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Hopper flows of deformable particles

Yuxuan Cheng, *a John D. Treado, b Benjamin F. Lonial, c Piotr Habdas,d

Eric R. Weeks, c Mark D. Shattuck e and Corey S. O’Hern *abfg

Numerous experimental and computational studies show that continuous hopper flows of granular

materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w:

Q B (w/savg � k)b, where savg is the average particle diameter, ksavg is an offset where Q B 0, the

power-law scaling exponent b = d � 1/2, and d is the spatial dimension. Recent studies of hopper flows

of deformable particles in different background fluids suggest that the particle stiffness and dissipation

mechanism can also strongly affect the power-law scaling exponent b. We carry out computational

studies of hopper flows of deformable particles with both kinetic friction and background fluid

dissipation in two and three dimensions. We show that the exponent b varies continuously with the ratio

of the viscous drag to the kinetic friction coefficient, l = z/m. b = d � 1/2 in the l - 0 limit and d � 3/2

in the l - N limit, with a midpoint lc that depends on the hopper opening angle yw. We also

characterize the spatial structure of the flows and associate changes in spatial structure of the hopper

flows to changes in the exponent b. The offset k increases with particle stiffness until k B kmax in the

hard-particle limit, where kmax B 3.5 is larger for l - N compared to that for l - 0. Finally, we show

that the simulations of hopper flows of deformable particles in the l - N limit recapitulate the

experimental results for quasi-2D hopper flows of oil droplets in water.

1 Introduction

Silos and hoppers are used frequently in the agriculture,1

pharmaceutical,2 and food industries3–7 to store fluids and
granular materials. Materials confined within silos and hop-
pers are discharged using vertical or slanted walls that lead to
an orifice at the bottom of the device. Microfluidic devices
also incorporate flow constrictions to control the pressure and
flow rate of complex fluids, such as bubbles and emulsion
droplets.8–13 Cell sorting devices14–16 and cell analysis tools17–19

also utilize hopper structures. Despite the fact that hopper
and silo flows are ubiquitous in industry, we do not yet have
a fundamental understanding of the outflow properties from
hoppers and silos. For example, it is difficult to predict the

outflow rate of particulate materials from hoppers and silos as
a function of the device geometry, orifice size, and particle
properties.

For inviscid fluid flows from hoppers, the volume flow rate Q
is proportional to the orifice area (w2 in three dimensions,
where w is the diameter of the circular orifice) times the
characteristic fluid velocity vc at the orifice, Q = w2vc.

20 For

pressure-driven flows, vc �
ffiffiffiffiffiffiffiffiffiffiffiffi
DP=r

p
, where DP is the pressure

difference and r is the mass density of the fluid. For viscous
fluid flows, the volume flow rate Q = Cdw

2vc includes a dis-
charge coefficient Cd that depends on the hopper geometry and
viscosity of the fluid.21

Unlike ordinary fluids, granular materials consist of macro-
sized grains that interact via dissipative forces, which can give
rise to intermittency and clogging during hopper flows in the
limit of small orifice sizes. Beverloo and co-workers22 carried
out seminal experimental studies of hopper flows of a wide
range of granular materials in air and proposed an empirical
form for the flow rate that allows flow arrest to occur at nonzero
orifice width:

Q(w) = C(w/savg � k)b, (1)

where C is a constant with units of flow rate, savg is the average
diameter of the particles, Q(ksavg) = 0, and k depends on the
particle properties, such as the stiffness, shape, and friction
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coefficient. Another key difference between hopper flows of
ordinary fluids and granular materials is that the power-law
scaling exponent b = d � 1/2, where d is the spatial dimension,
is not an integer for hopper flows of granular materials. This
relation has been verified in 2D and 3D, for spherical23,24 and
non-spherical25 particles, and for frictionless26 and frictional27

particles.
Numerous researchers have provided heuristic arguments

for the b = d� 1/2 scaling exponent for hopper flows of granular
materials. For example, Brown and Richards proposed a model
for the regime w c ksavg where transient arches form and
break in a region above the orifice, creating a free-fall region
below with a height proportional to the orifice width w.28

Because of shielding by the transient arches, the grains move
at low velocities until they enter the free-fall region. Thus, the
discharge velocity vc �

ffiffiffiffiffiffi
gw

p
when grains reach the orifice, and

Q B w2vc B w5/2 in 3D or Q B wvc B w3/2 in 2D. Cutoffs for the
finite size of the particles can be added to these expressions to
recover eqn (1).

The original studies of Beverloo et al. involved hopper flows
of hard grains in air.22 Recent studies of hopper flows of
spherical glass beads submerged in water have found that the
scaling exponent b B 1 does not obey b = d � 1/2 from the
original Beverloo equation.29,30 In addition, studies of qausi-2D
hopper flows of air bubbles immersed in water have found
b B 0.5,31 again deviating from the exponent in the original
Beverloo equation. Thus, from these previous results, it is not
clear whether the dissipation mechanism (i.e. particle–particle
or background fluid dissipation), particle stiffness or other
particle properties control the power-law scaling exponent in
eqn (1).

In this article, we carry out computer simulations of hopper
flows of deformable particles in two (2D) and three dimensions
(3D), including both interparticle kinetic friction and viscous
dissipation with the background fluid. We employ two compu-
tational models of particle deformation: (1) the ‘‘soft particle’’
model that describes particle deformation as overlaps between
pairs of particles and therefore does not conserve particle
volume in 3D (area in 2D) and 2) the deformable particle model
that includes a shape-energy function for changes in particle
volume (area in 2D), surface area (perimeter in 2D), and surface
bending, as well as an interaction energy that prevents particle
overlaps. Studying these two models allows us to assess the
importance of volume conservation in determining the flow
properties and provides the ability to tune the particle stiffness,
static and kinetic friction coefficients, and background viscous
drag and quantify their effects on the flow rate.

We find several important results. First, the power-law
scaling exponent b relating the volume flow rate Q and orifice
width w is controlled by the dissipation mechanism, i.e. the
ratio of the viscous damping coefficient to the kinetic friction
coefficient, l = z/m. We find that the exponent varies continu-
ously between b = d � 1/2 in the l - 0 limit and d � 3/2 in the
l - N limit, with a midpoint lc that depends on the hopper
opening angle yw. In contrast, the exponent b is only weakly
dependent on the particle deformability and surface roughness.

Second, we show that the spatio-temporal dynamics for flows
with the two exponents, b = d � 1/2 and d � 3/2, are different.
In particular, the velocity profile varies more strongly with
the orifice size for flows with b = d � 1/2 in the l - N limit.
Third, the offset ksavg at which Q - 0 decreases with particle
deformability, and increases with the static friction coefficient.
Finally, we show that the simulations of hopper flows using the
soft and deformable particle models in the l - N limit are
able to recapitulate the experimental results for quasi-2D
gravity-driven hopper flows of oil droplets in water.

The remainder of the article is organized as follows. In
Section 2, we describe the simulation methods including the
soft particle and deformable particle models, the equations of
motion, and simulation protocol that we employ to generate
continuous flows. In Section 3, we describe the experimental
system, including the hopper geometry and method to generate
emulsion droplets and flows. In Section 4, we show results for
the volume flow rate (area flow rate in 2D) Q versus the orifice
width w for the soft particle model and the deformable particle
model as a function of z/m and particle deformability in both 2D
and 3D. We characterize the spatial structure of the flows by
measuring the velocity as a function of distance from the orifice
and we associate changes in the spatial structure of the flows to
changes in the power-law scaling exponent b. In Section 4,
we discuss the implications of our results, and propose future
research directions, such as developing an improved deform-
able particle model that includes surface tension, which would
allow more quantitative comparisons between the simulations
and experiments on hopper flows of oil droplets in water.
We also include four Appendices. In Appendix A, we describe
the details of the frictionless, deformable particle model.
In Appendix B, we show more detailed comparisons of the flow
rate for the soft particle and deformable particle models in the
compressible and incompressible particle limits. In Appendix C,
we show that the system size effects on the flow rate are small in
the simulations. In Appendix D, we show the relationship between
particle softness and the prefactor C for both the soft particle and
deformable particle models.

2 Simulation methods

In this section, we describe the methods for simulating gravity-
driven hopper flows of bidisperse particles in 2D and 3D. We
first illustrate the hopper geometry. We then describe the two
methods for modeling the particle shape and interactions:
(1) the soft particle model, which treats each spherical particle
as a single degree of freedom located at its center of mass and
mimics particle contact interactions by allowing overlaps
between pairs of particles and (2) the deformable particle
model that uses a shape-energy function to penalize changes
in particle volume (area in 2D), surface area (perimeter in 2D),
and surface bending. The deformable particle model can be
implemented such that the particles are nearly frictionless or
the model can include surface roughness. For each model, we
describe the forces that result from the shape-energy function,
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particle–particle interactions, and dissipative forces arising
from interparticle kinetic friction and drag from the back-
ground fluid, and then we write down the resulting equations
of motion for each particle. Finally, we discuss the initialization
of the particle positions and velocities and the method used to
generate continuous flows.

2.1 Hopper geometry

In 2D, the hopper is constructed from two infinitely long
straight (top and bottom) walls separated by a distance W B
60ss (where ss is the diameter of the small particle), which
connect to the right wall at an angle yw as shown in Fig. 1(a).
The gravitational field points from left to right. The orifice is
centered and has width w o 12ss, so that W/w 4 5, which
ensures that the top and bottom walls are sufficiently separated
such that they do not influence the flow. In 3D, the hopper is an
infinitely long cylinder with diameter W B 30ss, and the long
axis of the cylinder is oriented in the direction of gravity. The
hopper in 3D has a flat base (yw = 901) containing a circular
orifice with diameter w that is centered on the long axis of the
cylinder.

In 2D, we focus on systems containing N = 1600 particles,
but we also considered systems over a range from N = 800 to
3200 to assess system size effects. In 3D, we focus on systems
with N = 6400 particles. To mimic continuous flows, particles
that exit the hopper orifice are replaced on the left side of the

hopper near the leftmost flowing particles and given the same
speed as neighboring particles. The distance between the
hopper orifice and the leftmost flowing particle is L B 20–30ss.

2.2 Soft particle model

For gravity-driven hopper flows, there are typically four con-
tributions to the total potential energy: (1) the shape-energy
function Us

m, (2) the gravitational potential energy Ug
m, (3) the

particle–particle interaction energy Uint, and (4) the particle-
wall interaction energy Uw

m. For the SP model, Us
m = 0. Purely

repulsive interparticle forces are generated by allowing overlaps
between pairs of spherical particles,32–35 as shown in Fig. 1(b).
The pairwise interaction energy of the SP model is given by

Uint ¼
XN
m¼1

XN
n4m

esp
2
ð1� rmn=smnÞ2Yð1� rmn=smnÞ: (2)

In eqn (2), smn = (sm + sn)/2 is the average diameter of particles
m and n, rmn is the separation between particles m to n, and esp
is the characteristic energy scale of the repulsive interaction.
The Heaviside step function Y(�) ensures that the pair forces
are non-zero only between overlapping particles.

We consider a similar repulsive interaction between the
hopper walls and each particle m that is in contact with
the walls:

Uw
m ¼ ew

2
ð1� 2dw=smÞ2Yð1� 2dw=smÞ; (3)

Fig. 1 Snapshot from simulations of hopper flows of bidisperse mixtures in a gravitational field using the (a) soft particle (SP) and (f) deformable particle
(DP) models in 2D. The hopper geometry can be slanted with variable tilt angle yw, e.g. yw = 451 in (a) and 901 in (f). %g indicates the direction of the
gravitational acceleration,W is the separation between the straight walls far from the orifice, h indicates the distance from the hopper orifice, and w is the
width of the orifice. (b) Close-up of hopper flow using the SP model with N/2 large particles and N/2 small particles with diameter ratio 1.4, highlighting
overlapping particles m and n with separation rmn o smn, where smn = (sm + sn)/2. (c) Illustration of the method to calculate the closest separation
between frictionless, deformable particles m and n. dm is the width of the edges of particle m and dn,jm,i is the shortest distance between edges i and j on
particles m and n, respectively. (See Appendix A.) (d) Close-up of hopper flow using the DP model with surface roughness with N/2 large particles, N/2
small particles, and area ratio 1.96. am is the area and pm is the perimeter of deformable particle m. Both small and large particles have Nv = 16 vertices.
(e) Illustration of the interactions between deformable particles m and n with surface roughness. dm is the diameter of each circular vertex on particle
m and dn,jm,i is the distance between vertices i and j on particles m and n, respectively.
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where dw is the distance between the center of particle m and
the hopper wall and ew is the characteristic energy scale of the
particle-wall interaction. Thus, the total potential energy of the
system is given by

U ¼
XN
m¼1

ðUs
m þUg

m þUw
mÞ þUint; (4)

where Ug
m = �Mmgh, h is the height of the center of mass of

particle m, g is the gravitational acceleration, Mm = rVm,0 is the
mass of particle m with mass density r and volume Vm,0 = psm

3/6.
(In 2D,Mm = ram,0 is themass of particlemwith areal mass density
r and area am,0 = psm

2/4.)
We include two types of dissipative forces on the particles.

First, we consider viscous drag forces on particles moving in a
background viscous fluid:

-

Fzm = �zMx0076-;m, (5)

where z is the drag coefficient and -
vm is the velocity of particle

m. The second dissipative force arises from kinetic friction
between contacting particles. The kinetic friction force is pro-
portional to the relative velocity between contacting particles:36

~Fm
m ¼ �m

XN
nam

ð~vm �~vnÞYð1� rmn=smnÞ; (6)

where m is the kinetic friction coefficient. The dimensionless
parameter l = z/m determines whether the energy dissipation
arises mainly from viscous drag (l c 1) or from kinetic friction
(l { 1). We measure the kinetic friction and drag coefficients
in units of m0 = z0 = rsd�1

avg gt0, where t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
savg=g

p
. For the SP

model, the equation of motion for each particle m is

Mm
@2~rm
@t2

¼ �~rrmU þ ~F z
m þ ~Fm

m: (7)

We integrate eqn (7) using a modified velocity Verlet integra-
tion scheme with time step Dt = 10�3t0. The flow rate Q is
measured in units of Q0 = sdavg/t0.

For the SP model, we focus on bidisperse systems in 2D and
3D composed of half large particles and half small particles
with diameter ratio a = sl/ss = 1.4 to avoid crystallization.37 The
average diameter of particles in the bidisperse system is savg =
(sl + ss)/2 = 1.2ss. Two important dimensionless energy scales
are the ratios of the characteristic particle–particle and particle-
wall repulsive energy scales to the gravitational potential
energy, i.e. Esp = esp/(grs

d+1
avg) and Ew = ew/(grs

d+1
avg), where d = 2,

3 in two and three dimensions, respectively. We set Ew = 104 to
minimize overlaps between the particles and hopper walls and
will vary Esp to determine the effect of particle softness on the
flow rate Q(w).

2.3 Deformable particle model

To explicitly model changes in particle shape, we recently
developed the deformable particle (DP) model in both 2D38,39

and 3D.40 In 2D, the particles are modeled as deformable
polygons composed of Nv vertices. We can achieve deformable
particles with nearly smooth surfaces by modeling the vertices

as circulo-lines as shown in Fig. 1(c) or achieve deformable
particles with nonzero surface roughness by modeling the
vertices as small disks as shown in Fig. 1(d) and (e). We consider
the following shape-energy function for particle m:

Us
m ¼ ka

2
ðam � am;0Þ2 þ

klNv

2

XNv

i¼1

ðlm;i � lm;0Þ2

þ kb

2Nv

XNv

i¼1

l̂m;i � l̂m;iþ1

lm;0

 !2

;

(8)

which includes three terms. The first term imposes a harmonic
energy penalty for changes in particle area am from the preferred
value am,0 and ka controls the fluctuations in particle area. The
second term imposes a harmonic energy penalty for deviations in
the separations lm,i between adjacent vertices i and i + 1 from the
equilibrium length lm,0 and kl controls fluctuations in the separa-
tions between adjacent vertices. The third term is the bending
energy that favors particle shapes with l̂m,i and l̂m,i+1 in the same
direction. kb is the bending rigidity that controls fluctuations in the
angle between l̂m,i and l̂m,i+1. The factor of Nv in the numerator of
the second term and in the denominator of the third term of
eqn (8) ensure that Us

m does not depend on Nv.
We focus on hopper flows of N = 1600 bidisperse deformable

particles in 2D with half large particles and half small particles.

We define effective diameters sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0;l=p

p
and ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0;s=p

p
for the large and small particles, respectively, and set the
diameter ratio sl/ss = 1.4. We choose Nv = 16, which gives
an effective friction coefficient meff B 0.6 for the DP model
with surface roughness.41 For the nearly smooth DP model,
we find that Nv Z 16 does not affect the properties of the
hopper flows. From a0,s and l0,s, we can define the dimension-

less shape parameter in 2D, A0 ¼ Nvl0;s
� �2.

4pa0;s. We study

systems composed of nearly circular particles with A0 ¼
NV=p
� �

tan p=Nvð Þ � 1:013; which is the value for a regular poly-
gon with Nv = 16 sides.

For the DP model with surface roughness, each vertex in
particle m is represented by a disk with diameter dm = lm,0 and
the total interaction energy Uint is calculated by summing up all
the repulsive interactions between overlapping circular vertices
on different particles:

Uint ¼
XN
m¼1

XN
n4m

XNv

i¼1

XNv

j¼1

ec
2
ð1� dn; jm;i=dmnÞ2Yð1� dn; jm;i=dmnÞ; (9)

where dmn = (dm + dn)/2 is the average vertex diameter on
particles m and n, ec gives the characteristic energy scale of
the repulsive interactions between vertices, and dn, jm,i is
the separation between vertex i on particle m and vertex j on
particle n. For the nearly smooth DP model, we represent edges of
the polygon as circulo-lines with width dm = 0.1lm,0 and length lm,i.
The interparticle repulsive interactions still follow eqn (9), but
dn, jm,i represents the distance between edges i and j on particles
m and n, respectively. See Appendix A for more details on imple-
menting the nearly frictionless DP model in 2D.
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The wall interaction between vertex i on particle m and the
hopper wall is

Uw
m;i ¼

ew
2
ð1� 2dw=dmÞ2Yð1� 2dw=dmÞ; (10)

where dw is the minimum distance between vertex i on particle
m and the hopper wall. The total potential energy U is again the
sum of the shape-energy function Us

m, the gravitational
potential energy Ug

m, and the particle-wall interactions Uw
m over

all particles plus the potential energy from particle–particle
interactions Uint, as given in eqn (4).

As for the SP model, we consider two types of dissipative
forces acting on the deformable particles. Since we will write
equations of motion for each vertex, we consider dissipative
forces acting on the individual vertices. First, the viscous drag
force on vertex i on particle m is:

~F z
m;i ¼ � z

Nv

~vm;i; (11)

where -vm,i is the velocity of vertex i on particle m. The kinetic
friction force on vertex i on particle m arising from an overlap
with vertex j on particle n is

~Fm
m;i ¼ �m

XN
nam

XNv

j¼1

ð~vm;i �~vn; jÞYð1� dn;jm;i=dmnÞ: (12)

Thus, for the DP model, the equation of motion for vertex i on
particle m is

Mm;i
@2~rm;i

@t2
¼ �~rrm;iU þ ~F z

m;i þ ~Fm
m;i; (13)

where Mm,i = Mm/Nv is the mass of vertex i on particle m. From
eqn (8)–(10), we can obtain five dimensionless energy scales for
the DP model in a gravitational field in 2D: Ka = kasavg

2/(gr), Kl =
kl/(gr), Kb = kb/(grsavg

4), Ew = ew/(grsavg
2) and Ec = ec/(grsavg

2),
where savg = (ss + sl)/2. We choose Ka 4 104 so that the
fluctuations in the particle areas are negligible. We also set
Kc = Kw = 104 to minimize vertex-vertex and vertex-wall overlaps.
We will vary Kl and Kb to determine their effects on the flow
rate. The time t and flow rate Q are measured in units of

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
savg=g

p
and Q0 = sdavg/t0. The equations of motion are

integrated using a modified velocity Verlet algorithm with a
time step of 10�3t0.

2.4 Simulation initialization

For the DP model, we initialize the particles as regular poly-
gons, and set the edge lengths to be equal to their equilibrium

values lm;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4am;0Nv tanðp=NvÞ

p
=Nv. For both the SP and DP

models, we randomly place the particles within the hopper with
zero velocity. Initially, gravity is turned off, and energy mini-
mization (using FIRE42) is carried out to ensure no overlaps
between the particles and the particles and the walls. After the
removal of overlaps, gravity is turned on and the particles begin
to fall toward the orifice. To achieve continuous flow, particles
that exit the hopper orifice are placed back into the left side of
the hopper in contact with one of the bulk particles with the
same velocity as the particle it is touching. A particle is

considered outside of the hopper (and does not contribute to
the flow rate) when it first exits the orifice. However, particles
are put back into the hopper only after they fall at least two
particle diameters past the orifice.

3 Experimental methods

Below, we will compare the simulation results for hopper flows
using the SP and DP models in 2D to experimental studies of
quasi-2D hopper flows of oil droplets in water. In this section,
we describe the details of the experimental studies. We consider
silicon oil-in-water emulsions undergoing gravity-driven hopper
flows in narrow channels.

The oil-in-water emulsions are prepared through the aid of
a Micronit focused-flow microfluidic device. This device is
capable of producing hundreds of droplets with volumes set
by the relative flow rates between the continuous and dispersed
phases.43,44 To stabilize the emulsions, the droplets are sus-
pended and created in a 5% Tween 20 nonionic detergent
solution.45 The density of the droplets is roil B 0.936 g ml�1, and
they are suspended in water with density rwater B 0.997 g ml�1.

The oil-in-water emulsions produced by the flow-focused
microfluidic device are then injected between two 75 � 50 mm2

microscope slides separated by a thin sheet of either a glass
cover-slip or laser-cut plastic, ranging in thickness from 180 to
220 mm, in accordance with prior work on the clogging of
emulsion droplets.34 In both cases, the thickness of the sheet
is sufficiently small (smaller than the smallest droplet dia-
meter) to keep droplets from stacking. Hence, the thickness
of the spacer, which also doubles as the hopper itself, confines
the droplets to nearly two-dimensions.46 The chambers are
sealed with Norland Optical Adhesive 68 and placed under
ultraviolet light to harden. Inside the chambers, the droplets
generally have polydispersity in size between 6–15% (where the
polydispersity is defined by the standard deviation of the
droplet diameter divided by the mean). The mean diameter of
the droplets ranged from 250–400 mm between different experi-
ments. However, the mean diameter was always larger than
the chamber thickness, which ensures that the droplets are
quasi-two-dimensional. Across all experiments, the average
droplet diameter is savg B 315 mm. Occasionally, the oil
droplets coalesce into larger droplets with diameters signifi-
cantly greater than 400 mm; however, these larger droplets are
either among the last droplets to pass through the opening,
thus acting solely as sources of pressure, or the very first, thus
contributing nothing to the subsequent flow.

Two hopper geometries were used for these experimental
studies: the first has two walls oriented at 451, and the second
has one 451 wall facing a 01 wall (that is, a wall parallel to the
direction of droplet motion). The 451/01 geometry is made with
cover-slip glasses. The 451/451 geometry uses thin sheets of
plastic that are laser cut into the desired shapes. The length
and width of the glass and plastic hoppers are chosen
to appropriately fit the microscope slide, ensuring room for
hundreds of droplets, but small enough to ensure that the
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droplets have enough space to clear the orifice unimpeded by
droplets that had gathered outside of the hopper. The range of
the hopper openings is w/savg B 2.0 to 12.3.

To initialize the experiments, a large air bubble is introduced
into the sample chamber to clog the opening. This allows droplets
to stack against the bubble and create a well-packed initial
condition. We then press the sample chamber which induces
the air bubble to exit, thus initiating the oil droplet flow.
To observe the flow we rotate a microscope 901, aligning the stage
parallel to the direction of gravity and viewing the sample with a
horizontally directed microscope objective (1.6�). An external
lamp is used for illumination and images are taken with a digital
camera recording at 0.75 fps. Using image analysis, we obtain the
droplet positions and areas, and use standard methods to track
the droplet motion.47

Similar to the simulations, the time and area flow rate units

in the experiments are defined as t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
savg=geff

p
and Q0 =

savg
2/t0. We use the mean diameter across all of the experi-

ments, savg B 315 mm, and geff = g(rwater � roil)/roil is the
acceleration imposed by oil-in-water buoyancy and g B 9.8 m s�2

is the gravitational constant.

4 Results

In this section, we describe the results of our numerical
simulations of hopper flows of the soft particle model (SP) in
2D and 3D and the deformable particle (DP) model in 2D.
We investigate the scaling of the flow rate Q versus the orifice
width w as a function of the ratio of the viscous drag and kinetic
friction coefficients, particle deformability, surface roughness,
and spatial dimension. We find that the flow rate Q scales
as a power-law in the orifice width w/savg with a cutoff k, Q =
C(w/savg � k)b. The power-law scaling exponent b depends
strongly on the ratio of the viscous drag and kinetic friction
coefficients l = z/m, but it does not depend on the particle
deformability or surface roughness. In particular, if the parti-
cles only experience kinetic friction, without viscous drag,
b = d � 1/2, as found by Beverloo and others for hopper flows
of granular materials. However, if the particles only experience
viscous drag, without kinetic friction, b = d � 3/2. Further, we
show that the scaling exponent b varies continuously with l
between b = d� 1/2 in the l- 0 limit and d� 3/2 in the l-N

limit, with a midpoint lc that decreases with decreasing hopper
opening angle yw. We show that the change in the power-law
scaling exponent b is associated with changes in the spatio-
temporal dynamics of the flows. In particular, the gradient in
the velocity profile varies more strongly with the orifice size w for
flows with b = d � 3/2 than those with b = d � 1/2. We then show
that the offset k at which Q(kss) = 0 decreases from values above 3
to below 1 as the particle deformability increases. We also find that
both the soft and deformable particle models in the l - N limit
are able to recapitulate Q(w) obtained from experimental studies of
quasi-2D hopper flows of oil droplets in water.

In Fig. 2(a), we show the area flow rate Q versus the orifice
width w/savg for the soft particle and deformable particle

models with kinetic friction only (i.e. m=m0 ¼ 10
ffiffiffiffiffi
10

p
and z = 0)

in 2D for hopper opening angle yw = 901. We compare results
for the SP model with Esp = 102 and 104, the frictionless DP
model with Kl = 10 and Kb = 10�1, Kl = 10 and Kb = 10, and
Kl = 103 and Kb = 10�1, and the frictional DP model with Kl = 10
and Kb = 10. Q(w) for all of these systems can be fit to the power-
law scaling relation in eqn (1). While C and k for these systems
vary, the power-law scaling exponent b = 3/2 is the same for all
models as shown in Fig. 2(b). (Note that both the SP and DP
models can be studied in the rigid-particle limit, i.e. Esp - N

for the SP model and Kb - N for the DP model. In this limit,
Q(w) is the same for both models as shown in Appendix B.)
Since we compared systems with different values of Ksp, Kb, and
Kl and with different values of surface roughness and obtained
the same values of b, these results emphasize that b does
not depend strongly on particle deformability and surface
roughness.

In Fig. 2(c), we show similar results for Q versus w/savg for
same 2D models, but for systems with viscous drag forces only

(i.e. m = 0 and z=z0 ¼ 1=
ffiffiffiffiffi
10

p
) for the dissipative forces. All of the

data can also be fit to the power-law scaling relation in eqn (1).
Again, C and k vary, but the power-law scaling exponent b = 1/2
is the same for all models, as shown in Fig. 2(d). Clearly, the
power-law scaling exponent b does not depend on particle
deformability and surface roughness, but it depends strongly
on the type of dissipative forces that are included.

In Fig. 3(a), we show similar results for the volume flow rate
Q versus orifice width w/savg for the SP model in 3D with Esp =

102 and either kinetic friction forces only (m=m0 ¼ 10
ffiffiffiffiffi
10

p
, z = 0)

or viscous drag forces only (m = 0, z=z0 ¼ 1=
ffiffiffiffiffi
10

p
). Q(w) for both

systems can be fit by eqn (1) and have power-law scaling
exponents b = 5/2 and 3/2 in the limits l - 0 and N,
respectively, as shown in Fig. 3(b). Fig. 2 and 3 illustrate that
b = d � 1/2 in the l - 0 limit and b = d � 3/2 in the l -

N limit.
What is the value of the power-law exponent b at intermedi-

ate values of l? In Fig. 4, we show b from fits of Q(w) to eqn (1)
for the SP and DP models in 2D (for hopper opening angle yw =
901) and the SP model in 3D versus the ratio of the viscous drag
and kinetic friction coefficients l. b varies continuously with
l in both 2D and 3D and can be described by a sigmoidal
function:

b ¼ 1

2
d � tanh log10 l� lcð Þ1=b

h i� �
; (14)

where lc B 0.05 and B0.07 in 2D and 3D is the characteristic
value at which the power-law scaling exponent reaches the
midpoint bc = d� 1 and 0o 1/bo 1 is the stretching exponent.
We show explicitly in 2D that b(l) does not depend on particle
deformability and surface roughness. Further, these results do
not depend on the number of particles N 4 800 as shown in
Appendix C. We find similar results for b(l) in 3D.

What is different about the spatiotemporal dynamics of the
hopper flows with different values of the power-law scaling
exponent b? To address this question, we calculate the velocity
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profiles in systems with different values of b. In Fig. 5, we show
(for the SP model in 2D with yw = 901) the average speed of the
particles in the direction of gravity at the center of the hopper vg
as a function of the distance above the hopper orifice h/savg for
three ratios of the dissipative forces, l- 0, lB lc, and l-N.
To smooth the velocity profile, we define vg at location -

r as

vgð~rÞ ¼
PN
i¼1

vgifð~r�~riÞ, where -
ri and vgi are the position and

speed in the direction of gravity of particle i and fð~r�~riÞ ¼
ð
ffiffiffiffiffiffi
2p

p
savgÞ�2 expð�j~r�~rij2=2savg2Þ is a Gaussian coarse-graining

function.48,49 For systems with l - 0 and b = d � 1/2, vg(h = 0)
B wb/wd�1 B w1/2, and thus vg(h = 0) increases with the orifice
diameter w, as shown in Fig. 5(a). For systems with l - N and
b = d � 3/2, vg(h = 0) B wb/wd�1 B w�1/2, and thus vg(h = 0)
decreases with increasing w, as shown in Fig. 5(c). In contrast,
the average speed in the direction of gravity far from the hopper
orifice, vg(h-N) B wb/W B wb, increases with w for all values
of l, as shown in Fig. 5(a)–(c). Because of the difference in how
vg(0) and vg(N) depend on the orifice width w for different
values of l, the gradient of the velocity profile dvg/dh can easily
distinguish flows with small versus large values of l. As shown
in Fig. 5(a), for l - 0, dvg/dh does not depend strongly on w,
suggesting a weak variation of the pressure profile on w.

However, for l - N, dvg/dh decreases strongly with increasing
w, indicating large pressure profiles in systems with small w. In
this limit, the large differences in viscous drag forces caused by
the velocity difference v(0) � v(N) are balanced by overlap
forces, which give rise to the large pressure profile. As expected,
vg near the orifice for the intermediate case l B lc possess very
weak dependence on w.

We have shown that b(l) does not depend on particle
deformability and surface roughness, but it does depend
strongly on the nature of the dissipative forces (i.e. whether
viscous drag or kinetic frictional forces dominate) and the
resulting velocity profile in the hopper. These results suggest
that b(l) can be altered by varying the hopper opening angle yw
since changes in yw modify the velocity profile. In Fig. 6(a), we
show b(l) from hopper flows using the frictionless DP model in
2D with yw = 901, 601, 301, and 201. Over this range in yw, the
characteristic lc at which b reaches its midpoint decreases from
5 � 10�2 to 6 � 10�3. As the hopper wall angle yw decreases
(i.e. the hopper walls become more aligned with the direction of
gravity), in the regime l B lc, the ratio of the average force
stemming from the viscous drag to that stemming from the
kinetic friction |

-

Fz|/|
-

Fm| increases (Fig. 6(b)), and thus lc must
decrease with decreasing yw. In the low-yw limit (i.e. yw r 301),
the ratio stops increasing and lc reaches a plateau value,

Fig. 2 Area flow rate Q (in units of Q0 = savg
2/t0) versus orifice width w/savg for hopper flows in 2D using the SP and DP models with (a) kinetic friction

only, m=m0 ¼ 10
ffiffiffiffiffi
10

p
, and (c) viscous drag only, z=z0 ¼ 1=

ffiffiffiffiffi
10

p
. We consider the SP model with Esp = 102 (asterisks) and 104 (squares), the frictionless DP

model with Kl = 10 and Kb = 10�1 (crosses) and Kl = 10 and Kb = 10 (circles), and the DP model with surface roughness with Kl = 10 and Kb = 10�1

(triangles). The solid curves in (a and c) are fits to the power-law scaling relation in eqn (1). In (b and d), we show log10(Q/C) versus log10(w/savg � k) for the
data in (a and c), and the dotted and dashed lines have slopes of 1/2 and 3/2, respectively.
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B5 � 10�3. Note that the time required to reach steady-state
diverges as yw-0, and thus we are limited in the values of yw
that we can study.

In contrast to the power-law scaling exponent b, the offset k
at which Q(ksavg) = 0 depends on particle deformability and
surface roughness. Previous studies have shown that k varies
from B1.3 to 2.9 as the static friction coefficient increases.22,50

In Fig. 2, we show similar results that k increases with surface
roughness for the DP model. How does the offset k depend on
particle deformability? In Fig. 7(c), we show k as a function of
the perimeter Kl and bending Kb energy scales for the friction-
less DP model in 2D in the l - N limit (for yw = 901). At small
Kl, k increases from B1 to B3.5 as Kb increases from 10�2 to
above 102, suggesting the formation of transient multi-particle
arches in the rigid-particle limit. (Note that we have shown in
Appendix B that the DP model reaches the hard-particle limit
for Kb 4 102.) We find similar results for the 2D SP model for
l - N (Fig. 7(a)): the offset k increases from k B 1 to 3.5 as
Esp approaches the rigid-particle limit. At small Kb for the DP

model, k increases, but only from k B 1 to 2 as Kl increases
from 1 to 103, suggesting the formation of small arches and
increased particle rigidity. However, Kl c 103 is required to
reach k B 3.5 as found in the rigid-particle limit for the DP
model when increasing the bending energy. In addition, we
find that the prefactor in eqn (1) (with N = 1600) CB 0.42 for all
Kb and Kl for the DP model and all Esp for the SP model in the
l - N limit, emphasizing that C is weakly dependent on
particle deformability in this limit. However, C decreases by a
factor of B2 over the range of stiffnesses that we consider in
the l - 0 limit as shown in Appendix D. We show the system
size dependence of the prefactor in Appendix C.

For hopper flows with l - 0, the increase in the offset k is
much less pronounced. (See Fig. 7(a) and (b)) For example, for
the 2D DP model, ko 1 for Kb = 10�2 and kB 1.5 for Kb = 102 in
the rigid-particle limit. Thus, large multi-particle arches do not
form frequently in l - 0 hopper flows. Again, C B 0.15 for all
Kb, Kl and Esp values (for N = 1600).

Fig. 4 Power-law scaling exponent b from eqn (1) plotted versus the ratio
of the viscous drag and kinetic friction coefficients l = z/m for hopper flows
in (a) 2D and (b) 3D. In 2D, we consider the SP model with Esp = 50
(triangles) and 103 (diamonds), frictional DP model with Kl = 10 and Kb =
10�1 (stars), and the frictionless DP model with Kl = 10 and Kb =
10�1 (crosses), Kl = 10 and Kb = 102 (squares), and Kl = 103 and Kb =
10�1 (asterisks), all with hopper opening angle yw = 901. In 3D, we consider
the SP model with Esp = 102 (circles). In (a and b), the solid curves are fits to
the sigmoid in eqn (14) and the horizontal dashed lines indicate b = 5/2,
3/2, and 1/2.

Fig. 3 (a) Volume flow rate Q (in units of Q0 = savg
3/t0) versus orifice

diameter w/savg for hopper flows in 3D using the SP model with Esp = 102

and either kinetic friction only, m=m0 ¼ 10
ffiffiffiffiffi
10

p
(circles), or viscous drag only,

z=z0 ¼ 1=
ffiffiffiffiffi
10

p
(crosses) for the dissipative forces. The solid curves in (a) are

fits to the power-law scaling relation in eqn (1). In (b), we show log10(Q/C)
versus log10(w/savg � k) for the data in (a), and the dotted and dashed lines
have slopes of 3/2 and 5/2, respectively.
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As discussed in the Introduction, numerous experimental
studies have shown that hopper flows of granular materials
with static and kinetic frictional forces posses b = d � 1/2 and
can be modeled quantitatively using the SP model. Here, we
present the results from quasi-2D experiments of hopper flows
of oil droplets in water. (See Fig. 8(a) and (b)) Unlike the
simulations where the number of particles in the hopper is
kept constant (by replenishing them when particles exit),

the number of particles in the hopper experiments decreases
with time. The hopper flow is driven by hydrostatic pressure,
which scales with the height hmax of the droplet pile pushing
out of the opening. Given the triangular geometry, this distance
can be related to the number of droplets N that have yet to exit,

hmax �
ffiffiffiffi
N

p
. Hence, the droplet flux can be written as

dN

dt
¼ c0

ffiffiffiffi
N

p
; (15)

where c0 has units of inverse time. This relation is experimen-
tally observed for a large range of N, with slight deviations as
the first B100 and last B100 droplets flow out due to transient
effects. Fitting the steady-state data gives values for c0, which we

non-dimensionalize as Q ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
savg=geff

p
. Fig. 8(c) and (d) show

the results for the area flow rate Q versus the orifice width
w/savg. While we have two experimental geometries, the results
for the area flow rate Q are identical. Q(w) can be fit by the
power-law scaling relation in eqn (1) with bB 0.49 and kB 1.5.
These values of b and k are consistent with the simulation

Fig. 6 (a) Power-law scaling exponent b versus the ratio l of the viscous
drag and kinetic friction coefficients for the frictionless DP model in 2D
with Kl = 10 and Kb = 10�1 for hopper opening angles yw = 901 (crosses),
601 (circles), 301 (asterisks), and 201 (triangles). The solid lines are fits to
eqn (14). The horizontal dotted and dashed lines indicate b = 3/2 and 1/2.
(b) Ratio of the average magnitude of the drag force on a particle to the
average magnitude of the kinetic friction force on a particle |F

-z|/|F
-m|

plotted versus yw for the systems in (a) at l = 10�2.

Fig. 5 Average speed of the particles in the direction of gravity at the
center of the hopper vg as a function of distance h/savg above the hopper
orifice in 2D using the SP model with Esp = 102 and dissipative forces (a)
with l - 0 that yield b = d � 1/2, (b) with l B lc that yield b B d � 1, and
(c) with l-N that yield b = d� 3/2. The arrows indicate increasing orifice
diameters from w/savg = 4.0 (blue) to 10.6 (red).
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results for l-N and EspB 102 for the SP model and the kB 1.5
contour for the frictionless DP model in Fig. 7(c). These results

emphasize that the kinetic frictional forces are weak relative to the
viscous drag forces in hopper flows of oil droplets in water. The
experimental uncertainty in measurements of the area flow rate Q
isB�2� 10�5savg

2/t0, which is slightly larger than the symbol size
in Fig. 8(c). This uncertainty is due to slight differences in the

Fig. 8 Oil-in-water emulsions flowing through a plastic hopper with
orifice diameter w B 180 mm and (a) 451/451 and (b) 451/01 wall geo-
metries. The droplets have an average diameter savg B 304 mm with a
polydispersity Ds/savg B 7%. (c) Area flow rate Q (in units of Q0 = savg

2/t0)
plotted versus orifice diameterw. The solid line provides a fit to eqn (1) with
b B 0.49, k B 1.47, and C B 1.6 � 10�4. (d) log10(Q/C) plotted versus
log10(w/savg � k) for the data in (c). The dashed line has a slope of 1/2. In (c
and d), we show data for both 451/451 (circles) and 451/01 (crosses) wall
geometries.

Fig. 7 (a) The offset k obtained from fits of the area flow rate Q(w) to
eqn (1) versus Esp (with yw = 901) using the 2D SP model in the l -N limit
(stars) and l - 0 limit (circles). The offset k for the 2D frictionless DP
model on a color scale (b) from 0 (blue) to 1.7 (red) in the l - 0 limit (with
yw = 901) and (c) from 1 (blue) to 3.5 (red) in the l-N limit (with yw = 901)
as a function of the perimeter Kl and bending Kb energy scales.
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droplet size distributions and in the initial conditions (how the
droplets are stacked into the hopper) for each w/savg.

5 Discussion and conclusions

In this article, we carried out extensive numerical simulations
of gravity-driven hopper flows of particulate media in 2D and
3D using the soft (SP) and deformable particle (DP) models.
We found several important results. First, we showed quite
generally that the flow rate Q versus orifice width w obeys the
power-law scaling relation: Q(w) = C(w/savg � k)b. While k
depends on the particle deformability and surface roughness,
the exponent b does not. Instead, b is controlled by the ratio of
the viscous drag to the kinetic friction coefficients l and
b varies continuously from b = d � 1/2 in the l - 0 limit to
b = d � 3/2 in the l - N limit. The midpoint bc(lc) can be
tuned by varying the hopper opening angle yw since it can alter
the ratio of the average viscous drag force to the average kinetic
friction force. The spatiotemporal dynamics of the flows differ
for systems with different power-law exponents. In particular,
the gradients of the velocity and pressure profiles vary more
strongly with the orifice width for b = d � 3/2 than those with
b = d � 1/2. We also found the offset k increases with particle
stiffness until k B kmax in the hard-particle limit, where
kmaxB 3.5 in l - N limit and kmax B 1.6 in l - 0 limit. In
addition, we showed that both the SP and DPmodels are able to
recapitulate the flow rate Q(w) from experimental studies of
quasi-2D hopper flows of oil droplets in water.

These results suggest a number of promising future research
directions. First, the current studies focused on nearly spherical
particles. How does the power-law scaling exponent b(l) depend
on particle shape? By changing the reference shape parameterA0

in the DP model, we can determine b(l) as a function of the
particle shape. Second, in the current studies, we included viscous
drag and kinetic friction forces between particle pairs, but we did
not include kinetic friction forces between the particles and the
side walls with kinetic friction coefficient n. How does the power-
law scaling exponent vary with the dimensionless ratios z/n and
m/v that quantify the dominant dissipative forces? Third, in the
current studies, we found that both the SP and DPmodels are able
to recapitulate Q(w) in the experimental studies of hopper flows of
emulsion droplets. However, in future studies, we seek a more
quantitative approach where the simulations can recover the
particle shapes during the hopper flows in experiments. To do
this, we will refine the model for surface tension in the DP model.
In addition, we will simulate hopper flows of emulsion droplets
in the intermittent and clogging regime for w B ksavg. In this
regime, we expect qualitatively different results for the SP and DP
models, since truly deformable particles can significantly change
their shapes, but maintain their volume, to alleviate clogs in
hopper flows.
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Appendix A

In this Appendix, we include more details concerning the
detection of contacts between frictionless deformable particles
in 2D. For frictionless deformable particles, the ith vertex on a
given particle m is modeled as a circulo-line made up of a
rectangular region with length lm,i plus a pair of half-circular
end caps with radius dm. Here, we describe how to calculate the
closest distance dn, jm,i between vertex i on particle m and vertex j
on particle n as shown in Fig. 9. We first find the line L that

includes the point -
rn,j and is perpendicular to

-

lm,i. If line L

intersects the line along
-

lm,i at a point between -
rm,i and

-
rm,i+1,

the closest distance between vertices i and j is the distance

between -
rn,j and the line along

-

lm,i, i.e. d
n; j
m;i ¼~rn; jm;i � n̂m;i as shown

in Fig. 9(a). In this case, the repulsive pair force from Uint is in
the direction of n̂m,i (perpendicular to the surface of particle m),
and therefore it is a frictionless interaction.51

Fig. 9 Schematic of the frictionless DP model to illustrate the contact
distance dn, jm,i between vertex i on particle m with position r

-
m,i and vertex j

on particle n with position r
-

n,j. l
-

m,i is the vector pointing from r
-

m,i to r
-

m,i+1

and n
-

m,i�l
-

m,i = 0. The definition of dn, jm,i depends on the location of the
intersection point P of the line along l

-

m,i and the line that is perpendicular
to l

-

m,i that includes r
-

n,j. If point P is between r
-

m,i and r
-

m,i+1, d
n; j
m;i ¼~rn; jm;i � n̂m;i

as shown in (a), otherwise dn; jm;i ¼ j~rn; jm; i j as shown in (b).
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If line L does not intersect the line along
-

lm,i at a point
between -rm,i and

-rm,i+1, the closest distance between vertices

i and j is dn; jm;i ¼ j~rn; jm;ij as shown in Fig. 9(b). Again, in this case,

the gradient of Uint is along r̂n, jm,i, and thus the repulsive
interaction force is frictionless.

Appendix B

In this Appendix, we show results for the area flow rate Q(w) in
the rigid-particle limit for both cases l - 0 and l - N. We
also show that conservation of total particle area is important
for accurately modeling the area flow rate in hopper flows of
soft and deformable particles in 2D. (Similar results are found
in 3D.) As discussed in Section 2, the SP model does not
explicitly model particle shape change, but instead mimics
particle deformability by allowing overlaps between neighbor-
ing particles. As a result, the SP model does not conserve total
particle area. In contrast, the DP model includes a term in the

shape-energy function to conserve particle area as particles
change their shapes. (See eqn (8)) However, in the large-Esp
limit for the SP model, where particle overlaps in SP model are
small, and in the large-Kb limit for the DP model, the area flow
rate Q(w) is same for these two models. As shown in Fig. 10,
Q(w) is nearly identical for the SP model with Esp = 105 and for

Fig. 10 Area flow rate Q (in units of Q0 = savg
2/t0) versus orifice width w/

savg for hopper flows in 2D using the SP model Esp = 102 (circles) and 105

(squares) and the frictionless DP model with Kl = 10 and Kb = 10�1 (crosses)
and Kl = 10 and Kb = 102 (asterisks) with (a) kinetic friction forces only
(m=m0 ¼ 10

ffiffiffiffiffi
10

p
, z = 0) and (b) viscous drag forces only (z=z0 ¼ 1=

ffiffiffiffiffi
10

p
, m= 0).

The solid curves are fits to the power-law scaling relation for Q(w) in
eqn (1). In the hard-particle limit, we find (a) CE 0.14 and kE 1.6 for l- 0
and (b) C E 0.42 and k E 3.4 for l - N.

Fig. 11 (a) Power-law scaling exponent b plotted versus the ratio of the
viscous drag to the kinetic friction coefficients l from the data in Fig. 4(a)
for the SP and DPmodels in 2D with yw = 901. We also show data for the SP
model in 2D with Esp = 20 (circles). (b) Schematic of the 2w � w
rectangular region in 2D over which the particle number density rn is
measured. (c) The power-law scaling exponent b0(l) obtained by fitting the
corrected area flow rate, Q0 = Qaeff/aavg to eqn (1).
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the frictionless DP model with Kb = 10
2 in the l- 0 and l-N

limits. For l - 0 with b = 3/2, the offset k E 1.6 in the hard-
particle limit, in close agreement with experiments of hopper
flows of frictional grains. For l-N with b = 1/2, the offset kE
3.4 in the hard-particle limit. Note that the offset k has different
values for l - 0 and l - N in the hard-particle limit, which
suggests that k is controlled by the flow dynamics and cannot
be determined by the hopper geometry alone.29,30

For extremely soft particles, the overlaps that occur in the SP
model are sufficiently large that they influence the hopper flow
dynamics. For example, in Fig. 11(a), we show the power-law
exponent b as a function of l for the SP model with Esp = 20 in
addition to all of the data in Fig. 4(a). For this data, the area
flow rate Q was calculated by counting the number of mass
points that flow past the orifice opening per unit time divided
by the particle areal mass density r. The power-law exponent
b(l) for the SP model with extremely large overlaps (Esp = 20)
deviates from all of the other data. We can correct Q(w) for the

SP model with large particle overlaps by determining the true
particle area flowing through the hopper orifice. To do this, we
consider a 2w � w rectangular region near the hopper orifice as
shown in Fig. 11(b) and measure the number density rn = N/A
in this region. The effective particle area in this region is

Fig. 12 (a) Power-law scaling exponent b versus the ratio of the viscous
drag and the kinetic friction coefficients l for the SP model in 2D with Esp =
50, yw = 901, and N = 800 (crosses), 1600 (circles), and 3200 (asterisks).
The horizontal dashed lines indicate b = 3/2 and 1/2. The solid line is a fit to
eqn (14). (b) Prefactor C in eqn (1) normalized by the value at N = 800
versus the system size N for the 2D SP model for both l - 0 (circles) and
l - N (stars).

Fig. 13 (a) Prefactor C in eqn (1) versus Esp (with yw = 901) for the SP
model in 2D in the l - N (stars) and l = 0 limits (circles). Area flow rate Q
(in units of Q0 = savg

2/t0) collapsed by plottingQ/C versus w/savg � k in the
(b) l - N limit for the SP model with Esp = 70 (crosses), 200 (circles), 600
(asterisks), and 1600 (triangles) and the (c) l = 0 limit for the SP model with
Esp = 50 (crosses), 100 (circles), 200 (asterisks), and 500 (triangles).

Soft Matter Paper



8084 |  Soft Matter, 2022, 18, 8071–8086 This journal is © The Royal Society of Chemistry 2022

aeff = 1/rn, and the corrected area flow rate is Q0 = Qaeff/aavg,
where aavg = (as + al)/2. In Fig. 11(c), we show the power-law
scaling exponent b0 obtained from fitting Q0 to eqn (1). We find
that the data from Fig. 4(a) (where the particle overlaps are
small) do not change and b0 = b. However, b0 for the SP model
with Esp = 20 shifts so that it falls on the rest of the data from
Fig. 4(a).

Appendix C

In this Appendix, we investigate how the power-law exponent
b(l) obtained by fitting Q(w) to eqn (1) depends on system size
for the SP model in 2D. In Fig. 12(a), we show b(l) for the 2D SP
model with Esp = 102 and yw = 901 for N = 800, 1600, and 3200.
We find that b is very weakly dependent on system size for the
2D SP model, and we expect similar results for the SP model in
3D. Based on our recent studies of jamming of deformable
particles, we expect similar weak system size dependence of b

for the 2D DP model.38,39 We also show the system size
dependence of the prefactor C in eqn (1) for the 2D SP model
in Fig. 12(b). C grows roughly linearly with system size, but the
slope is much weaker for systems with l - N.

Appendix D

In this Appendix, we investigate how the prefactor C obtained
by fitting Q(w) to eqn (1) depends on the stiffness Esp for the SP
model and the contractility Kl and bending stiffness Kb for the
DP model in 2D. In Fig. 13(a), we show C as a function of Esp for
the SP model in 2D in both the l-N and l = 0 limits. We find
that C is very weakly dependent on Esp in the l - N limit, but
decreases with increasing Esp until it reaches a plateau at
C E 0.15 in the l = 0 limit. We show that the flow rate for
different values of Esp can be collapsed by plotting Q/C versus
w/savg � k, as shown in Fig. 13(b) and (c). We find similar
results for the DP model for different values of Kl and Kb. C is

Fig. 14 Prefactor C in eqn (1) versus Esp (with yw = 901) for the DP model in 2D in the (a) l - N and (c) l = 0 limits. Area flow rate Q (in units of
Q0 = savg

2/t0) for the frictionless DP model with Kl = 10 and Kb = 10�1 (crosses), Kl = 10 and Kb = 10 (circles), and Kl = 103 and Kb = 10�1 (asterisks)
collapsed by plotting Q/C versus w/savg � k in the (b) l - N and (d) l = 0 limits.
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weakly dependent on Kl and Kb in the l - N limit, but
decreases with increasing Kl and Kb for l = 0. (See Fig. 14(a)
and (c).) Again, the flow rate can be collapsed by plotting Q/C
versus w/savg � k as shown in Fig. 14(b) and (d) for the DP
model in 2D.
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