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Abstract—Prediction of response to input drivers by un-
monitored entities has been recognized as one of the most
important problems in many scientific problems. This problem
is challenging due to the non-stationary processes that underlie
the dynamics of data observations over space and time. Hence,
directly transferring models from well-observed data entities to
unmonitored target entity often lead to sub-optimal performance
due to the shift in data distribution. This paper proposes a new
meta-transfer learning framework that automatically estimates
the similarity amongst entities to transfer knowledge from well-
observed entities to unmonitored entities. A sequence autoencoder
embeds temporal behaviors of time series data and simulations
generated by traditional physics-based models. This embedding
model is trained in a meta-transfer learning framework under the
guidance of source-to-source transferring experiences. We tested
this method in streamflow prediction for multiple river segments
in the Delaware River Basin, an ecologically diverse region along
the eastern coast of the United States. The experimental results
demonstrate the superiority of the proposed method in predicting
streamflow for unmonitored stream segments compared to a
diverse set of baselines. Our method also creates meaningful
similarity estimates amongst segments to guide the transfer
learning process.

Index Terms—Meta-transfer learning; Streamflow prediction;
Metric learning; Representation learning

I. INTRODUCTION

The last decades have witnessed the immense success
of machine learning (ML) in commercial applications, e.g.,
computer vision and natural language processing. Given the
capability of ML models in automatically extracting complex
relationships from data, there is an expectation for using
ML models in addressing essential problems in scientific
applications such as hydrology [9], [17], biology, and climate
science [7]. The modeling of physical variables in these ap-
plications is challenging for traditional physics-based models
(PBM) due to the incomplete knowledge or excessive com-
plexity in modeling underlying relationships amongst physical
variables [10], [19], [22]. ML models are capable of directly
extracting the statistical relationships from data. However,
in the absence of adequate information about the physical
mechanisms of real-world processes, they are prone to false
discoveries. For example, the streamflow in a river stream
is governed by complex physical processes that change over
space and time. Given the input meteorological drivers (e.g.,
air temperature, precipitation, wind speed), different streams
can exhibit very different water dynamics due to the variation
in inherent characteristics of each river stream (e.g., soil
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properties, land covers, and stream geometry) [4], [24]. As
a result, a single global model trained using data from all the
entities can have sub-optimal performance for many entities
due to the data variability issue.

One intuitive solution to address this issue is to separately
train individual models for different entities (e.g., different
streams). However, the data available for many scientific
problems is far smaller than what is needed to train advanced
ML models effectively. Collecting labeled data is often expen-
sive in scientific applications due to the substantial manual
labor and material cost required to deploy sensors or other
measuring instruments. For example, collecting streamflow
data requires deploying sensors within a stream, incurring
personnel and equipment costs. This results in disparity in
observations across sites, where most of the observations come
from a few monitored river streams, and a large number of
river streams have no in-situ monitoring data.

The prediction in unmonitored sites has been recognized as
one of the most critical problems in hydrology [12]. In this
work, we plan to transfer the information in a small population
of streams to make predictions in the much larger population
of unmonitored sites. Intuitively, we consider leveraging the
similarity amongst streams [6] in the following aspects. First,
river streams with similar underlying physical characteristics
often show similar streamflow responses to the meteorological
drivers. For example, physical characteristics like soil and
groundwater properties mediate the relationship between the
input rainfall and the responses of surface discharge and
baseflows. Second, the streams under similar weather condi-
tions (e.g., rainfall, wind speed, solar radiation) over time can
have similar temporal streamflow behaviors if their physical
characteristics are similar.

Transferring knowledge from one domain to another re-
quires addressing two key research issues: how to transfer
and what to transfer [25]. Transfer learning using deep neural
networks has shown success in several applications such as
image classification [20], sentiment classification [5], and eco-
logical applications such as lake temperature modeling [33].
The issues of “how to transfer” and “what to transfer” can
be posed as a problem to be solved by meta-learning [11] or
learning from previous learning experiences [37], which is an
active area of machine learning research. An explicitly defined
meta-level objective measuring the transfer performance of
source models to target domains is defined in such methods.
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In contrast to traditional transfer learning, meta-learning deals
with a broader range of meta representations or meta param-
eters [30] than solely transferring source model parameters.
One way for meta knowledge transfer is to learn the similarity
between different domains, which could help identify similar
reference domains and transfer the knowledge to the target
domain to predict the outcome of interest. The critical part of
domain similarity learning is to learn a meaningful and precise
metric that can be used to measure the similarity between a
pair of river streams.

This paper proposes a novel meta-transfer learning approach
that learns a metric space to measure the similarity between
domains by leveraging the past transfer experience. The frame-
work is developed in the context of modeling streamflow in
river networks, but the framework can be generally applied
to many complex physical systems with interacting processes.
The architecture is based on recurrent neural networks (RNN)
and uses contrastive losses guided by the ordered transfer
performance, which implicitly captures the similarity among
river streams. In particular, the proposed framework consists
of a meta model and several source models. The source models
are RNN-based architectures built for each site to extract
the temporal information from the time-varying data, such
as meteorological data and simulated streamflow from PBM,
and stream geometries like depth and elevation and use such
information to predict streamflow at each time step. On the
other hand, the meta model’s goal is to learn when and how to
transfer these source models from a multitude of experiences
to the target rivers. The meta-model is a bidirectional RNN-
based architecture that embeds yearly data for a river stream
to a latent space where the similarity across river streams
can be measured. To reflect the closeness of river streams
based on the similarity of streamflow behaviors, the latent
space is learned using a contrastive loss guided by the order
of transfer performance from source to source river streams.
Once trained, the meta-model can be used to compute the
similarity between a new target stream and existing source
streams using their respective embeddings in the latent space.
The closest source models are retrieved using the computed
similarity through several methods like top-K ensemble and
clustering, and an ensemble model is created. We evaluate
our proposed framework for predicting streamflow in a real-
world dataset collected over 36 years from the Delaware River
Basin in the Northeastern United States. Our method produces
superior prediction performance compared to the global model
and other baselines. We also show that the learned similarity
closely follows the transferred predictive performance. Code
is available at the link !

Our contributions can be summarized as follows:

e« We introduce a new meta-transfer learning framework
applicable in scenarios where observation data is scarce.
o We leverage knowledge from a physics-based model to
guide a meta-model for extracting latent variables, which

!https://drive.google.com/drive/folders/ 1 wbux6 W2 ADjMS5SEmTg6ZkCAoEcuWN9IiTN?
usp=sharing
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helps measure the similarity among river streams based
on underlying physical processes and weather patterns.

« We propose a new contrastive loss function that is used
to train the meta-model by leveraging past transferring
experiences as guidance.

« We evaluate the framework’s utility in the context of an
ecologically and societally relevant problem of monitor-
ing river networks.

II. RELATED WORK

Integrating physics into ML models has improved predictive
performance and generalizability in scientific problems. ML
models are expected to have sufficient capacity to model
such interactions when applied to systems with interacting
processes. Moreover, Machine Learning (ML) models (e.g.,
LSTMs) can provide state-of-the-art performance for many
scientific applications [17]. The reason is that ML models can
benefit from a large cross-section of diverse training data and
thus can transfer knowledge across basins. However, training
a global model for all river streams using traditional loss
functions for regression problems (such as mean squared loss)
tends to be dominated by river segments with more significant
errors while degrading the performance of other segments
with smaller errors [14]. This transferring local source models
to target streams instead of a single global model can be
beneficial.

Recently meta-learning has found great success in the few-
shot application of meta-learning, where the idea is to perform
non-parametric ‘learning’ at the task level by simply compar-
ing the various tasks. The outer-level optimization corresponds
to finding a feature extractor that learns a latent space suitable
for comparison. Several advancements have been proposed
by including several conditions [3] or designing new metric
space [31].

Similarity learning techniques have been used to intelli-
gently select relevant source domains given target domain that
help improve the learning performance of ML models [23].
These methods have shown much success in several domains
like learning similarity in patients [13] and categories [30].
However, in these approaches, the transfer experience among
the source data is not used in learning the metric. Wei et
al. [32] proposed a method to automatically determine what
and how to transfer by leveraging previous transfer learning
experiences. Similar to this strategy, Jared et al. [33] proposed
a strategy to train a meta-model that can predict the best source
model for a given target domain. However, the meta-model in
the proposed strategy uses simple hand-engineered statistics-
based features. In contrast, we use a deep-learning-based meta-
model that automatically learns the similarity based on the
input data.

III. PROBLEM DEFINITION

In this work, our objective is to predict streamflow over
multiple river segments in a stream network at a daily scale
by leveraging temporal contextual information. We consider N
river segments in a stream network. For each river segment ¢,
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we are provided with input time-series features over multiple
daily time-steps represented by X; as a multivariate time
series for T timestamp i.e., X; = [z}, x2,..., 2] where
x! € RP+ indicates the dynamic input vector at time ¢ € 7.
We are also provided with several geometric parameters of the
stream segments (such as depth, surface area, shape of lake
and others) as static input vector represented as z; € RP=. The
observed streamflow response corresponding to (X, z;) for
an entity is denoted by Y; = [y}, 42,...,y]. This observed
streamflow is available for certain segments ¢ € {1, ..., N} and
on certain dates t € 1,...,7. More details on the dynamic and
static input and output variables can be found in Section V-A.

We consider two sets of river segments, source and target
sets. Particularly, we assume that the river segments in the
source set have streamflow observations available during the
training and test time steps. In contrast, the river segments
in the target sets do not have streamflow observations. In
streamflow modeling, the goal is to integrate the daily climate
drivers (X ;) with the static characteristics (z;) of a river
segment to learn a forward operator .# that predicts the
streamflow of water in a river segment at every time step
ie & : X; z; = Y,;. The major challenge in building this
mapping is to handle the heterogeneity across different sites
i € {1,..., N} to achieve good performance over all the stream
segments.

In our proposed method, we also build an individual stream-
flow model .%; for each river segment ¢ present in the source
set using its data. We assume these models perform well
for each source stream segment because we have sufficient
training data for all the streams in the source set. For each
pair of river segments (i,j), our goal is to learn a simi-
larity/distance metric & that uses their corresponding input
time-series features X; and X ;, stream geometry z; and
z;, and their physical simulations to estimate whether the
two river segments are similar (e.g., the two river segments
having the same underlying physical process) or not. Accurate
metric learning will enable making prediction on a target river
segment by transferring a combination of predictions from its
most similar source models.

IV. METHOD

This section provides details of the proposed meta-transfer
learning via the metric learning approach. The methods pro-
posed in this paper aim to tackle three sub-tasks: (i) how to
represent a river segment using neural networks, (ii) how to
estimate the similarity between river segments, and (iii) how to
further leverage this similarity for improving streamflow pre-
diction in the target river segments. In Section IV-A, we first
introduce the sequence auto-encoder model to represent river
segments. Then in Section IV-B, we discuss the metric learning
method to estimate the similarity between river segments using
the source-to-source transfer performance as guidance. Finally,
in Section IV-C, we describe how to leverage the learned
similarity to improve the model performance.
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Fig. 1. The sequence autoencoder architecture used for embedding time series
data, which uses three loss functions: the reconstruction loss (Eq. 3), the triplet
loss (Eq. 5), and the clustering loss (Eq. 11). In our application, the time
series data x! represents the concatenation of daily input, static features, and
simulated target variables.

A. Sequence Autoencoder

Weather data collected from real-world sensor systems are
usually high dimensional and noisy, containing both redundant
and irrelevant information. Incorporating these features di-
rectly for measuring the similarity between two river segments
may hide the discriminative information, resulting in poor
performance of metric learning models [16]. Moreover, the
data in time series exhibit temporal water dynamics, which
reflect the unique characteristics of each river segment and
need to be embedded in the representation of each river
segment. Domain scientists often use a manual inspection or
pre-defined metrics to represent time series data [23], [29].
However, these approaches often require tremendous effort
in feature engineering from domain experts. It is also diffi-
cult for these approaches to capture long-term temporal data
correlations, which are found to be ubiquitous in real time-
series datasets and essential for prediction tasks. Therefore,
a new mechanism for extracting meaningful and informative
representations for time-series data is required for estimating
the similarity amongst river segments in a stream network [31].

Our method aims to generate river segment-specific em-
beddings from time-series data. Specifically, for each river
segment ¢ in the source domain, we randomly select a
subsequence S; of length W taken from the time-windows
t; : t; + W. This results in Ny sequences and each element
in these sequences are formed by concatenating the input
time-series, geometric parameters (through duplication), and
simulated streamflow of the river segment s§ (i.e., the con-
catenated features are [z}; z;;s!]). For learning time-series
representations, it is crucial to mitigate the inductive biases
by choosing the proper objective function so that the learning
process adjusts the model towards learning representative
features. In this paper, we use a long-short term memory
(LSTM)-based encoder-decoder architecture to learn repre-
sentations from the input time series of a river segment, as
shown in Fig. 1. LSTM is particularly suited for our task
in which long-term temporal dependencies must be modeled
to capture water dynamics. However, LSTMs are designed
to run only forward in time, while the similarity estimation
requires embedding the overall water behaviors in a sequence
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by considering the patterns in both forward and backward
directions. Hence, we use a bidirectional LSTM-based se-
quence encoder gy (h|[x!; z;; st]i=1.7) for the similarity learn-
ing model. Specifically, we build two LSTM structures: the
forward LSTM and the backward LSTM. The two LSTM
structures are the same, except that the time series is reversed
for the backward LSTM. Each LSTM uses the following
equations to generate the embeddings for a sequence.

i = o(W; [[mt;z;st];htfl} +b)
fi=o0Wy[a';2s' 0 7] + b))

g, =o0(W, [[mt;z;st};htfl] +by) n
o, =0(W, [[mt;z; s'); ht_l] + b,)
a=fi0c1+i0g;

h; = 0; ® tanh (¢;)

Each forward and backward LSTM takes a sequence as
input and generates corresponding embeddings. These embed-
dings are essentially the final hidden states of each LSTM.
The embeddings for the forward LSTM and backward LSTM
are added to get the final embeddings h = hfya + Rywa.
This representation h is then fed through the LSTM decoder
po([zt; 2; st]1.7|h) to produce a target sequence, which is the
same as the input sequence in the encode-decode architecture.
In particular, we use a conditional decoder that iteratively
outputs the data at each time [x; z; s!] based on the output
data from the previous time steps, as follows:

t

po([a'; z; 5" =1.7|h)

T
= po([z'; 2; s']|h) H [t z; 8|z 25 501 )
- )

A traditional way to train this sequence-to-sequence au-
toencoder is teacher forcing [34], where ground truth data is
used as input instead of the predicted values. Although teacher
forcing simplifies the loss landscape and provides faster con-
vergence, this training procedure weakens the encoder as the
decoder has to solve a much simpler task. Since we want
the encoder to extract good representations, we train our
autoencoder in a closed-loop mode, with the network outputs
fed back as input. The autoencoder parameters are trained to
maximize the likelihood of the data, which under the Gaussian
assumption becomes the reconstruction loss computed as the
mean-squared error between the reconstructed and the original
sequence,

3)

max Eg zndata|—logpe([x"; z; 8'i=1.7|h)]

)

This sequence autoencoder, once trained, can extract fixed-
length representation from an arbitrary-length sequence. Us-
ing their learned representations, we can then calculate the
similarity between two river segments. However, choosing a
particular similarity function is a critical design choice. We
use the cosine between the two embeddings as the similarity
measure as they provide softer constraints. Using euclidean
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distance can lead to exploding loss values as well as it enforces
stronger constraints which have the potential to lead to trivial
solutions. The cosine similarity between the two latent vectors
is calculated as,

h;-h;
[[hil[ [Pl

However, this calculated similarity is not optimized for ef-
fective model transfer. This is primarily because the similarity
between the features does not guarantee that the model trained
on the source river segment gives the best result on the target
river segment. In the following sections, we describe our meta-
transfer learning approach, which automatically determines
which source models to transfer based on previous transfer
learning experiences [32].

szm(h,,hj) = (4)

B. Metric Learning for Learning to Transfer

Assume we have |S| river segments in the source domain.
We first create individual RNN models (with LSTM structure)
My, Mo, ..., M‘ s separately for each source segment using
its data. Ideally, these individual models can perform well for
their corresponding source segment, given sufficient data for
each source segment. Note that our metric learning method is
agnostic of a specific source model so that it can be used for
other predictive models for other applications.

In the meta-transfer learning framework, we aim to use the
model transfer between each pair of source segments to mimic
the transfer process from source to target segments. Since we
can access actual observations in source segments, we can
measure the performance for source-to-source transfer (e.g.,
using R? value). In the following, we will describe how to
record the performance metrics for source-to-source transfer
and use them to guide the training of the similarity learning
model.

We generate the transferring performance matrix by record-
ing the prediction accuracy when each source model M; is
applied to the remaining |S| — 1 river segments to predict
daily streamflow. Note that the diagonal will have the best
result since the model is being trained and evaluated on the
same river segment. We use the |S|(|S| — 1) transfer learning
experiences in our metric learning framework to guide the
learning of embeddings that mimics these experiences. Specif-
ically, for each source segment i, we divide the remaining
|S] — 1 segments into a positive list and a negative list based
on a performance metric threshold (e.g., a threshold on R?
values) using the testing performance of M; on each of the
remaining river segments. Repeating this process for all the
source segments results in S such positive and negative lists
for each river segment in the source set. We create |S]| triplets
for each river segment (anchor) by randomly selecting a river
segment from the positive and negative list. Finally, we define
the triplet loss that forces the embedding of the anchor river
segment h; to be closer to its positive river segment h,,, and
farther from its negative river segment h,,,.

£T7'iplct - mam(O, D(hzy hpl) - D(hu h'rLi) + CE) (5)
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Fig. 2. The model transfer process using the top-K or cluster ensemble of
source models based on the estimated similarity amongst river segments.

Our proposed triplet loss explicitly allows the relationships
between river segments based on their transferring perfor-
mance to be preserved during representation learning. Com-
bining the triplet loss (Eq. 5) and the standard supervised
reconstruction loss (Eq. 3), we get the final training loss as
follows:

L= »CRec + )\ﬁTriplet (6)

where A is a hyper-parameter.

C. Ensemble source models

Individual source models trained for each stream segment
embed the streamflow behaviors in response to input data.
Such behaviors can vary drastically across different segments
as some high-flow segments (with higher average streamflow)
often exhibit a more significant streamflow variance over low-
flow segments. Applying the source model from the most simi-
lar source segment is an intuitive solution for a target segment
in the target domain. However, the estimated similarity for
segments in the target domain may not be entirely accurate,
and transferring a sub-optimal model from a diverse set of
stream segments could degrade the performance for prediction.
Ensemble methods have been shown to obtain better predictive
performance than the performance obtained from any single
constituent model [28]. Further, in scenarios where signifi-
cant model diversity exists, ensembles tend to yield better
results [18]. Hence, we propose to transfer multiple source
models to make predictions for each target river segment, as
shown in Fig. 2. However, identifying the groups is essential
in creating such ensemble models. In the following sections,
we describe three methods for creating ensemble models.

1) Top-K Ensemble: Once the metric learning model is
trained, we can use the similarity measure described in Eq. 4
to select the top-k source models for a given target model.
The final prediction for the target river segment is the average
of the predictions at each step from the individual k source
models.
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1

thi = W Z yk}(thzti%
bl ke, )
where, K;, = argmax Z sim(hr,, hs,)

S'CS|S'|=K g o

However, K is a hyperparameter that needs to be selected
manually and can lead to bad predictive performance if k is
too large. Thus automatic creation of groups is essential.

2) Cluster Ensemble: We next provide another strategy to
automatically select source models for a given target stream
without worrying about K. Specifically, we use the source
river-stream embeddings to define a clustering structure using
K-Means clustering. The trained K-means clustering assigns
the target streams to one of the source clusters, and the
ensemble model is created by the softmax weight of the
source-target distance, as shown,

Vi, = > anFi(Xe,, 21,),
keKy,

®)

Sim(hTm hsk)
ZSJES Sim(hTivth)

3) Cluster Ensemble with clustering loss: Although we
partition the source river streams into clusters in the previous
method, the meta-model is not optimized. The representation
learning methods can learn similar representations between
low-flow and high-flow streams, which can cause potential
confusion amongst various categories of river streams. This
challenges the representation learning model to learn a latent
space that can correctly cluster all the modes in river streams.
Intuitively, suppose we can detect these modes by optimizing
a clustering objective. In that case, it will allow the meta-
model to learn representations that create a clustering structure
of different modes of water bodies. In particular, we adapt
DEC [36] as the clustering objective, where the pre-trained
autoencoder and the K-Means cluster centroids from the
previous method provide an excellent initialization point. The
encoder parameters and the centroids are refined by learning
from the high-confidence assignments using an Expectation-
Maximisation (EM) style algorithm inspired by the previous
work [36]. In the E step, the cluster assignment and the
target assignment are computed while keeping the encoder
parameters and cluster centroids fixed. Specifically, we use a
soft assignment based on the similarity of the embedded data
point with the cluster centroid, measured using the Student’s
t-distribution [19]. Specifically, the soft-assignment of data 7
to cluster j is computed as follows:

where,

atl

(L + [|R(X 33 0n) — M;|*/a) 3
K a+1
oy (L [[R(X 53 0n) — My |2 /o) 2
where h(X;;0y) is the embedded data point, « is the degree
of freedom which is set as 1 in our experiments, and g;; is

the probability of assigning the ¢’th data point to the j’th
cluster. To strengthen prediction and to promote learning from

(€))

ij
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data points that are assigned with high confidence, the target
assignment is computed as:

a5/ 3 4ij
K
Z]'/:1(qi2j'/ > Gij)

Once the cluster assignment and the target assignment are
computed, in the M step, we estimate the encoder parameters
and the cluster centroids using gradient descent while keeping
the cluster and the target assignment fixed. The objective is de-
fined as the KL divergence loss between the soft assignments
and the target assignment as follows:

10)

Pij =

N: K
1
t 2] i qij
=1 j=1

The encoder parameters, decoder parameters and the cluster
centroids are refined according to the objective:

L= ERec + )‘I‘CT'r‘iplet + )\2£clus (12)

where A\; and A9 are hyper-parameters to control the weights
of the triplet loss and the clustering loss, respectively. Once
trained, the model can produce the clustering structure during
the representation learning process. The prediction for a target
river stream is then performed as defined in Eq 8. Here the
clusters are provided by the meta-model trained using the
clustering objective.

V. EXPERIMENTS AND RESULTS
A. Dataset

All the data used in this work are available through U.S.
Geological Survey’s National Water Information System [2]
and the Water Quality Portal [26]. It is the most extensive
standardized water quality data set for inland and coastal water
bodies [26]. The methods are evaluated to predict streamflow
in the Delaware River Basin, an ecologically diverse region
and a watershed along the east coast of the United States
that provides drinking water to over 15 million people [35].
Observations at a specific latitude and longitude were matched
to river segments that vary in length from 48 to 23,120 meters.
The river segments were defined by the national geospatial
fabric used for the National Hydrologic Model as described
by Regan et al. [27]. The river segments are split up to have
roughly a one-day water travel time. We match observations
to river segments by snapping observations to the nearest river
segment within a tolerance of 250 meters. Observations farther
than 5,000 m along the river channel to the outlet of a segment
were omitted from our dataset.

We use input features at daily scale from Oct 01, 1980, to
Sep 30, 2019 (13,149 dates). The input features include fifteen
time-varying features and four time-invariant geometric fea-
tures of each segment (e.g., elevation, length, slope and width).
The time-varying features include meteorological features such
as daily average precipitation, daily average air temperature,
date of the year, solar radiation, shade fraction, potential
evapotranspiration as well as simulated streamflow from PB
models. Air temperature and precipitation values were derived
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from the Daymet gridded meteorological dataset [1]. Other
input features (e.g., shade fraction, solar radiation, potential
evapotranspiration) are difficult to measure frequently, and we
use values produced by the PRMS-SNTemp model [21] as its
internal variables.

We study two subsets of the Delaware River Basin. In
subset S7, we include all the river segments with more than
1000 streamflow observations resulting in 63 river segments.
Whereas, in subset S, we include all the river segments
with more than 100 streamflow observations resulting in 128
river segments. From these two subsets, we create different
experimental settings. We first sort the river streams in each
subset according to their mean streamflow. Dataset I is created
from sorted S; by selecting the alternate streams into the train
and test set. This creates an even distribution of river streams
in both sets. Similarly, Dataset II is created from the same
sorted S, but this time we select the train and test in the ratio
of 1:2 to show the effect of reduction in source models. Dataset
IIT is created in the same manner as Dataset I, however, from
the subset S5.

B. Baselines

We compare model performance to multiple baselines, as
described below:

« PRMS: The Precipitation-Runoff Modeling System
(PRMS) [21] is a physics-based model that simulates
daily streamflow for river networks and other variables.
PRMS is a one-dimensional, distributed-parameter mod-
eling system that translates spatially-explicit meteorolog-
ical information into water information, including evap-
oration, transpiration, runoff, infiltration, groundwater
flow, and streamflow.

o Global CT-LSTM: We train a global model by concate-
nating all the input features and feeding them into an
LSTM to predict the streamflow.

o Global EA-LSTM: In this approach, we train an entity-
aware Istm model by feeding the geometric properties of
the river segment in the input gate of the Istm [17]. This
model provides interpretability as it modulates the LSTM
cell based on the physical properties of the river segment.

o PGTL: We use the river segments’ geometric properties
to transfer the source model to the target. Specifically, for
each

« MAML: We use the model agnostic meta-learning
(MAML) [8] approach for fast adaption of the ML model
for the target river segments. Since for the target river
segments, we do not have the observed streamflow, we
use the simulated streamflow of the target river segments
and five inner optimization steps to finetune the meta-
model.

o PGMTL: We compare the performance of our model to
a recently proposed approach that applies meta-transfer
learning to machine learning models using regression
trees [33]. We use the same four sets of meta-features,
i.e., lake attributes, PBO Simulation statistic, General

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 09,2023 at 06:02:37 UTC from IEEE Xplore. Restrictions apply.



TABLE 1
R2 VALUES FOR STREAMFLOW MODELING ON THE THREE DATASETS.
HERE OUR METHOD AND ITS VARIATIONS ARE COMPARED WITH GLOBAL
MODELS, PGTL, MAML, AND THE PGMTL APPROACH. BEST SOURCE IS
THE UPPER BOUND OF PERFORMANCE IF WE SPECIFICALLY SELECT THE
BEST PERFORMING SOURCE MODEL FOR EACH TARGET RIVER-STREAM

Method Dataset I | Dataset II | Dataset III
PRMS -1.93 -1.295 -2.884
Global CT-Lstm 0.412 0.367 0.235
Global EA-Lstm 0.414 0.378 0.219
MAML 0.284 0.425 0.273
AEMTL 0.354 0.302 0.364
PGMTL 0.386 0.421 0.046
Ourropk 0.504 0.45 0.452
Ourgpreans 0.516 0.483 0.378
Ourciyster 0.543 0.461 0.401
Best Source 0.594 0.56 0.541

observation statistics, and meteorological statistics, as
described by the authors.

In our experiments, we train all global and individual source
models for a maximum of 200 epochs. The model is optimized
with the ADAM optimizer [15] with the initial learning rate
of 5¢~%. All the hidden and gating variables in the RNNs
have 20 dimensions. The train, validation, and test set are
kept consistent for all models to remove bias between different
model runs.

C. Prediction performance

In Table I, we report the performance of each method for
streamflow prediction. For all the methods, we assume that
the simulation data are available on every single date from
Oct 01, 1980, to Sept 20, 2016. This is because they can be
generated by running the PRMS process-based model on input
drivers. We report the means R2 across the test basins for three
datasets, D1, D2, and D3. We can observe that the proposed
method outperforms baselines by a considerable margin for all
three datasets. All versions of our proposed method perform
better than the global models because they utilize the past
source-source transfer experience, which is critical for an
accurate estimation of source-target transfer performance.

We first observe that the global models do not perform
well, as shown by their low R2 values. This is because
ML models optimize the overall performance while low-flow
stream segments (mostly headwaters) are a minority in the
entire river network and contribute less to the loss function.
We also observe that the proposed method performs better than
MAML, which is fine-tuned using the simulated data. This
can be explained by the poor performance of the output from
the PRMS method on the target streams. The MAML method
in the fine-tuning step utilizes the simulated observation to
generate the individual models. Although AEMTL uses the
meta-model, it is not trained using the transfer experience
matrix between the source set. On the other hand, PGMTL
uses the transfer matrix but uses few hand-engineered features
in a simple Gradient-boosted tree-based meta-model. However,
all the variants of our method use the time-varying feature
values and the source-to-source transfer matrix to learn a latent
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space and determine the most relevant sources to assign to a
target river stream. This is reflected in its performance gain
over other baseline methods. Moreover, in some cases (Dataset
I and Dataset II), our method’s cluster variants perform better
than our method’s topK version due to the reasons associated
with selecting only one single source model for a target river
stream. Fig. 3 shows the performance of our method and
several baselines on all the streams in Dataset I. Moreover, we
show the streamflow prediction on one of the target streams
for all the test time steps in Fig. 4. Note how the global CT-
Lstm model trained on all source river streams over-estimates
the streamflow for the reasons discussed above.

D. Similarity Learning

Here we aim to evaluate the performance of the models
in learning similarities between river streams. We particularly
compare the performance of our meta-model in learning simi-
larity between river streams by utilizing the tripletioss to the
plain recurrent auto-encoder variant. We evaluate the models
using two strategies. First, we visually compare the several
learned similarity matrices to the ground truth. Further, we
quantitatively evaluate the learned similarity using commonly
used metrics in recommendation systems.

1) Visualizing Predicted Similarity: In Fig. 5 we visually
compare the learned similarity matrices with the ground truth
in the train and test set for all the datasets. Each matrix has the
source river streams used to train the individual source models
on the y-axis and the target river streams on the x-axis. In both
axes, we order the river streams in the increasing order of
their mean streamflow. In the case of the train set, the target
river streams are the same as the source river streams, and
this denotes the transferring performance where each source
model is applied to every other source river stream. To avoid
temporal correlation, we use the data during the test years
in this analysis. The ground truth column shows a matrix
containing the prediction accuracy of the models in terms of
R? values, whereas the other two columns show the learned
similarity calculated by taking the cosine similarity of the
embeddings (Eq 4). In each matrix, brighter color denotes
higher similarity, whereas a darker color shows that the pair of
river streams are not similar. We first observe that the similarity
matrix obtained from our method matches more closely to the
ground truth than the AEMT L. Moreover, we observe a block
structure in the ground truth matrix for both the train and test
set. This shows that the low streamflow source models usually
do not perform well on the high streamflow target streams
and vice-versa. AEMTL cannot capture this pattern without
explicitly modeling this information in the form of triplet loss.
However, this block pattern is also observed in our method for
both datasets. This shows that the experience-guided triplet
loss can learn from this pattern in the training set and apply
this learned transferring knowledge in the test set.

2) Evaluating similarity via nearest neighbor retrieval: In
addition to visually inspecting the learned similarity matrix,
we also give quantitative metrics to evaluate them. The task
of learning to transfer appropriate source models for each
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Fig. 3. Streamflow performance on each target river stream by all the models. Y-axis shows the R? value, whereas the river streams are on the x-axis.
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Fig. 4. Streamflow predictions made by the proposed method, the global CT-LSTM model, and the physics-based PRMS model.

TABLE II
EVALUATION OF THE SIMILARITY LEVELS ESTIMATED BY AEMTL,
PGMTL, AND THE PROPOSED METHOD, USING RETRIEVAL METRICS.

Metric Prec@5 | MAP@5 | MRR
AEMTL 0.157 0.101 0.353
PGMTL 0.407 0.317 0.595

Ours 0.519 0.410 0.737

target river stream can be viewed as a recommender system
problem. Specifically, we recommend personalized source
models unique to each target river stream. We compare the
models based on metrics defined as follows

e Prec@k : Precision@k is a fraction of top k recom-
mended items relevant to the user. It evaluates rec-
ommender systems’ decision-making capacity, i.e., the
system recommends correct source models in the set. We
calculate this metric for all models by setting k£ as 5, as
shown below,

Top k recommendations N Top & ground truth

P -
recQk 3

13)
We report the average of the Prec@k values for all the
target river-streams.

o AP@Kk : AveragePrecision@k evaluates a recommender
system based on the ranked ordering of relevant items. It
rewards the model for placing the correct recommenda-
tions on top of the list. Since we use weighted averaging

of prediction (8), having correct source models on the
top of the list will allow the method to put more weight
on its prediction. We calculate average precision for each
target river stream as shown below,

k
APQE = % ;(PTeC@i x relevant@i)  (14)
where, relevant@ji is equal to 1 if it recommendation is
in Top k ground truth, otherwise 0. We report the mean
of APQF values for all the target river-streams.

« RR : Reciprocal rank is the “multiplicative inverse” of
the rank of the first correct source model. We calculate
the RR for all target streams and report the mean of the
values as shown,

1 1
M = — T|l—- 1
RE |T| ;| ‘ranki (15)

Table II compares the models on Dataset I using the met-
rics defined above. We observe that our model outperforms
the autoencoder baseline and the recently published PGMTL
baseline in both the classification-based (Prec@k) and rank-
based (AP@k and RR) metrics. This shows that our model
can correctly recommend relevant source models as well as
recommend them at the top of the list. This explains our
model’s high predictive performance (Table I) compared to
other baselines. We attribute this characteristic to learning
from past transfer experience in the training set.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 09,2023 at 06:02:37 UTC from IEEE Xplore. Restrictions apply.



Ground truth

Most

‘qm'a' Similar

C

©

|_

ko]

(%]

2

= Least
Similar

Fig. 5. The similarity matrices between source-to-source segments (1st row) and between source-to-target segments (2nd row). Each entry (4,7) in the ground
truth matrix (1st column) represents the R2 value obtained by applying the source model of the segment ¢ to the data of segment j. The matrices for our
method and the AE method show the estimated cosine similarity between each pair of segments using the obtained embeddings. Here the yellow color indicates
a higher R2 score (in the Ist column) or a higher similarity level (in the second and third columns).

E. Sensitivity Tests

Here we test the sensitivity of the model to different hyper-
parameter settings. In particular, we compare the performance
of the model with various top-k values and cluster numbers.

1) Sensitivity to Top-k values: Fig. 6 shows the variation
of the predictive performance using different K values in
the top-K ensemble transfer method. It can be seen that the
performance using a small K value (K = 1) or very large
K values (K > 7) can result in worse performance compared
to the global model. With K = 1, we are only transferring
the most similar source model, and the performance can
be affected by the errors in estimating the similarities for
segments in the target set. When we set a very large K
value, we are averaging the predictions from a large number
of models. It is likely that we mistakenly include some models
from those segments that are less similar to the target segment,
degrading the predictive performance.

2) Sensitivity to Cluster numbers: In Fig. 7, we show the
performance variation with respect to different numbers of
clusters. The performance is generally better than the global
LSTM model except when we have a small number of clusters,
e.g., when the number of clusters is smaller than 9. This is
because the model needs to aggregate the prediction from
many source models, and some of their corresponding source
segments can be less similar to the target segment.

VI. CONCLUSION

This paper proposes a new meta-transfer learning frame-
work for predicting target variables in unmonitored stream
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Fig. 6. Predictive performance (in terms of R? values) using different K
values in the top-K ensemble transfer method.
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Fig. 7. Predictive performance (in terms of R? values) using different

numbers of clusters in the cluster ensemble transfer method.
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segments. It uses a sequence autoencoder to create embeddings
for all the segments by combining input time series data and
simulated data generated by the physics-based model. The
representation learning model is trained in the meta-transfer
learning framework by modeling the similarity amongst stream
segments from source to source transferring experiences. We
tested this method in the Delaware River Basin, an ecologically
diverse region along the eastern coast of the United States. The
experimental results reveal that our method can achieve supe-
rior predictive performance for unmonitored stream segments
compared to a diverse set of baselines. Moreover, our method
is shown to create meaningful similarity estimates amongst
segments to guide the transfer learning process. Although our
method is evaluated in the context of streamflow prediction,
it can be generally applied to a wide range of applications
that involve multiple heterogeneous entities, and some entities
have limited annotations. For example, monitoring greenhouse
emissions needs to be conducted over large regions, but the
data are often collected from flux towers at specific locations.
Similarly, patients in different demographic groups may have
different amounts of annotated data in clinics, which poses a
significant challenge for automated early disease detection for
all the patients.
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