over space and time. Hence,
directly transferring models from well-observed data entities to
unmonitored target entity often lead to sub-optimal performance
due to the shift in data distribution. This paper proposes a new
meta-transfer learning framework that automatically estimates
the similarity amongst entities to transfer knowledge from well-
observed entities to unmonitored entities. A sequence autoencoder
embeds temporal behaviors of time series data and simulations
generated by traditional physics-based models. This embedding
model is trained in a meta-transfer learning framework under the
guidance of source-to-source transferring experiences. We tested
this method in streamflow prediction for multiple river segments
in the Delaware River Basin, an ecologically diverse region along
the eastern coast of the United States. The experimental results
demonstrate the superiority of the proposed method in predicting
streamflow for unmonitored stream segments compared to a
diverse set of baselines. Our method also creates meaningful
similarity estimates amongst segments to guide the transfer
learning process.

Index Terms—Meta-transfer learning; Streamflow prediction;
Metric learning; Representation learning

I. INTRODUCTION

The last decades have witnessed the immense success

of machine learning (ML) in commercial applications, e.g.,

computer vision and natural language processing. Given the

capability of ML models in automatically extracting complex

relationships from data, there is an expectation for using

ML models in addressing essential problems in scientific

applications such as hydrology [9], [17], biology, and climate

science [7]. The modeling of physical variables in these ap-

plications is challenging for traditional physics-based models

(PBM) due to the incomplete knowledge or excessive com-

plexity in modeling underlying relationships amongst physical

variables [10], [19], [22]. ML models are capable of directly

extracting the statistical relationships from data. However,

in the absence of adequate information about the physical

mechanisms of real-world processes, they are prone to false

discoveries. For example, the streamflow in a river stream

is governed by complex physical processes that change over

space and time. Given the input meteorological drivers (e.g.,

air temperature, precipitation, wind speed), different streams

can exhibit very different water dynamics due to the variation

in inherent characteristics of each river stream (e.g., soil

properties, land covers, and stream geometry) [4], [24]. As

a result, a single global model trained using data from all the

entities can have sub-optimal performance for many entities

due to the data variability issue.

One intuitive solution to address this issue is to separately

train individual models for different entities (e.g., different

streams). However, the data available for many scientific

problems is far smaller than what is needed to train advanced

ML models effectively. Collecting labeled data is often expen-

sive in scientific applications due to the substantial manual

labor and material cost required to deploy sensors or other

measuring instruments. For example, collecting streamflow

data requires deploying sensors within a stream, incurring

personnel and equipment costs. This results in disparity in

observations across sites, where most of the observations come

from a few monitored river streams, and a large number of

river streams have no in-situ monitoring data.

The prediction in unmonitored sites has been recognized as

one of the most critical problems in hydrology [12]. In this

work, we plan to transfer the information in a small population

of streams to make predictions in the much larger population

of unmonitored sites. Intuitively, we consider leveraging the

similarity amongst streams [6] in the following aspects. First,

river streams with similar underlying physical characteristics

often show similar streamflow responses to the meteorological

drivers. For example, physical characteristics like soil and

groundwater properties mediate the relationship between the

input rainfall and the responses of surface discharge and

baseflows. Second, the streams under similar weather condi-

tions (e.g., rainfall, wind speed, solar radiation) over time can

have similar temporal streamflow behaviors if their physical

characteristics are similar.

Transferring knowledge from one domain to another re-

quires addressing two key research issues: how to transfer

and what to transfer [25]. Transfer learning using deep neural

networks has shown success in several applications such as

image classification [20], sentiment classification [5], and eco-

logical applications such as lake temperature modeling [33].

The issues of ”how to transfer” and ”what to transfer” can

be posed as a problem to be solved by meta-learning [11] or

learning from previous learning experiences [37], which is an

active area of machine learning research. An explicitly defined

meta-level objective measuring the transfer performance of

source models to target domains is defined in such methods.
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In contrast to traditional transfer learning, meta-learning deals

with a broader range of meta representations or meta param-

eters [30] than solely transferring source model parameters.

One way for meta knowledge transfer is to learn the similarity

between different domains, which could help identify similar

reference domains and transfer the knowledge to the target

domain to predict the outcome of interest. The critical part of

domain similarity learning is to learn a meaningful and precise

metric that can be used to measure the similarity between a

pair of river streams.

This paper proposes a novel meta-transfer learning approach

that learns a metric space to measure the similarity between

domains by leveraging the past transfer experience. The frame-

work is developed in the context of modeling streamflow in

river networks, but the framework can be generally applied

to many complex physical systems with interacting processes.

The architecture is based on recurrent neural networks (RNN)

and uses contrastive losses guided by the ordered transfer

performance, which implicitly captures the similarity among

river streams. In particular, the proposed framework consists

of a meta model and several source models. The source models

are RNN-based architectures built for each site to extract

the temporal information from the time-varying data, such

as meteorological data and simulated streamflow from PBM,

and stream geometries like depth and elevation and use such

information to predict streamflow at each time step. On the

other hand, the meta model’s goal is to learn when and how to

transfer these source models from a multitude of experiences

to the target rivers. The meta-model is a bidirectional RNN-

based architecture that embeds yearly data for a river stream

to a latent space where the similarity across river streams

can be measured. To reflect the closeness of river streams

based on the similarity of streamflow behaviors, the latent

space is learned using a contrastive loss guided by the order

of transfer performance from source to source river streams.

Once trained, the meta-model can be used to compute the

similarity between a new target stream and existing source

streams using their respective embeddings in the latent space.

The closest source models are retrieved using the computed

similarity through several methods like top-K ensemble and

clustering, and an ensemble model is created. We evaluate

our proposed framework for predicting streamflow in a real-

world dataset collected over 36 years from the Delaware River

Basin in the Northeastern United States. Our method produces

superior prediction performance compared to the global model

and other baselines. We also show that the learned similarity

closely follows the transferred predictive performance. Code

is available at the link 1

Our contributions can be summarized as follows:

• We introduce a new meta-transfer learning framework

applicable in scenarios where observation data is scarce.

• We leverage knowledge from a physics-based model to

guide a meta-model for extracting latent variables, which

1https://drive.google.com/drive/folders/1wbux6W2ADjM58EmTg6ZkCAoEcuWN9iTN?
usp=sharing

helps measure the similarity among river streams based

on underlying physical processes and weather patterns.

• We propose a new contrastive loss function that is used

to train the meta-model by leveraging past transferring

experiences as guidance.

• We evaluate the framework’s utility in the context of an

ecologically and societally relevant problem of monitor-

ing river networks.

II. RELATED WORK

Integrating physics into ML models has improved predictive

performance and generalizability in scientific problems. ML

models are expected to have sufficient capacity to model

such interactions when applied to systems with interacting

processes. Moreover, Machine Learning (ML) models (e.g.,

LSTMs) can provide state-of-the-art performance for many

scientific applications [17]. The reason is that ML models can

benefit from a large cross-section of diverse training data and

thus can transfer knowledge across basins. However, training

a global model for all river streams using traditional loss

functions for regression problems (such as mean squared loss)

tends to be dominated by river segments with more significant

errors while degrading the performance of other segments

with smaller errors [14]. This transferring local source models

to target streams instead of a single global model can be

beneficial.

Recently meta-learning has found great success in the few-

shot application of meta-learning, where the idea is to perform

non-parametric ‘learning’ at the task level by simply compar-

ing the various tasks. The outer-level optimization corresponds

to finding a feature extractor that learns a latent space suitable

for comparison. Several advancements have been proposed

by including several conditions [3] or designing new metric

space [31].

Similarity learning techniques have been used to intelli-

gently select relevant source domains given target domain that

help improve the learning performance of ML models [23].

These methods have shown much success in several domains

like learning similarity in patients [13] and categories [30].

However, in these approaches, the transfer experience among

the source data is not used in learning the metric. Wei et

al. [32] proposed a method to automatically determine what

and how to transfer by leveraging previous transfer learning

experiences. Similar to this strategy, Jared et al. [33] proposed

a strategy to train a meta-model that can predict the best source

model for a given target domain. However, the meta-model in

the proposed strategy uses simple hand-engineered statistics-

based features. In contrast, we use a deep-learning-based meta-

model that automatically learns the similarity based on the

input data.

III. PROBLEM DEFINITION

In this work, our objective is to predict streamflow over

multiple river segments in a stream network at a daily scale

by leveraging temporal contextual information. We consider N
river segments in a stream network. For each river segment i,
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we are provided with input time-series features over multiple

daily time-steps represented by Xi as a multivariate time

series for T timestamp i.e., Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where

xt
i ∈ R

Dx indicates the dynamic input vector at time t ∈ T .

We are also provided with several geometric parameters of the

stream segments (such as depth, surface area, shape of lake

and others) as static input vector represented as zi ∈ R
Dz . The

observed streamflow response corresponding to (Xi, zi) for

an entity is denoted by Y i = [y1i , y
2
i , . . . , y

T
i ]. This observed

streamflow is available for certain segments i ∈ {1, ..., N} and

on certain dates t ∈ 1, ..., T . More details on the dynamic and

static input and output variables can be found in Section V-A.

We consider two sets of river segments, source and target

sets. Particularly, we assume that the river segments in the

source set have streamflow observations available during the

training and test time steps. In contrast, the river segments

in the target sets do not have streamflow observations. In

streamflow modeling, the goal is to integrate the daily climate

drivers (Xi) with the static characteristics (zi) of a river

segment to learn a forward operator F that predicts the

streamflow of water in a river segment at every time step

i.e F : Xi, zi → Y i. The major challenge in building this

mapping is to handle the heterogeneity across different sites

i ∈ {1, ..., N} to achieve good performance over all the stream

segments.

In our proposed method, we also build an individual stream-

flow model Fi for each river segment i present in the source

set using its data. We assume these models perform well

for each source stream segment because we have sufficient

training data for all the streams in the source set. For each

pair of river segments (i, j), our goal is to learn a simi-

larity/distance metric D that uses their corresponding input

time-series features Xi and Xj , stream geometry zi and

zj , and their physical simulations to estimate whether the

two river segments are similar (e.g., the two river segments

having the same underlying physical process) or not. Accurate

metric learning will enable making prediction on a target river

segment by transferring a combination of predictions from its

most similar source models.

IV. METHOD

This section provides details of the proposed meta-transfer

learning via the metric learning approach. The methods pro-

posed in this paper aim to tackle three sub-tasks: (i) how to

represent a river segment using neural networks, (ii) how to

estimate the similarity between river segments, and (iii) how to

further leverage this similarity for improving streamflow pre-

diction in the target river segments. In Section IV-A, we first

introduce the sequence auto-encoder model to represent river

segments. Then in Section IV-B, we discuss the metric learning

method to estimate the similarity between river segments using

the source-to-source transfer performance as guidance. Finally,

in Section IV-C, we describe how to leverage the learned

similarity to improve the model performance.

LSTM LSTM LSTM

D
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O
D

ER Reconstruction Loss 

Clustering Loss

Triplet LossLSTM LSTM LSTM
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R
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Fig. 1. The sequence autoencoder architecture used for embedding time series
data, which uses three loss functions: the reconstruction loss (Eq. 3), the triplet
loss (Eq. 5), and the clustering loss (Eq. 11). In our application, the time
series data xt

i represents the concatenation of daily input, static features, and
simulated target variables.

A. Sequence Autoencoder

Weather data collected from real-world sensor systems are

usually high dimensional and noisy, containing both redundant

and irrelevant information. Incorporating these features di-

rectly for measuring the similarity between two river segments

may hide the discriminative information, resulting in poor

performance of metric learning models [16]. Moreover, the

data in time series exhibit temporal water dynamics, which

reflect the unique characteristics of each river segment and

need to be embedded in the representation of each river

segment. Domain scientists often use a manual inspection or

pre-defined metrics to represent time series data [23], [29].

However, these approaches often require tremendous effort

in feature engineering from domain experts. It is also diffi-

cult for these approaches to capture long-term temporal data

correlations, which are found to be ubiquitous in real time-

series datasets and essential for prediction tasks. Therefore,

a new mechanism for extracting meaningful and informative

representations for time-series data is required for estimating

the similarity amongst river segments in a stream network [31].

Our method aims to generate river segment-specific em-

beddings from time-series data. Specifically, for each river

segment i in the source domain, we randomly select a

subsequence Si of length W taken from the time-windows

ti : ti + W . This results in Ns sequences and each element

in these sequences are formed by concatenating the input

time-series, geometric parameters (through duplication), and

simulated streamflow of the river segment sti (i.e., the con-

catenated features are [xt
i; zi; s

t
i]). For learning time-series

representations, it is crucial to mitigate the inductive biases

by choosing the proper objective function so that the learning

process adjusts the model towards learning representative

features. In this paper, we use a long-short term memory

(LSTM)-based encoder-decoder architecture to learn repre-

sentations from the input time series of a river segment, as

shown in Fig. 1. LSTM is particularly suited for our task

in which long-term temporal dependencies must be modeled

to capture water dynamics. However, LSTMs are designed

to run only forward in time, while the similarity estimation

requires embedding the overall water behaviors in a sequence
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by considering the patterns in both forward and backward

directions. Hence, we use a bidirectional LSTM-based se-

quence encoder qφ(h|[xt
i; zi; s

t
i]t=1:T ) for the similarity learn-

ing model. Specifically, we build two LSTM structures: the

forward LSTM and the backward LSTM. The two LSTM

structures are the same, except that the time series is reversed

for the backward LSTM. Each LSTM uses the following

equations to generate the embeddings for a sequence.

it = σ(W i

[
[xt; z; st];ht−1

]
+ bi)

f t = σ(W f

[
[xt; z; st];ht−1

]
+ bf )

gt = σ(W g

[
[xt; z; st];ht−1

]
+ bg)

ot = σ(W o

[
[xt; z; st];ht−1

]
+ bo)

ct = f t � ct−1 + i� gt

ht = ot � tanh (ct)

(1)

Each forward and backward LSTM takes a sequence as

input and generates corresponding embeddings. These embed-

dings are essentially the final hidden states of each LSTM.

The embeddings for the forward LSTM and backward LSTM

are added to get the final embeddings h = hfwd + hbwd.

This representation h is then fed through the LSTM decoder

pθ([x
t; z; st]1:T |h) to produce a target sequence, which is the

same as the input sequence in the encode-decode architecture.

In particular, we use a conditional decoder that iteratively

outputs the data at each time [xt; z; st] based on the output

data from the previous time steps, as follows:

pθ([x
t; z; st]t=1:T |h)

= pθ([x
1; z; s1]|h)

T∏

t=2

pθ([x
t; z; st]|[x1:t−1; z; s1:t−1],h)

(2)

A traditional way to train this sequence-to-sequence au-

toencoder is teacher forcing [34], where ground truth data is

used as input instead of the predicted values. Although teacher

forcing simplifies the loss landscape and provides faster con-

vergence, this training procedure weakens the encoder as the

decoder has to solve a much simpler task. Since we want

the encoder to extract good representations, we train our

autoencoder in a closed-loop mode, with the network outputs

fed back as input. The autoencoder parameters are trained to

maximize the likelihood of the data, which under the Gaussian

assumption becomes the reconstruction loss computed as the

mean-squared error between the reconstructed and the original

sequence,

max
θ,φ

Ex,z∼data[−logpθ([x
t; z; st]t=1:T |h)] (3)

This sequence autoencoder, once trained, can extract fixed-

length representation from an arbitrary-length sequence. Us-

ing their learned representations, we can then calculate the

similarity between two river segments. However, choosing a

particular similarity function is a critical design choice. We

use the cosine between the two embeddings as the similarity

measure as they provide softer constraints. Using euclidean

distance can lead to exploding loss values as well as it enforces

stronger constraints which have the potential to lead to trivial

solutions. The cosine similarity between the two latent vectors

is calculated as,

sim(hi,hj) =
hi · hj

‖hi‖‖hj‖ (4)

However, this calculated similarity is not optimized for ef-

fective model transfer. This is primarily because the similarity

between the features does not guarantee that the model trained

on the source river segment gives the best result on the target

river segment. In the following sections, we describe our meta-

transfer learning approach, which automatically determines

which source models to transfer based on previous transfer

learning experiences [32].

B. Metric Learning for Learning to Transfer
Assume we have |S| river segments in the source domain.

We first create individual RNN models (with LSTM structure)

M1, M2, ..., M|S| separately for each source segment using

its data. Ideally, these individual models can perform well for

their corresponding source segment, given sufficient data for

each source segment. Note that our metric learning method is

agnostic of a specific source model so that it can be used for

other predictive models for other applications.
In the meta-transfer learning framework, we aim to use the

model transfer between each pair of source segments to mimic

the transfer process from source to target segments. Since we

can access actual observations in source segments, we can

measure the performance for source-to-source transfer (e.g.,

using R2 value). In the following, we will describe how to

record the performance metrics for source-to-source transfer

and use them to guide the training of the similarity learning

model.
We generate the transferring performance matrix by record-

ing the prediction accuracy when each source model Mi is

applied to the remaining |S| − 1 river segments to predict

daily streamflow. Note that the diagonal will have the best

result since the model is being trained and evaluated on the

same river segment. We use the |S|(|S| − 1) transfer learning

experiences in our metric learning framework to guide the

learning of embeddings that mimics these experiences. Specif-

ically, for each source segment i, we divide the remaining

|S| − 1 segments into a positive list and a negative list based

on a performance metric threshold (e.g., a threshold on R2

values) using the testing performance of Mi on each of the

remaining river segments. Repeating this process for all the

source segments results in S such positive and negative lists

for each river segment in the source set. We create |S| triplets

for each river segment (anchor) by randomly selecting a river

segment from the positive and negative list. Finally, we define

the triplet loss that forces the embedding of the anchor river

segment hi to be closer to its positive river segment hpi and

farther from its negative river segment hni
.

LTriplet = max(0, D(hi,hpi
)−D(hi,hni

) + α) (5)
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Fig. 2. The model transfer process using the top-K or cluster ensemble of
source models based on the estimated similarity amongst river segments.

Our proposed triplet loss explicitly allows the relationships

between river segments based on their transferring perfor-

mance to be preserved during representation learning. Com-

bining the triplet loss (Eq. 5) and the standard supervised

reconstruction loss (Eq. 3), we get the final training loss as

follows:

L = LRec + λLTriplet (6)

where λ is a hyper-parameter.

C. Ensemble source models

Individual source models trained for each stream segment

embed the streamflow behaviors in response to input data.

Such behaviors can vary drastically across different segments

as some high-flow segments (with higher average streamflow)

often exhibit a more significant streamflow variance over low-

flow segments. Applying the source model from the most simi-

lar source segment is an intuitive solution for a target segment

in the target domain. However, the estimated similarity for

segments in the target domain may not be entirely accurate,

and transferring a sub-optimal model from a diverse set of

stream segments could degrade the performance for prediction.

Ensemble methods have been shown to obtain better predictive

performance than the performance obtained from any single

constituent model [28]. Further, in scenarios where signifi-

cant model diversity exists, ensembles tend to yield better

results [18]. Hence, we propose to transfer multiple source

models to make predictions for each target river segment, as

shown in Fig. 2. However, identifying the groups is essential

in creating such ensemble models. In the following sections,

we describe three methods for creating ensemble models.

1) Top-K Ensemble: Once the metric learning model is

trained, we can use the similarity measure described in Eq. 4

to select the top-k source models for a given target model.

The final prediction for the target river segment is the average

of the predictions at each step from the individual k source

models.

Yti =
1

|Kti |
∑

k∈Kti

Fk(Xti , zti),

where, Kti = argmax
S′⊂S,|S′|=K

∑

Sj∈S′
sim(hTi

, hSj
)

(7)

However, K is a hyperparameter that needs to be selected

manually and can lead to bad predictive performance if k is

too large. Thus automatic creation of groups is essential.

2) Cluster Ensemble: We next provide another strategy to

automatically select source models for a given target stream

without worrying about K. Specifically, we use the source

river-stream embeddings to define a clustering structure using

K-Means clustering. The trained K-means clustering assigns

the target streams to one of the source clusters, and the

ensemble model is created by the softmax weight of the

source-target distance, as shown,

Yti =
∑

k∈Kti

αkFk(Xti , zti),

where, αk
sim(hTi

, hSk
)∑

Sj∈S sim(hTi , hSj )

(8)

3) Cluster Ensemble with clustering loss: Although we

partition the source river streams into clusters in the previous

method, the meta-model is not optimized. The representation

learning methods can learn similar representations between

low-flow and high-flow streams, which can cause potential

confusion amongst various categories of river streams. This

challenges the representation learning model to learn a latent

space that can correctly cluster all the modes in river streams.

Intuitively, suppose we can detect these modes by optimizing

a clustering objective. In that case, it will allow the meta-

model to learn representations that create a clustering structure

of different modes of water bodies. In particular, we adapt

DEC [36] as the clustering objective, where the pre-trained

autoencoder and the K-Means cluster centroids from the

previous method provide an excellent initialization point. The

encoder parameters and the centroids are refined by learning

from the high-confidence assignments using an Expectation-

Maximisation (EM) style algorithm inspired by the previous

work [36]. In the E step, the cluster assignment and the

target assignment are computed while keeping the encoder

parameters and cluster centroids fixed. Specifically, we use a

soft assignment based on the similarity of the embedded data

point with the cluster centroid, measured using the Student’s

t-distribution [19]. Specifically, the soft-assignment of data i
to cluster j is computed as follows:

qij =
(1 + ‖h(Xi; θh)−Mj‖2/α)α+1

2

∑K
j′=1(1 + ‖h(Xi; θh)−Mj′‖2/α)α+1

2

(9)

where h(Xi; θh) is the embedded data point, α is the degree

of freedom which is set as 1 in our experiments, and qij is

the probability of assigning the i’th data point to the j’th

cluster. To strengthen prediction and to promote learning from
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data points that are assigned with high confidence, the target

assignment is computed as:

pij =
q2ij/

∑
i qij∑K

j′=1(q
2
ij′/

∑
i qij′)

(10)

Once the cluster assignment and the target assignment are

computed, in the M step, we estimate the encoder parameters

and the cluster centroids using gradient descent while keeping

the cluster and the target assignment fixed. The objective is de-

fined as the KL divergence loss between the soft assignments

and the target assignment as follows:

minKL(P‖Q) = min
1

Nt

Nt∑

i=1

K∑

j=1

pij log
pij
qij

(11)

The encoder parameters, decoder parameters and the cluster

centroids are refined according to the objective:

L = LRec + λ1LTriplet + λ2Lclus (12)

where λ1 and λ2 are hyper-parameters to control the weights

of the triplet loss and the clustering loss, respectively. Once

trained, the model can produce the clustering structure during

the representation learning process. The prediction for a target

river stream is then performed as defined in Eq 8. Here the

clusters are provided by the meta-model trained using the

clustering objective.

V. EXPERIMENTS AND RESULTS

A. Dataset

All the data used in this work are available through U.S.

Geological Survey’s National Water Information System [2]

and the Water Quality Portal [26]. It is the most extensive

standardized water quality data set for inland and coastal water

bodies [26]. The methods are evaluated to predict streamflow

in the Delaware River Basin, an ecologically diverse region

and a watershed along the east coast of the United States

that provides drinking water to over 15 million people [35].

Observations at a specific latitude and longitude were matched

to river segments that vary in length from 48 to 23,120 meters.

The river segments were defined by the national geospatial

fabric used for the National Hydrologic Model as described

by Regan et al. [27]. The river segments are split up to have

roughly a one-day water travel time. We match observations

to river segments by snapping observations to the nearest river

segment within a tolerance of 250 meters. Observations farther

than 5,000 m along the river channel to the outlet of a segment

were omitted from our dataset.

We use input features at daily scale from Oct 01, 1980, to

Sep 30, 2019 (13,149 dates). The input features include fifteen

time-varying features and four time-invariant geometric fea-

tures of each segment (e.g., elevation, length, slope and width).

The time-varying features include meteorological features such

as daily average precipitation, daily average air temperature,

date of the year, solar radiation, shade fraction, potential

evapotranspiration as well as simulated streamflow from PB

models. Air temperature and precipitation values were derived

from the Daymet gridded meteorological dataset [1]. Other

input features (e.g., shade fraction, solar radiation, potential

evapotranspiration) are difficult to measure frequently, and we

use values produced by the PRMS-SNTemp model [21] as its

internal variables.

We study two subsets of the Delaware River Basin. In

subset S1, we include all the river segments with more than

1000 streamflow observations resulting in 63 river segments.

Whereas, in subset S2, we include all the river segments

with more than 100 streamflow observations resulting in 128

river segments. From these two subsets, we create different

experimental settings. We first sort the river streams in each

subset according to their mean streamflow. Dataset I is created

from sorted S1 by selecting the alternate streams into the train

and test set. This creates an even distribution of river streams

in both sets. Similarly, Dataset II is created from the same

sorted S1, but this time we select the train and test in the ratio

of 1:2 to show the effect of reduction in source models. Dataset

III is created in the same manner as Dataset I, however, from

the subset S2.

B. Baselines

We compare model performance to multiple baselines, as

described below:

• PRMS: The Precipitation-Runoff Modeling System

(PRMS) [21] is a physics-based model that simulates

daily streamflow for river networks and other variables.

PRMS is a one-dimensional, distributed-parameter mod-

eling system that translates spatially-explicit meteorolog-

ical information into water information, including evap-

oration, transpiration, runoff, infiltration, groundwater

flow, and streamflow.

• Global CT-LSTM: We train a global model by concate-

nating all the input features and feeding them into an

LSTM to predict the streamflow.

• Global EA-LSTM: In this approach, we train an entity-

aware lstm model by feeding the geometric properties of

the river segment in the input gate of the lstm [17]. This

model provides interpretability as it modulates the LSTM

cell based on the physical properties of the river segment.

• PGTL: We use the river segments’ geometric properties

to transfer the source model to the target. Specifically, for

each

• MAML: We use the model agnostic meta-learning

(MAML) [8] approach for fast adaption of the ML model

for the target river segments. Since for the target river

segments, we do not have the observed streamflow, we

use the simulated streamflow of the target river segments

and five inner optimization steps to finetune the meta-

model.

• PGMTL: We compare the performance of our model to

a recently proposed approach that applies meta-transfer

learning to machine learning models using regression

trees [33]. We use the same four sets of meta-features,

i.e., lake attributes, PB0 Simulation statistic, General
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TABLE I
R2 VALUES FOR STREAMFLOW MODELING ON THE THREE DATASETS.

HERE OUR METHOD AND ITS VARIATIONS ARE COMPARED WITH GLOBAL

MODELS, PGTL, MAML, AND THE PGMTL APPROACH. BEST SOURCE IS

THE UPPER BOUND OF PERFORMANCE IF WE SPECIFICALLY SELECT THE

BEST PERFORMING SOURCE MODEL FOR EACH TARGET RIVER-STREAM

Method Dataset I Dataset II Dataset III
PRMS -1.93 -1.295 -2.884

Global CT-Lstm 0.412 0.367 0.235
Global EA-Lstm 0.414 0.378 0.219

MAML 0.284 0.425 0.273
AEMTL 0.354 0.302 0.364
PGMTL 0.386 0.421 0.046
OurTopk 0.504 0.45 0.452

OurkMeans 0.516 0.483 0.378
OurCluster 0.543 0.461 0.401
Best Source 0.594 0.56 0.541

observation statistics, and meteorological statistics, as

described by the authors.

In our experiments, we train all global and individual source

models for a maximum of 200 epochs. The model is optimized

with the ADAM optimizer [15] with the initial learning rate

of 5e−4. All the hidden and gating variables in the RNNs

have 20 dimensions. The train, validation, and test set are

kept consistent for all models to remove bias between different

model runs.

C. Prediction performance

In Table I, we report the performance of each method for

streamflow prediction. For all the methods, we assume that

the simulation data are available on every single date from

Oct 01, 1980, to Sept 20, 2016. This is because they can be

generated by running the PRMS process-based model on input

drivers. We report the means R2 across the test basins for three

datasets, D1, D2, and D3. We can observe that the proposed

method outperforms baselines by a considerable margin for all

three datasets. All versions of our proposed method perform

better than the global models because they utilize the past

source-source transfer experience, which is critical for an

accurate estimation of source-target transfer performance.

We first observe that the global models do not perform

well, as shown by their low R2 values. This is because

ML models optimize the overall performance while low-flow

stream segments (mostly headwaters) are a minority in the

entire river network and contribute less to the loss function.

We also observe that the proposed method performs better than

MAML, which is fine-tuned using the simulated data. This

can be explained by the poor performance of the output from

the PRMS method on the target streams. The MAML method

in the fine-tuning step utilizes the simulated observation to

generate the individual models. Although AEMTL uses the

meta-model, it is not trained using the transfer experience

matrix between the source set. On the other hand, PGMTL

uses the transfer matrix but uses few hand-engineered features

in a simple Gradient-boosted tree-based meta-model. However,

all the variants of our method use the time-varying feature

values and the source-to-source transfer matrix to learn a latent

space and determine the most relevant sources to assign to a

target river stream. This is reflected in its performance gain

over other baseline methods. Moreover, in some cases (Dataset

I and Dataset II), our method’s cluster variants perform better

than our method’s topK version due to the reasons associated

with selecting only one single source model for a target river

stream. Fig. 3 shows the performance of our method and

several baselines on all the streams in Dataset I. Moreover, we

show the streamflow prediction on one of the target streams

for all the test time steps in Fig. 4. Note how the global CT-

Lstm model trained on all source river streams over-estimates

the streamflow for the reasons discussed above.

D. Similarity Learning

Here we aim to evaluate the performance of the models

in learning similarities between river streams. We particularly

compare the performance of our meta-model in learning simi-

larity between river streams by utilizing the tripletloss to the

plain recurrent auto-encoder variant. We evaluate the models

using two strategies. First, we visually compare the several

learned similarity matrices to the ground truth. Further, we

quantitatively evaluate the learned similarity using commonly

used metrics in recommendation systems.

1) Visualizing Predicted Similarity: In Fig. 5 we visually

compare the learned similarity matrices with the ground truth

in the train and test set for all the datasets. Each matrix has the

source river streams used to train the individual source models

on the y-axis and the target river streams on the x-axis. In both

axes, we order the river streams in the increasing order of

their mean streamflow. In the case of the train set, the target

river streams are the same as the source river streams, and

this denotes the transferring performance where each source

model is applied to every other source river stream. To avoid

temporal correlation, we use the data during the test years

in this analysis. The ground truth column shows a matrix

containing the prediction accuracy of the models in terms of

R2 values, whereas the other two columns show the learned

similarity calculated by taking the cosine similarity of the

embeddings (Eq 4). In each matrix, brighter color denotes

higher similarity, whereas a darker color shows that the pair of

river streams are not similar. We first observe that the similarity

matrix obtained from our method matches more closely to the

ground truth than the AEMTL. Moreover, we observe a block

structure in the ground truth matrix for both the train and test

set. This shows that the low streamflow source models usually

do not perform well on the high streamflow target streams

and vice-versa. AEMTL cannot capture this pattern without

explicitly modeling this information in the form of triplet loss.

However, this block pattern is also observed in our method for

both datasets. This shows that the experience-guided triplet

loss can learn from this pattern in the training set and apply

this learned transferring knowledge in the test set.

2) Evaluating similarity via nearest neighbor retrieval: In

addition to visually inspecting the learned similarity matrix,

we also give quantitative metrics to evaluate them. The task

of learning to transfer appropriate source models for each
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Fig. 3. Streamflow performance on each target river stream by all the models. Y-axis shows the R2 value, whereas the river streams are on the x-axis.

Fig. 4. Streamflow predictions made by the proposed method, the global CT-LSTM model, and the physics-based PRMS model.

TABLE II
EVALUATION OF THE SIMILARITY LEVELS ESTIMATED BY AEMTL,

PGMTL, AND THE PROPOSED METHOD, USING RETRIEVAL METRICS.

Metric Prec@5 MAP@5 MRR
AEMTL 0.157 0.101 0.353
PGMTL 0.407 0.317 0.595

Ours 0.519 0.410 0.737

target river stream can be viewed as a recommender system

problem. Specifically, we recommend personalized source

models unique to each target river stream. We compare the

models based on metrics defined as follows

• Prec@k : Precision@k is a fraction of top k recom-

mended items relevant to the user. It evaluates rec-

ommender systems’ decision-making capacity, i.e., the

system recommends correct source models in the set. We

calculate this metric for all models by setting k as 5, as

shown below,

Prec@k =
Top k recommendations ∩ Top k ground truth

k
(13)

We report the average of the Prec@k values for all the

target river-streams.

• AP@k : AveragePrecision@k evaluates a recommender

system based on the ranked ordering of relevant items. It

rewards the model for placing the correct recommenda-

tions on top of the list. Since we use weighted averaging

of prediction (8), having correct source models on the

top of the list will allow the method to put more weight

on its prediction. We calculate average precision for each

target river stream as shown below,

AP@k =
1

k

k∑

i=1

(Prec@i ∗ relevant@i) (14)

where, relevant@i is equal to 1 if ith recommendation is

in Top k ground truth, otherwise 0. We report the mean

of AP@k values for all the target river-streams.

• RR : Reciprocal rank is the “multiplicative inverse” of

the rank of the first correct source model. We calculate

the RR for all target streams and report the mean of the

values as shown,

MRR =
1

|T |
∑

i=1

|T | 1

ranki
(15)

Table II compares the models on Dataset I using the met-

rics defined above. We observe that our model outperforms

the autoencoder baseline and the recently published PGMTL

baseline in both the classification-based (Prec@k) and rank-

based (AP@k and RR) metrics. This shows that our model

can correctly recommend relevant source models as well as

recommend them at the top of the list. This explains our

model’s high predictive performance (Table I) compared to

other baselines. We attribute this characteristic to learning

from past transfer experience in the training set.
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Fig. 5. The similarity matrices between source-to-source segments (1st row) and between source-to-target segments (2nd row). Each entry (i,j) in the ground
truth matrix (1st column) represents the R2 value obtained by applying the source model of the segment i to the data of segment j. The matrices for our
method and the AE method show the estimated cosine similarity between each pair of segments using the obtained embeddings. Here the yellow color indicates
a higher R2 score (in the 1st column) or a higher similarity level (in the second and third columns).

E. Sensitivity Tests

Here we test the sensitivity of the model to different hyper-

parameter settings. In particular, we compare the performance

of the model with various top-k values and cluster numbers.

1) Sensitivity to Top-k values: Fig. 6 shows the variation

of the predictive performance using different K values in

the top-K ensemble transfer method. It can be seen that the

performance using a small K value (K = 1) or very large

K values (K > 7) can result in worse performance compared

to the global model. With K = 1, we are only transferring

the most similar source model, and the performance can

be affected by the errors in estimating the similarities for

segments in the target set. When we set a very large K
value, we are averaging the predictions from a large number

of models. It is likely that we mistakenly include some models

from those segments that are less similar to the target segment,

degrading the predictive performance.

2) Sensitivity to Cluster numbers: In Fig. 7, we show the

performance variation with respect to different numbers of

clusters. The performance is generally better than the global

LSTM model except when we have a small number of clusters,

e.g., when the number of clusters is smaller than 9. This is

because the model needs to aggregate the prediction from

many source models, and some of their corresponding source

segments can be less similar to the target segment.

VI. CONCLUSION

This paper proposes a new meta-transfer learning frame-

work for predicting target variables in unmonitored stream

Fig. 6. Predictive performance (in terms of R2 values) using different K
values in the top-K ensemble transfer method.

Fig. 7. Predictive performance (in terms of R2 values) using different
numbers of clusters in the cluster ensemble transfer method.
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segments. It uses a sequence autoencoder to create embeddings

for all the segments by combining input time series data and

simulated data generated by the physics-based model. The

representation learning model is trained in the meta-transfer

learning framework by modeling the similarity amongst stream

segments from source to source transferring experiences. We

tested this method in the Delaware River Basin, an ecologically

diverse region along the eastern coast of the United States. The

experimental results reveal that our method can achieve supe-

rior predictive performance for unmonitored stream segments

compared to a diverse set of baselines. Moreover, our method

is shown to create meaningful similarity estimates amongst

segments to guide the transfer learning process. Although our

method is evaluated in the context of streamflow prediction,

it can be generally applied to a wide range of applications

that involve multiple heterogeneous entities, and some entities

have limited annotations. For example, monitoring greenhouse

emissions needs to be conducted over large regions, but the

data are often collected from flux towers at specific locations.

Similarly, patients in different demographic groups may have

different amounts of annotated data in clinics, which poses a

significant challenge for automated early disease detection for

all the patients.
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