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Abstract

We investigate the problem of combinatorial multi-
armed bandits with stochastic submodular (in
expectation) rewards and full-bandit feedback,
where no extra information other than the re-
ward of selected action at each time step ¢ is ob-
served. We propose a simple algorithm, Explore-
Then-Commit Greedy (ETCG) and prove that
it achieves a (1 — 1/e)-regret upper bound of
O(nzksT3 log(T)?2) for a horizon T, number of
base elements n, and cardinality constraint k. We
also show in experiments with synthetic and real-
world data that the ETCG empirically outperforms
other full-bandit methods.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem was first
introduced by [Robbins| [[1952]]. It formalizes challenging
sequential decision problems faced by many organizations,
including inventory selection, scheduling, work assignments
and team formation, multi-market ad campaigns, product
recommendation, crowd-sourcing, and investing. The deci-
sion maker selects an arm and observes reward that comes
from an unknown distribution at each round. The goal of
the decision maker is to maximize expected cumulative
reward over all rounds. The solution to classical MAB prob-
lem demonstrates the trade-off between exploration and
exploitation: should the agent try the arm that has not been
tried many times so far (exploration) or should stick with
the arm that performed well based on previous observations
(exploitation)?

The combinatorial multi-armed bandit (CMAB) problem
is an extension of the MAB problem. In this setting, the
decision maker selects a super arm composed of base arms
at each round, and observes a reward corresponding to the
selected super arm. If the decision maker only learns the

aggregated reward for the selected super arm, that feedback
is referred to as full-bandit. Otherwise, if the decision maker
learns additional information (e.g., individual rewards of
the base arms), the feedback is referred to as semi-bandit.
Furthermore, there are two common formalizations depend-
ing on the assumed nature of environments: the stochastic
setting and the adversarial setting.

In the adversarial setting, the reward sequence is generated
by an unrestricted adversary, potentially based on the his-
tory of decision maker’s actions [Auer et al., 2003]]. In the
stochastic environment, the reward of each arm is drawn in-
dependently from a fixed distribution [Auer et al.,[2002]. For
many bandit problems, the stochastic setting is a special case
of the adversarial setting. For those problems, algorithms
designed for the adversarial setting maintain the theoretical
performance guarantees when applied to problems in the
stochastic setting, though typically they empirically under-
perform algorithms specifically designed for the stochastic
setting [Lattimore and Szepesvari, 2020]. Moreover, the
strategies designed for the stochastic setting may have sim-
pler designs and be computationally more efficient. Thus,
developing efficient algorithms specializing in stochastic
setting is important. Furthermore, as we will later describe,
the stochastic setting we consider in this paper is not a spe-
cial case of the adversarial settings that has been studied
in the literature. Specifically, past research in the adversar-
ial setting assume the reward function has extra properties
that, when specialized to the stochastic setting, are overly
restrictive.

When the reward depends non-linearly on the ground set,
additional challenges have been added to develop efficient
algorithms. For example, opening additional restaurants in
a small market may result in diminishing returns due to
market saturation. Such diminishing returns can be naturally
modeled with the class of submodular set functions. A set
function f : 2 — R defined on a finite ground set ) is
said to be submodular if it satisfies the diminishing return
property: forall A C B C Q, and z € 2\ B, it holds that
F(AU{z})—f(A) > f(BU{x})—f(B) [Nemhauser et al.,
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1978]. In this paper, we focus on the problem of combina-
torial multi-armed bandits with stochastic submodular (in
expectation) rewards and full-bandit feedback. We further
assume that the reward function is monotone: a submodular
set function f : 2 — R is called monotone if for any
A C BC Qwehave f(A) < f(B).

1.1 MOTIVATING EXAMPLES

Influence Maximization Consider a case of social net-
work where a company developed an application and wants
to market it through the network. The best way to do this
is selecting a set of highly influential users and hope they
can love the application and recommend their friends to use
it. Influence maximization is a problem of finding a small
subset (seed set) in a network that can achieve maximum in-
fluence. This subset selection problem in social networks is
commonly modeled as an offline submodular optimization
problem [Domingos and Richardson, 2001}, [Kempe et al.,
2003}, |Chen et al.,[2010]]. Algorithms and heuristics for solv-
ing this problem often assume knowledge of the network
and diffusion model. A recent line of research has gener-
alized the problem as a multi-armed bandit problem (with
extra feedback) where the knowledge of the network and
diffusion model is not required [Lei et al., 2015, Wen et al.}
2017, [Vaswani et al.l [2017, |Li et al., 2020, [Perrault et al.,
2020].

Recommender Systems When recommending bundles
of items, such as movies, news articles, or consumer prod-
ucts, considering the estimated individual item rankings
alone may be suboptimal. The system should recommend
diversified items to maximize the coverage of information
that users are interested, in order to get as much positive
feedback as possible. This is motivated by recommending
items with redundant information leads to diminishing re-
turns on utility. This problem of sequentially recommending
sets of items to users has been studied through the frame-
work of contextual submodular combinatorial bandits [Qin!
and Zhu, 2013, 'Yue and Guestrin, 2011, Takemori et al.,
2020].

Crowdsourcing and Crowdsensing Crowdsourcing in-
volves batches of simple tasks being sequentially assigned
to workers with unknown quality and speed. For example,
workers may be recruited to manually label images in a
database. Crowdsensing involves sequentially collecting
data from large numbers of users in different locations. For
instance, mobile phone accelerometer data can help identify
potholes in city roads. Instances of these problems often
involve sequential decision making of assigning/selecting
subsets of workers/users with unknown qualities and under
a budget. There is a line of research on this topic using the
framework of combinatorial multi-armed bandits with sub-
modular rewards [Zhang and van der Schaar, 2012} Nushi

et al., 2016} |Song and Jin, 2021].

1.2 OUR CONTRIBUTION

The main contribution of this paper can be summarized as
follows:

* We propose Explore-then-Commit Greedy (ETCG),
the first algorithm designed for stochastic CMAB prob-
lems with a submodular reward function (in expecta-
tion) and full-bandit feedback. It is procedurally simple
and has low storage and per-round computational com-
plexity.

* We prove that ETCG achieves O(n® k3 T3 log(T)?)
expected cumulative (1 — 1/e)-regret.

* We show ETCG outperforms other full-bandit methods
on experiments with synthetic and real-world data.

1.3 RELATED WORK

We now briefly discuss related works from several research
topics that overlap in multiple aspects with the problem we
study. Table [T]lists related works and enumerates aspects
of the problem setup including properties of the reward
function, the feedback model, and regret type. We let n
denote the number of base arms, % the maximum cardinality,
and T the time horizon.

Adversarial The closest related works are those for ad-
versarial CMAB with submodular rewards, full-bandit feed-
back, and cumulative regret. In the adversarial setting, the
environment chooses a sequence of monotone and submod-
ular functions {f1, ..., fr}. This is incompatible with our
setting, since we only require the set function f; to be mono-
tone and submodular in expectation. Regret in the adversar-
ial setting is also different—the decision-maker competes
against a maximizing action over the sum of the sequence,

(1 —1/e)maxseca Zthl fi(a).

We nonetheless consider the following regret bounds to be
relevant benchmarks for the stochastic setting.

Streeter and Golovin| [2008] proposed an algorithm that
achieves O(k?(nlogn)/3T%/3(log T)?) (1 — 1/e)-regret.
The method we will propose, ETCG, will have a lower re-
gret bound, by a factor of k£2/3 (ignoring log terms)./Golovin!
et al| [2014] later proposed an algorithm that achieves
O(k?/3n?/3(logn)'/3T?/3) (1 —1/e)-regret. Recently, Ni-
azadeh et al.| [2021]] proposed a new algorithm for the
adversarial setting that achieves O(kn?/3(logn)'/?T?/3)
(1 — 1/e)-regret. The method we will propose, ETCG, will
have a much lower regret bound than those two, by a factor
of n'/3 for both (ignoring log terms), for problems where
there are many base arms relative to the cardinality con-
straint (i.e. n > k), such as social influence maximization.
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Reward

Feedback Regret

Submodular ~ Stochastic  Full-Bandit Cumulative (1 — 1/e) Bound
Streeter and Golovin| [2008]] v v v O(ns k2T3)
Golovin et al|[2014] v v v O(ni k3 T3)
Niazadeh et al.[[2021] v v v O(ni k TF)
Agarwal et al[[2021b)] v v v O(nz k2 T32)
Agarwal et al.|[2021a]] v v v O(ns k= T3 )
Chen et al[[2018] v v v O(T=)t
Du et al| [2021] v v
ETCG (ours) v v v v O(ns k3 T?)

Table 1: Table of select related works, enumerating which problem and performance aspects are shared with our proposed
ETCG. The notation O(-) drops log terms. T[Chen et al., 2018] require additional smoothness properties of f and the

dependence on k£ and n is unknown.

Semi-bandit To our knowledge, all prior works on
stochastic, combinatorial multi-armed bandits with submod-
ular rewards assume semi-bandit feedback. In this setting,
the decision maker receives additional feedback. For ex-
ample, in [Lin et al.| [2015]], the decision maker receives
not only the reward of the chosen subset but also learns
marginal gains of its elements. Several methods have been
proposed that solve a continuous optimization problem as a
surrogate for the submodular set function and require gra-
dient estimates through extra feedback [Zhang et al.,[2019,
Chen et al., 2018, |Zhu et al., |2021]]. The “linear submod-
ular bandit” problem involves maximizing a linear com-
bination of known submodular functions, with marginal
gains provided as extra feedback [Yue and Guestrin, |2011}
Yu et al., 2016} Takemori et al., |2020]]. Research on the
application of online influence maximization use extra feed-
back about the nodes and/or edges in the diffusion tree [Lei
et al.l 2015, Wen et al.,[2017) |Vaswani et al., 2017, |Li et al.,
2020, [Perrault et al., [2020]. Streeter and Golovin| [2008]]
and Niazadeh et al.|[2021]] also proposed algorithms for the
adversarial setting using semi-bandit feedback, improving
their respective (1 — 1/e)-regret bounds to O(1/kT log(n))

and O(k+/T log(n)), respectively.

Continuous Submodular There is an active area of re-
search in (continuous) optimization for functions exhibiting
diminishing returns properties analogous to (discrete) op-
timization of submodular set functions. Several methods
have been proposed in the bandit setting, varying in the
environment (adversarial/stochastic) and feedback model
[[Chen et al.| 2018, 2020, |[Zhang et al., 2019, |Hassani et al.,
2017, Mokhtari et al., [2020, [Hassani et al., 2020, [Zhang
et al., 2020]. Extensions of these methods to problems with
discrete actions have been proposed, but require additional
assumptions, semi-bandit feedback, or expensive sampling
routines to estimate gradients.

Pure Exploration Instead of evaluating algorithms in
terms of cumulative regret, the decision maker may seek
to only evaluate the regret of the action chosen at time 7,
allowing for more aggressive exploration, or to select an
action within a pre-set level of confidence as quickly as
possible. Several works have investigated this “pure explo-
ration” setting with semi-bandit feedback [Chen et al.|[2016|
Mokhtar1 et al., 2018l [Merlis and Mannor, 2019, Jourdan
et al.} 2021] and recently for full-bandit feedback [Du et al.,
2021] (for a special reward function).

Non-submodular There are prior works for combinato-
rial MAB with stochastic rewards and full-bandit feedback,
but the classes of the reward functions considered do not
include submodular functions. In particular, there are works
for linear reward functions [Dani et al., 2008| Rejwan and
Mansour, |2020] and Lipschitz reward functions [[Agarwal
et al., 2021albf]. For those classes of reward functions con-
sidered by Rejwan and Mansour| [2020], |Agarwal et al.
[2021alb], the optimal action (best set of £ arms) is to use
the k individually best arms; that property does not hold for
submodular rewards.

2 PROBLEM STATEMENT

In this section, we will formally present the problem we will
study. We consider sequential decision-making problems
with a fixed time horizon 7', where at each time step ¢, the
learner selects a subset (action) S; C €2 with cardinality
at most k. Let 2 be the ground set of base arms, and let
n = |Q| denote the number of arms. We will use the ter-
minologies subset and action interchangeably throughout
the paper. Let S = {S|S C Qand |S| < k} denote the
set of all allowed subsets at any time step. After the subset
Sy is selected, the learner receives reward f;(S;). We as-
sume the reward f; is stochastic, bounded in [0, 1], and i.i.d.
conditioned on a given subset. Define the expected reward
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function as f(S) = E[f:(S)]. We assume f(.5) to be sub-
modular and monotonically non-decreasing. The %oal of the
learner is to maximize the cumulative reward ), _, f;(S).
To measure the performance of the algorithm, one common
metric is to compare the learner to an agent with access to a
value oracle for f. Let S* = argmaxg. g/<, f(S) denote
the optimal solution. Maximizing a monotone submodular
set function under a cardinality constraint is NP-hard even
with a value oracle. The best achievable approximation ratio
with a polynomial time algorithm is 1 — 1/e [Nemhauser
et al., [1978]]. Thus, we compare the learner’s cumulative
reward to (1 — 1/e)T f(S*) and we denote the difference
as the (1 — 1/e)-regret Rq_1 /¢, 7

T
Riyjeiri= (L= 2)TH(S7) = S fl8). ()
t=1

Note that the (1 — 1/e)-regret Ry_; Je,T 18 random, depend-
ing on the rewards and subsets chosen. In designing an algo-
rithm, we will focus on minimizing the expected cumulative
(1 —1/e)-regret

T
]E[Rl—l/e,T] = (1 - %)Tf(S*) -E [Z ff(Sf) ) (2)

where the expectation is over both the environment the se-
quence of actions. For ease of notation, we write R for
R1-1/e,7 throughout this paper.

Remark 2.1. For the experiments in Section[5] we will not
know S* and so will not be able to compute the (1 — 1/e)
regret (2)). We will instead compute an upper bound. We will
compare ETCG and baselines against T" times the expected
value f(S&'4) of the solution S&'¢ returned from an offline
(greedy) approximation algorithm [Nembhauser et al., |1978|.
Since f(S&) > (1 — 1)f(S*), the expected cumulative
regret with respect to S8 upper-bounds (). When the
inequality is strict, f(S8™) > (1 — 1) f(S*), itis possible
that the expected cumulative regret (2)) is sub-linear in the
horizon 7" while the expected cumulative regret with respect
to S84 is linear in the horizon 7.

3 ETCG ALGORITHM

In this section, we present our proposed algorithm, Explore-
Then-Commit Greedy (ETCG). The pseudo code for ETCG
is presented in Algorithm[I] Our algorithm adds base arms
to a super arm (subset of base arms) over time greedily
until the cardinality constraint is satisfied and then exploits
that super arm. Let S(*) denote the super arm when we
have selected 7 < k base arms. Our procedure begins with
the empty set, S(©) = (. After fixing a subset S~ with
1 — 1 arms, our procedure explores base arms to add to
SG=1) for an interval of time we refer to as phase i. Our
procedure repeats this process until the cardinality constraint
k is satisfied.

Algorithm 1 Explore-then-Commit Greedy (ETCG)

Input: set of base arms (2, horizon 7', cardinality con-
straint k
Initialize S < (), n + ||

2/3
Initialize m + ’V(M_Tzn ﬁ%) -‘
for phasei € {1,...,k} do
for arma € Q\ SU~1) do
Play S¢~D U {a} m times
Calculate the empirical mean f(S¢~1 U {a})
end for
@i 4= arg MaX,co\ g6i-1) f(SE=D U {a})
S0 S6D'U {a,}
end for
for remaining time do
Play action S(*)
end for

Let 7; denote the time step when phase ¢ finishes, for i €
{1,---, k}. For notational consistency, we also denote Ty =
0 and Tyy1 = T. Let f;(S) denote the empirical mean
reward of set S up to and including time ¢. Let

S;={S0VU{a}: acQ\SEV}

denote the set of actions considered during phase <. Each
action consists of the super arm S¢~1) decided during the
last phase and an additional base arm. Each action S € S;
will be played the same number of times; let m denote
that number. The choice of m will be optimized later to
minimize regret. At the end of phase i € {1,...,k}, ETCG
will select the action that has the largest empirical mean,

a; = argmax fp,(SOY U {a}), )
a€N\SGE—1)

and include it in the super arm S = SC~1U{a;}. During
the final phase, the algorithm exploits S(*); it plays the same
action S; = S fort € {T}, +1,---,T}.

We note that for the special setting of deterministic rewards,
the choice (3) corresponds to the classic offline greedy ap-
proximation algorithm proposed by Nemhauser et al.|[1978]].
When the rewards are stochastic, the actions selected by
ETCG may differ from those that the greedy algorithm
[Nemhauser et al., [1978]] would choose using a value oracle
for the set function f of expected rewards.

ETCG has low storage complexity and per-round time-
complexity. During exploitation, for ¢ € {7} +
1,...,Tk+1}, ETCG only needs to store the indices of the
k base arms and does not need any computation. During ex-
ploration, for t € {1, ..., Ty}, ETCG just needs to update
the empirical mean for the current action at time ¢ and store
the highest empirical mean so far in the current phase ¢ and
its associated base arm @ € 2\ S*). Thus, ETCG has O(k)
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storage complexity and O(1) per-round time complexity.
For comparison, the algorithm proposed by |Streeter and
Golovin| [2008] for the adversarial full-bandit setting uses
O(nk) storage complexity and and O(n) per-round time
complexity.

Remark 3.1. When the time horizon is not known, we can
use geometric doubling trick to extend our result to an any-
time algorithm. Essentially, we pick a geometric sequence
T; = Ty2! fori € {1,2,---}, where Ty is a large enough
number to let the algorithm initialize, and run our algorithm
within time interval T;4; — T; with a full restart. We refer
to the general detailed procedure in Besson and Kaufmann
[2018]]. From Theorem 4 in|Besson and Kaufmann|[2018]],
we can show that the regret bound conserves the original
T2/310g(T)*/? dependence with only changes in constant
factors.

4 REGRET ANALYSIS

In this section, we analyze the regret for Algorithm[I] We
begin by stating the main theorem, which bounds the cumu-
lative expected (1 — 1/e)-regret:

Theorem 4.1. For the sequential decision making prob-
lem defined in Section 2| with T > n(k + 1), the ex-
pected cumulative (1 — 1/e)-regret of ETCG is at most
O(n3k3T3 log(T)%).

The detailed proof is in the supplementary material. We next
briefly walk through the proof, highlighting some unique
steps.

Since for each phase 4, we play each action S~V U {a} €
S; exactly m times, we consider the equal-sized confi-
dence radii rad := +/2log(7T)/m for all the actions
S~ U {a} € S; at the end of phase 7. Denote the event
that the empirical means of actions played in phase ¢ are
concentrated around their statistical means as

&= ﬂ {’f(SU{a})—f(S’U{a})‘ <rad}. 4)

Su{a}leS;

Then we define the clean event £ to be the event that the
empirical means of all actions played up to and including
phase k are within rad of their corresponding statistical
means:

E=&N-NE. 4)
Although the &;’s are not independent, by conditioning on
the sequence of selected subsets {S(®, M) . S(*)1 and
using the Hoeffding bound, we show & happens with high
probability. We then use the concentration of empirical
means (@) and properties of submodular set functions to
show the following important lemma.

Lemma 4.2. Under the clean event &, for all i €
{1’2’... ,k},

FSD) = F(8U0) = 1 [£(5) = F(SUD)] — 2rad.

| =

This lemma (Lemma in the supplementary mate-
rial) identifies a lower bound of the expected marginal
gain f(S®) — f(SC~1) of the empirically best action
SG) at the end of phase i. The sequence of subsets
{8 g . S} that ETCG picks does not necessar-
ily match the sequence chosen by the offline greedy approx-
imation [Nemhauser et al., |1978]] using a value oracle for
the expected reward function f. Even though ETCG may
select a different sequence, Lemmaf4.2]ensures the expected
marginal gain is not too small. As a corollary of Lemma[4.2]
using properties of submodular set functions and unraveling
the recursion induced by Lemma|4.2, we can lower bound
the expected value of ETCG’s chosen set S *) of size k,
which is used for exploitation in phase k + 1:

Corollary 4.3. Under the clean event £,

F(5®) > (1 1)f(87) - 2krad. ©)

€

This corollary appears as Corollary [I.4]in the supplementary
material in Section

Using Corollary we can break up the expected (1 —
1)-regret (@) conditioned on the clean event £ into two
parts, one part for the first k phases and one part for the
exploitation phase,

; t=1
N ((ERVESEENEN)
t=1
k T;
RS ((1 - )58 - E[f(st)])
i=1t=T;_1+1

First k& phases (exploration)

s ((1—1>f<s*>—E[f<s<k)>1). @

e

Phase k + 1 (exploitation)

Recall that in phase %, each of the n — (i — 1) actions in S; is
played exactly m times, meaning T; — T;_1 = m(n—i—+1).
For each action S; played during phase 4, that is for ¢ €
{T;—1+1,---,T;}, since SE=1) 8, by monotonicity of
the expected reward function f we have f(SC~1) < £(S;).
Thus we can upper bound the expected regret E[R(T)|&]

1545



incurred during the first & phases (first term of (7)) as

k T 1
> ¥ (a-Dire)-slrs)
i i—1+1

- E[f<s<“>>1) o ®

=1
= k(E[f(S™)] - E[£(S?)] + 2krad) (10)
< k(14 2krad), (11)

where (9) follows by applying Lemma[4.2]and taking expec-
tation, (I0) follows by simplifying a telescoping sum, and
(M) by E[f(S™)] < 1 and E[f(S)] = 0.

We can upper bound the expected regret E[R(7")|€] incurred
during the exploitation phase (phase k + 1; second term of

() by applying Corollary 43| as

3 (<1 ~Yypien - E[f(S““’)])

e
t=Tr+1

T
< > 2krad < 2kTrad. (12)
t=Tr+1

Combining the upper bounds (II)) and (I2) and then opti-
mizing over the number of times m each action is sampled
during exploration, we get

E[R(T)[€]
< Ansk(T+/210g(T))5 (1 + 2k+/210g(T))®
= O(n3k3T3 log(T)?). (13)

We then show that because the clean event £ happens with
high probability, E[R(7")] also satisfies (I3), completing the
proof.

Lower bounds: For the setting we explore in this paper,
with stochastic CMAB with submodular expected rewards

and full-bandit feedback, it remains an open question if
O(T"/?) expected cumulative (1 — 1/e)-regret is possible
(ignoring n and k dependence). For the special sub-class
of linear reward functions, Q(7/2) is known [Dani et al.,
2008].

S EXPERIMENTS

We next evaluate our proposed algorithm ETCG on both
synthetic data and real world data.

For the experiments, instead of (1 — 1/e) regret Equa-
tion (I), which requires knowing S*, we compare the cu-
mulative rewards achieved by ETCG and baselines against
T f(S58"), where S8 is the solution returned by the offline
(1 —1/e)-approximation algorithm proposed by Nemhauser
et al.| [1978]]. Recall from Remark that T f(Se) >
(1 —1/e)Tf(S*), so T'f(S%) is a more challenging refer-
ence value.

5.1 BASELINE METHODS

We use three algorithms designed for CMAB with full-
bandit feedback as baselines.

¢ Online Greedy with opaque feedback model (OG®)
[Streeter and Golovin, [2008]] This algorithm is de-
signed for the adversarial setting with submodular re-
wards. The adversary model is oblivious, meaning the
sequence of monotone submodular reward functions
is fixed in advance. OG® utilizes k subroutines of ran-
domized weighted majority algorithms [[Littlestone and
Warmuth, |1994] to select actions, where k is the car-
dinality constraint. At each time step, the algorithm
explores with probability v and exploits with proba-
bility 1 — . During exploration, it randomly picks an
randomized weighted majority subroutine to select a
base arm to explore. OG® has an O(T2/3) theoretical
guarantee for the adversarial setting. We refer to our
detailed implementation and parameter selection in
Section

« CMAB-SM [Agarwal et al.| 2021a] This algorithm
assumes the expected reward functions are Lipschitz
continuous functions of individual arm rewards. The
algorithm divides all n base arms in to groups, sorts
arms within each group, and then merges groups one
by one to obtain the best k arms. CMAB-SM has an
O(T?/3) theoretical guarantee.

¢ DART [Agarwal et al.| 2021b|] DART is a successive
accept-reject style algorithm designed for Lipschitz re-
ward functions that have an additional property related
to the marginal gains of the base arms. DART has an
O(T*/?) theoretical guarantee.

1546



5.2 EXPERIMENTS WITH SYNTHETIC DATA

We begin with experiments with two special cases of sub-
modular set functions. The first one is mean (linear) func-
tions of individual arm rewards f;(S) = >, ¢ ft({a})/k.
The second is a stochastic weighted set cover, which can
be viewed as a simple model for product recommendations.
Let n denote the number of products and each product be-
longs to exactly one of c different categories. These product
categories also have different (expected) values given by
the weight vector w. The expected instantaneous reward
is defined as the average (over cardinality k) weight of
the categories covered by a chosen set of up to k prod-
ucts. With C; denoting indices of arms belonging to cate-
gory i and w,[] denoting the instantaneous weight of cat-
egory ¢ at time ¢, and 1. denoting the indicator function,
fi(S) = £ >°7_; wi[i]1s q cy20- This reward function is
monotone and submodular. Notice that for these two types of
reward functions, the offline greedy solution is the optimal
solution so we are actually comparing against the optimal
solution in the results.

5.2.1 Experiment Details

For both setups, we use n = 20 base arms. The cardinality
constraint is £k = 4. We run experiments on different time
horizons T € {102,103,10%,105,10°}. For each horizon
T and reward function type (linear or weighted cover), we
run each method 10 times.

For the linear reward function, for each run we first gen-
erate expected rewards {f({a})}acq for individual arms

randomly f({a}) "% 24([0.1,0.9]). For each arm a € Q,
the instantaneous reward f;({a}) at time ¢ is the expected re-
ward plus noise, fi({a}) = f({a}) + €4, where the noises
{€a,t}aca,1<i<T are i.i.d. and follow a truncated normal
distribution with mean 0 and standard deviation 0.1 within
interval [—0.1,0.1] (so all instantaneous rewards f;(-) are
within the interval [0, 1]).

For the weighted cover problem, we used ¢ = 4 categories
with [6, 6, 6, 2] products respectively. The stochastic weights
for each category ¢ = 1,2, 3,4 at time ¢ are drawn from a
uniform distribution w[i] ~ U([0,¢/5]).

5.2.2 Results and Discussion

Figures|Ta]and [Tb|depict cumulative regret curves for ETCG
(in blue) and baselines for different horizon 1" values for
the linear and weighted cover problems respectively. The
standard deviation is also represented by error bars in the
plots, though some of them might be hard to notice since
the values of them are small. Figures [Ic|and [Id] depict in-
stantaneous rewards over a horizon T = 10° for linear and
max rewards respectively. The curves are averaged over the
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Figure 1: (a) and (b) are comparison results for cumulative
regret as a function of time horizon 7'. (¢) and (d) are the
moving average plot with window size 100 of instantaneous
reward as a function of ¢. The expected reward used in
(a) and (c) is linear, and weighted cover reward is used in
(b) and (d). The gray dashed lines in (a) and (b) represent
y = aT?/3 for various values of a. The gray dashed line
in (c) and (d) represents the value of the optimal solution
(averaged across runs).

10 runs. The shaded area is the standard deviation for each
method. The instantaneous reward curves for all methods are
smoothed with a moving average with window size 100. The
gray dashed lines in Figures and represent y = a7'?/3
for various values of a, corresponding to cumulative regret
curves of O(T?/3).

Results-Linear Recall that ETCG, OG°, and CMAB-SM
all have O(T'?/3) regret (for their respective settings, which
include linear functions). DART has O(T"/2) regret for this
setting.

In Figure[Ta] we can see ETCG (in blue) outperforms OG®
(in orange) and DART (in red), and shares similar perfor-
mance with CMAB-SM (in green). Over the horizons exam-
ined (up to 7' = 10%), OG°’s cumulative regret appears to
grow faster than 7%/3 (i.e. the curve’s slope appears steeper
than 2/3 on a log-log plot). One of the major reasons for
this is that OG® explores actions (including actions will
cardinality smaller than k) with a constant probability. Fig-
ure [Lc| shows that behavior also results in larger standard
deviation area in the instantaneous reward curve and slower
improvement in its instantaneous rewards.

1547



Results—Weighted Cover Figure [Ib|shows the cumula-
tive regret curve for the weighted cover problem. ETCG (in
blue) outperforms all baseline methods by a large margin
for all time horizons. Similar to what we have mentioned
in linear case, we believe that OG® (in orange) performs
poorly in part due to time spent in exploration.

DART’s cumulative regret (in red) empirically grows as
O(T°9%), much faster than ETCG’s growth of O(T°-58) <
O(T?/3) (we empirically estimated the slopes of the regret
curves for these methods on the log-log scale). CMAB-SM’s
cumulative regret curve (in green) grows almost as fast as
DART’s, indicating CMAB-SM and DART fail to select
a good action. They work well in the linear case mainly
because the assumptions for ETCG, CMAB-SM and DART
are all satisfied, so the regret bound would hold. However, in
weighted cover problem, unlike linear function, the reward
function is not simply a function of individual base arm
rewards, a property used by DART and CMAB-SM. The
reward function exhibits arm set dependence.

5.3 EXPERIMENTS WITH REAL WORLD DATA

We next run experiments for the application of social net-
work influence maximization over a portion of the Facebook
network graph. While there are prior works proposing algo-
rithms for influence maximization bandit problems, the state
of the art (e.g., [Wen et al.,|2017]]) presumes knowledge of
the diffusion model (such as independent cascade) and, more
importantly, extensive semi-bandit feedback on individual
diffusions, such as which specific nodes became active or
along which edges successful infections occurred, in order
to estimate diffusion parameters. For social networks with
user privacy, this information is not available.

5.3.1 Data Set Description and Experiment Details

We next conduct experiments on an influence maximization
problem using a portion of the Facebook network [Leskovec
and Mcauley| [2012]]. To facilitate running multiple experi-
ments for different horizons, we used the community detec-
tion method proposed by |Blondel et al.| [2008]] to detect a
community with 534 nodes and 8158 edges. The diffusion
process is simulated using the independent cascade model
[Kempe et al.,|2003]], where in each discrete step, an active
node (that was inactive at the previous time step) indepen-
dently attempts to infect each of its inactive neighbors. We
used uniform infection probabilities (0.1 for each edge). For
each horizon T € {2 % 10*,4 % 10%,...,10%}, we tested
each method ten times.

5.3.2 Results and Discussion

Figures [2a] to [2c| show average cumulative regret curves for
ETCG (in blue) and baselines for different horizon 1" values

when the cardinality constraint k is 4, 8 and 16, respectively.
The shaded areas depict the standard deviation. The figure
axes are linearly scaled, so a linear cumulative regret curve
corresponds to (linear) O(T') cumulative regret.

ETCQG significantly outperforms OG®° (in orange). Over the
horizons tested, OG®’s cumulative regret (averaged over ten
runs) appears to grow linearly with 7". We saw in Section[5.2]
that even for much simpler reward functions and with few
arms n and small cardinality k, OG® performed poorly.

ETCG outperforms CMAB-SM (in green) for all time hori-
zons and cardinalities, with significant gaps between ETCG
and CMAB-SM for smaller k. From Figures 24 to
CMAB-SM’s performance appears fairly stable across in-
creasing cardinalities (though note limits of y-axes differ)
while ETCG’s regret curve appears to grow (relative to oth-
ers). For a fixed horizon 7', increasing k means more phases,
which (for this problem with large n) means more time ex-
ploring overall but less time in any one phase, so the arms
selected may not be as good. This phenomenon is visually
apparent in the instantaneous reward plots Figures [2d]to [21]
In Figurewith k = 4, for instance, each of the four phases
of ETCG’s exploration are visually distinct, and exploita-
tion begins around ¢ = 20000. In Figure [2f| with k£ = 16,
however, each of the sixteen phases of ETCG’s exploration
are shorter and exploitation begins around ¢t = 35000.

ETCG and DART (in red) have similar performance for
small time horizons. However, DART’s cumulative regret
curve has a steep jump which make the performance signif-
icantly worse. We attribute these jumps to the exponential
epochs lengths considered in DART with number of epochs
[logo(KT/Nlog(NT))|. This creates a non-smooth be-
havior in the regret growth of the DART algorithm.

Figure[2d| Figure 2e]and Figure 2f] shows instantaneous re-
wards over a horizon 7' = 10° for corresponding cardinality
constraints. Again curves for all methods are smoothed with
a moving average with window size 100. Clearly we can see
that ETCG has the fastest convergence over all methods. On
the other hand, the set of size k that is chosen by ETCG is
worse that those of CMAB-SM and DART, since the latter
two methods requires longer time to explore. We can also
attribute the worse performance when & gets larger to the
larger k term in the regret bound.

6 CONCLUSION

In this paper, we investigate the problem of combinatorial
multi-armed bandits in stochastic setting with expected re-
wards being submodular, where the agent can choose up
to k out of n» arms in each time step and receives only the
aggregated reward. We proposed a simple algorithm ETCG,
and showed that the algorithm is efficient both theoretically
and empirically. We showed that it can achieve O(T'3 )
(1 — 1/e)-regret, which is the first theoretical regret bound
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Figure 2: (a), (b) and (c) are comparison results for cuamulative regret as a function of time horizon 7. (d), (e) and (f) are the
moving average plot with window size 100 of instantaneous reward as a function of ¢. The gray dashed lines in (d), (e) and
(f) represent expected rewards for the action chosen by an offline greedy algorithm.

in stochastic, full-bandit, submodular reward settings, and is
comparable to guarantees in adversarial settings evaluated
in[Streeter and Golovin| [2008] and [Niazadeh et al.| [2021]].
We empirically showed that it outperforms other baselines
on synthetic data and on a social influence maximization
network.
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1 PROOFS

We will separate the proof of Theorem 4. 1|into two cases. The first case is for when the clean event £ defined in Section
happens, which we will show in Lemma|[I.2]happens with high probability. Under the clean event, we will prove important
preliminary results, namely Lemma [T.3]and Corollary [I.4] These will establish that even though ETCG, using random
rewards, may pick a different sequence of subsets than an offline greedy algorithm [Nemhauser et al.,|[1978] using a value
oracle for the expected reward function f, ETCG’s chosen set of size k£ will nonetheless be near-optimal. The second case is
when the complementary event happens, which occurs with low probability.

This proof structure is analogous to the standard MAB proof for explore-then-commit strategies (see for instance, Section 1.2
in [Slivkins| 2019]]). However, unlike for standard MAB problems, ETCG makes sequences of decisions during exploration.
Furthermore, the combinatorial action space and non-linear reward function make the problem challenging. Even in the
special setting of deterministic rewards, the standard MAB problem becomes trivial (finding the largest of n base arms)
while maximizing a submodular function with a cardinality constraint is NP-hard [Nemhauser et al., |1978]].

1.1 PRELIMINARY

We first introduce some new notations and lemmas that are useful in the analysis. Recall from Section 2] that for an action
S € S, f:(S) denotes a (random) reward at time ¢, f(.S) denotes the expected value for action S, and f;(S) denotes the
empirical mean of rewards received from playing action .S up to and including time ¢. In the following, we will drop the
subscript ¢ from the empirical mean, writing f(.S) when it is clear from context that action S has been played m times.
Also recall that S denotes the set of size i € {1,...,k} chosen after finishing phase i, and by the greedy structure of
Algorithm[1] = §© ¢ M) < ... ¢ S®). This sequence of subsets that ETCG picks does not necessarily match the
sequence chosen by the offline greedy approximation [Nemhauser et al.l [1978]] using a value oracle for the expected reward
function f. Even though ETCG may select a different sequence, we will later show in Lemma|[T.3|that with high probability,
ensures the expected marginal gain is not too small.

Now we define events that are important in our analysis. Recall that f(S7~1) U {a}) is the empirical mean of the m
rewards from playing action S(~Y) U {a} in phase i. For each subset S"~1) U {a}, the m rewards are i.i.d. with mean
f£(S=Y U {a}) and bounded in [0, 1]. Thus, we can bound the deviation of the (unbiased) empirical mean f(S“~1 U {a})
from the expected value f(S (-Dy {a}) for each action in S;. Specifically, we can use a two-sided Hoeffding bound for
bounded variables.

Lemma 1.1 (Hoeffding’s inequality). Let X, -- , X;, be independent random variables bounded in the interval [0,1], and
let X denote their empirical mean. Then we have for any € > 0,
P(|X —E[X]| > €) < 2exp (—2ne?). (1

We will use Hoeffding’s inequality to bound the probabilities of the empirical means f(S¢~1) U {a}) for all actions
SG=1 y{a} € S; played in phase i. By Algorithm each action will be played the same number of times, denoted by
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m, so we consider bounding the probabilities of equal-sized confidence radii rad := 4/2log(T")/m for all the actions
SGt=D U {a} € S; played in phase i.

We consider the event that the empirical means of all actions played in phase ¢ are concentrated around their statistical
means within a radius rad. Denote this event as &;,

& = ﬂ {|f(SU{a}) — f(Su{a})| <rad}. )

Su{a}leS;

Define the clean event £ to be the event that the empirical means of all actions played up to and including phase % are within
rad of their corresponding statistical means:

E=&NNE. 3)
Lemma 1.2. The probability of the clean event £ defined in (3)) satisfies:
2nk
PE)>1- Ti

Proof. We begin by breaking up the probability of the clean event & into conditional probabilities for the events {&;}%_; for
each phase,

k
=[[PEler,. ... &) )

Recall that &;, defined in (@), is the event where the empirical means of all actions played in phase ¢ were concentrated
around their statistical means. Which actions are available in phase 4, namely {S¢~1) U {a}} aca\st-1, depends on the
action S~1) from the previous phase that had the highest empirical mean, which in turn is related to &_;. Although we
cannot directly evaluate (@), by conditioning on S (i=1) we will be able to obtain a bound on @).

P&, .., im1) = Z ]P’(S(i*l) =5&|&,...,&-1) (law of total probability)
se{s’ | s7ca, |5|=i—1}
= Z }P)(S(lil) :S|€1a"'7gi—1) XP(€L|S(171) :Sagla"'7gi—1)
se{s' | srca, |st|=i-1}
= > P(SCY = S|&,...,& 1) x P(&]SED = 8), )
se{s' | sica, |s/|=i-1}

where (5) follows from rewards in phase ¢ being conditionally independent of rewards from other phases, given the

corresponding actions played during phase <.
We now focus on bounding P(&;|S(—1) = S). By conditioning on the set chosen in the previous phase, S (i-1) = S we
know all the actions that will be played in the current phase 7, { S~ U {a}}aecq\st-1- The rewards of all the actions are

bounded in [0, 1] and are conditionally independent (given the corresponding action).

Apply Lemmall.1]to the empirical mean f(S¢~1 U {a}) of m rewards for action S¢~) U {a} and choosing ¢ = rad =

v/21og(T)/m gives

P [|f(5(i71) U{a}) — f(S(ifl) U {a})| > rad] < 2exp (meradQ)

= 2exp (—2m(21log(T)/m))
= 2exp (—41log(T))

2

= 75



Thus, for any individual action S¢~ U {a} € S;, we can bound the probability that its sample mean f(SU~1) U {a}) is
within a specified confidence radius (complementary of the event above) as

P Hﬂs“” U {a}) - (8D U {a})' <rad) =1-F Hﬂsw U{a}) - (84D U {a})‘ > rad]

2
Zl—ﬁ. 6)

We can then use (6)) to bound P(&;]|S~1) = S) for any set S C 2 of i — 1 arms.

P(&|SUY =8) =P N {’f(S(""” U{a}) — f(S“ DU {a})’ < rad} ’5“—1) =S| (definition of &)
a€Q\SG—1

( S are 111dependent Condltloned on act ].()ns)

9 |Q\s(—1|
<1 — T4) (using (6))

n—i+1
(3]
T4

2 n
2(1—T4> : )

Using (3) and (7), we are now ready to lower bound the probability of a clean event.

Y]

i=1
k
=11 > P(SOD = S|&, ..., Ei1) x P(&|SUD = §) (using (@)
izlSe{S’ s'CQ, |8'|=i-1}
k n
> 11 > P(SUY = §1&, ..., Ei1) X (1 - 71) (using (7))
=1 SE{S’ s/cQ, |S’|:i71}

k n
2 )
=11 (1 — T4> > P(SUY = S|&,...,& 1)

S’E{S’ 5'CQ, |S’|:i—1}

_ (Bernoulli’s inequality)

This concludes the proof for Lemma|[T.2] O



In Lemma we showed that the clean event £ will happen with high probability. Next, we present a lemma showing that
the marginal gain of the action selected at the end of any exploitation phase is large under the condition that the clean event
€ happens.

Lemma 1.3 (Lemma[4.2]in Section ). Under the clean event &, foralli € {1,--- |k},

FSD) ~ F(SU) > 1 [7(87) — £(80)] - 2rad. ®)

Proof. Recall that a;, defined in (@), is the index of the arm that with S (i=1) forms the action with highest empirical mean at
the end of phase i, i.e., a; = argmax,c 5, f(SU"YU{a}) and S®@ = S~V U{a;}. Let a} denote the index of the arm that
with S@~1) forms the action with highest expected value, i.e, a} = argmax, g, f(S"~1 U{a}). Foreacha € Q\ S0~1),
the event that the empirical mean f(SU~1) U {a}) is concentrated within a radius of size rad around the expectated value
can be written as

F(SV U {a}) —rad < F(SCV U {a}) < f(S“ Y U{a})+rad (concentration in &;)
—  f(SU Y Uu{a}) —2rad < f(S“V U{a}) —rad < f(SEV U {a}). )

We next lower bound the expected reward f(S*)) for the empirically best action in phase i, S*) = {a;} U S®~1). To do so,
we apply (9) to two specific arms, the empirically best a; and the statistically best a;. We get

F(SD) = £(SUY U {as}) (by design, S < {a;} U SC—1)
> (SO U {a;}) —rad (using @)
> f(S“ Y Uu{al}) —rad (a; has the highest empirical mean)
> (SO U {a}}) — 2rad. (using @)

Subtracting (S~ on both side we have
FSW) = £(8UD) 2 f(SUD U {a}) = F(SU7Y) — 2rad. (10)

Recall from Section that S* = argmaxg, g< f(5) denotes the optimal solution in the offline problem. We will next
show that the improvements in expectation of the chosen actions from one phase to the next are lower bounded by the gap
between the optimal set S* of cardinality & and the set S(*) chosen in the previous round.

f(S(i)) - f(S(i’_l)) > f(S(i_l) U{ai}) — f(S(i_l)) — 2rad (copying (T0))
= Sy {a}) - f(SUY) — 2rad by def.
sz I {a}) = f(5777) — 2ra (by def.)
>  max f(SVU{a}) - f(SEY) - 2rad (restricted set)
aeS*\SG-1
> ﬁ Z F(SUV U{a}) — f(SE V) —2rad  (max greater than average)
A Ve
1 . )
- (i-1) _ £(56-DY] — 9rad
S\ S| aes*%S:un [f(S Dal) = 7S )} ra
> % > [ U el - £(84Y)] - 2rad (S* has cardinality &)
a€s*\SGi-1)
1 )
> T [f(S*)—f(S(l_l))} — 2rad, an

where (TT) follows from a well known bound for submodular functions. O



Lemmal|l.3|identifies a lower bound of the expected marginal gain f(S)) — f(S(~1) of the empirically best action S(*) at
the end of phase . As a corollary of Lemma[I.3] using properties of submodular set functions and unraveling the recursion
induced by Lemma we can lower bound the expected value of ETCG’s chosen set S(*) of size k, which is used for
exploitation in phase k + 1.

Corollary 1.4 (Corollary [4.3]in Section[d). Under the clean event &,
1
FS™) > (1= =) f(5%) — 2krad. (12)
€

Proof. We begin by unraveling the recursion induced by Lemma[T.3]and using properties of submodular set functions,

F(SD) — f(SEDy > % [f(s*) - f(S(i*”)] — 2rad. (copying (8))
= f(89) > %f(S*) +(1- %)f(S(i_l)) — 2rad (rearranging)
- [;f(s*) - 2rad] +(1- %)f(S(i_l)). (13)

Applying (T3) recursively for i = k,

F(s®)y > %f(S*) —2rad| + (1 — 2)]”(5(’C D) (using (T3) for i = k)
:1 * : 1 1 * 1 (k—2) : .
> %f(5)72rad +(17E) %f(S)erad +(17%)f(S ) (using (T3) fori = k — 1)
1 14 1 1
_ | = ) R Y4 T2 (k—2) :
_kf(S ) 2rad_ ;(1 k) +(1 k‘) f(S ) (rearranging)
(continue recursing until we get to S(©) = §; £(()) = 0)
o 1 k=1 1
* 4
> Ef(S ) — 2rad Z(l—g) (14
L 4 =0
Simplifying the geometric summation
k—1 1\k
1-(1—1+
1ty =)
— k 1—(1-4)
1
=k(1-(1—-2)
(1-0-9)
Continuing with (T4),
f(S*)) > H - Qrad} k < )k)
Lok
= 1—7 f(s —2k (1_E) rad
> ( 1 - = ) f(S*) — 2krad. (simplifying with (1 — 1)* < 1)
Using the well-known lower bound ( ( — E >1— =, we get

F(S™) > (1 é)f(S*) — 2krad.



Rearranging terms we have

(- L5(s7) — £(5¥) < 2hrad

1.2 THEOREMHA4.1/PROOF

Now we are ready to prove the main theorem, Theorem 4.1

Case 1: clean event £ happens

In the first case we analyse the expected regret under the condition that the clean event £ happens. In this section, all
expectations will be conditioned on &, but to simplify notation we will write E[] instead of E[-|£].

First we can break up the expected (1 — %)-regret (2) conditioned on £ into two parts, one for the first & phases, and the
second for the exploitation phase. Also recall that f;(S;) is the random reward for taking action Sy, which itself is random,
depending on empirical means of actions in earlier phases.

B

E[R(T)] = (1 — %)T £(5%) = STE[A(S))] (using the definition ()
t=1
T
=(1- é)Tf(S*) - ;E[E[ft(StHSt]] (law of total expectation)
T
=(1- é)Tf(S*) - ZE[f(St)] (f () defined as expected reward)
; 1 t=1
= Z ((1 - g)f(S*) - E[f(st)]) (rearranging)
1 : 1
=3 > (a-prey-sirsn)+ X (- D) i)
i=1t=T; 141 t=Th+1
First k phases Exploitation phase

k T; T
=3 > (a-Dre-sren)+ 3 (- D) -ErsOL). as)

e e
t=Tr+1

Recall that in phase i, each of the n — ¢ + 1 actions in S; is played exactly m times, meaning T; — T;_1 = m(n —i + 1).
Since all actions played in phase i include the set S~1) (the empirically best set played in phase i — 1), in notation
SG=1 c S, fort € {T;_1 +1,---,T;}, by monotonicity of the expected reward function f, we have f(S(~1) < f(S;),

fort € {T;_1+1,---,T;}. Thus, we can simplify the inner summation in the first term of (T3)) as
> (a-Dasy-eirsn) < > (0D -Else )
t=T; 1+1 t=T; 1+1

(monotonicity: f(SCU—1) < £(S;))

—m(n— it 1) ((1 ~ s —E[f(S“l))])- (16)

e



Plugging (T6) back into (T3),
T

k 1 , 1
<Y+ ( (1= Dps) B ) + Y (- Dir(sn) - ElAs™)
i=1 ¢ t=Ty+1 €
, d 1
< mnz (0= Dre)-Brs o) + 3 (- D) - Elrs®). (1)
t=Ty+1
Now we upper bound the two terms above using Corollary [T.4]
Since for i € {2,--- ,k}, S (i=1)>g are random variables, we can take the expectation of @) (conditioned on event &),
yielding
EF (5]~ ELF (5] > 1 [£(5%) ~ ELF(SD)]] - 2rad, (18)
= f(5) —E[f(SU)] < REF(SW)] — E[f(SUTV)] + 2rad). (19)
and of (12), yielding
(1= 2)7(57) ~ ELf(5%)] < 2hrad. o)
Apply (T9) and (20) to the first and second terms in (T7) respectively yields
- 1 o 1
BR(D) < mn Y- (1= Df(s) <) + 30 (4= D7) -EFSD)  copying @)
i=1 t=T+1
k T 1
< mn (f(S*) - E[f(S(ifl))}) + Z <(1 - g)f(S*) - E[f(S(k))]> (using 1 — 1 < 1 in first sum)
i=1 t=Te+1
k T
< mnk Z (E[f(S(l))] —E[f(S" )] + 2rad) Z (2krad) (using (19) and (20))
i=1 t=Ty+1
T
= mnk (E[f(S(k))] —E[f(S©O)] + 2krad) + Z (2krad) (telescoping sum)
t=Ty+1
< mnk (E[ F(S®N) + 2krad> + 2kTrad (f(S©) = 0)
< mnk (1 + 2krad) + 2kTrad. (rewards are bounded in [0, 1])
Plugging in the definition of rad = /2log(T’)/m and using the bound \/2log(T)/m < +/2log(T) to simplify the
formula, we have
E[R(T)] < mnk (1 + 2k/21og(T) /m) + 2kT\/210g(T)/m
< mnk (1 +2ky/2 log(T)) + 2kT\/2log(T)/m. @1

We want to optimize m, the number of times actions are played. Denoting the regret bound (1) as a function of m

g(m) = mnk (1 4 2ky/2 1og(T)) + 2T \/2log(T)/m, 22)
then

gd'(m) = nk (1 +2k/2 log(T)) — kT\/21og(T)m~3/2. 23)



Setting ¢’(m) = 0 and solving for m,

2/3
ot T+/2log(T) 24)
n + 2nk+/21og(T) '

We next check the second derivative,

g"'(m) = ;kTw?log(T)m_Wz. (25)

For positive values of m, g’ (m) > 0, thus g(m) reaches a minima at (24).

Since m is the number of times actions are played, we (trivially) need m > 1 and m to be an integer. We choose

ot — T+/2log(T) 23 26)
| \n+ 2nk+/2log(T) .

Since from (25) we have that g"(m) > 0 for positive m, g(m*) < g(m?).
For T > n(k + 1), we have

2/3

2/3
. T/2log(T) / T
m* — =\ —=—— 19
7+ 2nkr/2108(T) Ve R

n(k+1)

2log(n(k+1)) +2nk

2/3

%

2/3
k+1

L + 2k

V2 10g(n(k+1))

27)

Plugging (26) back in to (21,



E[R(T)] < m'nk (1 + 2k+/2 1og(T)> + 2kT\/2log(T)/mt ((21) with mT samples for each action)
= [m*|nk (1 + 2k\/2log(T)> + 2T \/2log(T)/[m*]

< [m*nk (1 + 2kx/210g(T)> + 2kT/2log(T)/m* (Since [m*] > m*)
2m* (1 + 2k+/21og(T ) + 2kT/2log(T (Since m* > 1/2, [m*] < 2m®)
2/3
2log(T) n + 2nk+/2log(T
k(1 + 2k+/21og(T)) + 2kT+/21og(
(n—!—?nk\/m) BT ( 21og(T)
(using (24))
2(T+/21og(T))?/? n V3(1 4 2k+/210g(T)) /3
= k(1 + 2k+/210g(T)) + 2kT+/21og(
n2/3(1 + 2k /21og(T))2/ s(T BT 2log(T ))1/3
(rearranging)

, 1/3 ,

— 9(T\/21og(T))?*n*/3k (1 +2ky/2 log(T)) + 2k(T\/21og(1))*3*n1/3 (1 + 2k+/21og (1)) /3
(cancelling common terms)

k(T+/210g(T))3 (1 + 2k+/21og(T))3 (28)

g 1

: slog(T)f»

w\»—A

w»-A
\w

4n
O(n?

where follows by factoring. In conclusion, the expected (1 — 1/e) regret (2)) is upper bounded by if the clean event
& happens.

Case 2: clean event £ does not happen

We next derive an upper bound for the expected (1 — 1/¢) regret (2)) for case that the event £ does not happen. By Lemma

= 2nk
PE)=1-P¢&) < Tt

Since the reward function f;(-) is upper bounded by 1, the expected (1 — 1/e) regret (2) incurred under & for a horizon of T’
is at most 7T,

E[R(T)|E] <T. (29)
Putting it all together
Combining Cases 1 and 2 we have,
E[R(T)] = E[R(T)|E] - P(E) + IE[R(T)|5] -P(€) (Law of total expectation)

< [4n%k(T 21log(T))3 (1 + 2k+/21og(T %} A+ T-2nkT™* (using (28), Lemma|[1.2] and (29))
= O(n5k5T5 log(T)?).

This concludes the proof of Theorem [4.1]

2 ALGORITHM OG®

In this section we describe implementation details and parameter selection for OG® algorithm |Streeter and Golovin|[2008]].

log(n) 1/3 . .
. . € is the learning rate for

The choice of exploration probability is given by the original paper:y = n'/3k
Randomized Weighted Majority (WMR) expert algorithm |Arora et al.|[2012]. It is chosen by setting the derivative of



log(n)

regret upper bound to zero, which is € = -

, where T, is the time spent on updating expert e. Since it explores with

probability -y, and there are k expert algorithms, we have T, ~ % Thus we pick € = 4/ M?Y%gT("). In experiments, there are

many cases the chosen v is large or even larger than 1, so we cap the probability of exploring + by 1/2 to avoid exploring too
much. Algorithm [2]shows the pseudo code for implementation details of this algorithm.

Algorithm 2 Online Greedy for Opaque Feedback Model (OG®)

Input: set of base arms {2, horizon T, cardinality constraint &

1/3
il 1/3. ( log(n) K log(n)
Initialize n < |Q|, v + n'/ k(%) L€+ %

Initialize wq < ones(k,n)
forte[l,---,T]do

Sy 0
l < zeros(k, n) > loss
Randomly sample a value £ ~ Uniform([0, 1])
if £ < v then > Exploration with probability -y
e ~ Uniform({1,--- ,k})
foric[l,---,e—1]do > For experts before e, exploit
Select an arm a with probability i’ ;[j[‘z}] , re-sample if a € S,
St — St U {CL}
end for
a ~ Uniform({1,--- ,n}\St) > For expert e, explore
St — St U {a}
Play action Sy, observe f;(.S¢)
Update I[i, j] < f:(St) foralli =eand j # a > Feed back f;(S;) to expert e associated with action a
Update wy11[t, j]  wi|i, j] exp(—el[i, j]) for all pairs of ¢ and j
else > Exploitation with probability 1 — ~
fori e [1,--- ,k] do > For experts before e, exploit
Select arm a with probability Z“’ :v[i[?]] , re-sample if a € S;
St — St U {a}
end for
Play action S;, observe f+(.S;)
w1ty 7]  wild, J] > Since feeding back 0 to all expert-action payoffs, loss is 0, no update
end if
end for

3 MORE EXPERIMENTS

3.1 MAXFUNCTION

We also conduct experiments with synthetic data on max functions: f(S) = max,es f({a}). Similar with the setup in
Section [5.2] We use n = 20 base arms and cardinality constraint & = 4. Again, we generate individual arm rewards

{f({a})}acq randomly f({a}) s U([0.1,0.9]) and add noise when sampling. The noise follows a truncated normal
distribution with mean 0 and standard deviation 0.1 within interval [—0.1, 0.1]. The results are shown in Figure

We can see from Figure ETCG outperforms all other baseline methods evaluated up to 7' = 10%, but DART seems to be
able to surpass ETCG for larger T'. The reason is that max reward function bounded in [0, 1] satisfies the assumptions of
DART, so DART’s O(T 1/ 2) regret bound holds. Thus, we expect DART to eventually outperform ETCG for max reward
functions. Notably, despite DART’s asymptotic advantage for max function, ETCG does better than DART for all but very
large horizons (namely 7'=1,000,000). We argue it is unrealistic for any application to be stationary (assumed by DART)
over such a long horizon.



Max Reward le—1 Max Reward

10°{ -~ eTcG
- 0G° -8
4.: ~&— CMAB-SM =
© 10% g oarr 27
o &
%103 n 6
() ]
2 o
5102 £5
> &
€ ca
> 1 B m— ETCG
O 10 7 e OG°
£3 —— CMAB-SM
100 e DART
102 103 104 10° 100 0.0 0.2 0.4 0.6 0.8 1.0
T t 1le5

(@) (b)

Figure 1: (a) shows results for cuamulative regret as a function of time horizon 7'. (b) shows the moving average plot with
window size 100 of instantaneous reward as a function of ¢. The gray dashed lines in (a) represent yy = a7'>/3 for various
values of a. The gray dashed line in (b) represents the value of the optimal solution.

3.2 DENPENDENCE ON n AND &

We also empirically plot the regret as a function of n and k to see if the dependence on n and k is “correct” for linear
functions.

The results are shown in Figure From the figures we can see that for linear rewards, O(n'/3) appears tight and O(k*/?)
appears loose (the estimated exponent is closer to O(kl/ 3)). We will leave it as an open question on whether there exists an
algorithm that has a better guarantee with respect to k.
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Figure 2: (a) shows results for cumulative regret as a function of cardinality constraint k. (b) shows results for cumulative
regret as a function of number of base arms n. The gray dashed lines in (a) represent y = a1/ for various values of a. The
gray dashed lines in (b) represent y = C'T""/3 for various values of a.
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