
ar
X

iv
:2

20
7.

08
93

7v
4

 [c
s.S

I]
 1

9
Fe

b
20

23
1

A Community-Aware Framework for

Social Influence Maximization
Abhishek K. Umrawal, Christopher J. Quinn, Member, IEEE, and Vaneet Aggarwal, Senior Member, IEEE

Abstract—We consider the problem of Influence Maximization
(IM), the task of selecting k seed nodes in a social network such
that the expected number of nodes influenced is maximized. We
propose a community-aware divide-and-conquer framework that
involves (i) learning the inherent community structure of the
social network, (ii) generating candidate solutions by solving the
influence maximization problem for each community, and (iii)
selecting the final set of seed nodes using a novel progressive
budgeting scheme.

Our experiments on real-world social networks show that the
proposed framework outperforms the standard methods in terms
of run-time and the heuristic methods in terms of influence.
We also study the effect of the community structure on the
performance of the proposed framework. Our experiments show
that the community structures with higher modularity lead the
proposed framework to perform better in terms of run-time and
influence.

Index Terms—Social networks, influence maximization, viral
marketing, community detection, submodular maximization

I. INTRODUCTION

A. Motivation

THE advent of social media has changed how traditional

marketing strategies were used to be designed [1]. Com-

panies are now preferring to allocate a significant proportion

of their marketing budget to drive sales through large social

media platforms. There are several ways in which social media

can be leveraged for promotional marketing. For instance,

advertising on the most visited social platforms, making social

media pages for branding and spreading the word about the

product, etc. A more sophisticated approach for promotional

marketing would be to use the dynamics of the social network

to identify the right individuals to be incentivized to get the

maximum influence in the entire network.

A. K. Umrawal is with the School of Industrial Engineering, Purdue
University, West Lafayette, IN, 47907, USA (email: aumrawal@purdue.edu),
and Department of Computer Science and Electrical Engineering, University
of Maryland, Baltimore County, Baltimore, MD, 21250, USA. C. J. Quinn is
with the Department of Computer Science, Iowa State University, Ames, IA,
50011, USA (email: cjquinn@iastate.edu). V. Aggarwal is with the School of
Industrial Engineering, and Elmore Family School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, 47907 USA (email:
vaneet@purdue.edu). He is also with Computer Science, KAUST, Thuwal,
23955, KSA.

This material is based upon work supported in part by the National Science
Foundation under Grants No. 1742847, 2149588, and 2149617.

This paper has been accepted for publication in IEEE Transactions on
Emerging Topics in Computational Intelligence (TETCI) in Dec 2022.

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

In the context of social media marketing, Domingos and

Richardson posed the Influence Maximization (IM) problem

[2]: “if we can try to convince a subset of individuals in a

social network to adopt a new product or innovation, and the

goal is to trigger a large cascade of further adoptions, which

set of individuals should we target?” Formally, it is the task

of selecting k seed nodes in a social network such that the

expected number of influenced nodes in the network (under

some influence propagation model), referred to as the influ-

ence, is maximized. Kempe et al. [3] showed that the problem

of influence maximization is NP-Hard. This problem has been

widely studied in the literature and several approaches for

solving it have been proposed. Some approaches provide near-

optimal solutions but are costly in terms of run time. On the

other hand, some approaches are faster but heuristics, i.e. do

not have approximation guarantees.

Motivated by the idea of addressing this trade-off between

accuracy and run-time, we propose a community-aware divide-

and-conquer framework to provide a time-efficient solution.

The proposed framework outperforms the standard methods

in terms of run-time and the heuristic methods in terms of

influence.

B. Literature Review

Researchers have proposed different algorithms and heuris-

tics for solving the Influence Maximization (IM) problem

using several approaches. We now discuss several categories

of the relevant approaches as follows. We refer to methods

that presume knowledge of the network and estimate influence

using Monte Carlo simulations of the diffusion process as

simulation-based methods.

1) Simple heuristics: Degree centrality is perhaps the sim-

plest way to quantify the influence of an individual in the

network [3]. Observing the fact that many of the most central

nodes may be clustered, targeting all of them is not at all nec-

essary, Chen et al. [4] proposed the degree discount heuristic.

These heuristics are simple and time-efficient. However, they

do not have any provable guarantees.

2) Simulation-based methods: Under the independent cas-

cade [5], [6] and linear threshold [7], [8] models of diffusion

(discussed in Section II-B), Kempe et al. [3] showed that

the problem of influence maximization is NP-Hard. They

also proposed to use an efficient greedy algorithm [2] which

due to a result by Nemhauser et al. [9] gives an
(
1− 1

e

)
-

approximation of the solution. The asymptotic run-time of this

algorithm is O(nk). Asymptotically, this greedy algorithm is

efficient but empirically the costly Monte Carlo simulations

http://arxiv.org/abs/2207.08937v4
aumrawal@purdue.edu
cjquinn@iastate.edu
vaneet@purdue.edu

2

cause an overhead. Leskovec et al. [10] proposed the CELF

algorithm which improves upon the empirical run-time of the

simple greedy algorithm by further exploiting the property

of submodularity. Goyal et al. [11] proposed the CELF++

algorithm which further improved upon the empirical run-time

of the CELF algorithm by even further exploiting the property

of submodularity to avoid unnecessary re-computations of

marginal gains incurred by CELF. Borgs et al. [12] proposed

a greedy algorithm using reverse influence sampling (RIS) –

an approach to efficiently estimate the influence of a seed set.

CELF, CELF++, and [12] have the same worst-case run time

O(nk) and approximation ratio
(
1− 1

e

)
as the one proposed by

Kempe et al. [3]. Lotf et al. [13] proposed a genetic algorithm-

based heuristic algorithm for dynamic (evolving over time)

networks. This method involves Monte Carlo simulation and

does not have any approximation guarantees. The framework

proposed in this paper may also involve Monte Carlo sim-

ulations. But, the divide-and-conquer strategy allows us to

significantly reduce the run-time.

3) Community-based methods: As the proposed method

utilizes the inherent community structure of the network, we

discuss other community-based methods of influence maxi-

mization as follows. Chen et al. [14] proposed two methods

called CDH-KCut and CDH-SHRINK under heat diffusion

model [15]. They further improved their methods and proposed

another method called CIM [16]. Bozorgi et al. [17] proposed

a method called INCIM which works only for the linear

threshold diffusion model. Moreover, the method involves

overlapping community detection contrary to our work where

the communities are non-overlapping. Bozorgi et al. [18] have

also developed a method for competitive influence maximiza-

tion [19] under the competitive linear threshold model. Shang

et al. [20] have proposed a method called CoFIM under the

independent cascade diffusion model and weighted cascade

edge-weight model. Contrary to these methods, our method

does not depend on the choice of the diffusion model. Huang

et al. [21] proposed a data-based method called CTIM which

requires a potential action log and item-topic relevance.

4) Data-based methods: Provided some observational data

involving real-world diffusion traces is available, the Monte

Carlo simulations can be avoided by estimating the influence

directly from the data. Goyal et al. [22], instead of using a

propagation model, proposed a data-based-method to introduce

a model called the credit distribution model, which directly

leverages the propagation traces from real-world data and

learns the flow of influence in the network. Pen et al. [23] and

Deng et al. [24] have studied variants of the credit distribution

model under time constraints and node features respectively.

The proposed method does not involve any observational data.

5) Online methods: More recently, the focus has been on

solving the problem of influence maximization in an online

manner where the goal is to maximize the cumulative observed

influence of the seed sets chosen at different times while

receiving instantaneous feedback. Approaches differ based on

semi-bandit feedback [25]–[29] and full-bandit feedback [30],

[31]. The proposed method is not an online method.

C. Contribution

In Section I-B, we discussed that the CELF++ [11] algo-

rithm is faster compared to the simple greedy algorithm [2],

[3]. But the costly aspect of performing a large number of

diffusions in the entire network is still there. Motivated by

the idea of solving the influence maximization problem in a

time-efficient manner, we propose a community-aware divide-

and-conquer framework that involves (i) learning the inherent

community structure of the social network, (ii) generating

candidate solutions by solving the influence maximization

problem for each community, and (iii) selecting the final set

of individuals to be incentivized from the candidate solutions

using a novel progressive budgeting scheme. Our method may

also use the Monte Carlo simulations but we are restricting

them within each community as compared to the entire net-

work which brings savings in terms of run-time as compared

to the CELF++ algorithm.

Compared to the other community-based methods, the pro-

posed framework is novel in the following ways. It is not

limited to a specific diffusion and/or an edge-weight model.

In Step 1, the set of candidate solutions is generated by all

combinations of solutions from each community. In Step 2, the

final seed selection is performed by solving an integer linear

program (ILP) over candidate solutions subject to a budget

constraint. We propose an efficient progressive budgeting

scheme to efficiently solve the ILP in Step 3. We provide

the proof of correctness of this scheme which leverages

submodularity (defined in Section II) of the influence.

We provide experiments on real-world social networks,

showing that the proposed framework outperforms simulation-

based methods in terms of run-time and heuristic methods

in terms of influence. We study the effect of the community

structure on the performance of the proposed framework. Our

experiments show that the community structures with higher

‘modularity’ (defined in Section II) lead the proposed frame-

work to perform better in terms of run-time and influence.

D. Organization

The rest of the paper is organized as follows. In Section II,

we discuss the preliminaries and formulate the problem. In

Section III, we discuss our methodology. In Section IV,

we discuss the experiments performed on real-world social

networks. Section V concludes the paper and provides future

directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we discuss some preliminaries and formulate

the problem of interest in this paper. Refer to Appendix A for

a table of important notations used throughout the paper.

A. Submodularity

Let Ω denote the ground set of n elements and 2Ω denote

the set of all subsets of Ω. A set function f : 2Ω → R is said

to be submodular if it satisfies a natural ‘diminishing returns’

property: the marginal gain from adding an element v to a set

S ⊆ Ω is at least as high as the marginal gain from adding

3

the same element v to a superset T ⊆ Ω of S. Formally, for

any sets S, T ⊆ Ω such that S ⊆ T , f satisfies

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T). (1)

A set function f : 2Ω → R, is said to be monotone (non-

decreasing) if for any sets S, T ⊆ Ω such that S ⊆ T , f
satisfies

f(S) ≤ f(T). (2)

B. Diffusion models and social influence

There are several discrete-time stochastic models of diffu-

sion over social networks. For the purpose of our research,

we focus on the independent cascade (IC) [5], [6] and linear

threshold (LT) [7], [8] models of diffusion.

In the independent cascade model, given a graph G =
(V,E), the process starts at time 0 with an initial set of active

nodes S, called the seed set. When a node v ∈ S first becomes

active at time t, it will be given a single chance to activate each

currently inactive neighbor w, it succeeds with a probability

pv,w (independent of the history thus far). If w has multiple

newly activated neighbors, their attempts are sequenced in an

arbitrary order. If v succeeds, then w will become active at

time t + 1; but whether or not v succeeds, it cannot make

any further attempts to activate w in subsequent rounds. The

process runs until no further activation is possible.

In the linear threshold model, given a graph G = (V,E),
a node v is influenced by each neighbor w according to a

weight pv,w such that
∑

w∈∂v pv,w ≤ 1, where ∂v represents

the set of neighbors of v. Each node v chooses a threshold θv
uniformly from the interval [0,1]; this represents the weighted

fraction of v’s neighbors that must become active in order for

v to become active. The process starts with a random choice

of thresholds for the nodes, and an initial set of active nodes

S, called the seed set. In step t, all nodes that were active

in step t − 1 remain active, and we activate any node v for

which the total weight of its active neighbors is at least θv.

The process runs until no more activation is possible.

Note that both these processes of diffusion are progressive,

i.e. the nodes can switch from being inactive to active, but do

not switch in the other direction.

At any time t in the cascade, each node v ∈ V can be

either active or inactive. We denote the process for each node

v ∈ V ’s state as {Y
(v)
t }Tt=1

Y
(v)
t =

{

1, if node v is active at time t,

0, otherwise.
(3)

The influence σ(S) of a set S is defined as the expected

number of active nodes at the end of the cascade (denoted by

time T), given that S is the set of initially active nodes,

σ(S) = E

[
∑

v∈V

Y
(v)
T

∣
∣
∣
∣

⋂

v∈V

{Y
(v)
0 = 1(v ∈ S)}

]

, (4)

where 1(·) denotes the indicator function.

Kempe et al. [3] showed that under common models of

diffusion such as independent cascade and linear threshold

models, σ(S) is a monotone non-decreasing submodular set

function.

C. Problem statement

For a given integer budget k, we are interested in finding a

k-node subset of the set of nodes V , which has the maximum

influence over all possible k-node subsets of V . Formally, the

problem of influence maximization (IM) is defined as

Problem 1.

argmax
S⊆V

σ(S),

s.t. |S| ≤ k. (budget constraint)

III. METHODOLOGY

With the goal of solving the influence maximization prob-

lem (Problem 1) in a time-efficient manner, we propose a

community-aware divide-and-conquer framework. The pro-

posed framework reduces the search space for the seed sets

by partitioning the given network using its inherent commu-

nity structure. The proposed framework involves (i) learning

the inherent community structure of the social network, (ii)

generating candidate solutions by solving the influence maxi-

mization problem for each community, and (iii) selecting the

final set of individuals to be incentivized from the candidate

solutions using a novel progressive budgeting scheme.

Algorithm 1 outlines the framework proposed in this paper.

It uses three sub-routines which are explained in the following

subsections.

Algorithm 1 Community-IM

1: Input Graph G, budget k, com-method, sol-method.

2: {Gi}ci=1 ← Community-Detection(G, com-method)

3: for community i = 1, . . . , c do

4: Si,Σi ← Generate-Candidates(Gi, k, sol-method)

5: end for

6: S∗ ← Progressive-Budgeting({Si}
c
i=1,{Σi}

c
i=1,k)

7: return S∗

A. Learning the community structure of the network

For the given social network G = (V,E), we obtain a

hard partition {V1, . . . , Vc} of the node set V using some

community detection method. By hard partitioning, we mean

we mean the communities are non-overlapping, i.e. Vi∩Vj = ∅
for all communities i 6= j with i, j ∈ {1, . . . , c} and
⋃c

i=1 Vi = V . Define Gi = (Vi, Ei) where Ei is the set

of edges from E connecting pairs of nodes in Vi. We call

{G1, . . . , Gc} a network-partition.

Most community detection methods select communities

such that the nodes within a community are more ‘well-

connected’ than the nodes between communities. Methods dif-

fer in how they explicitly or implicitly measure the connected-

ness of the nodes in a network. Common community detection

methods are the Louvain method [32], label propagation [33],

and the Girvan-Newman algorithm [34].

4

1) Quality of a network-partition: The quality of a

network-partition can be measured using modularity score

[35], [36]. The modularity score of a network-partition is

defined as the fraction of the edges that fall within the given

groups minus the expected fraction if edges were distributed

at random. For a network-partition {G1, . . . , Gc}, modularity

[36] is defined as

Q =

c∑

i=1

[

Li

|E|
−

(
δi
|E|

)2
]

,

where Li is the number of edges between the pairs of nodes

in Gi and δi is the sum of the degrees of nodes in Gi.

The modularity score is used as a measure of how well a

community detection algorithm partitions a network. A higher

value of modularity corresponds to a network-partition with

higher connectedness within each community.

2) Community detection methods: We discuss some com-

monly used community detection methods (com-method in

Algorithm 1). The Louvain method [32] first obtains small

communities by optimizing modularity locally on all of the

nodes. Then each small community is treated as a single node

and the previous step is repeated. Label propagation [33] starts

with a (generally small) random subset of the nodes with

community labels. The algorithm then iteratively assigns labels

to previously unlabeled nodes. The Girvan-Newman method

[34] method uses a measure known as ‘betweenness.’ Define

the betweenness of an edge [34] as the sum of the ‘weights’ of

the shortest paths between any pair of nodes that run along it.

If there are d different shortest paths between any two nodes

then the weight of each path is set as 1/d. The Girvan-Newman

method [34] method involves the following steps.

1) First, calculate the betweenness of all existing edges in

the network.

2) Next, remove the edge(s) with the highest betweenness.

3) Finally, recalculate the betweenness of all edges affected

by the removal at the previous step.

4) Repeat the previous two steps until no edge remains.

For the framework proposed in this paper, the only

formal requirement for the community detection method

(com-method in Algorithm 1) is that it provides a hard

partition. Based on our experiments (discussed in Section IV),

we observe that the Louvain method [32] works the best for

our framework.

B. Generating candidate solutions by solving the influence

maximization problem for each community

For each community Gi, we find the best seed sets of sizes

1, . . . , k for that community using some standard influence

maximization method. Let Si,j denote the best seed set of

size j for community i. Let σi(Si,j) denote the corresponding

expected influences of those seed sets within community i
(i = 1, . . . , c).

Solving the influence maximization problem separately for

different communities instead of the entire network improves

the empirical run-time. The partitioning of the original network

leads to fewer subset evaluations (oracle calls). Furthermore,

those (fewer) evaluations are also faster to carry out. Refer to

Appendix E-B for details.

For the framework proposed in this paper, any standard

influence maximization method can be used as sol-method

in Algorithm 1. For our experiments (discussed in Section IV),

we use the CELF++ method [11] to demonstrate our frame-

work.

Later, to discuss guarantees of our method (on a surrogate

optimization problem), we will assume that the sol-method

used has the following property.

Assumption 1. We assume that the marginal gains

{σi(Si,j+1) − σi(Si,j)}
k−1
j=1 within each community i ∈

{1, . . . , c} are non-increasing.

Remark 1. Assumption 1 will automatically hold if the

solutions are nested (i.e. Si,j ⊂ Si,j+1) due to submodularity.

Iterative greedy influence maximization methods, such as those

based on the [9], return nested solutions by design. Assump-

tion 1 also holds automatically for optimal subsets regardless

of nesting (due to submodularity), though it is computationally

prohibitive to identify optimal subsets.

C. Selecting the final seed set

After separately solving the influence maximization prob-

lem for each community, we allocate the total budget k
across the c communities based on the within-community

influences {σi(Si,j)|i ∈ {1, . . . , c}, j ∈ {1, . . . , k}}.Formally,

we solve the binary integer linear program (ILP) described as

Problem 2.

Problem 2.

argmax
{xi,j}i=1,...,c

j=1,...,k

c∑

i=1

k∑

j=1

xi,jσi(Si,j),

s.t.

c∑

i=1

k∑

j=1

xi,j |Si,j | ≤ k, (budget constraint)

k∑

j=1

xi,j ≤ 1 ∀i = 1, . . . , c, (no repetition)

xi,j ∈ {0, 1} ∀i, j. (binary integer constraints)

Before discussing how we propose to solve Problem 2, we

first discuss how we use the solution to this ILP for selecting

a seed set and how the objective functions of Problems 1 and

2 relate.

Let x∗ denote the optimal solution to Problem 2. If there

are multiple optimal solutions pick one arbitrarily. Denote the

budget allocated to each community i as ki (e.g. the index j for

which x∗
i,j = 1). We next construct a seed set for Problem 1

based on the allocation budget x∗,

S∗ ←
c⋃

i=1

Si,ki
. (5)

The objective function in Problem 2 lower bounds the

objective function of Problem 1, with equality if G is formed

of disjoint communities.

5

Theorem 1. Consider any network partition {Gi}ci=1 of G
and any set of subsets {Si}

c
i=1 of nodes such that Si ⊆ Vi for

i = 1, . . . , c. Then

c∑

i=1

σi(Si) ≤ σ(∪c
i=1Si).

The proof is in Appendix C.

In general, solving an ILP is an NP-Complete problem [37].

However, the submodularity of the influence allows us to solve

Problem 2 in polynomial time.

1) Progressive Budgeting: By Assumption 1 (by submod-

ularity for nested subsets), we know that the marginal gain in

influence due to each additional node in the seed set is dimin-

ishing (both for each individual community and overall since

sums of submodular functions are submodular). Hence, we can

progressively allocate the budget across the community-based

seed sets {Si,j}. The Progressive-Budgeting sub-routine used

in Algorithm 1 is outlined in Algorithm 2.

Algorithm 2 Progressive-Budgeting

1: Input S,Σ, k.

2: {Si,j |i ∈ {1, . . . , c}, j ∈ {1, . . . , k}} ← S
3: {σi(Si,j)|i ∈ {1, . . . , c}, j ∈ {1, . . . , k}} ← Σ
4: {δi}ci=1 ← {σi(Si,1)}ci=1 ⊲ Initialize the marginal gains.

5: {ki}ci=1 ← {0}ci=1 ∀i ⊲ Initialize the budget allocations.

6: S∗ ← ∅ ⊲ Initialize the final set.

7: for ℓ = 1, . . . , k do

8: m ← argmaxi∈{1,...,c} δi ⊲ Index of the community

with the maximum marginal gain.

9: km ← km + 1 ⊲ Update the budget allocated to

community m.

10: δm ← σm(Sm,km+1)− σm(Sm,km
) ⊲ Update the

marginal gains for community m.

11: end for

12: S∗ ←
⋃c

i=1 Si,ki

13: return S∗ ⊲ Final seed set.

An illustrative example of progressive budgeting is provided

in Appendix B. We will next discuss the correctness of

Algorithm 2. The correctness of Algorithm 2 will follow from

the following lemma, asserting that up to the uniqueness of

optimal solutions of Problem 2 for different cardinalities, the

optimal budget allocations are nested.

For each budget ℓ ∈ {1, . . . , k}, let S∗,(ℓ) denote an optimal

seed set (5) of cardinality ℓ and let k∗,(ℓ) = {ki}
c
i=1 denote the

budget allocations to the c communities. We say a sequence

(S∗,(ℓ))kℓ=1 of (optimal) seed sets is nested if the seed sets are

proper subsets of each other (i.e. S∗,(ℓ) ⊂ S∗,(ℓ+1)). We say a

sequence (k∗,(ℓ))kℓ=1 of budget allocations is nested if across

the sequence each community’s allocation is non-decreasing

(i.e. k
∗,(ℓ)
i ≤ k

∗,(ℓ+1)
i).

Lemma 1. Under Assumption 1, there is a nested sequence

{k∗,(ℓ)}kℓ=1 of optimal budget allocations for Problem 2.

The proof is in Appendix D.

Theorem 2. Under Assumption 1, Algorithm 2 solves Prob-

lem 2.

The proof follows immediately from Lemma 1 and the

greedy design of Algorithm 2.

Remark 2. In general, the guarantees of Theorem 2 do not

translate into guarantees for Problem 1. Since Problem 1 is an

NP-hard problem for common diffusion models on a general

network, common methods are approximation algorithms (with

an approximation ratio of (1 − 1/e) or slightly worse) or

heuristics. Thus, the inputs to Algorithm 2 in general will

not necessarily be optimal seed sets for their respective com-

munities. Additionally, as noted in Theorem 1, the objective

functions in Problems 1 and 2 only match if the original

network G is disjoint (and the communities selected align with

the segments of G).

The computational complexity of the proposed framework

(Algorithm 1) is analyzed in Appendix E.

IV. EXPERIMENTS

We evaluated the performance of our framework using real-

world social networks. We next discuss the network data used

for our experiments, list the algorithms chosen for comparison,

provide experimental details, and then present results and

discussion.

A. Network data

We used 4 real-world social networks for

our experiments. The data is available at

Stanford Large Network Dataset Collection [38]. The

number of nodes, number of edges, and modularity (for the

network-partition obtained using the Louvain method [32])

of each network are provided in Table I.

TABLE I: Basic information of the networks used.

Network Nodes Edges Modularity

Facebook [39] 4,039 88,234 0.8678
Bitcoin [40], [41] 5,881 35,592 0.4196
Wikipedia [42], [43] 7,115 103,689 0.4175
Epinions [44] 75,879 508,837 0.8219

The Facebook network [39] consists of a dataset consisting

of ‘circles’ (or ‘friends lists’) from Facebook. The Facebook

network is undirected; we converted it to a directed network by

replacing each edge with two directed edges. Bitcoin network

[40], [41] is a (directed) who-trusts-whom network of people

who trade using Bitcoin on a platform called Bitcoin OTC.

Wikipedia network [42], [43] is a who-votes-on-whom (di-

rected) network to become an administrator. Epinions network

[44] is a who-trust-whom (directed) online social network of

a general consumer review platform called Epinions.

For edge-weights, two models are used which are weighted

cascade (WC) model [3] where for each node v ∈ V , the

weight of each edge entering v was set to 1/in-degree(v)
and trivalency (TV) model [22] where each edge-weight was

drawn uniformly at random from a small set of constants {0.1,

0.01, 0.001}. However, for the linear threshold model (LT) of

diffusion, only the WC model is used for edge-weights as the

TV model does not necessarily maintain the sum of weights

of all edges incident on a node to be less than or equal to 1.

https://snap.stanford.edu/data/

6

B. Algorithms

We compared the proposed community-aware framework

(Community-IM) with the following algorithms.

1) CELF++ [11], the state-of-the-art simulation-based

greedy algorithm.

2) CoFIM [20], a community-aware heuristic algorithm

with guarantees under the independent cascade diffusion

model with the weighted-cascade edge-weight model.

3) DSGA [13], a recent genetic algorithm-based method

that uses Monte Carlo simulations.

4) Degree [3], the simplest heuristic algorithm where for

budget k, top-k out-degree nodes are selected.

5) Degree-Discount [4], a modification of the the Degree

heuristic algorithm with better empirical performance.

Note that the CoFIM algorithm was developed only for

IC diffusion model with WC edge-weight model. However,

for empirical comparisons, we implemented it for the other

choices of diffusion models and edge-weight models as well.

For the purpose of demonstrating the performance of

the proposed framework, Community-IM (Algorithm 1),

we used the Louvain method [32] as com-method, and

CELF++ [11] as sol-method for Community-Detection and

Generate-Candidates subroutines, respectively. In general, the

user may try different combinations of com-method and

sol-method as part of the proposed framework.

We also studied the effect of the (modularity of) the

community structure on the performance of the proposed

framework. We used the Louvain [32], Label Propagation

[33], and Girvan-Newman [34] community-detection methods

(discussed in Section III-A2) as com-method in Community-

Detection step of the proposed framework. For brevity, we

only considered the Facebook network under different diffu-

sion models and WC edge-weight model.

C. Experimental details

We used the budgets k = 1, 5, 10, . . . , 100 for comparing

different algorithms. However, for DSGA [13], we only used

the budgets k = 1, 20, 40, . . . , 100 due to its high run-

time. For brevity, for studying the effect of the community

structure on the proposed framework, we used the budgets

k = 1, 5, . . . , 50. The influence of any seed set was estimated

as the average number of active nodes from 1, 000 different

Monte Carlo simulations of the underlying diffusion starting

with the same seed set. For any network, if a community de-

tection method returned some communities whose individual

sizes are below 1% of the number of nodes in the network

then we merged them all into a single community. We do this

to avoid having too many small communities.

The experiments were carried out on a computer with 2.6

GHz 24-core Intel Xeon Gold Sky Lake processors and 96

GB of memory. We used Python for our implementation. The

source codes of CELF++ and CoFIM provided by their authors

are written in C++. The data and source code for this paper

are available here.

D. Results

For different networks under different diffusion models and

edge-weight models,

• Figures 1-3 show the influences of chosen seed sets

using different algorithms for different values of budget

k. Figure 1 shows the results for IC diffusion model and

WC edge-weight model, Figure 2 shows the results for IC

diffusion model and TV edge-weight model, and Figure 3

shows the results for LT diffusion model and WC edge-

weight model.

• Table II and Table III show the influences and run-times,

respectively for budget k = 100 for different algorithms.

For the Facebook network under different diffusion models,

and WC edge-weight model for different community detection

methods as com-method in Community-Detection step of

the proposed framework,

• Figure 4 shows the influences of chosen seed sets using

different algorithms for different values of k.

• Table IV shows the modularity scores, the number of

communities, and the influences and run-times for budget

k = 50 for Community-IM and CELF++.

E. Discussion

1) Overview: The proposed framework (Community-IM)

achieves either marginally lower, equal, or higher influence

compared to CELF++, and achieves better influence compared

to all other algorithms. This performance in terms of influence

improves as the budget increases. The proposed framework

brings savings in terms of run-time as compared to the

simulation-based methods. The community structures with

higher modularity lead the proposed framework to perform

better in terms of run-time and influence. Moreover, these

observations vary across different networks, diffusion models,

edge-weight models, and budgets.

2) Performance in terms of influence: For low budgets,

the influence for Community-IM (orange) is marginally lower

than that for CELF++ (blue). However, for high budgets, the

influence for Community-IM is the same or higher than that

for CELF++. Furthermore, the influence for Community-IM is

higher compared to the rest of the algorithms. We observe this

trend for the Facebook, Bitcoin, and Epinions networks under

different diffusion models and different edge-weight models

from Figures 1(a), 1(b), and 1(d), Figures 2(a) and 2(b), and

Figures 3(a) and 3(b).

For all budgets, the influence for Community-IM (orange)

is marginally lower than that for CELF++ (blue). However,

the gap between the influence for Community-IM and that for

CELF++ decreases as the budget k increases. Furthermore, the

influence for Community-IM is higher compared to the rest

of the algorithms. We observe this trend for the Wikipedia

network under different diffusion and edge-weight models

from Figures 1(c), 2(c), and 3(c).

Note that by design, the proposed community-aware frame-

work gives preference to the community-level influential nodes

while building its nested solution using progressive budgeting

(Algorithm 2). However, when the budget is large, depending

https://github.com/abhishekumrawal/Community-IM

7

0 20 40 60 80 100

0

500

1,000

Budget k

In
fl

u
en

ce
Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(a) Facebook network

0 20 40 60 80 100

0

1,000

2,000

3,000

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(b) Bitcoin network

0 20 40 60 80 100

0

200

400

600

800

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(c) Wikipedia network

0 20 40 60 80 100

0

5,000

10,000

15,000

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(d) Epinions network

Fig. 1: Influence vs. budget k for different networks under IC diffusion model and WC edge-weight model.

0 20 40 60 80 100

0

500

1,000

1,500

2,000

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(a) Facebook network

0 20 40 60 80 100

0

200

400

Budget k

In
fl

u
en

ce

Community-IM

Degree-Discount

Degree

DGSA

CoFIM

CELF++

(b) Bitcoin network

0 20 40 60 80 100

0

200

400

600

800

1,000

1,200

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(c) Wikipedia network

Fig. 2: Influence vs. budget k for different networks under IC diffusion model and TV edge-weight model.

on their community-level influence, the network-level influen-

tial nodes are also selected. On the contrary, CELF++ prefers

network-level influential nodes while building its nested so-

lution. Hence, the proposed framework takes advantage of

the community-level influence ordering of nodes early on.

However, network-level celebrities may not be equally popular

within each community. Hence, particularly for low budgets,

the proposed framework selects only the community-level

influential nodes. However, when the budget is large, it starts

to pick the network-level influential nodes as well. This

explains why the performance of the proposed algorithm in

terms of influence gets better as the budget increases. Such

a trend gets more pronounced for networks that have some

extremely (network-level) influential nodes (e.g. the Facebook

and Epinions networks) that are not selected initially for small

values of the budget but included later for high budgets.

Moreover, Table II shows that for each network, the influ-

ence of the chosen seed set of size 100 using Community-IM

is close to or even better than the same for CELF++ under

different diffusion models and edge-weight models.

3) Performance in terms of run-time: Table III shows that

the proposed framework brings savings in terms of run-time

as compared to the simulation-based methods (CELF++, and

DSGA) across different networks, diffusion models, and edge-

8

0 20 40 60 80 100

0

500

1,000

1,500

2,000

2,500

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(a) Facebook network

0 20 40 60 80 100

0

1,000

2,000

3,000

4,000

5,000

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(b) Bitcoin network

0 20 40 60 80 100

0

200

400

600

800

1,000

1,200

Budget k

In
fl

u
en

ce

Community-IM

CELF++

CoFIM

DGSA

Degree-Discount

Degree

(c) Wikipedia network

Fig. 3: Influence vs. budget k for different networks under LT diffusion model and WC edge-weight model.

0 10 20 30 40 50

0

200

400

600

800

1,000

1,200

k

In
fl

u
en

ce

CELF++

Community-IM (Louvain)

Community-IM (Label propagation)

Community-IM (Girwan-Newman)

(a) Independent cascade (IC) diffusion model

0 10 20 30 40 50

0

500

1,000

1,500

2,000

k

In
fl

u
en

ce
CELF++

Community-IM (Louvain)

Community-IM (Label propagation)

Community-IM (Girwan-Newman)

(b) Linear threshold (LT) diffusion model

Fig. 4: Influence vs. budget k for the Facebook network under different diffusion models and WC edge-weight model.

TABLE II: Comparison of influences for budget k = 100.

Diffusion
model

Edge-weight
model

Network Community-IM CELF++ CoFIM DSGA Degree Degree-Discount

Independent
cascade

Weighted
cascade

Facebook 1,378 1,406 1,237 846 1,092 1,289
Bitcoin 3,693 3,493 3,679 1,643 3,596 3,625
Wikipedia 873 877 528 213 866 878
Epinions 14,706 14,043 12,315 2,439 13,458 13,771

Trivalency

Facebook 1,977 1,977 1,809 1,305 1,765 1,801
Bitcoin 562 551 551 487 532 548
Wikipedia 1,228 1,235 888 848 1,152 1,183

Linear
threshold

Weighted
cascade

Facebook 2,231 1,946 1,936 969 1,835 2,000
Bitcoin 4,829 4,506 4,822 1,743 4,740 4,794
Wikipedia 1,117 1,139 602 246 1,119 1,162

weight models. Moreover, these run-time savings are more

pronounced for larger networks. The gains in terms of run-time

also vary across diffusion models and edge-weight models.

We observe the highest gains for IC diffusion model with TV

edge-weight model and the least gains for the IC diffusion

model with WC edge-weight model.

4) Effect of the community structure on the performance

of the proposed framework: Based on Figure 4, we observe

that the community structures with higher values of modularity

(obtained using the Louvain and Label Propagation methods)

lead the proposed framework to do better in terms of influence

as compared to the community structures with lower values of

modularity (obtained using the Girvan-Newman method [34]).

Furthermore, for all budgets, the influences for Community-IM

with Louvain method and Community-IM with Label propa-

gation method are close to each other which can be attributed

to the fact that the modularity scores of the partitions obtained

by these two methods are quite close.

Table IV shows that the influence for the budget of k = 50,

using Community-IM is close to or even better than the same

for CELF++ for different choices of community detection

methods under different diffusion models and WC edge-weight

model. Furthermore, the performance of Community-IM com-

pared to CELF++ in terms of influence and run-time improves

as the modularity of the partition and the number of commu-

nities increase. Note that, for the proposed framework, the

Louvain method is the best choice of community detection

method while the Girvan-Newman method performs the worst.

The Louvain method partitions the graph into 18 communities

with the largest community having 523 nodes (approximately

9

TABLE III: Comparison of run-times (in seconds) for budget k = 100.

Diffusion
model

Edge-weight
model

Network Community-IM CELF++ CoFIM DSGA

Independent
cascade

Weighted
cascade

Facebook 3,782 17,359 547 9,1267
Bitcoin 850 10,859 35 20,825
Wikipedia 3,477 2,660 213 18,447
Epinions 16,465 250,241 7,397 267,796

Trivalency
Facebook 7,195 74,684 567 312,948
Bitcoin 576 7,818 35 34,453

Linear
threshold

Weighted
cascade

Facebook 8,545 46,771 554 65,391
Bitcoin 1,077 45,747 36 62,184
Wikipedia 4,628 5,940 224 23,307

TABLE IV: Comparison of influences and run-times (in seconds) for budget k = 50 for the Facebook network under WC

edge-weight model for different community detection methods.

Influence Run-times (in seconds)

Diffusion
model

Community detec-
tion method

No. of communities Modularity score Community-IM CELF++ Community-IM CELF++

Independent
cascade

Louvain 18 0.8678 1,205 1,203 3,069 14,077
Label propagation 11 0.7368 1,188 1,203 4,068 14,077
Girvan-Newman 2 0.0439 1,139 1,203 14,221 14,077

Linear
threshold

Louvain 18 0.8304 2,231 1,946 7,224 38,968
Label propagation 11 0.7368 2,213 1,946 12,961 38,968
Girvan-Newman 2 0.0439 2,019 1,946 34,606 38,968

10% of the size of the entire network). Hence, Community-IM

does not come across any giant component (causing lengthier

diffusions) while estimating the within-community influence.

Contrary to this, the Girvan-Newman method partitions the

network into just two communities with the largest community

having 3,833 nodes (very close to the size of the entire

network). This makes the within-community diffusions take

longer to finish while using the communities obtained using

the Girvan-Newman method. This explains why Community-

IM with the Girvan-Newman method runs slower as compared

to the same with the Louvain method.

V. CONCLUSION AND FUTURE WORK

For solving the problem of influence maximization on social

networks, we leveraged the inherent community structure of a

network and proposed a novel community-aware framework

for maximizing the spread of influence through a social

network in a fast manner. Based on our experiments, we con-

clude that the proposed framework outperforms the standard

simulation-based methods in terms of run-time and the heuris-

tic methods in terms of influence. As the proposed method

leverages the inherent community structure of the network,

we also studied the effect of the community structure on the

performance of our framework. Based on our experiments, we

conclude that the community structures with higher modularity

lead the proposed framework to perform better in terms of run-

time and influence. Among the methods considered in this

paper, we find the Louvain method [32] works best for our

framework.

We point out two limitations of our method. First, our

method requires the communities learned during Step 1 to

be non-overlapping. However, in general, a social network

may have overlapping communities. Second, our method does

not explicitly account for the inter-community influence while

generating the candidate solutions during Step 2. In the future,

we want to extend our method to handle overlapping commu-

nity structures and explicitly account for the inter-community

influence. Other future directions are to extend the proposed

community-aware framework to competitive influence max-

imization [45], data-based influence maximization [22], and

full-bandit online influence maximization [30], [31].

REFERENCES

[1] D. Evans, Social Media Marketing: The Next Generation of Business

Engagement. John Wiley & Sons, 2010.
[2] P. Domingos and M. Richardson, “Mining the network value of cus-

tomers,” in Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2001,
pp. 57–66.

[3] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2003, pp. 137–146.
[4] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in

social networks,” in Proceedings of the 15th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, 2009, pp.
199–208.

[5] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: A complex
systems look at the underlying process of word-of-mouth,” Marketing

Letters, vol. 12, no. 3, pp. 211–223, 2001.
[6] ——, “Using complex systems analysis to advance marketing theory

development: Modeling heterogeneity effects on new product growth
through stochastic cellular automata,” Academy of Marketing Science

Review, vol. 9, no. 3, pp. 1–18, 2001.
[7] M. Granovetter, “Threshold models of collective behavior,” American

Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.
[8] T. C. Schelling, Micromotives and Macrobehavior. WW Norton &

Company, 2006.
[9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of

approximations for maximizing submodular set functions—I,” Mathe-

matical Programming, vol. 14, no. 1, pp. 265–294, 1978.
[10] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,

and N. Glance, “Cost-effective outbreak detection in networks,” in
Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2007, pp. 420–429.
[11] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: Optimizing the

greedy algorithm for influence maximization in social networks,” in
Proceedings of the 20th International Conference Companion on World

Wide Web, 2011, pp. 47–48.

10

[12] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2014,
pp. 946–957.

[13] J. J. Lotf, M. A. Azgomi, and M. R. E. Dishabi, “An improved influence
maximization method for social networks based on genetic algorithm,”
Physica A: Statistical Mechanics and its Applications, vol. 586, p.
126480, 2022.

[14] Y.-C. Chen, W.-C. Peng, and S.-Y. Lee, “Efficient algorithms for
influence maximization in social networks,” Knowledge and Information

Systems, vol. 33, no. 3, pp. 577–601, 2012.
[15] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks

using heat diffusion processes for marketing candidates selection,” in
Proceedings of the 17th ACM Conference on Information and Knowl-

edge Management, 2008, pp. 233–242.
[16] Y.-C. Chen, W.-Y. Zhu, W.-C. Peng, W.-C. Lee, and S.-Y. Lee, “CIM:

Community-based influence maximization in social networks,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 5, no. 2,
pp. 1–31, 2014.

[17] A. Bozorgi, H. Haghighi, M. S. Zahedi, and M. Rezvani, “INCIM: A
community-based algorithm for influence maximization problem under
the linear threshold model,” Information Processing & Management,
vol. 52, no. 6, pp. 1188–1199, 2016.

[18] A. Bozorgi, S. Samet, J. Kwisthout, and T. Wareham, “Community-
based influence maximization in social networks under a competitive
linear threshold model,” Knowledge-Based Systems, vol. 134, pp. 149–
158, 2017.

[19] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximiza-
tion in social networks,” in Internet and Network Economics, X. Deng
and F. C. Graham, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 306–311.

[20] J. Shang, S. Zhou, X. Li, L. Liu, and H. Wu, “CoFIM: A community-
based framework for influence maximization on large-scale networks,”
Knowledge-Based Systems, vol. 117, pp. 88–100, 2017.

[21] H. Huang, H. Shen, Z. Meng, H. Chang, and H. He, “Community-
based influence maximization for viral marketing,” Applied Intelligence,
vol. 49, no. 6, pp. 2137–2150, 2019.

[22] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based approach to
social influence maximization,” Proceedings of the VLDB Endowment,
vol. 5, no. 1, pp. 73–84, 2011.

[23] Y. Pan, X. Deng, and H. Shen, “Credit distribution for influence
maximization in online social networks with time constraint,” in 2015

IEEE International Conference on Smart City/SocialCom/SustainCom

(SmartCity). IEEE, 2015, pp. 255–260.
[24] X. Deng, Y. Pan, Y. Wu, and J. Gui, “Credit distribution and influence

maximization in online social networks using node features,” in 2015

12th International Conference on Fuzzy Systems and Knowledge Dis-

covery (FSKD). IEEE, 2015, pp. 2093–2100.
[25] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, “Online influence

maximization,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2015,
pp. 645–654.

[26] Z. Wen, B. Kveton, M. Valko, and S. Vaswani, “Online influence maxi-
mization under independent cascade model with semi-bandit feedback,”
in Advances in Neural Information Processing Systems, 2017, pp. 3022–
3032.

[27] S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L. Lakshmanan, and
M. Schmidt, “Diffusion independent semi-bandit influence maximiza-
tion,” in Proceedings of the 34th International Conference on Machine
Learning (ICML), 2017.

[28] S. Li, F. Kong, K. Tang, Q. Li, and W. Chen, “Online influence maxi-
mization under linear threshold model,” Advances in Neural Information

Processing Systems, vol. 33, pp. 1192–1204, 2020.
[29] P. Perrault, J. Healey, Z. Wen, and M. Valko, “Budgeted online influ-

ence maximization,” in International Conference on Machine Learning.
PMLR, 2020, pp. 7620–7631.

[30] M. Agarwal, V. Aggarwal, A. K. Umrawal, and C. J. Quinn, “Stochastic
top k-subset bandits with linear space and non-linear feedback with
applications to social influence maximization,” ACM/IMS Transactions

on Data Science (TDS), vol. 2, no. 4, pp. 1–39, 2022.
[31] G. Nie, M. Agarwal, A. K. Umrawal, V. Aggarwal, and C. J. Quinn, “An

explore-then-commit algorithm for submodular maximization under full-
bandit feedback,” in The 38th Conference on Uncertainty in Artificial

Intelligence, 2022.
[32] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[33] G. Cordasco and L. Gargano, “Community detection via semi-
synchronous label propagation algorithms,” in 2010 IEEE Interna-
tional Workshop on: Business Applications of Social Network Analysis

(BASNA). IEEE, 2010, pp. 1–8.
[34] M. Girvan and M. E. Newman, “Community structure in social and

biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[35] M. Newman, Networks. Oxford University Press, 2018.
[36] A. Clauset, M. E. Newman, and C. Moore, “Finding community

structure in very large networks,” Physical Review E, vol. 70, no. 6,
p. 066111, 2004.

[37] R. Kannan and C. L. Monma, “On the computational complexity
of integer programming problems,” in Optimization and Operations
Research. Springer, 1978, pp. 161–172.

[38] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data , Jun. 2014.

[39] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in Neural Information Processing Systems,
2012, pp. 539–547.

[40] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge
weight prediction in weighted signed networks,” in Data Mining

(ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 221–230.

[41] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Sub-
rahmanian, “Rev2: Fraudulent user prediction in rating platforms,” in
Proceedings of the Eleventh ACM International Conference on Web

Search and Data Mining. ACM, 2018, pp. 333–341.
[42] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in

social media,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2010, pp. 1361–1370.
[43] ——, “Predicting positive and negative links in online social networks,”

in Proceedings of the 19th International Conference on World Wide Web,
2010, pp. 641–650.

[44] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for
the semantic web,” in International Semantic Web Conference. Springer,
2003, pp. 351–368.

[45] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximiza-
tion in social networks,” in International Workshop on Web and Internet
Economics. Springer, 2007, pp. 306–311.

[46] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” 2002, Technical Report.

Abhishek K. Umrawal is currently a Ph.D. Candidate in the School of
Industrial Engineering at Purdue University, West Lafayette, IN 47907, USA,
and a Visiting Lecturer in the Department of Computer Science and Electrical
Engineering at the University of Maryland, Baltimore County, MD 21250,
USA. He received an M.Sc. degree in Statistics from the Indian Institute of
Technology Kanpur, India, and an M.S. degree in Economics from Purdue
University. His research interests include causality, reinforcement learning,
optimization, and network science with applications to social networks and
intelligent transportation.

Christopher J. Quinn (Member, IEEE) is currently an Assistant Professor
in the Department of Computer Science at Iowa State University, Ames,
IA 50011, USA. He received a B.S. degree in Engineering Physics from
Cornell University, and M.S. and Ph.D. degrees in Electrical and Computer
Engineering from the University of Illinois at Urbana-Champaign. His current
research interests include machine learning, information theory, and network
science, with applications to neuroscience and social networks.

Vaneet Aggarwal (Senior Member, IEEE) is currently a Full Professor at
Purdue University, West Lafayette, IN 47907, USA. He received a B.Tech.
degree from the Indian Institute of Technology Kanpur, India, and M.A. and
Ph.D. degrees from Princeton University, all in Electrical Engineering. His
current research interests include machine learning and its applications in
networking, transportation, and quantum systems.

http://snap.stanford.edu/data

1

APPENDIX A

TABLE OF NOTATIONS

TABLE V: Table of notations.

Symbol Explanation

Ω Ground set.

2Ω Set of all subsets of Ω.
G = (V,E) Directed graph.
V = (v1, . . . , vn) Set of vertices or nodes.
n Size of V .
E = (e1, . . . , en) Set of directed edges where ei, i = 1, . . . , n is are ordered pairs of nodes.
pv,w Weight of the edge v → w.
∂v Set of neighbors of node v.

Y
(v)
t Activation/state of node v at time t.

k Budget.
σ(S) Influence of a set S of nodes.
c Number of communities.
com-method Community detection method.
sol-method Influence maximization method.
{G1, . . . Gc} A partition of G with c sub-graphs that are G1, . . . Gc.
{V1, . . . Vc} Set of sets of vertices for all sub-graphs in the partition {G1, . . . Gc}.
ni Size of Vi, i = 1, . . . , c.
{E1, . . . Ec} Set of sets of edges for all sub-graphs in the partition {G1, . . . Gc}.
Q Modularity of a network partition.
Si,j Best seed set of size j (j = 1, . . . , k) from community i (i = 1, . . . , c).
σi(Si,j) Influence of Si,j within community i (i = 1, . . . , c).
Si Set of all candidate solutions from community i = {Si,j : j = 1, . . . , k}.
Σi Influences of all candidate solutions from community i = {σi(Si,j) : j = 1, . . . , k}.
S Set of sets of all candidate solutions from all communities = {Si : i = 1, . . . , c}.
Σ Set of sets of influences of all candidate solutions from all communities = {Σi : i = 1, . . . , c}.
S∗ Final solution using the proposed framework.

APPENDIX B

AN ILLUSTRATIVE EXAMPLE OF PROGRESSIVE BUDGETING

In this section, we provide an illustrative example of progressive budgeting. After executing the Community-Detection and

the Generate-Candidates steps of the proposed framework, we obtain the following output.

Si,j = Candidate set of size j from community i,

σi,j := σi(Si,j) = Influence of Si,j within community i,

i = 1, . . . , j = 1, . . . , k.

Let the budget, k = 4. No. of communities, c = 5. The influences of different candidate sets within different communities are

given in Table VI(a). For every i = 1, . . . , c; j = 1, . . . , k, we calculate the marginal influences as mi,j := σi(Si,j)−σi(Si,j−1),
where σi(Si,0) = 0, ∀i. The marginal influences for the influences given in Table VI(a) are provided in Table VI(b).

Influence
i σi,1 σi,2 σi,3 σi,4

C
o
m

m
u
n
it

y 1 8 14 18 21
2 5 10 14 15
3 9 14 16 17
4 7 12 16 18
5 5 9 11 11

(a) Influences of candidate sets after step (ii).

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
o
m

m
u
n
it

y 1 8 6 4 3
2 5 5 4 1
3 9 5 2 1
4 7 5 4 2
5 5 4 2 0

(b) Marginal Influences of candidate sets after step (ii).

TABLE VI: An example input for progressive budgeting.

The progressive budgeting scheme for the example in Table VI is explained in Table VII. At any iteration, the circled cells

(·©) are the ones whose maximum is to be obtained. An asterisk (∗) is placed before the maximum value at the current iteration.

The superscript(s) on any community label represents the nodes selected from that community (ordered based on the ordering

in the corresponding candidate set obtained in step (ii)).

For the example we considered, the final seed set is {11,2, 31, 41} which is equivalent to S1,2 ∪ S3,1 ∪ S4,1.

2

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
o
m

m
u
n
it

y 1 8© 6 4 3
2 5© 5 4 1

31 ∗ 9© 5 2 1
4 7© 5 4 2
5 5© 4 2 0

(a) Iteration 1: Allocating the first unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
o
m

m
u
n
it

y 11 ∗ 8© 6 4 3
2 5© 5 4 1

31 9 5© 2 1
4 7© 5 4 2
5 5© 4 2 0

(b) Iteration 2: Allocating the second unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
o
m

m
u
n
it

y 11 8 6© 4 3
2 5© 5 4 1

31 9 5© 2 1

41 ∗ 7© 5 4 2
5 5© 4 2 0

(c) Iteration 3: Allocating the third unit.

Marginal Influence
i mi,1 mi,2 mi,3 mi,4

C
o
m

m
u
n
it

y 11,2 8 ∗ 6© 4 3
2 5© 5 4 1

31 9 5© 2 1

41 7 5© 4 2
5 5© 4 2 0

(d) Iteration 4: Allocating the fourth unit.

TABLE VII: An illustration of progressive budgeting.

APPENDIX C

PROOF OF THEOREM 1

We now prove Theorem 1.

Proof. The proof follows from the linearity of expectation in the definition of influence σ and monotonicity.

σ(∪c
i=1Si) = E

[
∑

v∈V

Y
(v)
T

∣
∣
∣
∣

⋂

v∈V

{Y
(v)
0 = 1(v ∈ ∪c

i=1Si)}

]

, (from (4))

=

c∑

i=1

E

[
∑

v∈Vi

Y
(v)
T

∣
∣
∣
∣

⋂

v∈V

{Y
(v)
0 = 1(v ∈ ∪c

i=1Si)}

]

, (hard-partitioning; linearity of expectation)

≤
c∑

i=1

E

[
∑

v∈Vi

Y
(v)
T

∣
∣
∣
∣

⋂

v∈V

{Y
(v)
0 = 1(v ∈ Si)}

]

, (σi is monotone non-decreasing)

=

c∑

i=1

σi(Si).

APPENDIX D

PROOF OF LEMMA 1

We now prove Lemma 1.

Proof. The proof will follow by contradiction. Suppose there is some instance of Problem 2 and some cardinality 1 ≤ ℓ < k
such that starting with the budget allocation k

∗,(ℓ+1) for the optimal solution S∗,(ℓ+1) for budget ℓ + 1 and removing a unit

of budget from any community results in a sub-optimal allocation (i.e. worse than k
∗,(ℓ)). For the special case that optimal

solutions are unique for each cardinality and sol-method returns nested subsets, this condition simplifies to S∗,(ℓ) 6⊂ S∗,(ℓ+1).

If there is more than one optimal solution for budget ℓ, fix any one as S∗,(ℓ). Let us modify the budget allocation k
∗,(ℓ+1)

of the optimal solution S∗,(ℓ+1) as follows. Pick any community ĩ ∈ {1, . . . , c} such that

k
∗,(ℓ)

ĩ
≤ k

∗,(ℓ+1)

ĩ
− 1, (6)

that is even after removing a unit of budget for community ĩ from allocation k
∗,(ℓ+1), there is still as much budget left over as

there is for community ĩ in the allocation k
∗,(ℓ) (i.e. of the optimal solution S∗,(ℓ) for cardinality ℓ). Trivially since k

∗,(ℓ+1)

allocates a larger budget overall, there must be one such community ĩ (if the solutions were nested, there would be exactly

one). Denote the corresponding modified solution and budget allocation as S̃∗,(ℓ+1) and k̃
∗,(ℓ+1) respectively.

From our supposition, S̃∗,(ℓ+1) is not an optimal solution to Problem 2 for cardinality ℓ (its value is strictly worse than that

of S∗,(ℓ)). We next consider constructing a solution of cardinality ℓ+1 from S∗,(ℓ) by adding a unit of budget for community

ĩ. With the nesting of the budget (6) for community ĩ specifically, by Assumption 1 the resulting marginal gain must be at

least as large as the marginal gain by adding a unit of budget to community ĩ for S̃∗,(ℓ+1). (Recall from Remark 1 that the

assumption holds due to submodularity if the subsets chosen by sol-method are nested.) Thus,

3

Value of S∗,(ℓ)

︷ ︸︸ ︷
[

c∑

i=1

σi(Si,k
∗,(ℓ)
i

)

]

+

Marginal gain of augmenting S∗,(ℓ)

︷ ︸︸ ︷
[

σĩ(Sĩ,k
∗,(ℓ)

ĩ
+1

)− σĩ(Sĩ,k
∗,(ℓ)

ĩ

)
]

≥

Value of S∗,(ℓ)

︷ ︸︸ ︷
[

c∑

i=1

σi(Si,k
∗,(ℓ)
i

)

]

+

Marginal gain of augmenting S̃∗,(ℓ+1)

︷ ︸︸ ︷
[

σĩ(Sĩ,k
∗,(ℓ+1)

ĩ

)− σĩ(Sĩ,k
∗,(ℓ+1)

ĩ
−1

)
]

, (by Assumption 1)

>

Value of S̃∗,(ℓ+1)

︷ ︸︸ ︷





σĩ(Sĩ,k

∗,(ℓ+1)

ĩ
−1

) +
∑

i=1,...,c

i6=ĩ

σi(Si,k
∗,(ℓ+1)
i

)






+

Marginal gain of augmenting S̃∗,(ℓ+1)

︷ ︸︸ ︷
[

σĩ(Sĩ,k
∗,(ℓ+1)

ĩ

)− σĩ(Sĩ,k
∗,(ℓ+1)

ĩ
−1

)
]

, (S̃∗,(ℓ+1) is not optimal)

=

Value of S∗,(ℓ+1)

︷ ︸︸ ︷
[

c∑

i=1

σi(Si,k
∗,(ℓ+1)
i

)

]

.

Thus, the objective value of the optimal budget allocation k
∗,(ℓ+1) for a budget of ℓ+1 is strictly less than the objective value

of a budget allocation we constructed. This is a contradiction. Thus our assumption about an instance lacking nesting (up to

uniqueness) was incorrect.

APPENDIX E

COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the proposed framework (Algorithm 1). The run-time of the

proposed framework is the sum of the times taken at the three steps. It depends on the choice of community detection method

as well as the solution method to solve IM for each community. We analyze the run-time involved at each step as follows.

A. Learning the inherent community structure of the social network

The worst-case run-times of different community detection algorithms considered in this paper are given as follows: the

Louvain method is O(n logn) [32], label propagation is O(n+ |E|) [33], and the Girvan-Newman method is O(n|E|2) [46].

B. Generating candidate solutions by solving the influence maximization problem for each community

If we use CELF++ to solve IM for c different communities then we are solving c problems of finding a k-node subset for

each community from ni nodes, i = 1, . . . , c. For the ith community, CELF++ iteratively builds the k-node subset as follows.

First, find the best individual node by evaluating all ni subsets of cardinality one. Next, find the node with the highest marginal

influence in the presence of the best individual node by evaluating (up to) all ni − 1 subsets of the previously selected best

individual and an additional node. CELF++ then keeps adding nodes to the previous set in the same manner until the size

of the current set is k. The number of k-node subsets evaluated at the kth step is ni − (k − 1) in the worst case. Thus, the

number of subsets evaluated in the worst case is

c∑

i=1

[ni + (ni − 1) + · · ·+ (ni − (k − 1))]

= nk −
ck(k − 1)

2
. (7)

On the contrary, if we use CELF++ for the entire network then the total number of subsets evaluated in the worst case is

n+ (n− 1) + · · ·+ (n− (k − 1)) = nk −
k(k − 1)

2
. (8)

By comparing (7) and (8), we observe that the Generate-Candidates step of the proposed framework achieves a lower run-

time compared to using the sol-method for the entire network by an additive factor of (c− 1)k(k − 1)/2. Furthermore, as

ni ≤ n ∀i = 1, . . . , c, the length of the diffusion while evaluating a subset of the nodes using Monte Carlo simulations within

any community will always be smaller as compared to doing the same in the entire network. This further reduces the run-time

of the Generate-Candidates step.

4

C. Final seed set selection using progressive budgeting

The progressive budgeting method of final seed set selection solves ‘finding the maximum of c elements’ k times. Hence,

the worst-case run-time of progressive budgeting is O(ck).
In practice, solving IM for each community (using a simulation-based sol-method) is the step that takes the most amount

of time due to the costly Monte Carlo simulations. In that sense, the worst-case run-time of the proposed framework (with

a simulation-based sol-method) to solve IM for each community is lower compared to the same for solving IM for the

original network using the same simulation-based sol-method.

	I Introduction
	I-A Motivation
	I-B Literature Review
	I-B1 Simple heuristics
	I-B2 Simulation-based methods
	I-B3 Community-based methods
	I-B4 Data-based methods
	I-B5 Online methods

	I-C Contribution
	I-D Organization

	II Preliminaries and Problem Formulation
	II-A Submodularity
	II-B Diffusion models and social influence
	II-C Problem statement

	III Methodology
	III-A Learning the community structure of the network
	III-A1 Quality of a network-partition
	III-A2 Community detection methods

	III-B Generating candidate solutions by solving the influence maximization problem for each community
	III-C Selecting the final seed set
	III-C1 Progressive Budgeting

	IV Experiments
	IV-A Network data
	IV-B Algorithms
	IV-C Experimental details
	IV-D Results
	IV-E Discussion
	IV-E1 Overview
	IV-E2 Performance in terms of influence
	IV-E3 Performance in terms of run-time
	IV-E4 Effect of the community structure on the performance of the proposed framework

	V Conclusion and Future Work
	References
	Biographies
	Abhishek K. Umrawal
	Christopher J. Quinn
	Vaneet Aggarwal

	Appendix A: Table of Notations
	Appendix B: An illustrative example of progressive budgeting
	Appendix C: Proof of Theorem 1
	Appendix D: Proof of Lemma 1
	Appendix E: Computational complexity analysis
	E-A Learning the inherent community structure of the social network
	E-B Generating candidate solutions by solving the influence maximization problem for each community
	E-C Final seed set selection using progressive budgeting

