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Abstract— There are many methods for real-time estimation
and identification for induction motor (IM) drives. In this study,
dynamic mode decomposition with control (DMDc) and its
variants are explored for voltage source inverter fed IM. For
real-time identification, online variants of the DMDc are
explored, including windowed online DMDec. These algorithms
are tested in simulation for healthy and faulty behaviors of the
IM drive. They are compared for estimation accuracy and
implementation complexity. Lastly, these algorithms are tested
on a dSpace experimental platform to further prove their
potential and applicability for both healthy and faulty cases.
With accurate DMDc estimation results across different variants,
their applications have potentials in condition monitoring or
fault-tolerant control.

Index Terms—Dynamic mode decomposition, induction motor
drives, real-time estimation.

[. INTRODUCTION

Modeling the faulty behavior of any system helps in
establishing strategies to mitigate faults and build model-based
fault-tolerant systems. This can be achieved through control
actions by estimating the next states in the system. If next
states are accurately estimated, more precise and effective
control signals can be generated.

Building an estimator for real-time applications can be
challenging. In addition to uncertainty contributed by
knowledge of the system itself and measurements, estimation
adds memory and computational complexity. These estimators
can be model-based, where the underlying dynamics of the
model are known. Such estimators can be deterministic like
state observers, or they can be probabilistic like Kalman
filters.

Other than using a model for the estimation, input and
output data can be utilized to generate a model, where the
model is either unknown or it has a high order. Such models
are called data-driven models and they do not rely on system
parameters. Many popular models generated by artificial
intelligence or machine learning algorithms can be called data-
driven but, may not produce an analytical or mathematical
representation of the system being considered.

Dynamic mode decomposition (DMD) is such a data-driven
estimation and identification technique that does not require
any system information to model a system. DMD uses state
measurement snapshots to model system dynamics [1]. For
dynamical systems, if the control input information is
available, more precise models can be generated through
DMD with control (DMDc) [2].

For motor drive systems, estimation is a mature area. The
main advantage of the DMDc is the nature of no-information
estimation. There are established estimation techniques to
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estimate system states such as speed [3-5], flux [3], current [6]
and position [4] or parameters such as rotor resistance [5], for
control purposes. All these methods do require either machine
parameters or complete machine equations to accomplish their
estimation processes, which is a disadvantage due to machine
parameter variations with temperature and other ambient
factors which lead to parameter uncertainty.

DMD is a powerful tool that has been mostly applied to
fluid dynamics. Apart from fluid dynamics research, it has
applications in image processing, forecasting, and model
predictive control [7-9]. DMD finds uses in power systems as
a tool for oscillation analysis [10,11] and inertia estimation
[12]. For control and estimation applications, DMD is coupled
with a Kalman filter in [13]. Additionally, it is used as a
technique of denoising in [14]. Even though it is a powerful
algorithm, applications of DMD and variants is not widely
explored in power electronics applications where fast
dynamics exist due to switching events.

One drawback of DMDc is the demanding nature of the
algorithm for real-time applications. Researchers proposed
variations for the DMD for online applications [15, 16]. The
derivation of online DMD (ODMD) is made in these articles
yet it is not generalized if the control signal is present for the
algorithm to achieve ODMDec.

After identifying a system model, making predictions based
on the identified system is not a major challenge and is not a
new topic in control and estimation theory. Any observer-
based system can be considered as a predictor, as well as
Kalman filters and neural networks. While these are viable
alternatives, they require system information in terms of
system matrices, as well as information regarding the
environment (noise, disturbance, etc.). The power of DMD-
based methods is that they are completely data-driven and can
model a system based on state measurements without
requiring any system parameter information. For example, in
induction machine (IM) applications, DMD does not require
stator or rotor inductances and winding resistances. This
makes a DMD-generated model robust against parameter
variations due to temperature and other factors. The
performance of DMD when compared to other estimation and
prediction tools is compared in [17], where DMD is shown to
be superior to the Kalman filter and back-propagation neural
networks in both mean absolute error and root mean squared
error for all cases considered. When it comes to compare the
DMD with similar tools such as proper orthogonal
decomposition [18], DMD has a faster response, but it falls
behind in accuracy. Since this paper focuses on real-time
systems, DMD is of more interest due to its faster response.

One of the uses of real-time system identification and
estimation is condition monitoring. The estimated quantity can
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be frequency, a system parameter such as DC link capacitance
or a system state such as rotor flux [19-22]. Though very
promising and important topics, this is beyond the scope of
this paper.

The main purpose of this paper is to investigate DMDc
variants that run online or in real-time under healthy and
faulty conditions by illustrating the estimation process, and
guide future researchers who wants to use different DMDc
variants. Achieving accurate estimation and state prediction
results during both healthy and faulty conditions can
significantly contribute to fault-tolerant system development.
The presented DMDc variants are implemented in MATLAB
and applied to an IM drive application. Simulations are made
for healthy and faulty operating conditions. The algorithms are
also experimentally tested on a lab prototype where they are
implemented on a dSpace platform. Healthy and faulty
conditions are tested. Comparisons among the DMDc
variations are made using simulation and experimental results.

The paper is organized as follows: In Section II, the DMDc¢
algorithm and mathematical background are given along with
derivation of windowed ODMDc¢ (WODMDc). In Section III,
simulation results are presented for the induction motor drive
system to demonstrate how DMDc variants accurately
estimate system states under healthy and faulty conditions.
Section IV presents the implementation considerations and
comparison among DMDc algorithms. Hardware test
scenarios for healthy and faulty operation results are given in
section V. Section VI concludes the paper.

II. BACKGROUND ON DMDC AND ITS ONLINE VARIANTS

Consider a discrete-time dynamical system with a system
matrix A, an input matrix B, a state vector x[k] and an input
vector u[k]. It is assumed that the system model does not
change in between sampling intervals and it is linear. Since the
modeling technique we adopt (DMD) is a linear one, even
though the system is non-linear, the generated model will be
linear. The vector x[k] is constructed from measurable
quantities; that is, it contains only measurable states and not
necessarily states available in a standard dynamical model.
The goal is to estimate system and input matrices and use
them to predict future states using available measurable states.
Although the generated models will not be identical to the
dynamical model, it is expected from these models to show
similar behaviors under similar operating conditions. For
example, a typical squirrel-cage induction machine dynamical
model may include rotor quantities that are not measurable;
for DMD purposes, only measured voltages, currents and
speed would be used to construct x[k]. Section V elaborates on
x[k] and u[k] in DMD applications.

x[k + 1] = A x[k] + B u[k] (1)

If we consider u[n]=0 for a non-excited system, we will have:
x[k + 1] = A x[k] 2)

A = x[k +1] (x[k])? 3)

The system matrix can be found from (3) and we can re-write
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(3) as:
A = x[k] (x[k —1D* 4)

Using the measured input and output data, the system is
modeled, and system matrices 4 and B are generated. Using
generated system matrices, the next state is synthesized. The
algorithm describing this process is given in Fig.1.
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Fig.1: Predictive modeling process.

An interpretation of (4) is that if we have state
measurements x[k] and a previous sample of the state
measurements x[k—/], we can find matrix 4. So far, equations
(1)-(4) summarize the DMD algorithm. In the regular DMD
algorithm, an order reduction step follows (4), but for the
system of interest, which is an IM drive, it is not necessary
since the order is already low. To improve this method for
feedback systems, control signals can be added to (4) to form
DMDc. To solve the system given in (1) with the same
methodology, new matrices will be defined. Let,

G=I[AB],  6,=I[XyU,] (5)
;xn]: Un = [u1:u2: ---un] (6)

where X, is the collection of n samples of the state
measurements and U, is the collection of n samples of the
input measurements as shown in (6). From these definitions, it
is easy to follow,

Xn = [xl, X2, e

Xny1 =G 0, (7)
G = Xni1 (en)_l )]
G =X, (gn—l)_l (C))

The matrix € has the measurement for the last n samples,
X,4118 the last n samples of state measurements, shifted by
one. 8, is most probably a non-square and thus non-invertible
matrix. In such a case, taking pseudo-inverse utilizing singular
value decomposition (SVD) should be considered. Equation
(9) can be re-written considering pseudo-inverse (shown as ):

G =X, (en—l)-r (10)
Where the pseudo-inverse is defined as:
o} = 0L (6, 6 an

It should be noted that for the models we are interested in,
equation (10) poses an over-defined system where the order of
the system is significantly less than the number of equations or
measurements. So only a single G matrix can be defined.

Normally DMDc uses order reduction while using SVD,
however, for low-order systems this is not necessary. The
system of interest here is an inverter-fed induction motor
which can be considered as low order.
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Fig.2 gives a perspective on how these matrices are formed
for an application. To apply DMDec, the following matrices are
needed: State snapshots X, input snapshots U, and augmented
control matrix 6. By using these three matrices, the matrix G
containing 4 and B will be found. X; is defined to be the sub-
matrix of X with the first component excluded. Similarly, X>
and U; are sub-matrices of X and U, respectively, where the
last components are excluded. To form 6, U: is used. Fig. 2
illustrates such formations.

X, U
A et | e 2
rT ik FTTTTTT
X= :x[l]lx[z] ...x[nfl]:x[n]: U=u[1]ul2]..un—1]un]
T U I N

X,
Fig. 2: Formation of matrices.

Based on Fig.2, (10) can be expressed as:

0=1[X;U0,], G=X,0 (12)

The model of interest includes both the controller and the
system models as seen in Fig. 3; the system dynamics might
be suppressed by the controllers if the controllers’ time
constants are high. By referring to Fig. 3, since the DMDc and
its variants are input-output type (they are functions of control
signal u and output y), any feedback within the system model
will be masked by the slowest dynamic (controller, actuator,
or system). However, the model generated by DMDc
algorithms includes a B matrix which map the control signals
to the system states. It gives a degree of de-coupling of the
controller from the system, but it is not a complete de-
coupling since controllers also have dynamics.

Identifying a system using this method is useful but it is not
a scalable method to run in real time. The calculation time of
the G matrix increases as new data points come in i.e., more
samples mean larger X and U matrices. That is why more
practical methods for real-time or online implementation are
proposed.

In classical DMDc, all data is used to calculate the G
matrix. A more realistic approach is to use a sliding window
and use a constant number of snapshots to get G. This method
is called windowed-DMDc (WDMDc). While easy to
implement, it has disadvantages that will be discussed in later
sections. In WDMDc, the G matrix is calculated in each time
sample. Even though this solves the scalability issue, it does
not necessarily reduce the calculation time. Moreover, the
model (G) will be correct only for the conditions of windowed
data. For offline implementations this is not an issue since the
window size can be set to represent a large amount of data and
the generated model will be a general model. But for real-time
implementations with a limit to the window size, a ‘general’
model cannot be generated. Therefore, WDMDc might have
inaccurate estimates during transients. Therefore, it was
proposed in [20] to implement the DMDc algorithm
recursively using the least-squares estimate to achieve the
online DMDc (ODMDc) and reduce computation time.

© 2022 IEEE. Personal use is

A. Online DMDc

The derivation of ODMDc is similar to the derivation of
ODMD. The update formula can be generated by replacing
matrix 4 with the augmented system matrix G, and state
measurement vector x as # shown in (5). This yields,

Grr1 = G + Viers Vi1 — GieOrs1)05 11 Pr (13)

where y and P are intermediate variables [20]. The ODMDc
constantly updates the original system matrix. It is
computationally efficient, and it does not require storing
measurements in the memory. But, if the system under
consideration is time-variant, relying on older measurements
will cause modeling errors. This has led to Windowed-
ODMDc (WODMDc), which is like WDMDc where it only
considers a window of measurements but is also online [20].

B. Windowed ODMDc Derivation

Define the following where G is the system matrix, 6 is the
measurement vector containing a single measurement set, and
Oy is the measurement matrix containing k£ measurement sets.

G =[AB)], 0 = [x;u], X1 =y=6G6 (14)
The matrices shown in Fig. 1 can be re-named as
Yk = [xZ e X1 ], Ok = [xl e Xy Uq uk] (15)

where subscript & denotes the k” sample. The objective
function Ji at the k" sample for the least-squares estimate is
formed as,

2
Je = IV = GOl Gy =Y,0f.

The pseudo-inverse is defined previously in (11). If (11) is
substituted in (16),

(16)

Gy = Y0} = Y,0%(0, 00)! = Q. P, 17)

where Q and P matrices are defined as follows where w is the
window size:

k
Qr = Y 0f = ;6] (18)
i=k—-w+1
k -1
Py = (0, 007" = ( Z gigiT> . (19)
i=k-w+1

The new measurement data at (k+/) will alter the Q and P
matrices:

— T
Qk+1 - Yk+1®k+1

k+1
= Z Y07 = Qr — Yi-w+10k-w+1 + Yis16511 (20)
i=k—-w+2
Pk_+11 = Op41 @£+1
K41
= ) 00 = Pt = Owa O + OOl D)
i=k—-w+2

The following definitions can help for a clearer representation:
U=[0k-ws1 Ok+1)V = [Vk—ws1 Y41l € = [-10; 0 1] (22)
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So, the O and P matrices are,
Que1 = Qe +VCUT
Py =Pt +UCUT

(23)
(24)
The updated G matrix can be calculated by:

Gip1 = Qu1Prsr = Qe +V CUTN(PH+UCUT)TH (25)
Using matrix inversion lemma, we can represent Py as

Pey1 = P = PU Gy U P Ty = CTH+ (UTPU)TE (26)
Gi+1 becomes

Girr = (Qx +V CUT(Pe — PU i1, UTPy)

= QP — QP UT UTP +V CUTP, —VCUTPU I}, ,UTP, (27)

We can write

V CUTP, —VCUTPU Iy, UTP,
= VC(TiY, — UTPU)Ty UT P,

=VCC M UTP, = VI UTP, (28)
Using I, definition
Grs1 = QPr — QuPkUTi 1 UT Py + V1 UT P
= Gy — G UT 1 UTP, + VI UT P, (29)
Then the update equation can be stated as,
Grsr = G+ (V = G U1 UTPy (30)

This way the effect of the last element of the measurement
window can be subtracted and the contribution from the new
measurement can be added without requiring recalculating the
G matrix from scratch.

C. Weighted-Online DMDc (We-ODMDc)

Windowed ODMDc removes the effects of the earlier
measurements and gives equal weight to all measurements
within the window. It is possible to alter the update formula
given in (30) to incorporate a weighing factor as shown in
(31). With this addition, it becomes possible to put more
weight on the latter measurements and gradually forget older
measurements. The update formula for the weighted-online
DMDc has the parameter p which is the forgetting factor. If it
is wanted to have a half-life of 3 seconds, then p can be
selected as p = 27 /3" sampling

Grs1 = G + p(V = G U)Tyy 1 UT Py

We-ODMDc converges to WODMDc as the half-life
becomes larger. The term p, becomes very close to one if the
half-life is selected too large.

(BD

III. VSI-FED INDUCTION MOTOR SIMULATIONS UNDER
NOMINAL AND FAULTY CONDITIONS

A voltage source inverter (VSI)-fed IM is considered with
indirect field-oriented control (IFOC). The inverter is operated
using sinusoidal PWM. The IM is modeled with the flux-
based equations given in [23]. IFOC is implemented as PI-
based [24]. The parameters used for the IM are provided in
Table I and the system block diagram is shown in Fig.3.
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Fig.3: Block diagram for VSI fed IM and DMDc.
TABLE I: IM Parameters
7.(Q) 1.44 X () 2.88
7 (Q) 1.3 X, (Q) 4.32
Xn(Q) 83.42 frase(HZ) 60

A. Case I: Nominal Operation with Reference and Load
Change

With the nominal operation, the speed reference is changed
from 1500 rpm to 1700 rpm, then reduced to 900 rpm at t=2.5s
and 4s respectively. During the speed stepping, the load is also
changed from 1 N.m to 4 N.m then to 3 N.m and to 6 N.m at
t=1.5s, t=3 s and t=S5s, respectively. The sampling time in
Simulink is 10us and the simulation is run for a total of 6s.
The inverter switching frequency is 10kHz and the DC bus
voltage is 300V. The plots for speed, speed reference, load
torque, g-d currents and current references are given in Fig. 4.
To check if IFOC is performing as expected, the regulation of
g-d currents is examined.

2000 T T T T T 10
— Speed
—~1500 - — - R S St SRR | ! — — — Speed Ref.
g_ ’;’ : Load Torque
‘gmoo b / [ - -5
o S |
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D 500/
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time(s!
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q
o
T

i (A
o S
3

L

oL 1 1 1 1 1
0 1 2 3 4 5

(©)
Fig.4: Simulation results for case I, nominal operation with load
stepping, (a) speed and torque, (b) & (c) izand i, with their references
respectively.

time(s)
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B. Case II: System Model Change — Hardware Failure

A hardware fault is injected to the system, namely a shaft
misalignment [25-27]. The shaft misalignment fault occurs in
the bearings of a machine, and it varies the airgap. Varying
airgap modifies generation of flux within the machine. Fig. 5
illustrates the shaft misalignment and varying airgaps. The
misalignment of the rotating center modifies the generated
flux. In effect, this flux will be reflected in the stator currents
as added harmonics following (32) [25].

1+<1—s>
t P/z

where f,, s and P represents the input frequency, the slip and
the number of poles respectively. For a four-pole machine,
(32) reduces to

fece = fe (32)

fee= 12 ()| =hts @

where f,. represents the mechanical rotation speed. The added
harmonics are centered around the input frequency and vary
by the rotational speed.

Rotating @
Center « ’

(Red dot)

Stator
- Rotor

Air gap

Fig. 5: Different types of shaft misalignments and varying airgaps [26]

The shaft misalignment is a complex fault to model. It
changes the airgap and inductances of each phase
dynamically. In this paper, only effects of the fault are
modelled rather than the fault mechanism itself which is side-
band frequency harmonics in the current. For more accurate
and complete models for the eccentricity fault please refer to
[28, 29]. The addition of extra harmonics causes ripples in the
fluxes and currents, yet the speed is regulated well. Since the
model used in this article has fluxes and currents as state
variables, they are readily available in the Simulink model. A
block diagram is shown in Fig. 6. By injecting two harmonics
to the stator current (iy;.), flux variation effect is achieved. In
healthy simulations the fault injection block is by-passed.

Vgd —»
w Flux )qu Current lqa
o Calcula- —» Calcula-
1 r tions tions
qd >
_ T,
oli, Fault *|ad Torque £ Speed Wr
Injection Calculation Calculation | |
lga-fit T,

Fig. 6: IM model, eccentricity fault injection block diagram
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The simulation results for this case are given in Fig. 7. The
speed reference is kept constant at 1500 rpm with a constant
load of 1 N.m. The fault is injected at t=2s where the total
simulation time is set to 4 seconds.
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(© time(s)

Fig.7: Simulation results for case II, hardware fault, (a) speed and
fault occurrence signal, (b) & (c) izand iy with their references
respectively.
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Fig.8: Simulation results for case III, speed sensor failure, (a) speed
and fault occurrence signal, (b) & (c) is and i; with their references
respectively.
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C. Case I1I: Speed Sensor Failure
Q.25

The third case is the speed sensor failure where the speed 0.t o ‘f‘
sensor feedback is omitted. This fault is injected at t=2s where 0.05 ’ w ' '

o

total simulation time is 4 seconds. The system response

changes suddenly under this failure as shown in Fig. 8. 005
0.1 0.05 /|

-0.15 0 P ]

IV. SOFTWARE IMPLEMENTATION, CONSIDERATIONS AND 02 5 s 3 4 s s 005 B 3 B e p

ALGORITHM COMPARISON OF DMDC VARIANTS WDMDe ume(s) ODMDe time(s)

< 01 ,‘|
|

A. Software Implementation 005 005

I )
For the system shown in Fig. 3, we define x[k] and u[k] as | ‘,%J""
; . i /\/—\ VT . | N

shown in (34) and (35). These use available measurable states
or quantities rather than the classical definition of an IM drive < o0s !

model. ) | -0.05 Y
x[k] = [ig[k], ialk] wy [K]]" (34) u

-0.1% -0.1
1 2 3 4 5 6 1 2 3 4 5 6

ulk] = [17; [k], v [k]]T (35) WODMDe time(s) We-ODMDc time(s)

Fig. 9: i residuals for the case I,

All four algorithms are applied to the three test cases
mentioned in Section IIl. /¢ is important to note that when o0 002 “‘
estimation is discussed, it also includes one-step-ahead w 001 N
prediction where x[k+1] is the estimated quantity. Estimation w ‘
results for these algorithms are shown Figures 9, 10, and 11 < ‘ < 501 |

=}

for iy, iq, and s, respectively, for case 1. Residuals for cases I1 005
and III are not shown here to make plots more readable, but

their probability distributions are shared later in this section. o oo
Residuals can be compared to determine which algorithm o7 WoMDe et Y o e
performs best for each case and estimated state. Residuals are

calculated using (36) where res; is the residual at sample £, 02 03

and the “*” symbol represents an estimated signal. | N 02 |
o e pl— ‘
| "'\/"‘"l |

-0.02 d

003 |

=}

P 0.1
TeSk+1 = Xe+1 — Xg+1 (36)

As clear in Figures 9-11, the algorithms’ estimation | o1 \,

performances are quite similar for the steady state. They differ 04| o \‘
in transient response and settling times. Plots start after o os i
initializations are done. 1 2 3 4 5 6 1 2 3. 4 5 6

WODMDc time(s) We-ODMDc time(s)

B. Considerations Fig. 10: iy residuals for the case I,

1) Window size, shifting index selection and rate transitioning
for WDMDc and WODMDc

One important criterion for windowed versions is the b e l‘;J,._- o /
selection of window size. Since in each sampling-time there is | “ ‘ 005 (
a calculation stage, the duration of this stage is critical for i
real-time implementation. Other than calculation time, data } ’*j
storage capability is another concern for windowed versions. ‘ R ‘
Every sample within the window should be stored. This 015 . PR 0.1 PR
creates a tight margin for the selection of window size if WDMDe time(s) ODMDe time(s)
memory is limited. Moreover, as the system order increases, "
this criterion becomes tighter. ' N
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2) Initialization of ODMD, ODMDc, WODMDc

Online implementations of DMDc use an initial system
matrix Gy when £=0 in (30) and they modify the initialization
matrix as new data comes in. This approach reduces the
computational burden as only additions and multiplications are
performed for each variable, rather than performing an
inversion.

However, this highlights the initialization problem where
estimations can have large offsets or diverge if not initialized
correctly. For real-time applications, initialization can be done
offline and required information can be given to the algorithm
manually. There are two points to consider when creating the
initialization matrix: 1) include some portion of the transient
and some portion of the steady-state behavior to capture both,
and 2) include different excitations and operating conditions
so that the initialization phase can capture various state
transients. For an induction motor, startup from zero speed to
commanded speed should be included with multiple values of

C. Comparison

To make a clear comparison, the same parameters are used
for these four algorithms. These parameters are, the window
size, the shifting index, the initialization window, forget factor
and they are chosen as 500 samples, 1, 6000 samples and 1 s,
respectively.

Estimation is accurate under healthy or nominal operating
conditions as simulated in case I. Residuals from cases I and
III follow similar patterns to case I. To illustrate this, the
probability densities of the residuals from all three cases are
plotted. The densities are centered around or close to zero,
indicating the estimation errors are low under both healthy and
faulty conditions. It is important to note that in cases II and III,
half of the data is under healthy conditions and the other half
under faulty conditions, which explains multiple peaks in
some plots in Figures 13-15.

© 3 0.3 04
speed commands and load torques to ensure the validity of the - :gg; .
initialized system. If only steady-state data is included in the 02 Cases| 03 n S ——
initialization phase, the initial model will not reflect transients =~ <~ , 8oz :'1 T ol
and the estimations will have either large offsets or they won’t ~ o ‘.\1 ,} =
diverge. ' ) 0.1 M g
An example of the initialization problem is given in Fig. N — P e o S
12. The experimental data presented in the paper is used and -0.08 0 0.05 0 0.1 0.2
ODMDc is used as a case study. The ‘Estimator 1’ is wDMDc ODMDe
initialized from the first two seconds as an example of “a bad ; 0.3
initialization” and the ‘Estimator 2’ is initialized from the first 0.3 [ I
four seconds as an example of a “good initialization”. The = = = Case2 02| i
second case includes a transient response but the first case 2 02 Cased 8 i = = =Casel
does not. It can be observed from Fig. 12 that the first case has & ; Y - 'Eﬁi
a large estimation error in the first transient it sees at t=2.5s. 1 f
Whereas the second estimator successfully estimates the .Y 0 A L
transient at t=6.6s. 04 02 0 02 04 0 0.5 1
One important aspect of the DMDc variants is the wODMDe we-0DMDs
continuous update of the model. For example, in Fig. 12, even Fig. 13: Residual probability distributions for i,
though the first case had a large swing in the first transient, it 04 1
captures the second transient better, albeit with an offset. As DD T e ! ~ ~ ~Casel
. : : - = = Case2 03 ‘ - = = Case2
machine operation continues, the model converges to the real 02 Cased _ A Cased
model. To better reflect the transients, all the measurements & n o2 { 4
and estimations are filtered with a window size of 50 samples Py TN & 1
for the example in Fig. 12. S o1 A :l
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Fig. 12: The good and bad initialization example. Blue line is the
actual speed of the machine, red and green lines are estimator 1 and
2, respectively.

Fig. 14: Residual probability distributions for iz

Even though the execution time is not a very accurate
metric to compare these algorithms, it gives an idea about the
computational burden for the same length datasets. The
experimental dataset is run offline in MATLAB and the
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timings are measured using built-in timers in MATLAB.
Results are given in Table II, and as expected, WDMDc takes
much longer to process than online variations.

TABLE II: EXECUTION TIMES

WDMDc ODMDc WODMDc We-ODMDc
1.8s 0.038s 0.142s 0.043s
04 04
:l = = = Casel yll = = = Casel
03 l' = = =Case2 0.3 y |~ = —Case2
' I: Case3 L ¥ Case3
202 Iy 202 'l ],l:
:;' 1 lilﬁ-
0.1 4 01}, 1y '1!._
I ~ I 1
0 _.JL - 0 ..__.-‘_-"_’.._._.._.—_*“-.._
-002 0 0.02 0.04 0.06 0.08 0.1 -0.05 ] 005 01
ODMDc ODMDc
04 0.8
= o =Casel| = = =Casel
03| (™ = —Case2) 06 ||= = =Case2
) Case3 f] Casel
202 I\ 204 |
1 II
0.1 il 02 Iy
hl rly
P =Y s Van 0 L
-40 -20 0 20 0.5 0 0.5
wODMDc we-ODMDc

Fig. 15: Residual probability distributions for wx

V. EXPERIMENTAL RESULTS

The experimental platform is a VSI-fed IM setup shown in
Fig. 16. The IM is connected to a dynamometer to measure or
control speed or torque. The induction motor is a four-pole,
1.5 hp, 208V squirrel cage motor. The inverter is controlled by
dSpace DS1104, employing SPWM switching patterns. The
gate signals are generated by dSpace using the IFOC
algorithm. The sampling frequency (fsqmp) and switching
frequency (fsy) are different for each algorithm as figmy
dictates the time window for computations to happen. As
fsamp 18 varied, f, is also changed to have consistent
controller operation. Two test scenarios are considered:
Healthy case and an inverter failure.

Fig 16: Hardware setup consisting of a DC supply, an inverter, an IM
coupled with a dynamometer and dSpace interface.
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A. Scenario 1: Healthy Case

During the healthy case, a speed and load pattern shown in
Fig.17(a) is used. The speed is stepped from 1300 rpm to
1700rpm, and it is reduced to 1000 rpm. During these
transitions, load torque is stepped from IN.m to 3N.m and
down to IN.m again. Currents iy and i, are following the
references closely in Fig. 17 (b) and (c) which indicates valid

FOC operation.
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(a)
Fig.17: Experiment conditions, (a) speed reference, speed
measurement and load torque, (b) and (c) i; and iy references and
measured, respectively.

The first implemented and least burdensome algorithms are
ODMDc and We-ODMDec. They do not require data storage
and their computational costs are lower. When implementing,
the sampling and switching frequencies are selected as SkHz
and 2.5kHz, respectively. The half-life for the We-ODMDc is
selected as 5 seconds. For initialization, the system runs
without estimations, data is collected for 10 seconds, and those
measurements are used to calculate initial G and P matrices as
given in equations (17) and (19).

Secondly, WODMDec is implemented, which requires data
storage to update properly. The initialization is done similarly
to the previous two models but fsampiing and f;,, are changed
to 4kHz and 2kHz respectively. To have better estimation
accuracy and longer window size, the signals are down
sampled by a factor of 20. That means the sampling time for
the motor control is 4kHz, but it is 200Hz for the WODMDc.
In this configuration, a window of one second is achieved.

Lastly, the WDMDc is implemented which is the most
demanding algorithm. figmping and f;, are changed to
3.2kHz and 1.6kHz respectively, with down sampling at a
factor of 16 to reach one second window.

The estimation residuals are calculated using equation (36)
and they are shown in Figures 18-20. The first noticeable
observation is the variations in the experimental residuals are
higher than the simulation data due to noise apparent in the
measurement system. To examine the distribution more
closely the probability densities of residual distributions are
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plotted for the experimental data in Fig. 21. There are offset
errors in online variations where WDMDc does not have any.
The offset errors are slightly rectified in windowed and
weighted ODMDc when compared to regular ODMDec. It can
be observed from these figures that the overall estimations are
correct. It can also be inferred from the residuals that the
system correctly represents initialization data, so that under
changing conditions or with new data, estimates still converge
correctly.

The variance of WDMDc is the largest one even though it
does not have any offsets. It is a matter of parameter tuning as
explained in [30], by selecting a larger window size or
increasing down-sampling rate, the variation can be
minimized.

B. Scenario 2: Faulty Case

To show the strength of the estimations, a fault scenario is
designed. For the fault, open circuit failure is considered as
one of the inverter phases is set to zero current. This is
emulated by disconnecting one phase from inverter to the IM.
The phase current waveforms at the failure are shown in Fig.
22.
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Fig.18: i, residuals for the healthy experimental implementation.
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Fig. 19: iy residuals for the healthy experimental implementation
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data.
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Fig. 22: Phase currents, green shade indicates healthy operation and
the red shade indicates faulty operation.

For faulty case a standard test condition is created and
applied to all four estimation schemes. The speed is started
from 1200 rpm, it is increased to 1500 rpm. Two seconds after
speed increment, 2 N.m load torque is applied. While the
machine is loaded speed is increased to 1700 rpm and it is
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reduced to 1200 rpm again. In the next cycle, fault is applied
to the system and shortly after experiment is stopped.
Following figures depict the overall experiment as well as
zoomed in versions of the same quantities. Same sampling
conditions as healthy case are used for each DMDc variant
and general guidelines given in section IV are followed.
Estimation results for the faulty operation is shown in Figures
23 to 26 for the four DMDc variants. It should be noted that
by tuning parameters, estimation performances may vary
considerably.

An example of the difference in performance is given
using We-ODMDc in Fig. 27 where the half-life parameter is
tuned. Inherently, there is a trade-off between noise and the
sensitivity of the estimation. By adjusting parameters such as
the half-life, the estimation can be set more resistant to noise
or it can be made more sensitive. Adjusting this variable can
change system’s resistance to noise and its sensitivity to the
sudden changes. For a longer half-life system is more
responsive to changes but also open to noise. When half-life is
decreased, noise can be suppressed but it becomes insensitive
to sudden changes such as faults. For a control application,
having a low half-life is beneficial whereas a longer half-life is
more useful for condition monitoring.

WDMDc¢ falters in estimating the faulty behavior, the
down sampling rate limits the measurable frequency range. It
can be thought of as sampling, with 200Hz sampling rate,
faster signals cannot be captured. As seen in Fig. 23, WDMDc
cannot capture high frequency fault content. Fig. 24 shows
WODMDc has higher error in speed estimation.
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Fig. 23: WDMDc estimates for faulty case, green shade shows
healthy state and red shade shows faulty state.
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variance. The selection of down sampling rate effects the
performance of windowed variants. Online versions show
better tracking performance during the fault transient.

The choice of DMDc version can vary between
applications. These estimators can be used in other power
electronics and motor drive applications as a system
identification and estimation tool. The estimation is a powerful
method and it is useful for both adaptive control and condition
monitoring systems.

The DMDc and its variants are derived and it is tested in
exhaustive hardware scenarios. Future work includes utilizing
the DMDc for VSI fed IM condition monitoring, including
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Fig. 27: Parameter tuning example for We-ODMDc. Forget factor is
set to 0.2 and 5 seconds respectively.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

In this paper, the strength of the DMDc algorithm in state
estimation and prediction in a VSI-fed motor drive is
explored. Derivation for the windowed online version is given
in detail. Four variations of the algorithm are given. The
weighted ODMDc gives a very close estimation while
requiring not many resources but falls short if not initiated
correctly. The WDMDc does not have any offset problems but
it suffers from high computational requirements and high
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fault detection and diagnosis.
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