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ABSTRACT: The surface functionalization of two-dimensional
(2D) materials with organic electron donors (OEDs) is a powerful
tool to modulate the electronic properties of the material. Here we
report a novel molecular dopant, Me-OED, that demonstrates
record-breaking molecular doping to MoS,, achieving a carrier
density of 1.10 + 0.37 X 10" cm™ at optimal functionalization
conditions; the achieved carrier density is much higher than those
by other OEDs such as benzyl viologen and an OED based on 4,4'-
bipyridine. This impressive doping power is attributed to the
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compact size of Me-OED, which leads to high surface coverage on MoS,. To confirm, we study ‘Bu-OED, which has an identical
reduction potential to Me-OED but is significantly larger. Using field-effect transistor measurements and spectroscopic
characterization, we estimate the doping powers of Me- and ‘Bu-OED are 0.22—0.44 and 0.11 electrons per molecule, respectively, in
good agreement with calculations. Our results demonstrate that the small size of Me-OED is critical to maximizing the surface
coverage and molecular interactions with MoS,, enabling us to achieve unprecedented doping of MoS,.

KEYWORDS: Two-dimensional materials, molybdenum disulfide, surface functionalization, molecular doping,

atomic force microscopy (AFM), electric transport properties

urface functionalization of two-dimensional (2D) materials

with organic molecules is a powerful tool to modulate the
properties of 2D materials, in part due to our ability to
synthesize molecular dopants with tailored structures and
functionalities.” Since the seminal study of graphene function-
alized with organic electron donors (OEDs) in 2007, the
optical, electronic, and magnetic properties of a number of 2D
materials have been modified using surface functionaliza-
tion.”~>* Noteworthy results include the reversible doping of
MoS, using benzyl viologen® and the high carrier density of 5.8
+ 1.9 x 10" cm™ achieved in MoS, via surface
functionalization with an organic dopant based on 2,2'-
bipyridine (DMAP-OED).” Generally, the amount of charge
doping from OEDs is predicted based on the relative position
of the molecule’s redox potential in relation to the Fermi level
of the 2D host.”** However, other factors, such as the steric
properties of the molecule, the nature of the interaction
between the molecule and the 2D material, and interactions
between the molecules on the 2D material, also impact the
overall charge donation but are not as well understood. !>
On the basis of these preliminary studies, we hypothesize that
optimization of both the redox and steric properties of a
molecular dopant is essential for the design of powerful
dopants.

Here we report a novel molecular dopant, Me-OED, which
demonstrates record molecular doping to MoS,, achieving a
carrier density of 1.10 + 0.37 X 10" cm™ at optimal
functionalization conditions. We attribute the high doping

© 2022 American Chemical Society

WACS Publications 4501

power of Me-OED to its compact size (surface area of ~65 A”
per molecule), which leads to high coverage of the MoS,
surface. To confirm, we study as a control ‘Bu-OED, which has
the same redox potential as Me-OED but a larger surface area
(~90 A? per molecule). We quantify the doping powers of the
two OEDs by (i) measuring the change in carrier density of
MoS, field-effect transistors (FETs) before and after
functionalization, and (ii) estimating the number of molecules
that functionalize MoS, using atomic force microscopy
(AFM). At optimal functionalization conditions, we show
that the doping powers of Me- and ‘Bu-OED are 0.22—0.44
and 0.11 electrons per molecule, respectively. Thus, despite
having identical redox potentials, the two OEDs donate
different amounts of electrons to MoS, due to differences in
size, which affects their interaction with MoS,. Density
functional theory (DFT) calculations are performed for the
two OEDs at different surface coverages and assist in
understanding the experimental results. Further, Me-OED
also outperforms DMAP-OED, our previous record-holding
molecular dopant to MoS,, which has a significantly more
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Figure 1. Cyclic voltammogram (CV) of Me-OED and transfer characteristics of MoS, transistors. (a) Chemical structure and CV scan of Me-
OED, indicating the redox potentials of —0.91 V and —0.67 V versus SCE. (b) Atomic structure of a Me-OED molecule on MoS, from DFT
calculations. (c) Ips—Vg transfer curves of MoS, FETs functionalized with Me-OED at three different functionalization conditions: 10 mM/24 h
(top), 10 mM/10 min (middle), and 0.1 mM/10 min (bottom), with a pristine MoS, FET in gray for comparison. The bias voltage is 1 V and the
channel length of the devices is 3 ym. Inset: Optical image of a pristine MoS, FET with varying channel lengths. (d) Systematic increase of the
average carrier density of MoS, functionalized with Me-OED at Vg = 0 V with increasing solution concentration and functionalization time. The
error bars represent the standard error obtained from measuring 4 to 6 MoS, devices.

negative redox potential but a larger surface area than Me-
OED." Overall, our results establish that the steric properties of
OEDs critically affect their doping power and are a crucial
factor to consider, alongside redox potential, in the design of
new OEDs.

Me-OED is a novel neutral reductant that is stable and
soluble in organic solvents under an inert atmosphere
(Supporting Information Section S1). Figure la shows the
cyclic voltammogram and molecular structure of Me-OED. It
undergoes two discrete one-electron transfer events at —0.91 V
and —0.67 V versus the saturated calomel electrode (SCE).
Accordingly, electron transfer is expected from the Me-OED
molecule to MoS,.* Figure 1b shows the ground state structure
of a Me-OED molecule on monolayer MoS,, as determined
using DFT calculations (Supporting Information Section S1).
The aromatic rings of an isolated Me-OED molecule are nearly
parallel to the basal plane of MoS,.

Back-gated MoS, FET's were fabricated on monolayer MoS,
flakes via chemical vapor deposition, and their electrical
properties were measured before and after functionalization in
ambient atmosphere (Figure S1; Supporting Information
Section S1). Me-OED solutions were prepared and drop-cast
on MoS, FETs in an argon-filled glovebox. After being exposed
for the desired functionalization time, the FETs were washed
with acetonitrile. We systematically varied the functionalization
conditions (solution concentration and functionalization time)
and measured the transfer characteristics of the pristine and
functionalized devices (Figure lc, which is shown in linear
scale in Figure S2). At a bias voltage of 1 V, the pristine MoS,
FET shows strong gate dependency with expected n-type
transport. We note that the extracted two-contact field-effect
mobility values for pristine samples are low (>1 cm?*/(V s)),
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which we attribute to environmental effects from measuring
the devices in ambient as well as potential high contact
resistance at the MoS,/electrode interface. After functionaliza-
tion with 0.1 mM and 10 mM Me-OED solutions for 10 min,
the drain current (Ipg) at zero gate voltage (V) increased by
one and two orders of magnitude, respectively. The gate
dependency of the current is significantly diminished for the
devices functionalized with 10 mM Me-OED solution,
indicating that Me-OED is a potent n-type dopant.’® We
observe that a higher solution concentration or a longer
exposure time leads to more doping, as evidenced by
successive increases in I, going from 0.1 mM to 10 mM
concentration, and from 10 min to 24 h. The average 2D sheet
carrier density (n,p) in MoS, was extracted from the
characteristic curves of several pristine and functionalized
devices and is shown in Figure 1d (Supporting Information
Section S1). As expected, increasing the functionalization time
and solution concentration resulted in increased n,p. For MoS,
functionalized with a 10 mM Me-OED solution, the average
n,p exceeded the degenerate limit. Notably, the MoS,
functionalized with a 10 mM Me-OED solution for 24 h
achieved an average n,, of 1.10 + 0.37 X 10" cm™ the
highest doping level reported to date for molecular doping to
MoS,.

To further examine the molecular doping of Me-OED to
MoS,, we performed X-ray photoelectron spectroscopy (XPS),
photoluminescence (PL) measurements, and Raman spectros-
copy of pristine and functionalized MoS, using a 10 mM Me-
OED solution for 10 min (XPS data for MoS, functionalized
using a 0.1 mM Me-OED solution for 10 min is in Figure S3).
After functionalization with Me-OED, the binding energies of
the Mo 3d and S 2p core levels decreased by 0.30 and 0.32 eV,

https://doi.org/10.1021/acs.nanolett.2c01167
Nano Lett. 2022, 22, 4501-4508


https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c01167/suppl_file/nl2c01167_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01167?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01167?fig=fig1&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.2c01167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Nano Letters

pubs.acs.org/NanoLett

A\

a) b)
Mo 3d S2p
5 e
& s
> Me-OED 2 | Me-OED
2 2
- [}
E Pnstlne ‘ b=
) Pristine
1 1 1 —t
237 234 231 228 225 168 166

Binding Energy (eV)

164
Binding Energy (eV)

c)
Mo P,
Mo P, a2
=]
L N 1s
=2
[7])
S | Me-OED
k=
Pristine
162 160 414 408 402 396 390
Binding Energy (eV)
f)
40nm 15
210
35
3.0 3 o
0.4 0.80 1.20 1.60 2.00 2.40
20 Height (nm)
1.0
1.0 £ 050
>
0
0.0 0 10 20 30
x (nm)

Figure 2. XPS and AFM characterization of MoS, functionalized with Me-OED. (a—c) XPS spectra of (a) Mo 3d, (b) S 2p, (c) and N Is core
levels of pristine and functionalized MoS, using a 10 mM Me-OED solution for 10 min. The downward shift in binding energies for the core levels
indicates the lower oxidation states of Mo and S due to electron donation to MoS, from the molecules. (d, ¢) Whole flake and zoom-in AFM
images of MoS, functionalized with a 0.1 mM Me-OED solution for 10 min. (f) (Top) Height distributions of the molecular islands formed on
MoS, after functionalization with a 0.1 mM Me-OED solution for 10 min. (Bottom) Example line profile of a Me-OED molecular island.

respectively (Figure 2ab). The PL measurements show that
functionalization results in quenching of the A peak of MoS,,
which also shifts to a lower energy (Figure S4). Lastly, the
Raman spectrum shows that MoS, remains in the 2H phase
and a slight red-shift in the A;, band was observed after
functionalization (Figure S5). Thus, XPS, PL, and Raman
characterizations clearly demonstrate electron transfer from
Me-OED to MoS,, consistent with the FET measurements and
previous literature studies.”*”**

The XPS N Is peak, which is absent in pristine MoS,,
emerges after functionalization due to the presence of nitrogen
atoms in Me-OED, confirming the presence of Me-OED on
MoS, after functionalization (Figure 2c). The surface coverage
of the Me-OED molecules on MoS, could be obtained by
analyzing the ratio of the N Is to Mo P;/,, peaks, which
represents the ratio of dopant molecules per Mo atoms in
MoS,." However, previously we showed that molecules in
direct contact with MoS, donate electrons most strongly while
molecules further away from MoS, only weakly donate
electrons. As the number of molecules obtained from XPS
does not represent the percentage of molecules in close
proximity to the MoS, surface, XPS data alone are insufficient
to estimate the number of molecules that donate charge to
MoS,.

The molecular doping power is equal to the increase in
MoS, carrier density from molecular functionalization (An,p)
divided by the number of molecules that donate charge. We
previously found AFM can provide reliable estimates of the
surface coverage of molecules for lower concentrations,”
allowing for the calculation of the doping power. Surface
topographic images of MoS, flakes functionalized with a 0.1
mM Me-OED solution for 10 min were obtained with AFM, as
shown in Figure 2d and e, and the height distributions for
islands are shown in Figure 2f. For the functionalized MoS,,
the surface roughness of the uncovered areas was comparable
to that of pristine MoS, flakes (Figure S1) indicating that the
uncovered areas are free of isolated molecules. The AFM
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images reveal that Me-OED molecules aggregate into round
islands with an average diameter of 10.50 nm after
deconvolving the AFM tip diameter, and there is a broad
distribution of island heights (Figure 2f). The lack of clear step
heights suggests that Me-OED molecules do not form discrete
layers in which the aromatic ring of the molecule stacks on top
of the MoS, surface or on top of each other. This is consistent
with DFT calculations, which are discussed later.

Analysis of the AFM images reveals that the average surface
coverage of Me-OED on MoS, is ~40% for functionalization
conditions of 0.1 mM concentration of Me-OED and 10 min
exposure time, and ~82% for functionalization conditions of
10 mM concentration of Me-OED and 10 min exposure time
(Supporting Information Section S1; Figure S6). We note that
functionalization of MoS, with only the solvent (acetonitrile)
yields an average surface coverage of ~0.2%; thus, the islands
observed are not from solvent molecules.

The doping power of Me-OED was calculated using the
surface coverage estimated by AFM, following our previous
stuady on DMAP-OED molecules (Supporting Information
Section S1).* At functionalization conditions of a 10 mM
solution for 10 min, Me-OED donates —0.22 to —0.44e per
molecule (where e stands for the elementary charge),
depending on whether the molecule’s aromatic ring is assumed
to be tilted away from or parallel with the basal plane of MoS,
(Supporting Information Section S1). At functionalization
conditions of a 0.1 mM solution for 10 min, the estimated
doping power of Me-OED was very small. At such low solution
concentrations, we suspect that molecules are isolated and
more prone to oxidation, which would lead to degradation of
the molecules and weakening of their doping ability.

We hypothesize that the compact size of Me-OED leads to
high surface coverage on MoS, and thus maximizes doping
efficiency. To confirm, we repeated our functionalization
experiments using ‘Bu-OED, an OED with an identical redox
potential as Me-OED but a larger surface area. ‘Bu-OED was
synthesized according to a previously published procedure™
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Figure 3. Cyclic voltammogram (CV) of ‘Bu-OED, transfer characteristics of MoS, FETs, and AFM characterization for MoS, functionalized with
‘Bu-OED. (a) Chemical structure and CV scan of ‘Bu-OED. (b) Atomic structure of a ‘Bu-OED molecule on MoS, from DFT calculations. (c)
Ips—Vig transfer curves of MoS, FET functionalized with a 10 mM ‘Bu-OED solution for 10 min, with a pristine MoS, FET in gray for comparison.
The bias voltage is 1 V and the channel length of the devices is 3 ym. (d) Average carrier density at Vg =0 V for pristine (gray), ‘Bu-OED (blue),
and Me-OED (red) functionalized MoS, FETs using a 10 mM solution and a 10 min exposure time. The error bars represent the standard error
obtained from measuring 4 to 6 MoS, devices. (e) AFM image of MoS, functionalized with a 0.1 mM ‘Bu-OED solution for 10 min. Inset: Zoom-in
image of the functionalized flake. (f) (Top) Height distributions of the molecular islands formed on MoS, after functionalization with a 0.1 mM
‘Bu-OED solution for 10 min. (Bottom) Example line profile of a ‘Bu-OED molecular island.

and is a neutral reductant that is stable and soluble in organic
solvents under an inert atmosphere. ‘Bu-OED undergoes the
same two discrete one-electron transfer events at —0.91 V and
—0.67 V versus SCE as Me-OED, indicating they have identical
redox potentials (Figure 3a). As determined by DFT
calculations (Supporting Information Section S1), in isolation,
the aromatic rings of ‘Bu-OED are nearly parallel to the basal
plane of MoS,, and ‘Bu-OED occupies a larger surface area
than Me-OED on MoS, due to its larger ‘Bu substituents
(Figure 3a,b).

The transfer characteristics of pristine and ‘Bu-OED
functionalized MoS, FETs are shown in Figure 3c. After
functionalization with a 10 mM '‘Bu-OED solution for 10 min,
Ips at zero Vg increased by three orders of magnitude and the
gate dependency of I g diminished, indicating that ‘Bu-OED is
a strong n-type dopant. Figure 3d shows n,p in MoS,
functionalized with 10 mM solutions of Me- and ‘Bu-OED
for 10 min. Under these conditions, Me-OED functionalization
leads to greater change in the carrier density of MoS, than ‘Bu-
OED functionalization. Even at the highest functionalization
conditions tested (10 mM solution for 24 h), Me-OED still
outperforms ‘Bu-OED (Figure S7). Thus, despite having the
same redox potential as ‘Bu-OED, Me-OED is a superior
dopant to MoS,.

We also performed XPS, PL, and Raman spectroscopy for
‘Bu-OED functionalized MoS,, and they show similar results to
Me-OED functionalized MoS,, confirming electron donation
from "Bu-OED to MoS, (Figures S3, S4, SS, and S8). Figure 3e
shows an AFM image of MoS, functionalized with a 0.1 mM
‘Bu-OED solution for 10 min. The AFM image reveals that
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‘Bu-OED aggregates into islands atop MoS,, and the islands
are interconnected and chain-like. Although the height of Me-
OED islands did not have clear steps, the height distribution of
the ‘Bu-OED islands showed sharp peaks at 0.80 and 1.25 nm.
This suggests formation of well-defined mono- and bilayers of
‘Bu-OED islands as the height of the ‘Bu-OED molecule is
~0.45 nm and the distance between the molecule and MoS,
surface is ~0.20 nm. Analysis of the AFM images reveals that
the average surface coverage was only ~57% for ‘Bu-OED for
functionalization conditions of 10 mM concentration and 10
min, whereas it was ~82% for Me-OED (Figure S6). The
doping power for ‘Bu-OED is estimated to be —0.1le per
molecule, in comparison to Me-OED that donates —0.22 to
0.44¢ per molecule.

We performed DFT calculations investigating Me- and ‘Bu-
OED on monolayer MoS, under varying surface coverages to
understand the interplay between molecular structure and
doping power from first principles. We first consider
monolayer and submonolayer molecular coverages on MoS,.
For both OEDs, the densest coverage simulated for a
monolayer of molecules with their aromatic rings parallel to
the MoS, surface is 1/12 (one molecule per 12 formula units
of MoS,; Figure 4a for the Me-OED case). We observe that
the charge donation per molecule is similar for Me- and ‘Bu-
OED for the same molecular coverages up to 1/12 (Figure 4c),
which is expected due to the identical redox potentials for the
two OEDs. The charge transfer per molecule decreases as the
coverage increases due to repulsive intermolecular interactions,
and at a coverage of 1/12, the charge transfer per molecule is
computed to be —0.36¢ and —0.38¢ per molecule for Me- and
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Figure 4. Molecular arrangements and doping powers as a function of surface coverage. (a, b) Monolayer arrangements of Me-OED molecules on
MoS,: side view (top panel) and top view (bottom panel) at (a) 1/12 coverage and (b) 1/6 coverage. (c) Charge transfer per molecule as a
function of surface coverage. (d) Total electron doping density of monolayer OEDs on MoS, as predicted by DFT. The OED surface coverages are
in units of one molecule per number of formula units of MoS, (e.g,, a coverage of 1/12 refers to one molecule per 12 formula units of MoS,).

Dotted lines are guides for the eye.

‘Bu-OED, respectively. Higher monolayer coverages than 1/12,
such as 1/6 and 1/4.5, are possible for Me-OED if the
aromatic rings are tilted (Figure 4b) rather than parallel to the
MoS, surface. In this case, the doping power per Me-OED
molecule is computed to be —0.24¢ for 1/6 coverage and
—0.21¢ for 1/4.5 coverage (Figure 4c). For ‘Bu-OED, our DFT
calculations find that a 1/6 coverage of ‘Bu-OED with tilted
molecules is unstable because the bulky ‘Bu groups are likely to
hinder the formation of a densely packed monolayer.*’

The binding energies per molecule for the bilayers of
molecules are just ~0.1—0.3 eV less than those for the
monolayers (Table 1). Comparing the energetics of monolayer
and bilayer molecular coverages, we find that Me-OED
molecules prefer to form a monolayer with tilted aromatic
rings rather than a bilayer with parallel aromatic rings. These
predictions are consistent with the AFM height distributions
(Figures 2f and 3f), which show a broad distribution of island

Table 1. DFT-Calculated Binding Energies Per Molecule for
Monolayer and Bilayer OED Molecules on MoS,

Me-OED Me-OED ‘Bu-OED
@ 1/12 surface @ 1/6 surface @ 1/12 surface

binding energy (eV) coverage coverage coverage
monolayer 1.74 1.79 2.07
bilayer (on top of 1.44 1.63 1.88

MoS,)
bilayer (molecule on 1.52 - 1.89

top rotated by 90

deg)

heights for Me-OED, in contrast to clear step heights for ‘Bu-
OED, corresponding to mono- and bilayers of ‘Bu-OED
molecules. As such, we attribute the impressive doping power
of Me-OED to its compact size, which allows it to pack more
efficiently with tilted aromatic rings.

The calculated doping powers of densely covered Me-OED
(—0.21¢ to —0.36e per molecule at 1/4.5 and 1/6 surface
coverage) agree well with the experimental values (—0.22¢ to
—0.44¢). However, for ‘Bu-OED, the calculated doping power
per molecule (—0.38¢) is much larger than the experimental
value (—0.11e) estimated for functionalization conditions of 10
mM solution for 10 min. However, a densely packed molecular
arrangement might not be reached for ‘Bu-OED after an
exposure time of 10 min because the surface kinetics of ‘Bu-
OED on MoS, are slow. This reasoning is based on our
observation that the surface coverage and average n,,, for MoS,
functionalized with a 10 mM solution of ‘Bu-OED for 1 and 10
min are identical (Figure S9). In our calculations, we assume
that the ‘Bu-OED islands observed by AFM take the molecular
arrangement of the densely packed 1/12 surface coverage. Yet,
there may be fewer ‘Bu-OED molecules per unit area in the
observed molecular islands than what we estimate. For MoS,
functionalized with a 10 mM ‘Bu-OED solution for 24 h, the
average surface coverage is ~51% (Figure S10) and the
estimated doping power of ‘Bu-OED is approximately —0.46e,
in good agreement with DFT calculations (—0.38¢).

Having calculated the molecular doping powers of Me- and
‘Bu-OED to MoS, at varying surface coverages, we also
computed the average 1, of functionalized MoS, to compare
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with the experimentally determined n,,. The computed 1, is
5.2 X 10" cm™ for Me-OED at 1/4.5 coverage and 3.5 X 10"
cm™? for ‘Bu-OED at 1/12 coverage (Figure 4d), which are in
the same order of magnitude as the experimental values
(Figures 1d and 3d). However, for the maximum functional-
ization conditions (10 mM solution, 24 h), the computed 7,
is almost half the experimental n,5. With a settling time of 24
h, we hypothesize that OED molecules might intercalate
between the MoS, and the substrate, functionalizing both
surfaces of the MoS, monolayer.”’ We simulate this scenario
for a 1/4.5 surface coverage of Me-OED and a 1/12 surface
coverage of ‘Bu-OED (the densest monolayer coverage).
Figure Sa and b show the corresponding relaxed geometries for
the Me- and ‘Bu-OED cases, respectively. We find that
adsorption on both sides of MoS,, instead of one side, does not
change the binding energies per molecule significantly, while
the corresponding electron doping density is approximately
doubled. As a result, the highest n,,, values computed are 1.04
X 10" ecm™ for Me-OED functionalized MoS, and 7.0 X 10"
cm™ for ‘Bu-OED functionalized MoS, (Figure Sc). These
numbers are in good agreement with the experimental results
(1.10 £+ 0.37 X 10" cm ™ for Me-OED and 4.83 + 0.90 x 10"
cm™? for ‘Bu-OED for the optimal functionalization con-
ditions; Figure 1d; Figure S9).

Our results demonstrate that despite having the same redox
potential, the doping powers of Me- and ‘Bu-OED vary due to
differences in their size. This affects their interactions with
MoS,, which is reflected in the distinct morphologies and
height distributions of the Me- and ‘Bu-OED islands. Further,
molecular size impacts the molecular packing efficiency, an
important parameter for the total charge donation to MoS,.
The stronger doping power of Me-OED compared to ‘Bu-
OED is attributed to the smaller size of Me-OED, which allows
for better packing efficiency, thus maximizing the total charge
transferred from the molecules to MoS,. DFT calculations of
the molecular doping power and achievable carrier density
agree well with the experimental results and demonstrate that
the highest carrier density observed can be achieved via
double-surface functionalization. Thus, optimal molecular
dopants should possess a maximally negative redox potential,
be small, and achieve a high packing efficiency with the 2D
surface.
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