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Abstract—Coded caching utilizes pre-fetching during off-peak
hours and multi-casting for delivery in order to balance the traffic
load in communication networks. Several works have studied the
achievable peak and average rates under different conditions:
variable file lengths or popularities, variable cache sizes, decen-
tralized networks, etc. However, very few have considered the
possibility of heterogeneous user profiles, despite modern content
providers are investing heavily in categorizing users according
to their habits and preferences.

This paper proposes three coded caching schemes with un-
coded pre-fetching for scenarios where end users are grouped
into classes with different file demand sets (FDS). One scheme
ignores the difference between the classes, another ignores the
similarities between them and the third decouples the delivery
of files common to all FDS from those unique to a single class.
The transmission rates of the three schemes are compared with
a lower bound to evaluate their gap to optimality, and with each
other to show that each scheme can outperform the other two
when certain conditions are met.

Index Terms—Coded caching, User profiles, Content distribu-
tion networks, Peak and average rate.

I. INTRODUCTION

The recent information explosion is constantly pushing
the limits of communication networks, users always want
more information at faster speeds and with minimal latency.
Network operators hope to address this problem by pushing
the content and computation closer to the end users, in what
is commonly known as fog networking [2]. Having multiple
caches distributed across the network helps balance the load
over the internet backbone, but does not alleviate the con-
gestion that often arises at the edge of the network during
peak hours. Coded caching was introduced as a powerful
solution for solving this problem and has since been used in
a wide range of areas, such as industrial IoT [3], 5G wireless
communications [4], [5], and medical data sharing [6].

A coded caching scheme consists of a placement and a
delivery phase. The placement phase takes place during off-
peak hours, when there are spare resources in the network.
The server partitions all the files into segments and stores
them in the users’ caches. The delivery phase takes place
during peak hours, when multiple (if not all) users have file
requests. The server attempts to fulfill all those requests with
minimal information transmitted, by leveraging the segments
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cached during the placement phase. It has long been known
that proactively caching popular content during off-peak hours
reduces the total information to be transmitted when that
content is requested. This gain depends on the hit rates on
the local cache of the end users, so it is known as local
caching gain. However, Maddah-Ali and Niesen’s seminal
paper [7] recently showed that the overall transmission rate in
point-to-multipoint links can be reduced further by carefully
coordinating the cached segments and using a coded delivery
scheme. This gain depends on the segments shared by the
different user subgroups and is therefore known as global
caching gain.

In [7], Maddah-Ali and Niesen proposed a coded caching
scheme which maximizes multicasting opportunities for the
worst case user demands. Subsequent works focused on low-
ering the peak rate in different scenarios [8], [9]. However,
these papers adopted homogeneous models which do not fit
most practical systems where coded caching could potentially
be used. Some recent works have analyzed the transmission
rate of coded caching systems with full heterogeneity: [10]
considered different file sizes, cache sizes, and user dependent
file popularity, but only for two users and two files. Centralized
and decentralized coded caching schemes with heterogeneous
user cache sizes were studied in [11] and [12], respectively,
but they ignored the users’ diverse preference over files. The
work in [13] provided an optimization theoretic analysis of
coded caching systems with various heterogeneities (cache
size, file length, and file popularity) and demonstrated that
Maddah-Ali and Niesen’s original scheme from [7] is optimal
for problems with uniform file size, popularity, and cache
size. Unfortunately, the results in [13] are derived numerically,
without theoretical evidence. Furthermore, it does not address
user heterogeneity, which is the focus of this paper. A scenario
with heterogeneous file popularities was addressed in [14] by
partitioning files into groups such that, within each group, the
files have approximately equal popularities. However, it again
assumed that the popularity of each file was identical for every
user. Additional research on coded caching has extended it
to topics such as device-to-device caching [15], hierarchical
caching [16], location-based content [17], and distinct file
sizes [18].

Papers like [19]-[21] have addressed the significance of
predicting users behavior according to their preferences. This
mirrors the current trend of online video streaming companies
like Hulu and Netflix which spend a considerable amount
of resources investigating their customers’ habits and cate-
gorizing them according to their streaming preferences. The
paper [22] utilized game theory to analyze the transmission
cost of a centralized coded caching system when the users
present heterogeneous preferences over the files requested, but



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3186210

IEEE TRANSACTIONS ON INFORMATION THEORY

it neglected the alternative of grouping similar users together.
The recent paper [23] categorized users into two groups: VIP
and non-VIP. It proposed schemes so that the VIP group
obtains better experience (lower transmission rate) than the
non-VIP group. However, it only considered the decentralized
coded caching system model and merely paid attention to
specific users instead of the whole ensemble. Another coded
caching scheme with user grouping was proposed in [24] for
wireless channels, and its results indicate that grouping users
based on their channel conditions is beneficial for reducing
transmission time, especially for small cache sizes. Our prior
conference paper [25] addressed a system where the users are
grouped into classes with similar file interests. It proposed
three coded caching schemes for this scenario and studied their
peak rate, but it did not provide a comprehensive comparison
between them. This paper will do that and study the subject
in more detail.

Most existing works have focused on studying the peak
rather than the average rate of coded caching systems. This is
mainly due to the fact that the average rate is highly dependent
on the distribution of the requests and that the peak rate is
an important factor in the design of small networks. When
the number of files and users is large, however, the peak
rate is very rarely reached because it is common for different
users to request same files. Hence, studying the average rate
of transmission can be more useful towards modeling and
developing practical caching schemes. There have been works
studying the average rate, e.g., [26], [27], but they assumed the
same distribution of requests for all users. The scenario with
heterogeneous user profiles was thoroughly analyzed in [28],
[29], but just for the case of two users. Our prior work [1]
studied the average rate resulting from the three schemes
proposed in [25] and compared their asymptotic performance.

The main contributions of this paper include: 1) characteriz-
ing the peak and average rates of the three schemes proposed
in [25] for a coded caching system with heterogeneous user
profiles; 2) deriving lower bounds for the peak rate of the
three schemes; 3) proposing a cache distribution method which
results in minimal peak and average rate for one of the
schemes when the caches are relatively small compared with
the size of the library; 4) comparing the peak transmission
rate of the three schemes analytically to provide insights for
deciding which scheme should be chosen given the system’s
parameters.

The paper will be organized as follows: Section II introduces
our system model and the notation to be used throughout the
paper. Section III describes the three coded caching schemes
being proposed and analyzed. Section IV derives a lower
bound for the peak rate of a coded caching scheme with
heterogeneous user profiles and compares the peak rate of
the three schemes with that bound. Section V studies how to
optimally distribute the cache among the different types of files
and compares the peak rate of the three schemes according
to the cache size. Finally, Section VI provides numerical
simulation results to illustrate and support our derivations, and
Section VII concludes the paper.
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II. BACKGROUND
A. System Model

This paper considers a system with a single server storing
N files of size F', which is connected through an error-free
broadcast link to K end users equipped with cache memories
of size M F each. The K users are split according to the files
that they may request into G non-intersecting classes with
% users each. Within the NV files, there are N, common files
which may be requested by any user in any class and G subsets
of N, unique files which can only be requested by one class
of users. For simplicity, this paper assumes that the number of
users and unique files is the same for every class, and that they
do not intersect. Therefore, each class has % users and NN,
unique files, where N = N+ GN,,. Furthermore, we assume
that the number of users is smaller than the number of files.
The quantities K, G, N., and N, are generally discrete in
practice, but this paper will often treat them as continuous
to avoid integer effects during calculations. If their values
are large enough, the rounding errors can be neglected. This
scenario is illustrated in Fig. 1 with only two classes.

In the placement phase, caches are populated with file
segments. This paper only considers uncoded prefetching,
which means that segments are cached in plain form, not coded
together. As asserted in [28], uncoded prefetching is subopti-
mal, but it has many advantages: it allows for asynchronous
transmissions, reduces latency, simplifies the bookeeping, etc.
Since file segments are cached in plain form, there will be a
section of the cache storing segments from common files and
another storing segments from unique files, as shown in Fig. 1.

In the delivery phase, each user k requests a single random
file d; from the server. We denote the probability mass

function (pmf) of the random request dj, as pgl].

Definition 1. The demand set for user k is defined as Sy =
{n e{l,2,....,N. + GN,}: pﬂi] > O}, which represents the
set of distinct files that can be requested by user k with a
positive probability.

It can be written that

Z pgc] =1.

VdeSy

(D

Definition 2. The demand vector d = (dy,...,dx) is defined
as the set of files requested by the users in the delivery phase,

and N(d) € [1,min{K, N}| denotes the number of distinct
files in d.

Our goal will be to minimize the data rate (traffic from the
server to the users) required to satisfy the users’ requests. We
consider two different metrics for such rate:

Definition 3. The peak and average rates of a coded caching
scheme are respectively defined as
R = Z P JR )

Vd:dy €Sy

R* (M) = 2

max Ry,
Vd:di €Sy

where Ry denotes the number of bits transmitted to satisfy
request vector d.
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FIGURE 1: System Model with two distinct classes, A and B,
each having two users. Each user’s cache is divided into a
section for common and another for unique files.

The average rate is highly dependent on the pmf of the
requests pﬂc I In order to make the equations more tractable and
facilitate the comparison with other coded caching schemes,
our simulations will focus on the uniform-average rate, defined
as follows.

Definition 4. The uniform-average-rate of a coded caching
scheme is defined as

e Y Rp G)

where |Si| represents the number of distinct files requested by
user k with a positive probability.

The uniform-average-rate in Definition 4 is different from
that in [30], where the distribution is simply uniform over
all the files, namely [N]¥X. Definition 4 assumes that the
distribution is uniform over the demand set for user k. It
replaces the joint distribution p; with a uniform distribution
over the file demand set S; X Sp X -+ X Sk.

B. Maddah-Ali and Niesen’s scheme

This paper generalizes the centralized coded caching
scheme with uncoded prefetching proposed by Maddah-Ali
and Niesen [7], from this point on referred to as MN’s scheme,
to heterogeneous user profiles. It is therefore important to
review such scheme before we go any further.

In the placement phase, MN’s scheme splits each file into
(It( ) non-overlapping segments, where t = % Each segment
is cached by a distinct set of ¢ users, which results in each
user caching (It{:ll) segments per file. Specifically, this scheme
is able to satisfy any vector of requests by transmitting at
most (%) messages of size (It()le bits. The peak rate
(normalized by the file size F') is written as

_ ()
Run(K,t) = ) “)
t
K-t
B )

If the server only receives requests for m distinct files (e.g.,
only some of the users make a request, or their requests
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overlap), then the transmission rate with MN’s scheme will
become

- () = ()

(%) ’

(6)

as was shown in [26].

This paper will treat ¢ as continuous, just like it did with K,
G, N, and N,, to avoid integer effects. The next subsection
explains how the combinatorial expressions in Eq. (6) can be
extended to continuous arguments.

C. Approximation of Transmission Rate for Simulation

This subsection shows how Eq. (6) can be extended into a
continuous function over 0 <t < K.

When ¢t < 1, the overall size of all the caches is not
enough to store the IV files in full. It is therefore necessary to
leave a fraction of each file out of the coded caching scheme
and transmit it uncoded whenever that file is requested. The
minimal such fraction can be found as p =1 — % Hence,
according to [31], the overall transmission rate for demand
vector d when ¢ <1is

—

R = N(d)p + [Rate if ¢t = 1](1 — p), (7)
where N (_j denotes the number of distinct files being re-
quested.

When K —1 < t < K, the opposite happens. The caches are
large enough that a fraction of each file needs to be cached by
every user, otherwise part of the caches would be left empty.
It is therefore never necessary to transmit that fraction and
coded caching schemes can be used to transmit the rest when
the file is requested. The minimal such fraction can be found

as v = K — t. Hence, the overall transmission rate when
te (K—-1,K]is

R=0-v+[Rateif t = K —1](1 — 7). 8)

When 1 <t < K —1 but it is not an integer, Eq. (6) is not
well defined because the binomial coefficients require integer
and strictly non-negative arguments. In order to interpolate
these coefficients continuously, we use the Gamma function,
which is defined for all positive real numbers and satisfies
I'(n) = (n — 1)! for every integer n. Therefore

ny n! B F'(n+1)
(k:) R SR T R

without error when n and k are integers.

III. PROPOSED SCHEMES

The schemes proposed and analyzed in this paper are
variations of MN’s scheme and were first presented in our
conference paper [25].



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3186210

IEEE TRANSACTIONS ON INFORMATION THEORY

A. Scheme 1: All common

The system behaves as if all files are common during the
placement phase, sacrificing local caching gain in favor of
global caching gain. It ignores the distinction between all
user profiles and requires every user to cache segments from
every file, even if it would never request some of them.
MN’s scheme with N = N.+ GN,, files is utilized for the
placement and delivery. When N < KM < (K — 1)N the
peak and average rates can be derived from Eqgs. (5) and (6),
otherwise it becomes necessary to adjust their values as shown
in Egs. (7) and (8).

o Peak rate: The peak rate is equivalent to that in MN’s

scheme with N files and K users. According to Eq. (5)
it can be computed as:

(10)
where t1 = %

o Average rate: The average rate is also equivalent to that
in MN’s scheme with N files and K users. Taking
the expectation over the distribution of requests and
using Eq. (6) to compute the rate associated with each
individual request vector yields:

1 _ (tfH)
Rive = Zpd
vd

B (K;]Yﬁ( ))

K )
(i2)

where p > denotes the probability associated to demand
vector d and Nj(d) denotes the number of distinct files
requested by the K users according to d.

(1)

B. Scheme 2: Split

The system deals with common and unique files separately,
decoupling their placement and delivery. A fraction = of each
user’s cache is devoted to storing segments from common files
and the remaining (1 — ) to store segments from unique files.
Segments from common files are distributed over all K users
according to MN’s scheme with N, files and M F'x bits of
cache per user. Segments from unique files are only cached
by the K/G users in their corresponding class, also following
MN’s scheme to fill the remaining M F'(1—x) bits of cache ca-
pacity per user. The delivery phase is independent for common
and unique files, never encoding segments from different file
types in the same message. A clear advantage of this scheme
over Scheme 1 is that it reduces the subpacketization (number
of segments into which files need to be divided), simplifying
the implementation.

If o out of the K/G users in each class request a distinct
file from the set of IV, files unique to its class, the peak data
rate for this scheme is given by

R®(z,a) = R.(z,a) + GR,(z,a) (12)
« Fis K-«
_ (tfj—l) - (t?—H) (tﬁ-l) B (EL—H)
- K +G K ’
(tc) (tc)
where t. = K % and t,, = gw The above expressions

implicitly assume that ¢, and t, are both larger than 1 and
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smaller than K — 1 and % — 1, respectively. Otherwise, they
need to be adjusted according to Egs. (7) or (8). The two
terms in Eq. (12) correspond to the rate required to deliver
common files, R.(x, ), and that required to deliver unique
files, R, (z, ), for each class. Despite users are only caching
the files in their demand set, x might favor unique files over
common files (or vice versa), so the local caching gain is still
being sacrificed for the benefit of global caching gain.

e Peak rate: Theorem 7 will later prove that, when the
number of users is sufficiently large, the peak rate is
achieved when the number of users requesting unique
files is the same for every class. Hence, the peak rate can
be found as

R

beak = Minmax R (z,a), (13)

x [0

where the fraction x is being optimized to minimize the
peak rate.
o Average rate: The average rate can be calculated as:

G
RZ. =R.+) Ry, (14)

i=1
consisting of the average transmission rate for common
files R, and that for unique files R,, in each class. Taking
the expectation over the distribution of requests and using
Eq. (6) with a reduced memory Mz and number of files
N, to compute the rate associated with each individual
request vector yields:

te+1

b )
e=> g @ ,
vd te

where t. = % and Nc((f) denotes the number of
distinct common files requested by the K users. Similarly,
the average transmission rate for unique files in the i-th
class can be found by using Eq. (6) with K/G users, N,
files, and capacity for M (1 — z) files in the cache:

_ (K—Nc(d)>

15)

( & ) — (%71\{1@-( ))
Ry, =Y pyrti— b S (16)
vd (tcu)

=

where ¢, = %1\1[:1) and N, (d) denotes the number of
distinct unique files requested by the K /G users in the
i-th class.

C. Scheme 3: All unique

The system behaves as if all files are unique, maximizing
local caching gain in detriment of global caching gain. It
disregards the fact that common files can be requested by
all user classes and independently applies MN’s scheme for
placement and delivery phases within each class of users.
Instead of caching all N.+GN,, files, the users only cache the
N.+N,, files corresponding to their class during the placement
phase. When G(N, + N,,) < KM < (K — G)(N.+ N,) the
peak and average rates can be derived from Egs. (5) and (6),
otherwise it becomes necessary to adjust their values as shown
in Egs. (7) and (8).
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o Peak rate: The peak rate for each class is equivalent to
that in MN’s scheme with % users and N, + N, files.
Multiplying the rate in Eqgs. (5) by the number of classes

G gives:
RO, - gl (17)
peak g 17
_K__M
where t3 = NN

o Average rate: The average rate for this scheme can be
computed as the sum of the expected rates within each
class. Using Eq. (6) with g users and N, + N, files to
compute the expected rates results in:

“ (50 — (5.5 )
Re(ai)g — Zzpd ts+ X t3+
=1 v (g)

where t3 = %% and N3, (cf) represents the number

of distinct files requested by the K/G users in the i-th
class.

) (18)

IV. LOWER BOUND OF PEAK RATE

This section derives a lower bound for the peak rate of a
coded caching system with heterogeneous user profiles and
compares it with the peak rate of the three schemes from
Section III

Theorem 1. The peak rate of a coded caching scheme with
G user classes, g users in each class, N = N, + GN,, total

files, and cache size of M files per user, can be bounded as

R*(M)> max max S-t—Siti-M (19)
te{l,...,G} seQ(t) L;V(L‘)J

with v(t) = |5 + N, | and Q(t) = {1,...,min (£, v(¢)) }.

This result is based on a cut-set bound argument.

Proof. Let t € {1,...,G}, s € Q(t) and consider the first s
users from each class v = 1,2,...,t¢ denoting their caches
Zy,Z3,...,ZY. Divide the N, common files into ¢ sets
so that each class has v(t) files associated with it. Denote
them {W,, W3, ..., W, }, where the argument on v has been
dropped for simplicity. Without loss of generality, we assume
that the first s files are requested for every class and the
server fulfills those requests by transmitting X;. The first s
users in each class must be able to recover W', W, ... W)
from their caches Z, 77, ..., Z7 and X;. Similarly, when the
server sends X5, the users in each class ~y are able to determine
Wi, Wiy, ..., Wy, with their cache Z},Z;),..., 2],y =
1,2,...,t. Continue in the same manner up to XL%Z,J . We then
have that X1, X»,...,X|1, and Zy, 7y, ..., Z) are enough
to determine W7, W/, .. .,W;’L%VJ, fory=1,2,...,t Fig. 2
illustrates this setting for ¢ = 2.

By the cut-set bound in [32], we can obtain that

Fu(t)J R (M)+s-t-M>s-t- ﬁv(t)J - @0

s
By solving for R*(M) and optimizing over all possible
choices of s and t, it can be written that
“t-M
s>, 21)

R*(M) > max B0

> max (s -t —
te{l,...,G} seQ(t)
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FIGURE 2: Cut corresponding to parameter s = 2 in the proof
of the converse. In the figure, N, =4, N, =2,t =2, K =8.

proving the theorem. O

We use Rep(s,t) to denote the argument maximized in the
bound:
s-t-M
[sv(®)]

Remark. When M > N. + N, the above expression
Rep(s,t) is negative for every (s, t), and therefore the bound
is trivial. This is to be expected because such M would be
sufficient for every user to cache all the files in its demand
set.

Rep(s,t)=s-t— (22)

Remark. When G = 1, this bound reduces to the one derived
in Theorem 2 of [7].

For simplicity, the rest of this section will assume that the
number of files N is larger than the number of users K and
that both of them are significantly larger than the number of
classes G. This will simplify the proofs by treating v(G) as
an integer and (G) as the continuous set 1 < s < £,

Theorem 2. For the heterogeneous user profile model with
a database of N = N, + GN,, files, K users with G <<
K < N, and a local cache size of M files at each user with

M < %, it can be written that
R
peak
8 23
R*(M) — 23)
Proof. Loosening the bound in Eq. (19) results in
R*(M) > R ,G 24
(M) = Sé%a(é) cB(s, G) (24)
GsM
> Gs — 25
> mex (Go-3—) @9
GsM
> (Gs— ), (26)
X

. . K
where the last inequality holds for any 1 < s < .
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We first consider the case when M < % Applying the
above bound with sy = % yields

K KM
RO 2 (5 -5 —) @7)
K
K /2N - K - KM
2 ?( 2N — K ) (28)
> 3K (29)

- 8

Clearly, Scheme 1 transmits less than one file per user, so
R\, < K and Eq. (23) holds when M < 2.

Next, we consider - < M < max (1.5, %). Let s; =

4GLM and observe that 1 < 51 < % as long as K > 4G.

Eq. (26) then becomes

Gs1 M
R(M) > (Gs1 — ) (30)
Gs1
3M -1
>N—F ——. 31
— AM(4M -1) GD
When M < %, we cannot apply Eq. (10) directly to find
R;le)ak, since t; < 1. Instead, we have to correct it with Eq. (7)
obtaining
o _ (K-=1)KM N-—-KM
Ry = SN + K N (32)
K
=—@2N-MK-M). 3
o ) (33)
Dividing Eq. (33) by Eq. (31) results in
R, JAKM 2N -M(E+1) AM -1
R*(M) ~— N 2N 3M -1
<4-1-2 (35)

where it has been used that X < N and therefore M > %

When % < M < 1.5 (which may be an empty set, in which
case this part can be ignored), the modification in Eq. (7) is
not needed. Dividing Eq. (10) by Eq. (31) and using the fact
that N > K yields

RU). AKM  N—M 4M -1
RO SKM+N N 3M—1

<4-1-2.

(36)
(37)

So far, we have shown that Eq. (23) holds for M <
max (1.5, %) It only remains to show that the theorem
also holds for max(1.5, %) < M < . For this, we use

2G"
S9 = QGLM to obtain
M-1

RRM)> N—>———. 38
(M) = 2M(2M — 1) (38)
Dividing Eq. (10) by Eq. (38) and imposing M > 1.5 yields
Réle)ak N-M 4KM _M—% 39)

R*(M)~ N KM+N M-1
<1-4-2 (40)

1)

pea.

which proves that R
optimal for M < %

. is within a factor of 8 from the
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O

Theorem 3. For the heterogeneous user profile model with K
users, a database of N = N, + GN, files, and a local cache
size of M files at each user with M < 2%, it can be written

2G’
that 3
R
peak
8G. 41
R (M) = @1
Proof. For M < %, we can use the same argument as in
the proof of Theorem 2: R* > % and R;i)ak < K, so the

theorem holds.
Eq. (31) and Eq. (38) in the proof of Theorem 2 showed
that

3M —1
*My>N—F-——— 42
RE (M) = AM(4M —1) “42)
for 2= < M < 1.5 and
M—-1
RRM)> N—r— 43
(M) = 2M(2M —1) “3)
for 1.5 < M < % As for Rl()?ak, we can use Eq. (17) to

compute it when when M > %(Nc + N,). Otherwise, the
equation needs to be corrected with Eq. (7) resulting in

3 _ M(K + G)
Rpeak =K <1 72G(Nc T Nu) 44)
M(K +G)

Hence, when % < M < min (1.5,%(NC+NM)) we can
just divide Eq. (45) by Eq. (42) to obtain

Roow _ (;  M(K+G)\ 4KM 4M -1 )
R(M) = 2GN N 3M -1
(1 EAGY 4O+ N AM -1
1IKG N 3M 1
<1-4G 2. (48)

When 1.5 < M < %(N0+Nu) we need to divide by Eq. (43)
instead of by Eq. (42), obtaining

Ba _(, K+G\ 26(N.+N,) 2M -1 w
R(M) = IKG N M1
<1-2G-4. (50)

When %(NC + N,) < M < 1.5 we need to divide Eq. (17)
by Eq. (42), obtaining

R®

peak < Nc+Nu_M A4GKM a4M —1
R*(M) — N KM+ G(N.+N,) 3M -1

(51)

<1-4G-2. (52)

Finally, when max (1.5, & (N, + N,,)) <M < £, we divide

Eq. (17) by Eq. (43) obtaining

Ryow. _ Nt Nuy—M 2GK M oM —1
R*(M) — N KM+ G(N.+N,) M-1

(53)

<1-2G-4. (54)
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O

Theorem 4. For the heterogeneous user profile model with K
users, a database of N = N, + GN, files, and a local cache

size of M files at each user with %(NC +N,) <M< % it
can be written that
(2)
Fpeas <8(G+1). (55)
Rx(M)
Proof. The peak rate of Scheme 2 can be bound as follows.
Rfe)ak = mlin max R(Q)(x, «) (56)
N,
< max R® (m =N a) &)
N, N,
< m(ilXRc (m = N,a) —l—mngRu (x = N,a)
(58)

N, N, K
<R, (x:N,a:O>+GRu (x:N,a:)

G

(59)
(1) ¢ —h
S Rpcak T Gm, (60)
where N = N, + GN, and t; = % Since t3 < t; and
Réi;k decreases monotonically with ¢3 we can conclude that
(2) ) ®3)

Rpeak < Rpeak + Rpeak' (61)

Finally, we apply Theorems 2 and 3 to obtain Eq. (55). O

We do not attempt to characterize a bound for average rate
because it would depend on the popularity distribution of the
files. A bound for uniform-average rate could be derived, but
we believe that it would not provide valuable insights for the
general case.

V. RESULTS

This first part of this section studies how to optimize the
distribution of cache between common and unique files in
Scheme 2 so that the peak rate and uniform-average rate are
minimized. We discover that when users’ cache storage is
small, devoting all the cache to common files will minimize
both the peak and the average rate of transmission. The second
part of the section provides detailed comparisons between the
peak rates of the three schemes proposed in Section III and
analyzes which scheme offers the best performance for each
value of M. A partial summary of results can be found in
Table 1.

Our previous conference paper [1] provided some partial
and asymptotic results for uniform-average rate, but we have
decided not to include those here, postponing them to future
work on a separate paper.

A. Optimizing x for Scheme 2

When M is large, users are able to cache most of the files
and the choice of z is less relevant. Furthermore, scenarios
where caches are almost as large as the whole library rarely
come up in practical applications. Hence, we will focus our
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analysis on the case with relatively small M compared with
the size of the library V.

Theorem 5. There exists a 6 > 0 such that for all K >
0 and M < %min(Nc,G’Nu), the uniform-average rate of
Scheme 2 is minimized by devoting all the cache to either
common or unique files. Specifically, it should all be devoted
to common files (r = 1) when

Nu _ . EPINu(d)] )
Ne ” 7 ERN(d) + EIN(d))

otherwise it should all be devoted to unique files (x = 0). In
Eq. (62),

—

[Nu(d)]
Ne

(62)

+E
+E

- N.+ N, —1\*
- N.+ N, —1\*/¢
E[Nu(d)] = N, ll - <N+N) SN
Proof. See Appendix. O

Theorem 5 generalizes Prop. 3 from paper [28], where there
exist two classes with one user each. When the number of
common files is large and the cache size is below half of the
common files, the users should only cache common files.

Corollary 1. If the users’ devices have relatively small storage
and the number of common files is not too large, it is
recommended for the users to devote all their cache to common
files and transmit the unique files uncoded.

B. Peak Rate Comparison

First, we compare the peak rate of Schemes 1 and 3, since
they have the simplest expressions.

Theorem 6. When M is small, Scheme 1 offers lower peak
rate than Scheme 3, and vice versa. Specifically,

1) < RO GNy

R R 7

peak — ““peak

& M <N, —

(65)

Proof. This theorem can be proved by simple manipulation of
Eqgs (10) and (17). O]

Corollary 2. When M is small, it is often beneficial for users
to cache segments from undesired files (unselfish caching), to
increase multicasting opportunities. The loss in local caching
gain is more than compensated by the gain in global caching
gain [33]. In fact, it was recently proved that MN’s scheme
can provide unbounded gains over selfish coded caching [34].

In Schemes 1 and 3, the number of users requesting com-
mon versus unique files is irrelevant, since segments from both
files can be encoded together. In Scheme 2, however, it plays
a major role. We now intend to show that in order to compute
the peak rate, we only need to consider the case where the
subdivision is the same for all user classes.

Theorem 7. There exists a number o € (0, %) such that the
peak rate for Scheme 2 is achieved when every class has «
(or, occasionally, o+ 1 due to discretization constraints) users
requesting unique files.
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Proof. Let «; represent the number of users from class @
requesting unique files, and assume that « = («q,...,aq)
maximizes the rate, given by

G G
R(a) = R, <(1; > ai> + ) Ru(ai), (66)
i=1 =1

where R, and R, have been defined by Eq. (12) and we omit
z for simplicity.
Without loss of generality, assume «; > g and let 3 =

(a1 —1l,as +1,as,...,aq). Then
R(B) ~ Ra) =
R,(on — 1) — Ry(a1) + Ry(a2 + 1) — Ry(a2). (67)
We now prove that R(3) — R(c) > 0 or, equivalently,
Ry(az +1) = Ry(az) > Ry(ar) — Ry(ar —1).  (68)

This result follows from the fact that the rate is submodular in
the number of requests, but we prove it anyway. With a; > aw,
Eq. (68) can be written as

K _ K _ no— K _ K _
(5.5 - (Cut ) o (Cudy™) - (655

K Z K
(£) (&)
> ¢ o

ta, ’

which is true, since binomial coefficients increase monotoni-
cally with the number of elements.

(69)

(70)

Therefore, for any general @ = (a1, ...,aq) where a; >
«aj, if we shift one user who requests a unique file from class
1 to class j, we will obtain a larger or equal new transmission
rate than the original rate. By repeating the shifting process as
many times as necessary, we can find a maximal transmission
rate with all classes having nearly the same number of users
requesting unique files. Strictly speaking, they could be off by
a single user, but for large enough K (i.e. using the continuous
relaxation of the problem), we can conclude that a uniform set
of coefficients would achieve the peak rate. O

In the proof of Theorem 7, we utilized the method of
Reductio ad absurdum, namely showing that the opposite
scenario would lead to contradiction, to prove that Scheme
2 can achieve the peak rate of transmission when each class
has an equal number of users who request unique files. We are
now ready to compare the peak rate of Scheme 2 with that for
the other two.

Theorem 8. When M is large enough, Scheme 2 offers lower
peak rate than Scheme 3. Specifically,

2) (3) G K+1
Rpeak S Rpeak

<= M >

> g Nu D)
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Proof. If x =1 — %, each user stores all the unique files
that it might request. The worst case « is therefore a@ = 0.

Observe that

Rfe)ak = mzin max R (z,a) (72)
Ny
< max R®) (1 -3 a> (73)
N,
=RP1-=20 74
(1-57.0) (74)
Ny+N.— M
=K . 75
After some rearrangement, Eq. (17) can be written as
(3) Ne+ Ny — M
R =KG . 76
peak KM + G(N.+ N,) (76)
A simple comparison of the last two equations yields Eq. (71).
O

Theorem 9. When M is large enough, Scheme 2 provides
lower peak rate than Scheme 1. Specifically,

(2) (1) G K+1, N
Rpeak < Rpeak < M > max (G_lKNua E + Ny
(77)
Proof. From Eq. (75) we can observe that
Ny+N.— M
R? <g-_—uTlc 78
peak — K(M_Nu)+Nc’ ( )
and Eq. (10) can be rearranged as
K— KM __
1 _ N.+GNy
Rpeak - KM +1 . (79)
Ne+GNy,

By comparing these two equations, we are able to generate
Eq. (77). O

Corollary 3. Scheme 2 provides the lowest peak rate of the

(i )

three when M > max | #7275

Proof. This corollary can be simply proven by combining
Theorem 8 and Theorem 9, setting M to be the larger value
between the two. O

Theorem 10. When K > (G — 1) (1+ SN and M is
small enough, Scheme 1 offers lower peak rate than Scheme
2. Specifically,

RV < p®

peak — ~“peak

= M <

min(N., GN,,)

Proof. If M < w then ¢; < 1 and we can combine
Egs. (10) and (7) to obtain

M K(K+1)
rRY — g2 81
peak 2 N.+GN,’ 81
As for Rl()?ak, it is defined as the highest rate experienced
for any number of unique requests o:
R{2, = minmax R® (z,a) (82)
> min R® (z,a0) (83)

T 0<z<1
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M range Result
M < 2RNe.GNu) ge > (GDN R, best
M > max (% %Nu, %} R;?ak best
M< X RU) /R (M) <8
M< & R JR*(M) <8(G +1)
M< X R JR*(M) < 8G

TABLE I: Summary of peak rate results

for any specific value of . Combining Eqs. (12) and (7)
yields

R® (z,a) = (12()_)(6;04)% + (K —Ga)(1—t.) (84)

+ GL) — (% )tu +Ga(l —t,),

where t. = % and t, = % are both smaller than 1.

Since R(® (x,) is a linear function of z, it will achieve its
minimum at either x = 0 or x = 1. Consequently,

R, > min [R (2 = 0,0), R (r = 1,0)]
a?+a (Ga—K)Z—Ga—i—K}

N, ’ N,

M
ZK—QmaX[G

for any value of a. It only remains to find a value for a such
that

?+a  K(K+1)
¢ N, ~ N.+GN, (83)
_K)?
(Ga—K)*=Ga+ K _ K(K+1) 36)
N. N, +GN,

We propose using oy = %%, which when plugged

into Egs. (85) and (86) results in

K N.
_ —1-K—— | < 87
N.+GN, (G Nc—i—GNu)—O 87)
K2GN,
—_ < 88
A AR

Ne

respectively. Since K > (G—1) (1 + Gl ), both inequalities
hold and the theorem is proved. O

Corollary 4. For small enough M, Scheme 1 yields lower
peak rate than Schemes 2 and 3. For large enough M, Scheme
2 offers the lowest rate of the three. In some cases, there is
a range of intermediate M values for which Scheme 3 has
lower rate than the other two.

VI. NUMERICAL SIMULATIONS

This section provides simulations illustrating the peak and
uniform-average rates of the three proposed schemes, as well
as lower bounds to provide a framework for comparison.
To the extent of our knowledge, there are no schemes in
the literature which could be suitable for our scenario with
heterogeneous user profiles. The best performing schemes for
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homogeneous users are those found by solving combinato-
rial optimization problems as described in in [13] and [35].
However, with uniform file popularities, cache capacities, and
file sizes, those schemes are equivalent to Maddah-Ali and
Niesen’s scheme. Solving the optimization problems while
ignoring user classes results in Scheme 1 and doing it in-
dependently for each class results in Scheme 3.

Fig. 3 illustrates the peak rate of the three schemes and
the cut set bound, for different cache sizes M and number of
classes G. The number of users per class is set as K/G = 8
in all cases. The results match the statement in Corollary 4:
it is better to use Scheme 1 (all common) for small cache
sizes and Scheme 2 (split) for large ones, regardless of the
number of classes. This result seems counter-intuitive, since
it suggests that every user should cache segments from every
file when the caches are small, even as the number of unique
files scales with the number of classes. However, it turns out
that the multicasting gain more than compensates for the loss
in local caching.

The peak rate values increase with the number of classes
due mainly to the increase in the number of files and users.
It can be seen that the peak rate of Scheme 3 (all unique)
increases above the others, reaching a point when it is never
the preferred option. Again, this is somewhat counter-intuitive;
it seems like a good idea to deal with each class independently
when the number of classes is large, but it is not.

Fig. 4 shows the uniform-average rates of the three schemes
in the same scenario. The minimal uniform-average rate in
scenarios with heterogeneous user profiles is unknown, so
we define a new scheme "MN with oracle" to provide an
approximate lower bound. In this scheme the system knows
in advance which users will request common and unique files,
and it populates their caches using MN’s scheme for common
and unique files separately. This results in the following
uniform-average rate:

K
Rore = Z Pk, (E [R(kc, m, toc)}
k.=0

rans[r(5Gk )] )

where k. represents the number of users that request common
files, E[R(K,m,t)] is the expectation of the rate defined in

Eq. (6) over the number of distinct files requested m, t,. =
ke M _ (E—ko)M
7. tou = —gn- > and

Pk, = (?) (NC ZJ\ZCNU ) . (NC]JV}uNu ) o

is the probability that k. users request common files.

The results suggest that Scheme 2, which splits the place-
ment and delivery of common and unique files, is highly
suboptimal when the number of classes is small, unless the
cache memory is very small or very large. However, when the
number of classes increases, Scheme 2 achieves the lowest
average rate among all three of the schemes. This result aligns
with Prop. 3 in [1].

It is worth noting that these results are different from those
previously observed for the peak rate: for small M, Scheme 2

(89)
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FIGURE 3: Peak rates and cut-set bound vs cache size (M) for
N, = 256, N,, = 256, and 8 users per class.

presents the lowest uniform-average rate and the highest peak
rate among the three schemes, regardless of the number of
classes. Even though Scheme 2 does not provide the lowest
peak rate of transmission when the users’ storage is small,
we should still consider Scheme 2 as a primary choice in this
scenario. As in practical systems it is common for different
users to request the same files, the average rate of transmission
can represent the traffic of a coded caching system better than
the peak rate.

Fig. 5 investigates the performance of the three schemes as
the number of classes grows. In this scenario, N, = N, =
256, there are 8 users in each class and we set M = 256
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FIGURE 4: Average rate vs Cache size (M) for N, = 256,
N, = 256, and 8 users per class.

to provide enough storage for each user to cache half of the
files it could request. The top plot stands for the comparison
of the peak rates of three schemes, and the bottom plot
compares the average rates of three schemes. As the number
of classes increases, so does the total number of files and
users. This results in worsening performance for all three
schemes. Schemes 1 (all common) and 3 (all unique) suffer
nearly linear degradation, while Scheme 2 (split) scales better.
This is because Scheme 2 (split) is able to adjust its cache
distribution as the number of classes increases so that both
peak and average rate are minimized. Therefore, when there
are more classes of users joining the network, Scheme 2
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FIGURE 5: Evolution of the peak rate (top) and the average
rate (bottom) as the number of classes G grows in a system
with N. = 256, N,, = 256, M = 256, and 8 users per class.

(split) is able to provide better service than the other schemes.
Fig. 5 also illustrates the benefit of user profiling. A service
provider ignoring user preferences would experience the peak
and average rates shown for Scheme 1 (all common), while
those taking the time to classify the users into G profile classes
could reduce those rates to the ones shown for Schemes 2
and 3. When the number of classes (and therefore files and
users) is large, the difference can be significant. Similar results
for N, = 64, N, = 64 and M = 64 can be found in
papers [25] and [1].

VII. CONCLUSION

This paper proposes three coded caching schemes with
uncoded pre-fetching which are suitable for a system where
end users are categorized into classes according to their
demand distributions. It is assumed that the files are either
common, which means that they can be requested by any user
in any class, or unique, meaning that only users in a specific
class are likely to request them. The first scheme treats all
files as if they were common, the second one decouples the
delivery of common and unique files, and the third treats all
files as if they were unique.

The peak and uniform-average rates of the three schemes are
derived and compared with each other, showing that there exist
conditions under which each scheme outperforms the other
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two. Specifically, Scheme 1 provides the lowest peak rate when
the caches are small and Scheme 2 when the caches are large.
Scheme 3 is best for intermediate cache sizes when the number
of classes is small and the number of users is large. Their peak
rates are also compared with a cut-set lower bound on the
achievable rate to obtain bounds on the gap to optimality for
each scheme. We also proposed cache distribution strategies
so that both peak rate and average rate of transmission are
minimized for Scheme 2.

Our system model assumed that the file preferences are
different for each group of users. However, in practical systems
there exists overlap between different groups. Hence, inspired
by the choice of cache distribution, we acknowledge that it is
possible and valuable to explore the effect that the number of
classes, namely G, has on the rate of transmission. In future
work, we plan to study this effect as well as the uniform-
average rate of the three schemes in more detail.
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APPENDIX
A. Proof of Theorem 5

Proof. When M < 4 min(N,,GN,), we are assured that
both . and ¢, in Eqgs. (15) and (16) will be smaller than 1.
As a consequence, the uniform-average rate must be adjusted
according to Eq. (7) and Rg%,)g becomes a linear function of
z (Eq. (7) is a linear function of p, which is in turn a linear
function of x). Since it is only defined over 0 <z < 1, Rg,)g
must be minimized by either x = 0 or x = 1, depending on
the sign of its partial derivative respect to x.

The law of large numbers tells us that when the number of
users K is large, the number of distinct files requested will be
very close to its expected value for almost every demand vector
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d. If we approximate N,(d) and N, (d) with their expected
values, we have
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After expanding Eq. (92) and cancelling out terms we find that
(2)

avg

R . . . . 2
5% is negative (i.e. , x = 1 minimizes R,gw)g) when
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and positive otherwise (i.e. , x = 0 minimizes R(a?,)g).

The expected number of distinct common and unique files
requested can be computed defining a binary variable for each
file (taking value 1 if at least one user requests it and zero
otherwise) and using the method of indicators:

o N.+ N, —1\*
B = - (S ) | o
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