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Abstract

We consider the problem where N agents collaboratively interact with an instance of a
stochastic K arm bandit problem for K � N . The agents aim to simultaneously minimize
the cumulative regret over all the agents for a total of T time steps, the number of commu-
nication rounds, and the number of bits in each communication round. We present Limited
Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch
based algorithm where each agent communicates only after the end of the epoch and shares
the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a

regret of Õ
(√

(K/N +N)T
)

, communicates for O(log T ) steps and broadcasts O(logK)

bits in each communication step. We extend the work to sparse graphs with maximum
degree KG and diameter D to propose LCC-UCB-GRAPH which enjoys a regret bound

of Õ
(
D
√

(K/N +KG)DT
)

. Finally, we empirically show that the LCC-UCB and the

LCC-UCB-GRAPH algorithms perform well and outperform strategies that communicate
through a central node.

1. Introduction

We consider a setup where N agents, connected over a network, interact with a multi-
armed bandit (MAB) environment (Lattimore and Szepesvári, 2020). The agents aim to
collaborate with other agents in the network to minimize their regret. The agents also
aim to reduce the number of messages and the size of messages communicated with others.
Consider a case of an e-commerce company serving its users by recommending its vast
number of items through multiple servers for quick response times. It attempts to learn
the user preferences using a MAB algorithm. If each of the multiple servers runs their
own algorithm, they waste the large amount of data that other servers collect. Or, if they
communicate after every recommendation, the communication complexity becomes high
within the servers themselves.

As observed from the example above, communicating after each time-step is not favor-
able because of the increased communication cost. If N agents communicate after every
round to reduce the regret for T time steps, their total regret is lower bounded by the
regret of a super-agent solving the MAB problem with NT time steps. This bounds the
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total regret as at least Ω(
√
NKT ) or a per agent regret of Ω(

√
KT/N). Whereas, if the N

agents interact with the MAB problem independently, without any information exchange
with other agents, the individual regret is upper bounded by Õ(

√
KT ). We aim to find

an algorithm that can obtain the regret bound of the super-agent setup, i.e., Õ(
√
KT/N),

though with limited communication between the agents.

We provide an algorithm, Limited Communication Collaboration - UCB, (LCC-UCB),
to minimize the regret. LCC-UCB divides the arms among multiple agents, such that each
agent interacts with the MAB instance but plays arms only from a subset of all the arms.
The algorithm proceeds in epochs which double in duration, where the agents use the UCB
algorithm to find the best arm in their smaller MAB problem and communicate at the end
of each epoch. On receiving the messages from other agents, each agent updates its set of
arms and restarts its algorithm. We prove the regret of LCC-UCB is upper bounded by

Õ
(√

(K/N +N − 1)T
)

. For N = 1, the regret of the LCC-UCB algorithm reduces to

the standard regret bounds of Õ(
√
KT ).

We also consider a general setup where the network of agents may not be completely
connected, and the agents may not be able to broadcast knowledge to all the other agents at
once. Under such a case, we propose LCC-UCB-GRAPH algorithm that subdivides epochs
into sub-epochs of equal length. The agents restart their UCB algorithm in each sub-phase
with the new information available from their neighbors. We show that the regret bound of

this modified algorithm with divided phases changes to Õ
(
D
√

(K/N +KG)DT
)

, where

KG is the maximum degree of the nodes in the graph. Also, the increased communication
complexity of this algorithm is bounded by O (KGD log T ) message exchanges per node.
The key novelty in both the algorithms is that the gap between the recommended arms and
the optimal arm reduces with epochs.

Finally, we simulate and compare our algorithms with other communication protocols.
We show that the algorithm behaves close to the communication strategy where the agents
share the knowledge at each time step. For the LCC-UCB-GRAPH algorithm, we con-
sider sparse graphs with more than 100 nodes. We observe that the LCC-UCB-GRPAH
algorithm performs better (in terms of median cumulative regret per agent, over 30 inde-
pendent runs) than the communication strategy where the agents share local data with all
their neighbors at every time step. Further, the LCC-UCB and the LCC-UCB-GRAPH
algorithms also outperform the DEMAB algorithm (Wang et al., 2020) where agents com-
municate for only O(N log(NK)) rounds.

2. Related Works

Optimal action selection problem dates back to (Thompson, 1933), and since then, many
algorithms have been proposed and studied to solve the MAB problem ranging from index-
based policies (Gittins, 1979), Optimism in the Face of Uncertainty based UCB algorithm
(Auer, 2002; Auer and Ortner, 2010; Audibert et al., 2009), to Thompson Sampling algo-
rithm (Agrawal and Goyal, 2013). All the algorithms achieve an upper bound on regret
Õ(
√
KT ) and match the lower bound of Ω(

√
KT ) up to logarithmic factors. Since then,

various generalizations and extensions have been proposed to solve various online learning
problems using a bandit framework (Abbasi-Yadkori et al., 2011; Li et al., 2010; Latti-

2



Multi-Agent Multi-Armed Bandits with Limited Communication

more et al., 2018; Yang et al., 2020). However, all these problems consider a single agent
interacting with the environment.

Since the last decade, there has been a thrust in studying distributed agents solving an
instance of MAB problem. Kanade et al. (2012) consider a model where N agents talk to
a central controller at every round. However, they considered the problem of reducing the
communication cost for each agent connected in a star topology with a controller as the
central node, which is unlike our setup where we allow any topology, including the central
node/agent. Hillel et al. (2013) consider the problem of reducing communication cost for
stochastic bandits in a setup where every agent can communicate with each other. Their
work also bounds the total communication rounds by O(log2 T ) using an action elimination-
based algorithm. However, their agents communicate the estimates of arm rewards for
all the K arms in each message, whereas we bound the number of bits required in each
message by O(log2K). Shahrampour et al. (2017) consider a setup where multiple agents
collectively select an arm at a time step and observe different rewards sampled from different
distributions for each agent.

Other works consider a setup where the agents talk to only one of the other nodes in a
network at any given time step (gossiping style algorithm) (Landgren et al., 2016; Mart́ınez-
Rubio et al., 2019; Wang et al., 2020). However, they allow their agents to communicate
at every time-step, which is a different setup and do not optimize a regret-communication
trade-off. Further, they also send estimates of arm rewards in each message. Sankararaman
et al. (2019); Chawla et al. (2020) also consider gossip style algorithms. Similar to us, these
works divide the time horizon into epochs of variable length. Their strategies also divide
the arms among the agents, and the agents unicast the knowledge of the best arm they
have using O(logK) bits in each epoch. However, because of gossip style communication
protocols, an agent becomes aware of the best arm after it has already incurred O( 1

∆2 )

regret, which translates to a problem independent bound of Õ(T 2/3). We note that we use
the same number of communication as these papers while achieving better regret bound
of Õ(T 1/2). Further, we can convert the proposed broadcast based communication of our
work to a unicast based strategy by sending a message to each neighbor at one timestep for
N timesteps.

Wang et al. (2019); Dubey and Pentland (2020a,b) consider the problem of distributed
linear bandits. They considered a fully connected network to reduce the communication
messages and reduce the average regret for N agents. In contrast, we aim to find bounds
on the regret of each of the N agents for K-armed stochastic bandits.

Wang et al. (2019) propose DEMAB algorithm for a distributed bandit setup where all
the nodes communicate with a central node. The setup assumes knowledge of the time
horizon to cleverly obtain a bound on the number of communication messages independent
of time. The DEMAB algorithm is based on action elimination that also proceeds in epochs
with duration growing exponentially after an initial period of length T/(NK) where every
agent eliminates arms independently. In each epoch, the algorithm generates new estimates
of arm rewards discarding the old samples. This results in high constants O(

√
214) in the

regret term. The regret bounds of the proposed LCC-UCB algorithm only exceeds the
regret of DEMAB for log2 T > 214/144. Additionally, the DEMAB algorithm requires a
central coordinating node, which may not always be the case. Lastly, for an unknown time
horizon, the number of messages increases back to O(log T ), the same as ours.
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The proposed algorithm, LCC-UCB, obtains Õ(
√

(N/K)T ) for each agent with mes-
sages of size O(logK) with a total of O(log T ) messages, thus achieving the regret of Õ(

√
T )

Additionally, the proposed LCC-UCB-GRAPH algorithm works well on sparse graphs with
a large number of agents with communication complexity of O(D log2 T ). A summary of
recent algorithms is provided in Table 1.

Algorithm Regret
Bits per
message

Rounds Comments

DEMAB (Wang
et al., 2020) Õ(

√
KT
N ) O(log T ) O(N logNK)

known
T , client-
server
message

GosInE (Chawla
et al., 2020) Õ(

(
K
N + 2

)1/3
T 2/3) O(logK) O(log T )

unicast
message,
general
graphs

LCC-UCB (this
work) Õ(

√(
K
N +N

)
T ) O(logK) O(log T )

broadcast
message,
completely
connected
graphs

LCC-UCB-
GRAPH (this
work)

Õ(
√(

K
N +KG

)
D3T ) O(logK) O(D log T )

broadcast
message,
general
graphs

Table 1: Summary of the baseline algorithms and the algorithms presented in this work.

3. Problem Formulation

We consider a completely connected network of N agents, indexed as n ∈ [N ] = {1, 2, · · · , N}.
We also consider N independent instances of same stochastic K armed bandit. Each agent
n ∈ [N ] interacts with a fixed bandit instance m ∈ [N ] over T time steps. For simplicity,
we assume m = n.

Let {Xi,m,t}i∈[K],m∈[N ],t∈[T ] be a sequence of random variables defined on (Ω,F), where

Ω = [0, 1]KNT and F = B(Ω). For each i, we assume that Xi,m,t are identically distributed
and are independent across all N instances and T time steps. Let µi denote the expected
value of for the random variables Xi,m,t for all m, t, and i. At time t, agent n ∈ [N ] selects
arm in(t) using a deterministic policy and observes rn,t = Xin(t),n,t.

A super-agent policy would ideally have all N agents communicating all information
each time to selects arms in(t) which is Ft−1 = {i1(1), r1,1, · · · , iN (1), rN,1, · · · , i1(t −
1), r1,t−1 · · · , iN (t − 1), rN,t−1}-measurable. However, the agents do not communicate at
every time step and communicates only arm indices and hence arm in(t) selected by agent
n is Fn,t−1-measurable where Fn,t−1 is the local information of arms played and their re-
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wards available to agent n and the indices of the arms communicated by other agents.
Fn,t−1 will be defined precisely in Section 5.

For our analysis, we assume that µ1 ≥ µ2 ≥ · · · ≥ µK . However, the ordering is unknown
to the agents. We also define the gap between the expected reward of the best arm and the
expected reward of arm i as ∆i := µ1−µi. For our analysis we assume 0 ≤ µi ≤ 1 ∀ i ∈ [K].
For our system model, we assume that N � K as observed in many practical setups. For
example, an e-commerce website will have many more products listed than the number of
servers deployed.

Since our agents are completely connected, all agents can communicate with each other
(we later relax this assumption in Section 6). This implies, whenever an agent broadcasts
a message, all the other N − 1 agents receive the message. Further, we assume that each
agent only communicates the index of the best arm it knows. This requires dlog(K)e bits
for every message and since there are N −1 other agents to send the message, the total bits
required by any agent is (N − 1)dlog(K)e bits in every communication round. We assume
that each agent n ∈ [N ] interacts with the bandit environment equal number of times in
an epoch. Further the synchronization time at the end of each epoch is assumed to be
negligible.

An agent n aims to minimize its cumulative regret over time T , Rn(T ), defined as:

Rn(T ) = Tµ1 − E

[
T∑
t=1

K∑
i=1

µi1{in(t) = i}

]
(1)

Note that minimizing regret Rn(T ) for all agents n ∈ [N ] also minimizes the total cumulative
regret over the agents as well.

4. LCC-UCB Algorithm

We design our algorithm LCC-UCB on the basis of the fact that the regret of UCB algo-
rithms (Auer, 2002; Bubeck et al., 2011; Lattimore and Szepesvári, 2020) scales as Õ(

√
KT ).

We reduce the per step regret by distributing the K arms among the N agents in growing
in length epochs. An agent n chooses to interact with a potentially smaller set of arms
Sn where Sn = {

(
(n− 1)dKN e mod K

)
+ 1, · · · ,

(
(ndKN e − 1) mod K

)
+ 1}. For the first

epoch, i.e., j = 0, each agent starts with possibly sub-optimal arms, even the worst possible
arms. As the algorithm proceeds, in epoch j ≥ 1, agents broadcast the most played arm by
UCB algorithm during epoch j to all the other agents. Each agent n ∈ [N ] receives Rn,j ,
a set of arm recommendations from other N − 1 agents. The agent now runs the UCB
algorithm (Bubeck et al., 2011) over the arms in the augmented set An,j = Sn ∪ Rn,j . At
the end of any epoch, the agent purges any old recommendations it has and starts again
with the new recommendations received after an epoch. This ensures that the number of
arms with any agent does not exceed K ′ := dK/Ne+N − 1. This approach helps to bound

the regret of any agent n ∈ [N ] by Õ
(√

(dK/Ne+N − 1)T
)

.

The LCC-UCB algorithm running at an agent n ∈ [N ] is described in Algorithm 1.
The algorithm at agent n receives the set of initial arms Sn, the indices of other agents, and
the total horizon T . At each epoch j, agent n maintains a set Rn,j of the arms received
from the remaining [N ] \ {n} agents. For the first epoch Rn,1 = ∅ as the agent has not
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heard anything from the remaining agents and the augmented set is same as the initial set
of arms, An,0 = Sn. As the algorithm proceeds, it runs the UCB algorithm (Auer et al.,
2002; Bubeck et al., 2011), described in Algorithm 2, on the arms in the augmented set
An,j for epoch duration K ′(K ′ + 1)2j . If at time t, remaining time is not sufficient to run
a complete epoch of duration Tj , it just runs the UCB algorithm for the remaining horizon
T − t.

Algorithm 1 LCC-UCB(n,Sn, [N ] \ {n}, T )

1: t = 0, j = 0,K ′ = |S\ +N − 1|
2: Rn,j = ∅
3: while s < T do
4: Set augmented set An,j = Sn ∪Rn,j

5: i∗ = UCB(n, s,An,j ,min
(
T − s,K ′(K ′ + 1)2j

)
)

6: s = s+ min
(
T − s,K ′(K ′ + 1)2j

)
7: j = j + 1
8: Send i∗ to other [N ] \ {n} agents
9: Receive most played arms of [N ] \ {n} agents as Rn,j

10: end while

Algorithm 2 UCB(n,A, Tj)
1: tj = 0
2: Ni(tj) = 0, µ̂i = 0 ∀ i ∈ A
3: for tj = 1, · · · , Tj do
4: Obtain reward rn,t by playing arm in(t), where

in(t) = arg max
i∈A

{
µ̂i +

√
2 log(tj)

Ni(tj)

}

5: Ni(tj) = Ni(tj − 1) + 1{it=i} ∀ i ∈ A
6: Update µ̂it =

µ̂i×Ni(tj−1)+rn,t

Ni(tj)

7: end for
8: Return i∗ = arg maxi∈ANi(Tj)

5. Main Result

We now state the main result for bounding the regret and number of communication rounds
for the proposed LCC-UCB algorithm.

Theorem 1 The regret of any agent n following LCC-UCB algorithm is bounded by

Rn(T ) ≤ O
(√

K ′T log T
)
, (2)

where K ′ = dK/Ne+N − 1.

6



Multi-Agent Multi-Armed Bandits with Limited Communication

To prove Theorem 1, we first state the necessary lemmas required for the construction
of the proof.

We start by making two important observations for our analysis. First, the communi-
cation does not happen at every time step. Second, any agent n only receives the index of
the most played arm from the other agents at the end of every epoch, and does not receive
any additional information about the arms played and the rewards obtained by the other
agents in the epoch. Thus, following the LCC-UCB algorithm, in epoch j ≥ 1, an agent
uses a policy which is Fn,t−1 = {i∗1, · · · , i∗n−1, i

∗
n+1, · · · , i∗N , in(s), rn,s, · · · , in(t− 1), rn,t−1}-

measurable, where s is the first time step of the epoch j and {i∗1, · · · , i∗n−1, i
∗
n+1, · · · , i∗N} are

the most played arms by the other agents which agent n receives at the end of the previous
epoch at time step s− 1.

For our setup, we assumed that the rewards samples obtained by playing an arm are
independent across time. This allows to use the Hoeffding’s bound stated in the following
Lemma, Lemma 2.

Lemma 2 (Hoeffding, 1994, Hoeffding’s bound) If X1, X2, · · · , Xn are n independent ran-
dom variables such that Xi ∈ [0, 1] for all i = 1, · · · , n, then

Pr

(
X1 + · · ·+Xn

n
− E

[
X1 + · · ·+Xn

n

]
≥ ε
)
≤ exp

(
−2nε2

)
, and (3)

Pr

(
E
[
X1 + · · ·+Xn

n

]
− X1 + · · ·+Xn

n
≥ ε
)
≤ exp

(
−2nε2

)
(4)

Note that, the LCC-UCB algorithm bounds regret when agent 1 recommends an arm
i∗ which is “close” to the best arm (i = 1) from its augmented set A1,j at every epoch, and
then, in the following epoch, every other agent n minimizes the regret with respect to the
their augmented sets An,j+1 which now contain the arm i∗.

Since the agent runs UCB algorithm (Algorithm 2) which returns the most played arm
for each epoch, we want to analyse the properties of the most played arm. We now state
and prove the lemma that the most played arms by the UCB algorithm is “good”, or
µi∗ ≥ µ1 − ∆̃j , with high probability for some ∆̃j .

Lemma 3 For any epoch j, such that Tj ≥ K ′(K ′ + 1), instance of the UCB Algorithm 2
running at agent 1 returns an arm i∗j that satisfies µi∗j ≥ µ1 − ∆̃j, with probability atleast

1−K ′
(
Tj
K ′
− 1

)−2

, (5)

for ∆̃j =
√

16K′ log T
Tj

.

Proof We first note that the augmented set at agent 1 contains the best arm 1 as arm
index

(
(n− 1)dKN e mod K

)
+ 1 ∈ Sn for n = 1. From Algorithm 2 instance that ran at

epoch j, Ni(Tj) is the number of times arm i ∈ A1,j is played in epoch j. We now prove
that the arm i∗j = arg maxi∈A1,j Ni(Tj) is at most ∆̃j far from the true optimal arm 1.

For time step tj in epoch j, we construct an event where arm i is selected and the total
playsNi(tj−1) of arm i has exceeded some number l as Gtj (i) = {{it = i} ∩ {Ni(tj − 1) ≥ li}}
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for li = 1 + 8 log T
∆2

i
and tj ≥ K + 1 as each arm is played atleast once. We first bound

the probability of the event Gtj (i) using the probability measure induced on the observed
samples, as a result of the policy’s interaction with the K-armed bandit instance 1. Note
that the most played arms returned by agents 2 ≤ n ≤ N in epoch j−1 lie in the set A1,j , or
{i∗2,j−1, · · · , i∗N,j−1} ⊂ A1,j . Conditioned on F1,t−1 = {i∗2,j−1, · · · , i∗N,j−1, in(s), rn,s, · · · , in(t−
1), rn,t−1}, we bound Pr

(
Gtj (i)|F1,t−1

)
as:
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Pr
(
Gtj (i)|F1,t−1

)
= Pr ({{it = i} ∩ {Ni(tj − 1) ≥ li}} |F1,t−1) (6)

≤ Pr ({it = i}|{Ni(tj − 1) ≥ li},F1,t−1) (7)

= Pr

({
µ̂i +

√
2 log tj
Ni(tj)

≥ µ̂′i +

√
2 log tj
Ni′(tj)

, ∀i′ ∈ A1,j

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(8)

≤ Pr

({
µ̂i +

√
2 log tj
Ni(tj)

≥ µ̂1 +

√
2 log tj
N1(tj)

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(9)

≤ Pr

({
µ̂i +

√
2 log tj
Ni(tj)

≥ min
1≤N1(tj)≤tj

µ̂1 +

√
2 log tj
N1(tj)

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(10)

≤
tj∑

N1(tj)=1

Pr

({
µ̂i +

√
2 log tj
Ni(tj)

≥ µ̂1 +

√
2 log tj
N1(tj)

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(11)

≤
tj∑

N1(tj)=1

Pr

({
µ̂i +

∆i

2
≥ µ̂1 +

√
2 log tj
N1(tj)

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(12)

=

tj∑
N1(tj)=1

Pr

({
µ̂i +

∆i

2
≥ µ̂1 +

√
2 log tj
N1(tj)

}
∩

{
µ̂1 +

√
2 log tj
N1(tj)

< µ1

}
|

{Ni(tj − 1) ≥ li} ,F1,t−1) +

tj∑
N1(tj)=1

Pr

({
µ̂i +

∆i

2
≥ µ̂1 +

√
2 log tj
N1(tj)

}
∩

{
µ̂1 +

√
2 log tj
N1(tj)

≥ µ1

}
|

{Ni(tj − 1) ≥ li} ,F1,t−1) (13)

≤
tj∑

N1(tj)=1

Pr

({
µ̂1 +

√
2 log tj
N1(tj)

< µ1

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
+

tj∑
N1(tj)=1

Pr

({
µ̂i +

∆i

2
≥ µ1

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(14)

≤
tj∑

N1(tj)=1

Pr

({
µ̂1 +

√
2 log tj
N1(tj)

< µ1

})

+

tj∑
N1(tj)=1

Pr

({
µ̂i − µi ≥

∆i

2

}
| {Ni(tj − 1) ≥ li} ,F1,t−1

)
(15)
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≤
tj∑

N1(tj)=1

(
exp

(
−2N1(tj)

2 log tj
N1(tj)

)
+ exp

(
−2Ni(tj)

2 log tj
Ni(tj)

))
(16)

≤
tj∑

N1(tj)=1

(
1/t4j + 1/t4j

)
= 2/t3j (17)

Equation (8) follows from the fact that the UCB algorithm will select arm i if the
upper confidence bound of the arm i is highest among all the arms in set A1,j . Note that
the true best arm, arm 1, lies in the set A1,j and this gives Equation (9). Equation (11)
follows by taking union bound over all possible values of N1(tj). Equation (12) follows by
replacing the lower bound of Ni(tj) obtained from the conditioning. Equation (14) follows
from the fact that the sets in Equation (14) contains the sets in Equation (13). The first
term in Equation (15) holds because the confidence intervals for arm 1 are independent of
the number of samples of arm i and µ1 = µi + ∆i. Equation (16) follows from Hoeffding’s
concentration bound. Using the law of total probability, we get Pr(Gtj (i)) ≤ 2t−3

j .

We can now use the probability of the event Gtj (i), to bound the probability of the event
that the number of plays of an arm exceeds li by using union bound. Specifically we have:

Pr (Ni(Tj) ≥ li) ≤
Tj⋃
tj=li

Pr
(
Gtj (i)

)
(18)

≤
Tj∑
tj=li

2t−3
j (19)

<
∞∑
tj=li

2t−3
j (20)

≤
∫ ∞
tj=li−1

2t−3
j =

1

(li − 1)2
(21)

Now, for an arm i such that ∆i >
√

8K′ log T
Tj−K′ ≥

√
16K′ log T

Tj
=: ∆̃j , we have,

li = 1 +
8 log T

∆2
i

(22)

< 1 +
8 log T

∆̃2
j

(23)

≤ 1 +
Tj −K ′

K ′
=
Tj
K ′
. (24)

Hence, Ni(Tj) ≤ Tj/K
′ − 1 with probability at least 1 − (Tj/K − 1)−2. Now, let B1,j =

{i ∈ A1,j |µi < µ1 − ∆̃j} be the set of “bad” arms in the augmented set of agent 1 in
epoch j. Then for any arm i ∈ B1,j , we have Ni(Tj) < Tj/K

′ with probability at least

10
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1−K ′(Tj/K − 1)−2. Thus,

P
(
Ni(Tj) ≥ Tj/K ′ for any i ∈ B1,j

)
= ∪i∈B1,jP

(
Ni(Tj) ≥ Tj/K ′

)
(25)

≤
∑
i∈B1,j

P
(
Ni(Tj) ≥ Tj/K ′

)
(26)

≤
∑
i∈B1,j

(Tj/K
′ − 1)−2 (27)

≤
∑
i∈A1,j

(Tj/K
′ − 1)−2 (28)

= K ′(Tj/K − 1)−2 (29)

Thus, P (Ni(Tj) < Tj/K
′ for all i ∈ B1,j) ≥ 1−K ′(Tj/K−1)−2 . Thus, the probability that

Ni(Tj) < Tj/K
′ for all i ∈ B1,j is at least 1−K ′(Tj/K − 1)−2.

After bounding the number of plays of arms i, such that µi ≤ µ1 − ∆̃j , with high
probability, we show that the most played arm i∗j has expected reward µi∗j ≥ µ1 − ∆̃j . We
have:

max
i∈A1,j\B1,j

Ni(Tj) ≥
1

|A1,j \ B1,j |
∑

i∈A1,j\B1,j

Ni(Tj) (30)

=
1

|A1,j \ B1,j |

Tj − ∑
i∈B1,j

Ni(Tj)

 (31)

>
1

|A1,j \ B1,j |

Tj − ∑
i∈B1,j

(
Tj
K ′

) (32)

=
1

|A1,j \ B1,j |

(
K ′

Tj
K ′
− |B1,j |

(
Tj
K ′

))
(33)

=
1

|A1,j \ B1,j |
(
K ′ − |B1,j |

) Tj
K

(34)

=
1

|A1,j \ B1,j |
|A1,j \ B1,j |

Tj
K

=
Tj
K

(35)

This proves that the most played arm in A1,j , i
∗
j , is at most ∆̃j far from the optimal

arm 1.

After showing that the agent 1 returns a good arm after each epoch, we now show that
the regret of all the other agents is bounded in the following epoch j+ 1. Lemma 4 bounds
the regret of an agent n running UCB Algorithm 2 during an epoch j. We then sum over
all the epochs to obtain the total regret of the algorithm. We focus our analysis on an agent
n. The analysis of the remaining agents follows identically.

11
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Lemma 4 (UCB regret bound) The regret of any agent n running UCB algorithm de-
scribed in Algorithm 2 for an epoch j ≥ 2 with Tj time steps is upper bounded by

R(Tj) ≤ 6
√

2K ′Tj log T +
16K ′3

Tj
+ 2K ′ (36)

Proof We first consider the case of an agent n 6= 1. The agent receives recommendations
from all the other N − 1 agents including the agent 1 and hence contains the arm i∗

recommended by the agent 1.
To analyze the regret, we first create some events that will help in analysis. The first

event denotes the case where the agent 1, after the end of epoch j − 1, recommends arm i∗

such that µi∗ ≥ µ1 − ∆̃j−1. We denote this event as G̃1. Further note that Ni(Tj) is the
number of times agent plays arm i ∈ An,j in epoch j. We note that when the event G̃1

occurs ∆i∗ ≤ ∆̃j−1. We assume that i∗ satisfies µi∗ = maxi∈An,j µi. In case the assumption

is not valid, we redefine i∗ as i∗ = arg maxi∈An,j µi, and we still have µ1−µi∗ ≤ ∆̃j . Also, for
the simplicity of notation, we define ∆i∗,i = µi∗ −µi. Then, using the regret decomposition
lemma (Lattimore and Szepesvári, 2020, Lemma 4.5), the regret of the UCB algorithm for
epoch j is upper bounded as:

R(Tj) =
∑
i∈An,j

E [∆iNi(Tj)] (37)

=
∑
i∈An,j

E [(µ1 − µi)Ni(Tj)] (38)

=
∑
i∈An,j

E [(µ1 − µi∗ + µi∗ − µi)Ni(Tj)] (39)

=
∑
i∈An,j

E [(∆i∗ + ∆i∗,i)Ni(Tj)] (40)

=
∑
i∈An,j

E [∆i∗Ni(Tj)] +
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (41)

=
∑
i∈An,j

E
[
∆i∗Ni(Tj)|G̃1

]
Pr(G̃1) +

∑
i∈An,j

E
[
∆i∗Ni(Tj)|G̃c1

]
Pr(G̃c1)

+
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (42)

≤
∑
i∈An,j

∆̃j−1E
[
Ni(Tj)|G̃1

]
Pr(G̃1) +

∑
i∈An,j

E
[
Ni(Tj)|G̃c1

]
Pr(G̃c1)

+
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (43)

≤ ∆̃j−1E

 ∑
i∈An,j

Ni(Tj)|G̃1

+ Pr(G̃c1)E

 ∑
i∈An,j

Ni(Tj)|G̃c1


+
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (44)

12
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≤ ∆̃j−1Tj +K ′
(

K ′

Tj−1 −K ′

)2

Tj +
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (45)

≤ 4

√
K ′ log T

Tj−1
Tj +K ′

(
2K ′

Tj−1

)2

Tj +
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (46)

≤ 4
√

2K ′Tj log T +
16K ′3

Tj
+
∑
i∈An,j

E [(∆i∗,i)Ni(Tj)] (47)

We now focus on the last term. We define event where the UCB algorithm plays arm i
after the number of plays of an arm i is has crossed li, or

Gn,i(tj) = {{it = i} ∩ {Ni(tj − 1) ≥ li}} , where li =
1

∆i∗,i
, (48)

Again, similar to Lemma 3, we use Hoeffding’s concentration bound to upper bound the
probability of the event Gtj (i) by 2t−3

j . Then we can bound the last term in Equation 47
as: ∑

i∈An,j

E [(∆i∗,i)Ni(Tj)] ≤
∑
i∈An,j

∆i∗,ili +
∑
i∈An,j

Tj∑
tj=li

Pr (Gn,i(tj)) (49)

≤
∑
i∈An.j

∆i∗,i

(
1 +

8 log T

∆2
i∗,i

)
+
∑
i∈An.j

Tj∑
tj=1

t−2
j (50)

≤
∑
i∈An.j

8 log T

∆i∗,i
+K ′ +

K ′π2

6
(51)

≤
√

8K ′Tj log T +K ′ +
K ′π2

6
(52)

Replacing the value in Equation 47, we get the required result for n 6= 1.
Further, note that for n = 1, the true optimal arm 1 is always present in A1,j for all

j ≥ 1.

We are now ready to prove Theorem 1. We first note that for epoch j = 0, not agents
have yet communicated, and hence the regret of any agent is trivially bounded by T0 =
K ′(K ′ + 1). For the later epochs, we sum over the regret incurred in each epoch using
Lemma 4. To do so, we first bound the total number of epochs. Let the total number of
epochs be J , then noting that the total number of time steps is T , we get:

T ≤
J−1∑
j=0

K ′(K ′ + 1)2j < 2T

=⇒ 2J − 1 <
2T

K ′(K ′ + 1)

=⇒ J < log2

(
T

K ′(K ′ + 1)
+ 1

)

13
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=⇒ J = blog2

(
T

K ′(K ′ + 1)
+ 1

)
c

After bounding the regret in each epoch R(Tj) and bounding the total number of epochs,
we can bound the total regret as,

Rn(T ) =
J−1∑
j=0

R(Tj) (53)

≤ 6
J−1∑
j=1

√
2K ′Tj log T +

J−1∑
j=1

16K ′3

Tj
+ 3K ′ log2(2T + 1) +K ′(K ′ + 1) (54)

≤ 6
√

2K ′ log T
J−1∑
j=1

√
Tj + 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1) (55)

≤ 6
√

2K ′ log T
J−1∑
j=1

√
K ′(K ′ + 1)2j + 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1) (56)

≤ 6
√

2K ′ log T
√
K ′(K ′ + 1)

J−1∑
j=1

2j/2 + 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1)

(57)

≤ 6
√

2K ′ log T

√K ′(K ′ + 1)
J−1∑
j=1

2j/2

+ 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1)

(58)

≤ 6(
√

2 + 1)
√

2K ′ log T (2T )
√
K ′(K ′ + 1)2J + 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1)

(59)

≤ 36
√
K ′T log T + 16K ′ + 3K ′ log2(2T + 1) +K ′(K ′ + 1), (60)

where Equation (59) follows from summing over the geometric progression in Equation (58)

Theorem 5 For LCC-UCB algorithm, total number of bits exchanged by an agent is
bounded by O (N log(K) log(T )).

Proof An agent sends or receives only arm index, which requires log2(K) bits. In
each epoch, the agents communicates with N − 1 agents and sends and receives 2(N −
1) log2(K) bits. Finally, there are log2(T ) epochs. This bounds the total number of bits as
O (K log(K) log(T )).

We note that the algorithm proposed by Sankararaman et al. (2019) also divides the
time horizon into epochs with K arms divided among N agents. However, they consider
the first few epochs to be of fixed length where agents only explore to find the best arm
within themselves. Our algorithm runs UCB from the very first epoch. Also, the length of
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the first epoch is o(1) in LCC-UCB algorithm which limits the regret. These novel changes
allow for a significantly improved regret bound as compared to the state of the art with
limited communication rounds.

6. Extension to general network structures

So far we assumed that all the nodes are connected to each and every other node. However,
this might not always be true. We now assume a general structure where a graph G = (V,E)
that has the different agents as vertices and the connections as edges represents the network
structure. We assume that the graph representing the network is sparsely connected with
a small diameter and degree, for example Erdős-Rényi graphs (Chung and Lu, 2001). We
assume that the maximum degree of G is KG and the diameter of G is D. We assume that
each agent knows the diameter D(< N) of the graph and the maximum degree KG of the
nodes. Further, we assume that each node is aware of its neighbors in order to communicate
with them. We do not require the complete graph structure in order to proceed with the
proposed algorithm.

For this setup, we assume that an agent or node can communicate with only its neigh-
bors. Under this assumption, it may take multiple epochs for the knowledge of the best
arm to reach an agent that may not have the best arm to begin with. Further, the number
of epochs where an agent does not hear from the agent that has the best arm is bounded
by the diameter D. Also, the maximum size of An,j is now upper bounded by dKN e + KG

instead of dKN e+N − 1.
We first start with a direct extension of the result in Theorem 1, and by understanding

the issues in the direct extension, will propose an algorithm to improve the results for
general networks. The following result gives a corollary for Theorem 1 for general graphs.

Corollary 6 For graph G = (V,E) with agents as nodes V , LCC-UCB algorithm results
in a regret bound of:

Rn(T ) ≤ Õ
(

2DK ′2 +
√

2DK ′T
)

(61)

where D is the diameter of the graph G, K ′ =
(⌈

K
N

⌉
+KG

)
and KG is the maximum degree

of any node in the graph G.

Proof An agent n 6= 1 receives arm recommendations only from its neighboring nodes
which results in reduction of K ′ from dK/Ne + N to dK/Ne + KG. However, this also
implies that the n 6= 1 does not obtains information about a good arm from the agent 1
directly. Note that applying Lemma 3 on UCB algorithm ran by agent n 6= 1 suggests that
the agent recommends an arm i∗n such that µi∗n ≥ µi∗ − ∆̃j where i∗ = arg maxi∈An,j µi.
This implies that the agent (or node) located farthest from the agent 1 receives knowledge
about a good arm, (1) only after D epochs for the very first time, and (2) the best arm in
the received i∗ = arg maxi∈Rn,j µi set i∗ satisfies µ∗i ≥ µ1 −

∑D
j=1 ∆̃j−1.

This results in an additional constant regret during the first D epochs as:

D−1∑
j=0

Tj =

D−1∑
j=0

(K ′ + 1)K ′2j = (K ′ + 1)K ′(2D − 1) (62)
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Further, the gap incurred from receiving a bad recommendation in each epoch scales as:

(µ1 − µi∗)Tj ≤
D∑
j′=1

∆̃j′−1Tj =

D∑
j′=1

4

√
K ′ log T

Tj′−1
Tj (63)

=
D∑
j′=1

4
√
K ′2j′Tj log T (64)

= 4
√
K ′Tj log T

D∑
j′=1

2j
′/2 (65)

= 4
√
K ′2(2D − 1)Tj log T (66)

Remark 7 Note that for D = 1 and KG = N − 1, or the case for a completely connected
graph, the result of Theorem 1 is obtained.

To avoid the exponential blow-up of 2D in the regret, we first consider a strategy where an
agent forwards the messages from one neighbor to all the other neighbor. However, this
increases the message size from O(KG log2K) bits to O(N log2K) bits. Further, additional
complexity is added to reduce repeated propagation of messages. In order to avoid the po-
tential exponential increase in regret or increase in the message size and the communication
complexity, we propose a modification of the LCC-UCB algorithm as LCC-UCB-GRAPH
algorithm. The proposed LCC-UCB-GRAPH algorithm is described in Algorithm 3.

Algorithm 3 LCC-UCB-GRAPH(Sn, G, T0, T )

1: t = 0, j = 0
2: Rn,1,0 = ∅
3: for t < T do
4: d = 1
5: for d ≤ D do
6: Set augmented set An,d,j = Sn ∪Rn,d,j

7: i∗ = UCB(An,d,j ,min(T − t,K ′(K ′ + 1)2j))
8: t = t+K ′(K ′ + 1)2j

9: Send i∗ to neighbors
10: Receive most played arms of neighbors as Rn,d,j

11: d = d+ 1
12: end for
13: j = j + 1
14: end for

The LCC-UCB-GRAPH algorithm further divides an epoch j into D sub-epochs in-
dexed as d. The duration of each sub-epoch in epoch j is Tj = K ′(K ′ + 1)2j . Now, the
LCC-UCB-GRAPH algorithm restarts UCB algorithm for sub epochs (Line 6-12). Addi-
tionally, the agents now communicate after every sub-epoch, but, only with their neighbors.
This gives the K ′ ≤ dKN e+KG.
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Note that results from sub-epoch d of epoch j are propagated throughout the graph by

the time sub-epoch d starts in epoch j + 1. Hence, for ∆̃j :=
√

16K′ log(T )
Tj

, this approach

allows to propagate arms with ∆i ≤ D∆̃j−1 instead of
∑j

j′=j−D ∆̃j′ . Based on this modifi-
cation, we can bound the regret of LCC-UCB-GRAPH algorithm and the number of bits
required for communication by LCC-UCB-GRAPH algorithm.

Theorem 8 Let G = (V,E) be the graph representing the network structure of agents
n ∈ [N ], and let D be the diameter of the graph G and let KG be the maximum degree of
the vertices of the graph G. Then, the regret of any agent n following LCC-UCB-GRAPH
algorithm is bounded by

Rn(T ) ≤ Õ
(
D
√
DK ′T

)
, (67)

where K ′ = dKN e+KG.

Proof Note that at the beginning of the phase of a sub-epoch d in epoch j, the information
from the farthest node D edges away is also received for epoch j − 1 sub-epoch d. This is
because exactly D communication rounds happens between sub-epoch, epoch pair d, j − 1
and d, j. Further, each intermediate D nodes drifts from the optimal arm found in sub-
epoch, epoch d, j − 1 by at most ∆̃j−1. This suggest that instead of receiving an arm with
∆i ≤ ∆̃j−1, the node actually receives an arm i∗ = arg maxi∈An,d,j

µi with ∆i∗ ≤ D∆̃j−1.
Hence, extending Lemma 4 with D hops, the regret R(d, j) in each sub-epoch d and epoch
j is now upper bounded as

R(d, j) ≤ 2(2D + 1)
√

2K ′Tj log T +
16DK ′3

Tj
+ 2K ′ (68)

In Equation (68), the extra factors of D comes from the fact that now each of the agents
in D hops recommends an arm i such that µi∗d ≥ µi∗d−1

− ∆̃j for all d ≥ 1 and i∗0 = 1, the

true best arm. Note that the duration of any sub-epoch d is K ′(K ′ + 1)2j and it depends
only on the epoch j. Hence, the regret R(d, j) is only a function of epoch count j.

The total regret of the agent n, which is the sum of regrets over all sub-epochs in every
epoch, can now be bounded as:

Rn(T ) =
∑J−1

j=0

∑D

d=1
R(d, j)

=
∑J−1

j=1

∑D

d=1
R(d, j) +

∑D

d=1
R(d, 0)

=
J−1∑
j=1

D∑
d=1

(
2(2D + 1)

√
2K ′Tj log T +

16DK ′3

Tj
+ 3K ′

)
+

D∑
d=1

K ′(K ′ + 1) (69)

= 2(2D + 1)D
√

2K ′ log T
∑J−1

j=1

√
Tj +DJ

16DK ′3

Tj
+ 3DJK ′ +DK ′(K ′ + 1)

= 12(2D + 1)
√
K ′DT log T + 16D2K ′ + 3K ′D log2(2T + 1) +DK ′(K ′ + 1)
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The key novelty of LCC-UCB-GRAPH algorithm is to let sub-epochs 0 ≤ d < D
collect the messages from the entire graph. The equal length of each sub-epoch avoids the
exponential blow-up in the regret. Further, the exponential length of each epoch j still
keeps the total messages in logarithmic order of T .

Theorem 9 For LCC-UCB-GRAPH algorithm, total number of bits exchanged by an
agent is bounded by O (KGD log(K) log(T )).

Proof An agent sends or receives only arm index, which requires log2(K) bits. The agent
communicates at the end of every sub-epoch of every epoch. In each communication, the
agents talks to at most KG neighbors and sends and receives 2KG log2(K) bits. Finally,
there are D sub-epochs in every log2(T ) epochs. This bounds the total number of bits as
O (DKG log(K) log(T )).

Results from Theorem 8 and Theorem 9 suggest that it is possible to reduce the regret
from an exponential order of the diameter D of the graph G at the expense of D times more
communication rounds. Further, since each communication involves only exchange of arm
indices, the cost of communication is not high (O(KG log2K) bits) for power constrained
devices such as sensor networks.

Optimizing Regret using Knowledge of Graph

We now show that the additional knowledge of the complete graph structure could be
utilized to reduce the regret bound of the proposed algorithm. As a motivating example,
consider L cliques of size N/L connected in a line. An example for L = 3 and N = 15
is shown in Figure 1. Here, we can run the LCC-UCB algorithm on individual cliques to

obtain a per-agent regret of O(
√

KT
N/L +NT/L). In contrast, running LCC-UCB algorithm

on the entire graph incurs a regret of O(L
√
L (KT/N +NT/L)). Hence, working with

cliques separately helps in improving the regret by a factor of L in this case.

Figure 1: A topology where 3 cliques, each of size 5, are connected via bridges.

The example above can be extended to partition the graph into sub-graphs. Let the
graph G can be divided into C subgraphs - G1, · · · , GC such that each node is contained
in exactly one of the sub-graphs, and the links in the sub-graphs are subset of the links in
the graph. Let DGc be the diameter of the sub-graph Gc, NGc be the number of nodes in
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the sub-graph Gc, and KGc is the maximum degree of any node in Gc. Then, for a given
choice of the sub-graphs, the regret can be given as

O
(

max
c

(
DGc

√
DGcKNGcT +DGcN

2
Gc
KGcT

))
(70)

Finding the best possible split of sub-graphs that optimizes the above metric can be
performed for the given graph. This split can help obtain improved results in some graphs
as illustrated in the example above, where we obtained an improvement of O(L).

7. Evaluations

We consider various problem setups to evaluate our algorithms. We compare the proposed
algorithms, LCC-UCB and LCC-UCB-GRAPH with a no-communication strategy and a
full communication strategy. The details of the no-communication and the full communi-
cation setup are:

• No-Communication Setup: We consider the case where each agent n ∈ [N ] works
in isolation. The initial set Sn of every agent contains all the K arms. Each agent
uses the standard UCB algorithm to interact with the environment and reduce its
regret. Hence, each agent incurs a regret of Õ(

√
KT ). Since the agents are not

communicating, they do not reduce the regret.

• Full-Communication Setup: We consider the case where each agent n ∈ [N ] can
talk only to its neighbors and observes the arms played and the rewards obtained by
the neighbors at every time step. The initial set Sn of every agent again contains all
the arms. Each agent uses the standard UCB algorithm to interact with the environ-
ment. For a fully connected graph, the regret of any agent n scales as Õ(

√
KT/N).

However, for a general graph, the regret of agent n scales as Õ(
√
KT/Nn), where Nn

is the number of neighbors of agent n. The proposed LCC-UCB-GRAPH algorithm
helps the agent to reduce the regret to Õ(D

√
DKT/N) by effectively propagating

the knowledge about the best arm throughout the network. This approach requires
significantly higher communication O(T ) as compared to the algorithms proposed in
this paper O(log T ).

We also compare with the DEMAB algorithm, proposed by Wang et al. (2020), which
requires only O(M log(MK) communication rounds for known time horizons.

We first present the comparison results for Algorithm 1. We consider a horizon of
T = 105 steps. We study the behaviour of the algorithm by varying the number of agents
N and the number of arms K. We choose three pairs (N,K), which are (10, 100), (20, 100),
(10, 200). We present the result in Fig. 2 for 30 independent runs for expected rewards
drawn from uniform U(0, 1) distribution. We plot the median of the cumulative regret
incurred by a single angle at each time step and the 95% confidence intervals.

We first note that the regret of the DEMAB algorithm is even larger than the no-
communication strategy. The high regret in the DEMAB algorithm is expected because
the algorithm purges the observations collected after each epoch. Further, the agents do
not share the knowledge of the best arm and continue to redivide the remaining arms to
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(a) (N,K) = (10, 100)
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(b) (N,K) = (20, 100)

0 20000 40000 60000 80000 100000
t

0

10000

20000

30000

40000

50000

R n

Regret for 100000 time steps
LCC-UCB
Full-Communication
No - Communication
DEMAB

(c) (N,K) = (10, 200)

Figure 2: Per-step cumulative regret for a single agent under various communication strate-
gies.
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(a) (N,K) = (10, 100)
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(b) (N,K) = (20, 100)
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Figure 3: Per-step cumulative regret for a single agent under various communication strate-
gies. (Excluding plots from DEMAB algorithm to the regret growth of other algorithms)

quickly eliminate the bad arms, and hence not all agents are able to exploit the best arm.
This results in the high regret of the algorithm. To show the scale between the remaining
communication strategies, we plot the regret curves with the DEMAB algorithm in Figure
3.
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(a) (N,K) = (100, 250)
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(b) (N,K) = (150, 250)
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Figure 4: Per-step cumulative regret for a single agent, in a sparse graph, under various
communication strategies.

The start of an epoch j can be observed as the jumps in the cumulative regret. We
observe that the initial epochs incur the largest regret despite the duration Tj being small.
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This is because the agents are not aware of the best arm yet and are exploring from possibly
worst arms. Also, the regret grows very slowly in the later phase because most agents send
the same arm index (the optimal arm) and the effective regret in the later rounds increase
only as Õ

(√
(1 + dN/Ke)Tj

)
, instead of the upper bound of Õ

(√
(N − 1 + dN/Ke)Tj

)
.

We note that for small number of agents N compared to the number of arms K, (N,K) =
(10, 100) and (N,K) = (10, 200), the algorithm performs closer to the optimal case where
the agents could communicate with each other as observed from Fig. 3a and Fig. 3c. This
is because of the reduced overhead of re-sampling new arms obtained from all the agents.

We now evaluate the proposed LCC-UCB-GRAPH algorithm on sparse graphs. We
specifically consider Erdős-Rényi graphs G(N, p) where N ≥ 100 vertices are a swarm of N
agents. Also, p = 10/N ≥ lnN/N is the edge selection probability. This gives an expected
number of total edges in the graph to be 5N . We consider only connected graphs (If the
resulting graph is not connected, we sample another graph.). Once initiated, the graph
does not changes structure over the subsequent time steps. This setup is typically used in
placement of IoT devices communicating with only neighbors (Avner and Mannor, 2016;
Sankararaman et al., 2019).

We again consider 3 cases of (N,K) which are (100, 250), (150, 250), and (100, 500). We
present the result in Fig. 4 for 30 independent runs. Along with the expected rewards of the
arms, graph structure is also different for each run. We plot the median of the cumulative
regret incurred by a single angle at each time step and the 95% confidence intervals.

We note that for K = 250, the performance is similar for N = 100 (Fig. 4b) and
N = 150 (Fig. 4b). This is expected for no-communication strategy as the number of
arms are same. For LCC-UCB-GRAPH algorithm, this makes sense as the degree of the
graph KG is higher than the the number of arms allocated to every agent dK/Ne. For full
communication strategy, this happens because the expected degree of each agent is same
for both graphs. Each agent can access data from only neighbors, and that remains same.
On doubling K from 250 to 500, we observe that the regret increases at lower rate for
LCC-UCB-GRAPH than for the other two strategies. This is again attributed to the fact
that KG dominates dK/Ne term in regret. We note that the performance of the DEMAB
algorithm is still sub-par to the all the other three strategies. Note that the LCC-UCB-
GRAPH algorithm accumulates extremely low regret because of the reduced arms per agent
(≤ 5) and the degree of any node is also very low as we considered sparse G(N, p) graphs
with p = 10/N .

As expected, we note that the proposed strategy performs better than the no communi-
cation strategy. Further, we note that the proposed strategy even outperforms the strategy
where communication happens after every time step and lags behind in initial time steps
only. This is because, for the always communicating setup, an agent only shares its knowl-
edge with its neighbors and thus is not able to fully utilize the graph with N agents. For
the initial time steps, the LCC-UCB-GRAPH algorithm performs pure exploration, hence
incurs regret.

We also compare the performance of the LCC-UCB-GRAPH algorithm against a mod-
ified LCC-UCB algorithm which relays messages from other nodes. This modification
allows every agent to receive recommendations from all the other agents after every epoch.
However, the performance of the LCC-UCB-GRAPH algorithm is significantly better than
the relay based LCC-UCB algorithm which justifies the sub-epoch based modification used
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in LCC-UCB-GRAPH. LCC-UCB algorithm wastes a significant portion of the time to
generate good recommendations and hence incur a large regret. The better performance of
the LCC-UCB-GRAPH algorithm is because after each epoch, an agent only receives arm
updates from its neighbors, and hence, the

√
K/N +KG term in regret is very small.

8. Conclusion

We considered the problem of reducing communication rounds between N agents and min-
imizing the regret of agents interacting with an instance of a Multi Armed Bandit problem
with K arms for time horizon T . We proposed two algorithm LCC-UCB for fully connected
networks and LCC-UCB-GRAPH for sparse networks with maximum degree KG and di-
ameter D. We analyzed the algorithms and obtain regret bound of Õ(

√
T (N +K/N)) and

Õ(D
√
D(K/N +KG)T ) for LCC-UCB and LCC-UCB-GRAPH algorithms respectively.

We found that the algorithms perform well empirically with the LCC-UCB-GRAPH algo-
rithm outperforming every time communication strategy in which an agent shares knowledge
only with its neighbors. Further, both the LCC-UCB and the LCC-UCB-GRAPH algo-
rithm beat the existing state of the art results. Additionally, the low bit complexity for
communication in both the algorithms makes them a suitable choice for power constrained
devices. We conjecture when N agents are connected with graph of diameter D = o(N1/3),
and the agents can only communicate the index of the best known arm, the lower bound
of regret of any agent scales as O(D

√
D(KT/N +NT ). However, proving the conjecture

remains an open problem. As future work, the setting where the agents interact with
non-identical bandit instances can be considered. Moreover, considering limited communi-
cation setups for federated reinforcement learning setups (Agarwal et al., 2021) is also an
interesting direction for future work.
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