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Abstract—We consider the problem of Influence Maximization
(IM), the task of selecting & seed nodes in a social network such
that the expected number of nodes influenced is maximized. We
propose a community-aware divide-and-conquer framework that
involves (i) learning the inherent community structure of the
social network, (ii) generating candidate solutions by solving the
influence maximization problem for each community, and (iii)
selecting the final set of seed nodes using a novel progressive
budgeting scheme.

Our experiments on real-world social networks show that the
proposed framework outperforms the standard methods in terms
of run-time and the heuristic methods in terms of influence.
We also study the effect of the community structure on the
performance of the proposed framework. Our experiments show
that the community structures with higher modularity lead the
proposed framework to perform better in terms of run-time and
influence.

Index Terms—Social networks, influence maximization, viral
marketing, community detection, submodular maximization

I. INTRODUCTION
A. Motivation

HE advent of social media has changed how traditional

marketing strategies were used to be designed [1]. Com-
panies are now preferring to allocate a significant proportion
of their marketing budget to drive sales through large social
media platforms. There are several ways in which social media
can be leveraged for promotional marketing. For instance,
advertising on the most visited social platforms, making social
media pages for branding and spreading the word about the
product, etc. A more sophisticated approach for promotional
marketing would be to use the dynamics of the social network
to identify the right individuals to be incentivized to get the
maximum influence in the entire network.
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In the context of social media marketing, Domingos and
Richardson posed the Influence Maximization (IM) problem
[2]: “if we can try to convince a subset of individuals in a
social network to adopt a new product or innovation, and the
goal is to trigger a large cascade of further adoptions, which
set of individuals should we target?” Formally, it is the task
of selecting k seed nodes in a social network such that the
expected number of influenced nodes in the network (under
some influence propagation model), referred to as the influ-
ence, is maximized. Kempe et al. [3] showed that the problem
of influence maximization is NP-Hard. This problem has been
widely studied in the literature and several approaches for
solving it have been proposed. Some approaches provide near-
optimal solutions but are costly in terms of run time. On the
other hand, some approaches are faster but heuristics, i.e. do
not have approximation guarantees.

Motivated by the idea of addressing this trade-off between
accuracy and run-time, we propose a community-aware divide-
and-conquer framework to provide a time-efficient solution.
The proposed framework outperforms the standard methods
in terms of run-time and the heuristic methods in terms of
influence.

B. Literature Review

Researchers have proposed different algorithms and heuris-
tics for solving the Influence Maximization (IM) problem
using several approaches. We now discuss several categories
of the relevant approaches as follows. We refer to methods
that presume knowledge of the network and estimate influence
using Monte Carlo simulations of the diffusion process as
simulation-based methods.

1) Simple heuristics: Degree centrality is perhaps the sim-
plest way to quantify the influence of an individual in the
network [3]. Observing the fact that many of the most central
nodes may be clustered, targeting all of them is not at all nec-
essary, Chen et al. [4] proposed the degree discount heuristic.
These heuristics are simple and time-efficient. However, they
do not have any provable guarantees.

2) Simulation-based methods: Under the independent cas-
cade [5], [6] and linear threshold [7], [8] models of diffusion
(discussed in Section II-B), Kempe et al. [3] showed that
the problem of influence maximization is NP-Hard. They
also proposed to use an efficient greedy algorithm [2] which
due to a result by Nemhauser et al. [9] gives an (1—1)-
approximation of the solution. The asymptotic run-time of this
algorithm is O(nk). Asymptotically, this greedy algorithm is
efficient but empirically the costly Monte Carlo simulations
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cause an overhead. Leskovec et al. [10] proposed the CELF
algorithm which improves upon the empirical run-time of the
simple greedy algorithm by further exploiting the property
of submodularity. Goyal et al. [11] proposed the CELF++
algorithm which further improved upon the empirical run-time
of the CELF algorithm by even further exploiting the property
of submodularity to avoid unnecessary re-computations of
marginal gains incurred by CELF. Borgs et al. [12] proposed
a greedy algorithm using reverse influence sampling (RIS) —
an approach to efficiently estimate the influence of a seed set.
CELF, CELF++, and [12] have the same worst-case run time
O(nk) and approximation ratio (1 — %) as the one proposed by
Kempe et al. [3]. Lotf et al. [13] proposed a genetic algorithm-
based heuristic algorithm for dynamic (evolving over time)
networks. This method involves Monte Carlo simulation and
does not have any approximation guarantees. The framework
proposed in this paper may also involve Monte Carlo sim-
ulations. But, the divide-and-conquer strategy allows us to
significantly reduce the run-time.

3) Community-based methods: As the proposed method
utilizes the inherent community structure of the network, we
discuss other community-based methods of influence maxi-
mization as follows. Chen et al. [14] proposed two methods
called CDH-KCut and CDH-SHRINK under heat diffusion
model [15]. They further improved their methods and proposed
another method called CIM [16]. Bozorgi et al. [17] proposed
a method called INCIM which works only for the linear
threshold diffusion model. Moreover, the method involves
overlapping community detection contrary to our work where
the communities are non-overlapping. Bozorgi et al. [18] have
also developed a method for competitive influence maximiza-
tion [19] under the competitive linear threshold model. Shang
et al. [20] have proposed a method called CoFIM under the
independent cascade diffusion model and weighted cascade
edge-weight model. Contrary to these methods, our method
does not depend on the choice of the diffusion model. Huang
et al. [21] proposed a data-based method called CTIM which
requires a potential action log and item-topic relevance.

4) Data-based methods: Provided some observational data
involving real-world diffusion traces is available, the Monte
Carlo simulations can be avoided by estimating the influence
directly from the data. Goyal et al. [22], instead of using a
propagation model, proposed a data-based-method to introduce
a model called the credit distribution model, which directly
leverages the propagation traces from real-world data and
learns the flow of influence in the network. Pen et al. [23] and
Deng et al. [24] have studied variants of the credit distribution
model under time constraints and node features respectively.
The proposed method does not involve any observational data.

5) Online methods: More recently, the focus has been on
solving the problem of influence maximization in an online
manner where the goal is to maximize the cumulative observed
influence of the seed sets chosen at different times while
receiving instantaneous feedback. Approaches differ based on
semi-bandit feedback [25]-[29] and full-bandit feedback [30],
[31]. The proposed method is not an online method.

C. Contribution

In Section I-B, we discussed that the CELF++ [11] algo-
rithm is faster compared to the simple greedy algorithm [2],
[3]. But the costly aspect of performing a large number of
diffusions in the entire network is still there. Motivated by
the idea of solving the influence maximization problem in a
time-efficient manner, we propose a community-aware divide-
and-conquer framework that involves (i) learning the inherent
community structure of the social network, (ii) generating
candidate solutions by solving the influence maximization
problem for each community, and (iii) selecting the final set
of individuals to be incentivized from the candidate solutions
using a novel progressive budgeting scheme. Our method may
also use the Monte Carlo simulations but we are restricting
them within each community as compared to the entire net-
work which brings savings in terms of run-time as compared
to the CELF++ algorithm.

Compared to the other community-based methods, the pro-
posed framework is novel in the following ways. It is not
limited to a specific diffusion and/or an edge-weight model.
In Step 1, the set of candidate solutions is generated by all
combinations of solutions from each community. In Step 2, the
final seed selection is performed by solving an integer linear
program (ILP) over candidate solutions subject to a budget
constraint. We propose an efficient progressive budgeting
scheme to efficiently solve the ILP in Step 3. We provide
the proof of correctness of this scheme which leverages
submodularity (defined in Section II) of the influence.

We provide experiments on real-world social networks,
showing that the proposed framework outperforms simulation-
based methods in terms of run-time and heuristic methods
in terms of influence. We study the effect of the community
structure on the performance of the proposed framework. Our
experiments show that the community structures with higher
‘modularity’ (defined in Section II) lead the proposed frame-
work to perform better in terms of run-time and influence.

D. Organization

The rest of the paper is organized as follows. In Section II,
we discuss the preliminaries and formulate the problem. In
Section III, we discuss our methodology. In Section IV,
we discuss the experiments performed on real-world social
networks. Section V concludes the paper and provides future
directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we discuss some preliminaries and formulate
the problem of interest in this paper. Refer to Appendix A for
a table of important notations used throughout the paper.

A. Submodularity

Let 2 denote the ground set of n elements and 2% denote
the set of all subsets of 2. A set function f : 2 — R is said
to be submodular if it satisfies a natural ‘diminishing returns’
property: the marginal gain from adding an element v to a set
S C Q is at least as high as the marginal gain from adding



the same element v to a superset 7' C ) of .S. Formally, for
any sets S,T C ) such that S C T, f satisfies

fF(SU{v}) = f(S) = fF(TU{v}) = f(T). )

A set function f : 292 3 R, is said to be monotone (non-
decreasing) if for any sets S,7 C 2 such that S C T, f
satisfies

f(S) < F(T). @

B. Diffusion models and social influence

There are several discrete-time stochastic models of diffu-
sion over social networks. For the purpose of our research,
we focus on the independent cascade (IC) [5], [6] and linear
threshold (LT) [7], [8] models of diffusion.

In the independent cascade model, given a graph G =
(V, E), the process starts at time 0 with an initial set of active
nodes S, called the seed set. When a node v € S first becomes
active at time ¢, it will be given a single chance to activate each
currently inactive neighbor w, it succeeds with a probability
Dv,w (independent of the history thus far). If w has multiple
newly activated neighbors, their attempts are sequenced in an
arbitrary order. If v succeeds, then w will become active at
time t + 1; but whether or not v succeeds, it cannot make
any further attempts to activate w in subsequent rounds. The
process runs until no further activation is possible.

In the linear threshold model, given a graph G = (V, E),
a node v is influenced by each neighbor w according to a
weight p,, ., such that Zwe a0 Pv,w < 1, where Ov represents
the set of neighbors of v. Each node v chooses a threshold 0,
uniformly from the interval [0,1]; this represents the weighted
fraction of v’s neighbors that must become active in order for
v to become active. The process starts with a random choice
of thresholds for the nodes, and an initial set of active nodes
S, called the seed set. In step t, all nodes that were active
in step ¢ — 1 remain active, and we activate any node v for
which the total weight of its active neighbors is at least 6,,.
The process runs until no more activation is possible.

Note that both these processes of diffusion are progressive,
i.e. the nodes can switch from being inactive to active, but do
not switch in the other direction.

At any time ¢ in the cascade, each node v € V can be
either active or inactive. We denote the process for each node
v e Vs state as {V,)}7

y@ )b if node v is active at time ¢, 3)
te 0, otherwise.

The influence o(S) of a set S is defined as the expected
number of active nodes at the end of the cascade (denoted by
time T'), given that S is the set of initially active nodes,

>

veV

o(S) =E NG =1wes))|, @

veV

where 1(-) denotes the indicator function.

Kempe et al. [3] showed that under common models of
diffusion such as independent cascade and linear threshold
models, o(S) is a monotone non-decreasing submodular set
function.

C. Problem statement

For a given integer budget k, we are interested in finding a
k-node subset of the set of nodes V', which has the maximum
influence over all possible k-node subsets of V. Formally, the
problem of influence maximization (IM) is defined as

Problem 1.
argmax o(95),
scv
s.t. |S] < k. (budget constraint)

III. METHODOLOGY

With the goal of solving the influence maximization prob-
lem (Problem 1) in a time-efficient manner, we propose a
community-aware divide-and-conquer framework. The pro-
posed framework reduces the search space for the seed sets
by partitioning the given network using its inherent commu-
nity structure. The proposed framework involves (i) learning
the inherent community structure of the social network, (ii)
generating candidate solutions by solving the influence maxi-
mization problem for each community, and (iii) selecting the
final set of individuals to be incentivized from the candidate
solutions using a novel progressive budgeting scheme.

Algorithm 1 outlines the framework proposed in this paper.
It uses three sub-routines which are explained in the following
subsections.

Algorithm 1 Community-IM

1: Input Graph G, budget k, com-method, sol-method.
2: {G;}¢_, < Community-Detection(G, com-method)

3: for community s = 1,...,c do

4: S;, ¥; + Generate-Candidates(G;, k, sol-method)
5: end for

6: S* « Progressive-Budgeting({S; }$_;,{2:}5_1,k)

7: return S

A. Learning the community structure of the network

For the given social network G = (V,E), we obtain a
hard partition {V1,...,V.} of the node set V' using some
community detection method. By hard partitioning, we mean
we mean the communities are non-overlapping, i.e. V;N\V; =0
for all communities ¢ # j with i,57 € {1,...,¢} and
Ui, Vi = V. Define G; = (V;, E;) where E; is the set
of edges from £ connecting pairs of nodes in V;. We call
{G1,...,G.} a network-partition.

Most community detection methods select communities
such that the nodes within a community are more ‘well-
connected’ than the nodes between communities. Methods dif-
fer in how they explicitly or implicitly measure the connected-
ness of the nodes in a network. Common community detection
methods are the Louvain method [32], label propagation [33],
and the Girvan-Newman algorithm [34].



1) Quality of a network-partition: The quality of a
network-partition can be measured using modularity score
[35], [36]. The modularity score of a network-partition is
defined as the fraction of the edges that fall within the given
groups minus the expected fraction if edges were distributed
at random. For a network-partition {G1, ..., G.}, modularity

[36] is defined as
L; ( 0 )2
|El  \I|E|

Q=2
i=1

where L; is the number of edges between the pairs of nodes
in G; and §; is the sum of the degrees of nodes in G;.

The modularity score is used as a measure of how well a
community detection algorithm partitions a network. A higher
value of modularity corresponds to a network-partition with
higher connectedness within each community.

2) Community detection methods: We discuss some com-
monly used community detection methods (com-method in
Algorithm 1). The Louvain method [32] first obtains small
communities by optimizing modularity locally on all of the
nodes. Then each small community is treated as a single node
and the previous step is repeated. Label propagation [33] starts
with a (generally small) random subset of the nodes with
community labels. The algorithm then iteratively assigns labels
to previously unlabeled nodes. The Girvan-Newman method
[34] method uses a measure known as ‘betweenness.” Define
the betweenness of an edge [34] as the sum of the ‘weights’ of
the shortest paths between any pair of nodes that run along it.
If there are d different shortest paths between any two nodes
then the weight of each path is set as 1/d. The Girvan-Newman
method [34] method involves the following steps.

)

1) First, calculate the betweenness of all existing edges in
the network.

2) Next, remove the edge(s) with the highest betweenness.

3) Finally, recalculate the betweenness of all edges affected
by the removal at the previous step.

4) Repeat the previous two steps until no edge remains.

For the framework proposed in this paper, the only
formal requirement for the community detection method
(com-method in Algorithm 1) is that it provides a hard
partition. Based on our experiments (discussed in Section IV),
we observe that the Louvain method [32] works the best for
our framework.

B. Generating candidate solutions by solving the influence
maximization problem for each community

For each community G;, we find the best seed sets of sizes
1,...,k for that community using some standard influence
maximization method. Let S;; denote the best seed set of
size j for community i. Let 0;(S; ;) denote the corresponding
expected influences of those seed sets within community @
G=1,...,0.

Solving the influence maximization problem separately for
different communities instead of the entire network improves
the empirical run-time. The partitioning of the original network
leads to fewer subset evaluations (oracle calls). Furthermore,

those (fewer) evaluations are also faster to carry out. Refer to
Appendix E-B for details.

For the framework proposed in this paper, any standard
influence maximization method can be used as sol-method
in Algorithm 1. For our experiments (discussed in Section IV),
we use the CELF++ method [11] to demonstrate our frame-
work.

Later, to discuss guarantees of our method (on a surrogate
optimization problem), we will assume that the sol-method
used has the following property.

Assumption 1. We assume that the marginal gains
{00(Sij+1) — ai(Si,j)}f;ll within each community i €
{1,..., ¢} are non-increasing.

Remark 1. Assumption 1 will automatically hold if the
solutions are nested (i.e. S; j C S; j+1) due to submodularity.
Iterative greedy influence maximization methods, such as those
based on the [9], return nested solutions by design. Assump-
tion I also holds automatically for optimal subsets regardless
of nesting (due to submodularity), though it is computationally
prohibitive to identify optimal subsets.

C. Selecting the final seed set

After separately solving the influence maximization prob-
lem for each community, we allocate the total budget &
across the ¢ communities based on the within-community
influences {o;(S; ;)|i € {1,...,¢},j € {1,...,k}} Formally,
we solve the binary integer linear program (ILP) described as
Problem 2.

Problem 2.
c k
arg max Z Z 2;,505(5i,5),

{ziiti=1,.,c i=1 j=1
J=Lyok

c k
s.t. szzﬂ&ﬂ <k,

i=1 j=1

k
dowy<1Vi=1,...c
j=1

Tij € {0, 1} Vi, J.

(budget constraint)

(no repetition)

(binary integer constraints)

Before discussing how we propose to solve Problem 2, we
first discuss how we use the solution to this ILP for selecting
a seed set and how the objective functions of Problems 1 and
2 relate.

Let z* denote the optimal solution to Problem 2. If there
are multiple optimal solutions pick one arbitrarily. Denote the
budget allocated to each community ¢ as k; (e.g. the index j for
which xf . = 1). We next construct a seed set for Problem 1

%]
based on the allocation budget x*,

S« | Sim- (5)
i=1
The objective function in Problem 2 lower bounds the
objective function of Problem 1, with equality if G is formed
of disjoint communities.



Theorem 1. Consider any network partition {G;}$_, of G
and any set of subsets {S;}¢_, of nodes such that S; C V; for
t=1,...,c Then

Z Ui(Si) < O'(nglsi).
=1

The proof is in Appendix C.

In general, solving an ILP is an NP-Complete problem [37].
However, the submodularity of the influence allows us to solve
Problem 2 in polynomial time.

1) Progressive Budgeting: By Assumption 1 (by submod-
ularity for nested subsets), we know that the marginal gain in
influence due to each additional node in the seed set is dimin-
ishing (both for each individual community and overall since
sums of submodular functions are submodular). Hence, we can
progressively allocate the budget across the community-based
seed sets {5; ;}. The Progressive-Budgeting sub-routine used
in Algorithm 1 is outlined in Algorithm 2.

Algorithm 2 Progressive-Budgeting
Input S, %, k.
{Slj|l S {1,...,6},j S {1,...,]{3}} )
{o:(Sij)ie{1,....ct,je{l,....k}} « X
{60:}521 « {04(S;1)}5_, > Initialize the marginal gains.
{ki}s_, < {0}5_, Vi ©» Initialize the budget allocations.
S* 0 > Initialize the final set.
for (=1,...,k do
m ¢ argmaxcqy . .3 0; > Index of the community
with the maximum marginal gain.
9: km +— km +1 > Update the budget allocated to
community m.

X DN R RN

10 Im — om(Sm.km+1) — Om (Sm k., ) > Update the
marginal gains for community m.
11: end for

122 S* « Ui_y Siks

13: return S* > Final seed set.

An illustrative example of progressive budgeting is provided
in Appendix B. We will next discuss the correctness of
Algorithm 2. The correctness of Algorithm 2 will follow from
the following lemma, asserting that up to the uniqueness of
optimal solutions of Problem 2 for different cardinalities, the
optimal budget allocations are nested.

For each budget ¢ € {1,..., k}, let $*() denote an optimal
seed set (5) of cardinality ¢ and let k*(©) = {k;}$_, denote the
budget allocations to the ¢ communities. We say a sequence
(S*))k_ of (optimal) seed sets is nested if the seed sets are
proper subsets of each other (i.e. S*(©) ¢ §*(+1) We say a
sequence (k*v(g))fz1 of budget allocations is nested if across
the sequence each community’s allocation is non-decreasing
(e k" < )y,

Lemma 1. Under Assumption I, there is a nested sequence
{k*Yk_ of optimal budget allocations for Problem 2.

The proof is in Appendix D.

Theorem 2. Under Assumption 1, Algorithm 2 solves Prob-
lem 2.

The proof follows immediately from Lemma 1 and the
greedy design of Algorithm 2.

Remark 2. In general, the guarantees of Theorem 2 do not
translate into guarantees for Problem 1. Since Problem 1 is an
NP-hard problem for common diffusion models on a general
network, common methods are approximation algorithms (with
an approximation ratio of (1 — 1/e) or slightly worse) or
heuristics. Thus, the inputs to Algorithm 2 in general will
not necessarily be optimal seed sets for their respective com-
munities. Additionally, as noted in Theorem 1, the objective
functions in Problems 1 and 2 only match if the original
network G is disjoint (and the communities selected align with
the segments of G).

The computational complexity of the proposed framework
(Algorithm 1) is analyzed in Appendix E.

IV. EXPERIMENTS

We evaluated the performance of our framework using real-
world social networks. We next discuss the network data used
for our experiments, list the algorithms chosen for comparison,
provide experimental details, and then present results and
discussion.

A. Network data

We used 4 real-world social networks  for
our  experiments. The data s available at
Stanford Large Network Dataset Collection [38]. The

number of nodes, number of edges, and modularity (for the
network-partition obtained using the Louvain method [32])
of each network are provided in Table 1.

TABLE I: Basic information of the networks used.

Network Nodes Edges  Modularity
Facebook [39] 4,039 88,234 0.8678
Bitcoin [40], [41] 5,881 35,592 0.4196
Wikipedia [42], [43] 7,115 103,689 0.4175
Epinions [44] 75,879 508,837 0.8219

The Facebook network [39] consists of a dataset consisting
of ‘circles’ (or ‘friends lists’) from Facebook. The Facebook
network is undirected; we converted it to a directed network by
replacing each edge with two directed edges. Bitcoin network
[40], [41] is a (directed) who-trusts-whom network of people
who trade using Bitcoin on a platform called Bitcoin OTC.
Wikipedia network [42], [43] is a who-votes-on-whom (di-
rected) network to become an administrator. Epinions network
[44] is a who-trust-whom (directed) online social network of
a general consumer review platform called Epinions.

For edge-weights, two models are used which are weighted
cascade (WC) model [3] where for each node v € V, the
weight of each edge entering v was set to 1/in-degree(v)
and trivalency (TV) model [22] where each edge-weight was
drawn uniformly at random from a small set of constants {0.1,
0.01, 0.001}. However, for the linear threshold model (LT) of
diffusion, only the WC model is used for edge-weights as the
TV model does not necessarily maintain the sum of weights
of all edges incident on a node to be less than or equal to 1.
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B. Algorithms

We compared the proposed community-aware framework
(Community-IM) with the following algorithms.

1) CELF++ [11], the state-of-the-art simulation-based
greedy algorithm.

2) CoFIM [20], a community-aware heuristic algorithm
with guarantees under the independent cascade diffusion
model with the weighted-cascade edge-weight model.

3) DSGA [13], a recent genetic algorithm-based method
that uses Monte Carlo simulations.

4) Degree [3], the simplest heuristic algorithm where for
budget k, top-k out-degree nodes are selected.

5) Degree-Discount [4], a modification of the the Degree
heuristic algorithm with better empirical performance.

Note that the CoFIM algorithm was developed only for
IC diffusion model with WC edge-weight model. However,
for empirical comparisons, we implemented it for the other
choices of diffusion models and edge-weight models as well.

For the purpose of demonstrating the performance of
the proposed framework, Community-IM (Algorithm 1),
we used the Louvain method [32] as com-method, and
CELF++ [11] as sol-method for Community-Detection and
Generate-Candidates subroutines, respectively. In general, the
user may try different combinations of com-method and
sol-method as part of the proposed framework.

We also studied the effect of the (modularity of) the
community structure on the performance of the proposed
framework. We used the Louvain [32], Label Propagation
[33], and Girvan-Newman [34] community-detection methods
(discussed in Section I1I-A2) as com—method in Community-
Detection step of the proposed framework. For brevity, we
only considered the Facebook network under different diffu-
sion models and WC edge-weight model.

C. Experimental details

We used the budgets £ = 1,5,10,...,100 for comparing
different algorithms. However, for DSGA [13], we only used
the budgets £ = 1,20,40,...,100 due to its high run-
time. For brevity, for studying the effect of the community
structure on the proposed framework, we used the budgets
k=1,5,...,50. The influence of any seed set was estimated
as the average number of active nodes from 1,000 different
Monte Carlo simulations of the underlying diffusion starting
with the same seed set. For any network, if a community de-
tection method returned some communities whose individual
sizes are below 1% of the number of nodes in the network
then we merged them all into a single community. We do this
to avoid having too many small communities.

The experiments were carried out on a computer with 2.6
GHz 24-core Intel Xeon Gold Sky Lake processors and 96
GB of memory. We used Python for our implementation. The
source codes of CELF++ and CoFIM provided by their authors
are written in C++. The data and source code for this paper
are available here.

D. Results

For different networks under different diffusion models and
edge-weight models,

o Figures 1-3 show the influences of chosen seed sets
using different algorithms for different values of budget
k. Figure 1 shows the results for IC diffusion model and
WC edge-weight model, Figure 2 shows the results for IC
diffusion model and TV edge-weight model, and Figure 3
shows the results for LT diffusion model and WC edge-
weight model.

o Table II and Table III show the influences and run-times,
respectively for budget k£ = 100 for different algorithms.

For the Facebook network under different diffusion models,
and WC edge-weight model for different community detection
methods as com-method in Community-Detection step of
the proposed framework,

o Figure 4 shows the influences of chosen seed sets using
different algorithms for different values of k.

o Table IV shows the modularity scores, the number of
communities, and the influences and run-times for budget
k = 50 for Community-IM and CELF++.

E. Discussion

1) Overview: The proposed framework (Community-IM)
achieves either marginally lower, equal, or higher influence
compared to CELF++, and achieves better influence compared
to all other algorithms. This performance in terms of influence
improves as the budget increases. The proposed framework
brings savings in terms of run-time as compared to the
simulation-based methods. The community structures with
higher modularity lead the proposed framework to perform
better in terms of run-time and influence. Moreover, these
observations vary across different networks, diffusion models,
edge-weight models, and budgets.

2) Performance in terms of influence: For low budgets,
the influence for Community-IM (orange) is marginally lower
than that for CELF++ (blue). However, for high budgets, the
influence for Community-IM is the same or higher than that
for CELF++. Furthermore, the influence for Community-IM is
higher compared to the rest of the algorithms. We observe this
trend for the Facebook, Bitcoin, and Epinions networks under
different diffusion models and different edge-weight models
from Figures 1(a), 1(b), and 1(d), Figures 2(a) and 2(b), and
Figures 3(a) and 3(b).

For all budgets, the influence for Community-IM (orange)
is marginally lower than that for CELF++ (blue). However,
the gap between the influence for Community-IM and that for
CELF++ decreases as the budget k increases. Furthermore, the
influence for Community-IM is higher compared to the rest
of the algorithms. We observe this trend for the Wikipedia
network under different diffusion and edge-weight models
from Figures 1(c), 2(c), and 3(c).

Note that by design, the proposed community-aware frame-
work gives preference to the community-level influential nodes
while building its nested solution using progressive budgeting
(Algorithm 2). However, when the budget is large, depending
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Fig. 2: Influence vs. budget k for different networks under IC diffusion model and TV edge-weight model.

on their community-level influence, the network-level influen-
tial nodes are also selected. On the contrary, CELF++ prefers
network-level influential nodes while building its nested so-
lution. Hence, the proposed framework takes advantage of
the community-level influence ordering of nodes early on.
However, network-level celebrities may not be equally popular
within each community. Hence, particularly for low budgets,
the proposed framework selects only the community-level
influential nodes. However, when the budget is large, it starts
to pick the network-level influential nodes as well. This
explains why the performance of the proposed algorithm in
terms of influence gets better as the budget increases. Such

a trend gets more pronounced for networks that have some
extremely (network-level) influential nodes (e.g. the Facebook
and Epinions networks) that are not selected initially for small
values of the budget but included later for high budgets.

Moreover, Table II shows that for each network, the influ-
ence of the chosen seed set of size 100 using Community-IM
is close to or even better than the same for CELF++ under
different diffusion models and edge-weight models.

3) Performance in terms of run-time: Table III shows that
the proposed framework brings savings in terms of run-time
as compared to the simulation-based methods (CELF++, and
DSGA) across different networks, diffusion models, and edge-
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TABLE II: Comparison of influences for budget k£ = 100.

Diffusion Edge-weight Network Community-IM  CELF++ CoFIM DSGA  Degree Degree-Discount
model model

Facebook 1,378 1,406 1,237 846 1,092 1,289

Weighted Bitcoin 3,693 3,493 3,679 1,643 3,596 3,625

Independent cascade Wi_ki_pedia 873 877 528 213 866 878

cascade Epinions 14,706 14,043 12,315 2,439 13,458 13,771

Facebook 1,977 1,977 1,809 1,305 1,765 1,801

Trivalency Bi_tcgin _ 562 551 551 487 532 548

Wikipedia 1,228 1,235 888 848 1,152 1,183

Linear Weighted Fz}cel).ook 2,231 1,946 1,936 969 1,835 2,000

threshold cascade B1Ith)1n . 4,829 4,506 4,822 1,743 4,740 4,794

Wikipedia 1,117 1,139 602 246 1,119 1,162

weight models. Moreover, these run-time savings are more
pronounced for larger networks. The gains in terms of run-time
also vary across diffusion models and edge-weight models.
We observe the highest gains for IC diffusion model with TV
edge-weight model and the least gains for the IC diffusion
model with WC edge-weight model.

4) Effect of the community structure on the performance
of the proposed framework: Based on Figure 4, we observe
that the community structures with higher values of modularity
(obtained using the Louvain and Label Propagation methods)
lead the proposed framework to do better in terms of influence
as compared to the community structures with lower values of
modularity (obtained using the Girvan-Newman method [34]).
Furthermore, for all budgets, the influences for Community-IM
with Louvain method and Community-IM with Label propa-

gation method are close to each other which can be attributed
to the fact that the modularity scores of the partitions obtained
by these two methods are quite close.

Table IV shows that the influence for the budget of k = 50,
using Community-IM is close to or even better than the same
for CELF++ for different choices of community detection
methods under different diffusion models and WC edge-weight
model. Furthermore, the performance of Community-IM com-
pared to CELF++ in terms of influence and run-time improves
as the modularity of the partition and the number of commu-
nities increase. Note that, for the proposed framework, the
Louvain method is the best choice of community detection
method while the Girvan-Newman method performs the worst.
The Louvain method partitions the graph into 18 communities
with the largest community having 523 nodes (approximately



TABLE III: Comparison of run-times (in seconds) for budget £ = 100.

Diffusion Edge-weight Network Community-IM  CELF++ CoFIM DSGA
model model

Facebook 3,782 17,359 547 9,1267

Weighted Bitcoin 850 10,859 35 20,825

Independent cascade Wi}(ipedia 3,477 2,660 213 18,447

cascade Epinions 16,465 250,241 7,397 267,796

Facebook 7,195 74,684 567 312,948

Trivalency Bitcoin 576 7,818 35 34,453

Linear Weighted Fz}cebook 8,545 46,771 554 65,391

threshold cascade BIFC.OIH . 1,077 45,747 36 62,184

Wikipedia 4,628 5,940 224 23,307

TABLE IV: Comparison of influences and run-times (in seconds) for budget £ = 50 for the Facebook network under WC

edge-weight model for different community detection methods.

Influence Run-times (in seconds)

Diffusion Community detec-  No. of communities  Modularity score ~ Community-IM  CELF++  Community-IM  CELF++
model tion method
Independent Louvain _ 18 0.8678 1,205 1,203 3,069 14,077
cascade Lz_ibel propagation 11 0.7368 1,188 1,203 4,068 14,077

Girvan-Newman 2 0.0439 1,139 1,203 14,221 14,077
Linear Louvain ‘ 18 0.8304 2,231 1,946 7,224 38,968
threshold Label propagation 11 0.7368 2,213 1,946 12,961 38,968

Girvan-Newman 2 0.0439 2,019 1,946 34,606 38,968

10% of the size of the entire network). Hence, Community-IM
does not come across any giant component (causing lengthier
diffusions) while estimating the within-community influence.
Contrary to this, the Girvan-Newman method partitions the
network into just two communities with the largest community
having 3,833 nodes (very close to the size of the entire
network). This makes the within-community diffusions take
longer to finish while using the communities obtained using
the Girvan-Newman method. This explains why Community-
IM with the Girvan-Newman method runs slower as compared
to the same with the Louvain method.

V. CONCLUSION AND FUTURE WORK

For solving the problem of influence maximization on social
networks, we leveraged the inherent community structure of a
network and proposed a novel community-aware framework
for maximizing the spread of influence through a social
network in a fast manner. Based on our experiments, we con-
clude that the proposed framework outperforms the standard
simulation-based methods in terms of run-time and the heuris-
tic methods in terms of influence. As the proposed method
leverages the inherent community structure of the network,
we also studied the effect of the community structure on the
performance of our framework. Based on our experiments, we
conclude that the community structures with higher modularity
lead the proposed framework to perform better in terms of run-
time and influence. Among the methods considered in this
paper, we find the Louvain method [32] works best for our
framework.

We point out two limitations of our method. First, our
method requires the communities learned during Step 1 to
be non-overlapping. However, in general, a social network
may have overlapping communities. Second, our method does
not explicitly account for the inter-community influence while
generating the candidate solutions during Step 2. In the future,

we want to extend our method to handle overlapping commu-
nity structures and explicitly account for the inter-community
influence. Other future directions are to extend the proposed
community-aware framework to competitive influence max-
imization [45], data-based influence maximization [22], and
full-bandit online influence maximization [30], [31].
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APPENDIX A
TABLE OF NOTATIONS

TABLE V: Table of notations.

Symbol Explanation
Q Ground set.
20 Set of all subsets of .
=(V,E) Directed graph.
V = (v1,...,vn) Set of vertices or nodes.
n Size of V.
= (e1,...,en) Set of directed edges where e;,7 = 1,...,n is are ordered pairs of nodes.
DPu,w Weight of the edge v — w.
v Set of neighbors of node v.
Y;:(U) Activation/state of node v at time ¢.
k Budget.
o(S) Influence of a set S of nodes.
c Number of communities.
com-method Community detection method.
sol-method Influence maximization method.
{G1,...G} A partition of G with ¢ sub-graphs that are G1,...Ge.
{(V1,...Ve} Set of sets of vertices for all sub-graphs in the partition {G1,...Gc}.
n; Size of V;,i =1,.
{E1,...E.} Set of sets of edges for all sub- graphs in the partition {G1,...Gc}.
Q Modularity of a network partition.
Si,j Best seed set of size j (j = 1,...,k) from community i(i=1,...,0).
0i(Si,5) Influence of S; ; within community i (i = 1,..., ).
S; Set of all candidate solutions from community ¢ = {S; ; : j = 1,...,k}.
3 Influences of all candidate solutions from community ¢ = {o;(S; ’J) j=1,...,k}.
S Set of sets of all candidate solutions from all communities = {S; : ¢ = 1,. }
Y Set of sets of influences of all candidate solutions from all communities = {Z} =1,...,c}
S* Final solution using the proposed framework.

APPENDIX B
AN ILLUSTRATIVE EXAMPLE OF PROGRESSIVE BUDGETING

In this section, we provide an illustrative example of progressive budgeting. After executing the Community-Detection and
the Generate-Candidates steps of the proposed framework, we obtain the following output.

S; ; = Candidate set of size j from community %,
i = 0;(S; ;) = Influence of S; ; within community i,
i=1,...,5=1,... k.

Let the budget, k£ = 4. No. of communities, ¢ = 5. The influences of different candidate sets within different communities are
given in Table VI(a). Forevery i = 1,...,¢;5 = 1,..., k, we calculate the marginal influences as m; ; := 0;(S; ;) —0:(S;,j—1),
where 0;(S;0) = 0, Vi. The marginal influences for the influences given in Table VI(a) are provided in Table VI(b).

Influence Marginal Influence
t | 031 | gi2 | 0i3 | 044 1| mia | myo | mi3 | Mg
é‘ 1 8 14 18 21 é‘ 1 8 6 4 3
g 2 5 10 14 15 § 2 5 5 4 1
g 3 9 14 16 17 g 3 9 5 2 1
E 4] 7 2 | 16 | 18 E 4 7 3 4 2
@] 5 5 9 11 11 Q 5 5 4 2 0
(a) Influences of candidate sets after step (ii). (b) Marginal Influences of candidate sets after step (ii).

TABLE VI: An example input for progressive budgeting.

The progressive budgeting scheme for the example in Table VI is explained in Table VII. At any iteration, the circled cells
() are the ones whose maximum is to be obtained. An asterisk (x) is placed before the maximum value at the current iteration.
The superscript(s) on any community label represents the nodes selected from that community (ordered based on the ordering
in the corresponding candidate set obtained in step (ii)).

For the example we considered, the final seed set is {112, 31 41} which is equivalent to S7 2 U S31 U Sy 1.



Marginal Influence Marginal Influence

3 mi1 | M2 | my3 | Myg 3 mi1 | Mi2 | my3 | M4

z [ ® 6 4 3 2T [*® 6 4 3

g 2 ® 5 4 1 g 2 ® 5 4 1

g 3t * (9 5 2 1 g 3t 9 ® 2 1

g 2 D 3 7 2 E 4 D 3 7 2

@] 5 ® 4 2 0 @] 5 ® 4 2 0
(a) Iteration 1: Allocating the first unit. (b) Iteration 2: Allocating the second unit.

Marginal Influence Marginal Influence

1 mi1 | M2 | my3 | Mmyg 1 mi1 | M2 | my3 | Mmig

z2 [T 8§ © 4 3 2 [17 8 *® 4 3
E 2 ® 3 7 1 g 2 ® 5 4 1
g [ 3! 9 ® 2 1 g | 3t 9 ® 2 1
EA [+~ 5 3 2 E [ T ® 4 2
O 5 ® 4 2 0 O 5 ® 4 2 0
(c) Iteration 3: Allocating the third unit. (d) Iteration 4: Allocating the fourth unit.

TABLE VII: An illustration of progressive budgeting.

APPENDIX C
PROOF OF THEOREM 1

We now prove Theorem 1.

Proof. The proof follows from the linearity of expectation in the definition of influence o and monotonicity.

o(Ui8) =E| > v Y =1(we us_lsﬁ}] , (from (4))
veV veV
= ZIE Z Y(v ﬂ {Y =1(v e Ui_S; )}] (hard-partitioning; linearity of expectation)
veV; veV
< ZIE Z Y(v ﬂ {Y =1(vesS)}, (0; is monotone non-decreasing)
veV; veV

= ZO’i(Sl
=1

APPENDIX D
PROOF OF LEMMA 1

We now prove Lemma 1.

Proof. The proof will follow by contradiction. Suppose there is some instance of Problem 2 and some cardinality 1 < ¢ < k
such that starting with the budget allocation k*(“*t1) for the optimal solution S*+1) for budget ¢ + 1 and removing a unit
of budget from any community results in a sub-optimal allocation (i.e. worse than k*(©)). For the special case that optimal
solutions are unique for each cardinality and sol-method returns nested subsets this condition simplifies to S* () ¢ §*(¢+1),

If there is more than one optimal solution for budget £, fix any one as S5+ Let us modify the budget allocation k*(‘+1)
of the optimal solution S*(“*1) as follows. Pick any community 7 € {1,. c} such that

k;,(@) < k;,(@-i—l) 1, (6)

that is even after removing a unit of budget for community ¢ from allocation k*(¢*1) there is still as much budget left over as
there is for community 7 in the allocation k*(©) (i.e. of the optimal solution S*() for cardinality ¢). Trivially since k* (1)
allocates a larger budget overall, there must be one such community 4 (if the solutions were nested, there would be exactly
one). Denote the corresponding modified solution and budget allocation as S*(E41) and k*(E+D) respectively.

From our supposition, S+ (E+1) s not an optimal solution to Problem 2 for cardinality ¢ (its value is strictly worse than that
of 5*()). We next consider constructing a solution of cardinality £+ 1 from S*() by adding a unit of budget for community
i. With the nesting of the budget (6) for community 7 specifically, by Assumption 1 the resulting marginal gain must be at
least as large as the marginal gain by adding a unit of budget to community i for S*(E+1)  (Recall from Remark 1 that the
assumption holds due to submodularity if the subsets chosen by sol-method are nested.) Thus,



Value of $*(©) . . . .
Marginal gain of augmenting 56

[Z UZ R (e) + {U%(Si,kf'(ehrl) — U€(Si,kf'(e) )}

Value of $* ()

Marginal gain of augmenting g (e+1)
> E UZ (tz) + [U‘(S ! (z+1)) O-IL-'(S'Z:.’k;;,(E+1)71)i|, (by Assumption 1)
Value of $*(¢+1)
B Marginal gain of augmenting S+
Cx,(0+1) :
> 05055 e _y) + E 0i(S; ) | + [UE(SE,kjv(’f+l)) - UE(SE,kj%Hl)_l)}a (S* (1) is not optimal)
i i=1,..., ¢ 2 i i
L 7
Value of §* (¢+1)

= E 0'1 k ,(£+1) ‘| .

Thus, the objective value of the optimal budget allocation k* (1) for a budget of £+ 1 is strictly less than the objective value
of a budget allocation we constructed. This is a contradiction. Thus our assumption about an instance lacking nesting (up to
uniqueness) was incorrect. o

APPENDIX E
COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the proposed framework (Algorithm 1). The run-time of the
proposed framework is the sum of the times taken at the three steps. It depends on the choice of community detection method
as well as the solution method to solve IM for each community. We analyze the run-time involved at each step as follows.

A. Learning the inherent community structure of the social network

The worst-case run-times of different community detection algorithms considered in this paper are given as follows: the
Louvain method is O(nlogn) [32], label propagation is O(n + |E|) [33], and the Girvan-Newman method is O(n|E|?) [46].

B. Generating candidate solutions by solving the influence maximization problem for each community

If we use CELF++ to solve IM for ¢ different communities then we are solving ¢ problems of finding a k-node subset for
each community from n; nodes, ¢ = 1,. .., c. For the ith community, CELF++ iteratively builds the k-node subset as follows.
First, find the best individual node by evaluating all n; subsets of cardinality one. Next, find the node with the highest marginal
influence in the presence of the best individual node by evaluating (up to) all n; — 1 subsets of the previously selected best
individual and an additional node. CELF++ then keeps adding nodes to the previous set in the same manner until the size
of the current set is k. The number of k-node subsets evaluated at the kth step is n; — (k — 1) in the worst case. Thus, the
number of subsets evaluated in the worst case is

C

Z[m-l—(m—l)—i—---—i—(m—(k—l))]

i=1
k(k—1
- REZD) @)
2
On the contrary, if we use CELF++ for the entire network then the total number of subsets evaluated in the worst case is
k(k—1
n+(n—1)+~--+(n—(k—1)):nk—(T). (8)

By comparing (7) and (8), we observe that the Generate-Candidates step of the proposed framework achieves a lower run-
time compared to using the sol-method for the entire network by an additive factor of (¢ — 1)k(k — 1)/2. Furthermore, as
n; <nVi=1,...,c, the length of the diffusion while evaluating a subset of the nodes using Monte Carlo simulations within
any community will always be smaller as compared to doing the same in the entire network. This further reduces the run-time
of the Generate-Candidates step.



C. Final seed set selection using progressive budgeting

The progressive budgeting method of final seed set selection solves ‘finding the maximum of ¢ elements’ k times. Hence,
the worst-case run-time of progressive budgeting is O(ck).

In practice, solving IM for each community (using a simulation-based sol-method) is the step that takes the most amount
of time due to the costly Monte Carlo simulations. In that sense, the worst-case run-time of the proposed framework (with
a simulation-based sol-method) to solve IM for each community is lower compared to the same for solving IM for the
original network using the same simulation-based sol-method.
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