
1 

 

Dynamic Mode Decomposition for Real-time System 

Estimation of Induction Motor Drives 
 

Muhammed Ali Gultekin, Student Member, IEEE, Zhe Zhang, Member, IEEE, Ali Bazzi, Senior Member, IEEE 

Abstract— There are many methods for real-time estimation 

and identification for induction motor (IM) drives. In this study, 

dynamic mode decomposition with control (DMDc) and its 

variants are explored for voltage source inverter fed IM. For 

real-time identification, online variants of the DMDc are 

explored, including windowed online DMDc. These algorithms 

are tested in simulation for healthy and faulty behaviors of the 

IM drive. They are compared for estimation accuracy and 

implementation complexity. Lastly, these algorithms are tested 

on a dSpace experimental platform to further prove their 

potential and applicability for both healthy and faulty cases. 

With accurate DMDc estimation results across different variants, 

their applications have potentials in condition monitoring or 

fault-tolerant control.   

 
Index Terms—Dynamic mode decomposition, induction motor 

drives, real-time estimation.  

I. INTRODUCTION 

Modeling the faulty behavior of any system helps in 

establishing strategies to mitigate faults and build model-based 

fault-tolerant systems. This can be achieved through control 

actions by estimating the next states in the system. If next 

states are accurately estimated, more precise and effective 

control signals can be generated.  

Building an estimator for real-time applications can be 

challenging. In addition to uncertainty contributed by 

knowledge of the system itself and measurements, estimation 

adds memory and computational complexity. These estimators 

can be model-based, where the underlying dynamics of the 

model are known. Such estimators can be deterministic like 

state observers, or they can be probabilistic like Kalman 

filters. 

Other than using a model for the estimation, input and 

output data can be utilized to generate a model, where the 

model is either unknown or it has a high order. Such models 

are called data-driven models and they do not rely on system 

parameters. Many popular models generated by artificial 

intelligence or machine learning algorithms can be called data-

driven but, may not produce an analytical or mathematical 

representation of the system being considered. 

Dynamic mode decomposition (DMD) is such a data-driven 

estimation and identification technique that does not require 

any system information to model a system. DMD uses state 

measurement snapshots to model system dynamics [1]. For 

dynamical systems, if the control input information is 

available, more precise models can be generated through 

DMD with control (DMDc) [2]. 

 For motor drive systems, estimation is a mature area. The 

main advantage of the DMDc is the nature of no-information 

estimation. There are established estimation techniques to 

estimate system states such as speed [3-5], flux [3], current [6] 

and position [4] or parameters such as rotor resistance [5], for 

control purposes. All these methods do require either machine 

parameters or complete machine equations to accomplish their 

estimation processes, which is a disadvantage due to machine 

parameter variations with temperature and other ambient 

factors which lead to parameter uncertainty.  

DMD is a powerful tool that has been mostly applied to 

fluid dynamics. Apart from fluid dynamics research, it has 

applications in image processing, forecasting, and model 

predictive control [7-9]. DMD finds uses in power systems as 

a tool for oscillation analysis [10,11] and inertia estimation 

[12]. For control and estimation applications, DMD is coupled 

with a Kalman filter in [13]. Additionally, it is used as a 

technique of denoising in [14]. Even though it is a powerful 

algorithm, applications of DMD and variants is not widely 

explored in power electronics applications where fast 

dynamics exist due to switching events.  

One drawback of DMDc is the demanding nature of the 

algorithm for real-time applications. Researchers proposed 

variations for the DMD for online applications [15, 16]. The 

derivation of online DMD (ODMD) is made in these articles 

yet it is not generalized if the control signal is present for the 

algorithm to achieve ODMDc.  

After identifying a system model, making predictions based 

on the identified system is not a major challenge and is not a 

new topic in control and estimation theory. Any observer-

based system can be considered as a predictor, as well as 

Kalman filters and neural networks. While these are viable 

alternatives, they require system information in terms of 

system matrices, as well as information regarding the 

environment (noise, disturbance, etc.). The power of DMD-

based methods is that they are completely data-driven and can 

model a system based on state measurements without 

requiring any system parameter information. For example, in 

induction machine (IM) applications, DMD does not require 

stator or rotor inductances and winding resistances. This 

makes a DMD-generated model robust against parameter 

variations due to temperature and other factors. The 

performance of DMD when compared to other estimation and 

prediction tools is compared in [17], where DMD is shown to 

be superior to the Kalman filter and back-propagation neural 

networks in both mean absolute error and root mean squared 

error for all cases considered. When it comes to compare the 

DMD with similar tools such as proper orthogonal 

decomposition [18], DMD has a faster response, but it falls 

behind in accuracy. Since this paper focuses on real-time 

systems, DMD is of more interest due to its faster response. 

One of the uses of real-time system identification and 

estimation is condition monitoring. The estimated quantity can 
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be frequency, a system parameter such as DC link capacitance 

or a system state such as rotor flux [19-22]. Though very 

promising and important topics, this is beyond the scope of 

this paper.  

The main purpose of this paper is to investigate DMDc 

variants that run online or in real-time under healthy and 

faulty conditions by illustrating the estimation process, and 

guide future researchers who wants to use different DMDc 

variants. Achieving accurate estimation and state prediction 

results during both healthy and faulty conditions can 

significantly contribute to fault-tolerant system development. 

The presented DMDc variants are implemented in MATLAB 

and applied to an IM drive application. Simulations are made 

for healthy and faulty operating conditions. The algorithms are 

also experimentally tested on a lab prototype where they are 

implemented on a dSpace platform. Healthy and faulty 

conditions are tested. Comparisons among the DMDc 

variations are made using simulation and experimental results.  

The paper is organized as follows: In Section II, the DMDc 

algorithm and mathematical background are given along with 

derivation of windowed ODMDc (WODMDc). In Section III, 

simulation results are presented for the induction motor drive 

system to demonstrate how DMDc variants accurately 

estimate system states under healthy and faulty conditions. 

Section IV presents the implementation considerations and 

comparison among DMDc algorithms. Hardware test 

scenarios for healthy and faulty operation results are given in 

section V. Section VI concludes the paper. 

II. BACKGROUND ON DMDC AND ITS ONLINE VARIANTS 

Consider a discrete-time dynamical system with a system 

matrix A, an input matrix B, a state vector x[k] and an input 

vector u[k]. It is assumed that the system model does not 

change in between sampling intervals and it is linear. Since the 

modeling technique we adopt (DMD) is a linear one, even 

though the system is non-linear, the generated model will be 

linear. The vector x[k] is constructed from measurable 

quantities; that is, it contains only measurable states and not 

necessarily states available in a standard dynamical model. 

The goal is to estimate system and input matrices and use 

them to predict future states using available measurable states. 

Although the generated models will not be identical to the 

dynamical model, it is expected from these models to show 

similar behaviors under similar operating conditions. For 

example, a typical squirrel-cage induction machine dynamical 

model may include rotor quantities that are not measurable; 

for DMD purposes, only measured voltages, currents and 

speed would be used to construct x[k]. Section V elaborates on 

x[k] and u[k] in DMD applications.  

𝑥[𝑘 + 1] = 𝐴 𝑥[𝑘] + 𝐵 𝑢[𝑘] (1) 

If we consider u[n]=0 for a non-excited system, we will have:  

𝑥[𝑘 + 1] = 𝐴 𝑥[𝑘] (2) 

𝐴 =  𝑥[𝑘 + 1] (𝑥[𝑘])−1 (3) 

The system matrix can be found from (3) and we can re-write 

(3) as:  

𝐴 =  𝑥[𝑘] (𝑥[𝑘 − 1])−1 (4) 

Using the measured input and output data, the system is 

modeled, and system matrices A and B are generated. Using 

generated system matrices, the next state is synthesized. The 

algorithm describing this process is given in Fig.1. 

 
Fig.1: Predictive modeling process. 

An interpretation of (4) is that if we have state 

measurements x[k] and a previous sample of the state 

measurements x[k−1], we can find matrix A. So far, equations 

(1)-(4) summarize the DMD algorithm. In the regular DMD 

algorithm, an order reduction step follows (4), but for the 

system of interest, which is an IM drive, it is not necessary 

since the order is already low. To improve this method for 

feedback systems, control signals can be added to (4) to form 

DMDc. To solve the system given in (1) with the same 

methodology, new matrices will be defined. Let,  

𝐺 = [𝐴, 𝐵], 𝜃𝑛 = [𝑋𝑛; 𝑈𝑛] (5) 

𝑋𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑈𝑛 = [𝑢1, 𝑢2, … 𝑢𝑛] (6) 

where Xn is the collection of n samples of the state 

measurements and Un is the collection of n samples of the 

input measurements as shown in (6). From these definitions, it 

is easy to follow, 

𝑋𝑛+1 = 𝐺 𝜃𝑛 (7) 

𝐺 = 𝑋𝑛+1 (𝜃𝑛)−1 (8) 

𝐺 = 𝑋𝑛 (𝜃𝑛−1)−1 (9) 

The matrix θ has the measurement for the last n samples, 

𝑋𝑛+1is the last n samples of state measurements, shifted by 

one. 𝜃𝑛 is most probably a non-square and thus non-invertible 

matrix. In such a case, taking pseudo-inverse utilizing singular 

value decomposition (SVD) should be considered. Equation 

(9) can be re-written considering pseudo-inverse (shown as †): 

𝐺 = 𝑋𝑛 (𝜃𝑛−1)† (10) 

Where the pseudo-inverse is defined as: 

Θ𝑘
† = Θ𝑘

𝑇(Θ𝑘  Θk
𝑇)−1 (11) 

It should be noted that for the models we are interested in, 

equation (10) poses an over-defined system where the order of 

the system is significantly less than the number of equations or 

measurements. So only a single G matrix can be defined. 

Normally DMDc uses order reduction while using SVD, 

however, for low-order systems this is not necessary. The 

system of interest here is an inverter-fed induction motor 

which can be considered as low order.  
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Fig.2 gives a perspective on how these matrices are formed 
for an application. To apply DMDc, the following matrices are 
needed: State snapshots X, input snapshots U, and augmented 
control matrix θ. By using these three matrices, the matrix G 
containing A and B will be found. X1 is defined to be the sub-
matrix of X with the first component excluded. Similarly, X2 
and U2 are sub-matrices of X and U, respectively, where the 
last components are excluded. To form θ, U2 is used. Fig. 2 
illustrates such formations. 

 
Fig. 2: Formation of matrices.  

Based on Fig.2, (10) can be expressed as: 

 

The model of interest includes both the controller and the 
system models as seen in Fig. 3; the system dynamics might 
be suppressed by the controllers if the controllers’ time 
constants are high. By referring to Fig. 3, since the DMDc and 
its variants are input-output type (they are functions of control 
signal u and output y), any feedback within the system model 
will be masked by the slowest dynamic (controller, actuator, 
or system). However, the model generated by DMDc 
algorithms includes a B matrix which map the control signals 
to the system states. It gives a degree of de-coupling of the 
controller from the system, but it is not a complete de-
coupling since controllers also have dynamics.  

Identifying a system using this method is useful but it is not 
a scalable method to run in real time. The calculation time of 
the G matrix increases as new data points come in i.e., more 
samples mean larger X and U matrices. That is why more 
practical methods for real-time or online implementation are 
proposed.  

In classical DMDc, all data is used to calculate the G 
matrix. A more realistic approach is to use a sliding window 
and use a constant number of snapshots to get G. This method 
is called windowed-DMDc (WDMDc). While easy to 
implement, it has disadvantages that will be discussed in later 
sections. In WDMDc, the G matrix is calculated in each time 
sample. Even though this solves the scalability issue, it does 
not necessarily reduce the calculation time. Moreover, the 
model (G) will be correct only for the conditions of windowed 
data. For offline implementations this is not an issue since the 
window size can be set to represent a large amount of data and 
the generated model will be a general model. But for real-time 
implementations with a limit to the window size, a ‘general’ 
model cannot be generated. Therefore, WDMDc might have 
inaccurate estimates during transients. Therefore, it was 
proposed in [20] to implement the DMDc algorithm 
recursively using the least-squares estimate to achieve the 
online DMDc (ODMDc) and reduce computation time.  

A. Online DMDc 
The derivation of ODMDc is similar to the derivation of 

ODMD. The update formula can be generated by replacing 
matrix A with the augmented system matrix G, and state 
measurement vector x as θ shown in (5). This yields, 

   

where  and  are intermediate variables [20]. The ODMDc 
constantly updates the original system matrix. It is 
computationally efficient, and it does not require storing 
measurements in the memory. But, if the system under 
consideration is time-variant, relying on older measurements 
will cause modeling errors. This has led to Windowed-
ODMDc (WODMDc), which is like WDMDc where it only 
considers a window of measurements but is also online [20].  

B. Windowed ODMDc Derivation 
Define the following where G is the system matrix, θ is the 

measurement vector containing a single measurement set, and 
Θk is the measurement matrix containing k measurement sets.  

 

The matrices shown in Fig. 1 can be re-named as 

 

where subscript k denotes the kth sample. The objective 
function Jk at the kth sample for the least-squares estimate is 
formed as,  

 

The pseudo-inverse is defined previously in (11). If (11) is 
substituted in (16), 

 

where Q and P matrices are defined as follows where w is the 
window size: 

 

 

The new measurement data at (k+1) will alter the Q and P 
matrices: 

 

 

 

The following definitions can help for a clearer representation: 
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So, the Q and P matrices are,  

 

 

The updated G matrix can be calculated by: 

 

Using matrix inversion lemma, we can represent Pk+1 as 

 

Gk+1 becomes 

 

 

We can write 

 

Using  definition 

 

Then the update equation can be stated as, 

 

This way the effect of the last element of the measurement 
window can be subtracted and the contribution from the new 
measurement can be added without requiring recalculating the 
G matrix from scratch. 

C. Weighted-Online DMDc (We-ODMDc) 
Windowed ODMDc removes the effects of the earlier 

measurements and gives equal weight to all measurements 
within the window. It is possible to alter the update formula 
given in (30) to incorporate a weighing factor as shown in 
(31). With this addition, it becomes possible to put more 
weight on the latter measurements and gradually forget older 
measurements. The update formula for the weighted-online 
DMDc has the parameter  which is the forgetting factor. If it 
is wanted to have a half-life of 3 seconds, then  can be 
selected as . 

 

We-ODMDc converges to WODMDc as the half-life 
becomes larger. The term  becomes very close to one if the 
half-life is selected too large. 

III. VSI-FED INDUCTION MOTOR SIMULATIONS UNDER 
NOMINAL AND FAULTY CONDITIONS 

A voltage source inverter (VSI)-fed IM is considered with 
indirect field-oriented control (IFOC). The inverter is operated 
using sinusoidal PWM. The IM is modeled with the flux-
based equations given in [23]. IFOC is implemented as PI-
based [24]. The parameters used for the IM are provided in 
Table I and the system block diagram is shown in Fig.3.  

 
Fig.3: Block diagram for VSI fed IM and DMDc. 

TABLE I: IM Parameters 
 1.44  2.88 
 1.3  4.32 
 83.42  60 

A. Case I: Nominal Operation with Reference and Load 
Change 

With the nominal operation, the speed reference is changed 
from 1500 rpm to 1700 rpm, then reduced to 900 rpm at t=2.5s 
and 4s respectively. During the speed stepping, the load is also 
changed from 1 N.m to 4 N.m then to 3 N.m and to 6 N.m at 
t=1.5s, t=3 s and t=5s, respectively. The sampling time in 
Simulink is 10μs and the simulation is run for a total of 6s. 
The inverter switching frequency is 10kHz and the DC bus 
voltage is 300V. The plots for speed, speed reference, load 
torque, q-d currents and current references are given in Fig. 4. 
To check if IFOC is performing as expected, the regulation of 
q-d currents is examined.  

 

 
Fig.4: Simulation results for case I, nominal operation with load 
stepping, (a) speed and torque, (b) & (c) id and iq with their references 
respectively. 
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B. Case II: System Model Change – Hardware Failure 

A hardware fault is injected to the system, namely a shaft 
misalignment [25-27]. The shaft misalignment fault occurs in 
the bearings of a machine, and it varies the airgap. Varying 
airgap modifies generation of flux within the machine. Fig. 5 
illustrates the shaft misalignment and varying airgaps. The 
misalignment of the rotating center modifies the generated 
flux. In effect, this flux will be reflected in the stator currents 
as added harmonics following (32) [25].  

 

where , s and P represents the input frequency, the slip and 
the number of poles respectively. For a four-pole machine, 
(32) reduces to 

 

where represents the mechanical rotation speed. The added 
harmonics are centered around the input frequency and vary 
by the rotational speed.  

 
Fig. 5: Different types of shaft misalignments and varying airgaps [26] 

The shaft misalignment is a complex fault to model. It 
changes the airgap and inductances of each phase 
dynamically. In this paper, only effects of the fault are 
modelled rather than the fault mechanism itself which is side-
band frequency harmonics in the current. For more accurate 
and complete models for the eccentricity fault please refer to 
[28, 29]. The addition of extra harmonics causes ripples in the 
fluxes and currents, yet the speed is regulated well. Since the 
model used in this article has fluxes and currents as state 
variables, they are readily available in the Simulink model. A 
block diagram is shown in Fig. 6. By injecting two harmonics 
to the stator current ( ), flux variation effect is achieved. In 
healthy simulations the fault injection block is by-passed. 

 
Fig. 6: IM model, eccentricity fault injection block diagram  

The simulation results for this case are given in Fig. 7. The 
speed reference is kept constant at 1500 rpm with a constant 
load of 1 N.m. The fault is injected at t=2s where the total 
simulation time is set to 4 seconds.  

 

 
Fig.7: Simulation results for case II, hardware fault, (a) speed and 
fault occurrence signal, (b) & (c) id and iq with their references 
respectively.  
 

 

 
Fig.8: Simulation results for case III, speed sensor failure, (a) speed 
and fault occurrence signal, (b) & (c) id and iq with their references 
respectively. 

 

y j y p
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C. Case III: Speed Sensor Failure 
The third case is the speed sensor failure where the speed 

sensor feedback is omitted. This fault is injected at t=2s where 
total simulation time is 4 seconds. The system response 
changes suddenly under this failure as shown in Fig. 8.  

IV. SOFTWARE IMPLEMENTATION, CONSIDERATIONS AND 
ALGORITHM COMPARISON OF DMDC VARIANTS 

A. Software Implementation 
For the system shown in Fig. 3, we define x[k] and u[k] as 

shown in (34) and (35). These use available measurable states 
or quantities rather than the classical definition of an IM drive 
model.   

 

 

All four algorithms are applied to the three test cases 
mentioned in Section III. It is important to note that when 
estimation is discussed, it also includes one-step-ahead 
prediction where x[k+1] is the estimated quantity. Estimation 
results for these algorithms are shown Figures 9, 10, and 11 
for iq, id, and ωm, respectively, for case I. Residuals for cases II 
and III are not shown here to make plots more readable, but 
their probability distributions are shared later in this section. 
Residuals can be compared to determine which algorithm 
performs best for each case and estimated state. Residuals are 
calculated using (36) where resk is the residual at sample k, 
and the “^” symbol represents an estimated signal. 

 

As clear in Figures 9-11, the algorithms’ estimation 
performances are quite similar for the steady state. They differ 
in transient response and settling times. Plots start after 
initializations are done. 

B. Considerations 
1) Window size, shifting index selection and rate transitioning 
for WDMDc and WODMDc 

One important criterion for windowed versions is the 
selection of window size. Since in each sampling-time there is 
a calculation stage, the duration of this stage is critical for 
real-time implementation. Other than calculation time, data 
storage capability is another concern for windowed versions. 
Every sample within the window should be stored. This 
creates a tight margin for the selection of window size if 
memory is limited. Moreover, as the system order increases, 
this criterion becomes tighter.  

The shifting index and rate transition are very similar 
parameters where they decide how much down sampling 
needs to be done. The difference lies in the implementation 
detail, the rate transition reduces the calculation cost 
associated with data logging whereas shifting index reduces 
actual calculation cost. The shifting index and rate 
transitioning are inversely proportional to the computational 
burden. They can be useful features to overcome hardware 
restrictions. 

 

 
Fig. 9:  residuals for the case I,  
 

 
Fig. 10:   residuals for the case I,  
 

 
Fig. 11: ωm residuals for the case I 
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2) Initialization of ODMD, ODMDc, WODMDc 
Online implementations of DMDc use an initial system 

matrix G0 when k=0 in (30) and they modify the initialization 
matrix as new data comes in. This approach reduces the 
computational burden as only additions and multiplications are 
performed for each variable, rather than performing an 
inversion.  

However, this highlights the initialization problem where 
estimations can have large offsets or diverge if not initialized 
correctly. For real-time applications, initialization can be done 
offline and required information can be given to the algorithm 
manually. There are two points to consider when creating the 
initialization matrix: 1) include some portion of the transient 
and some portion of the steady-state behavior to capture both, 
and 2) include different excitations and operating conditions 
so that the initialization phase can capture various state 
transients. For an induction motor, startup from zero speed to 
commanded speed should be included with multiple values of 
speed commands and load torques to ensure the validity of the 
initialized system. If only steady-state data is included in the 
initialization phase, the initial model will not reflect transients 
and the estimations will have either large offsets or they won’t 
diverge.  

An example of the initialization problem is given in Fig. 
12. The experimental data presented in the paper is used and 
ODMDc is used as a case study. The ‘Estimator 1’ is 
initialized from the first two seconds as an example of “a bad 
initialization” and the ‘Estimator 2’ is initialized from the first 
four seconds as an example of a “good initialization”. The 
second case includes a transient response but the first case 
does not. It can be observed from Fig. 12 that the first case has 
a large estimation error in the first transient it sees at t=2.5s. 
Whereas the second estimator successfully estimates the 
transient at t=6.6s.  

One important aspect of the DMDc variants is the 
continuous update of the model. For example, in Fig. 12, even 
though the first case had a large swing in the first transient, it 
captures the second transient better, albeit with an offset. As 
machine operation continues, the model converges to the real 
model. To better reflect the transients, all the measurements 
and estimations are filtered with a window size of 50 samples 
for the example in Fig. 12.  

 

 
Fig. 12: The good and bad initialization example. Blue line is the 
actual speed of the machine, red and green lines are estimator 1 and 
2, respectively.  

C. Comparison 
To make a clear comparison, the same parameters are used 

for these four algorithms. These parameters are, the window 
size, the shifting index, the initialization window, forget factor 
and they are chosen as 500 samples, 1, 6000 samples and 1 s, 
respectively.  

Estimation is accurate under healthy or nominal operating 
conditions as simulated in case I.  Residuals from cases II and 
III follow similar patterns to case I. To illustrate this, the 
probability densities of the residuals from all three cases are 
plotted. The densities are centered around or close to zero, 
indicating the estimation errors are low under both healthy and 
faulty conditions. It is important to note that in cases II and III, 
half of the data is under healthy conditions and the other half 
under faulty conditions, which explains multiple peaks in 
some plots in Figures 13-15.  

 

 
Fig. 13: Residual probability distributions for iq 

 
Fig. 14: Residual probability distributions for id 

 

Even though the execution time is not a very accurate 
metric to compare these algorithms, it gives an idea about the 
computational burden for the same length datasets. The 
experimental dataset is run offline in MATLAB and the 
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timings are measured using built-in timers in MATLAB. 

Results are given in Table II, and as expected, WDMDc takes 

much longer to process than online variations.  

TABLE II: EXECUTION TIMES 
WDMDc ODMDc WODMDc We-ODMDc 

1.8s 0.038s 0.142s 0.043s 

 
Fig. 15: Residual probability distributions for wm 

V. EXPERIMENTAL RESULTS 

The experimental platform is a VSI-fed IM setup shown in 

Fig. 16. The IM is connected to a dynamometer to measure or 

control speed or torque. The induction motor is a four-pole, 

1.5 hp, 208V squirrel cage motor. The inverter is controlled by 

dSpace DS1104, employing SPWM switching patterns. The 

gate signals are generated by dSpace using the IFOC 

algorithm. The sampling frequency (𝑓𝑠𝑎𝑚𝑝) and switching 

frequency (𝑓𝑠𝑤) are different for each algorithm as 𝑓𝑠𝑎𝑚𝑝 

dictates the time window for computations to happen. As 

𝑓𝑠𝑎𝑚𝑝 is varied, 𝑓𝑠𝑤 is also changed to have consistent 

controller operation. Two test scenarios are considered: 

Healthy case and an inverter failure.  

 

 
Fig 16: Hardware setup consisting of a DC supply, an inverter, an IM 

coupled with a dynamometer and dSpace interface. 

A. Scenario 1: Healthy Case 

During the healthy case, a speed and load pattern shown in 

Fig.17(a) is used. The speed is stepped from 1300 rpm to 

1700rpm, and it is reduced to 1000 rpm. During these 

transitions, load torque is stepped from 1N.m to 3N.m and 

down to 1N.m again. Currents 𝑖𝑑 and 𝑖𝑞  are following the 

references closely in Fig. 17 (b) and (c) which indicates valid 

FOC operation. 

 
Fig.17: Experiment conditions, (a) speed reference, speed 

measurement and load torque, (b) and (c) 𝑖𝑞  and 𝑖𝑑 references and 

measured, respectively. 

 

The first implemented and least burdensome algorithms are 

ODMDc and We-ODMDc. They do not require data storage 

and their computational costs are lower. When implementing, 

the sampling and switching frequencies are selected as 5kHz 

and 2.5kHz, respectively. The half-life for the We-ODMDc is 

selected as 5 seconds. For initialization, the system runs 

without estimations, data is collected for 10 seconds, and those 

measurements are used to calculate initial G and P matrices as 

given in equations (17) and (19). 

Secondly, WODMDc is implemented, which requires data 

storage to update properly. The initialization is done similarly 

to the previous two models but 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 and 𝑓𝑠𝑤 are changed 

to 4kHz and 2kHz respectively. To have better estimation 

accuracy and longer window size, the signals are down 

sampled by a factor of 20. That means the sampling time for 

the motor control is 4kHz, but it is 200Hz for the WODMDc. 

In this configuration, a window of one second is achieved. 

Lastly, the WDMDc is implemented which is the most 

demanding algorithm. 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 and 𝑓𝑠𝑤 are changed to 

3.2kHz and 1.6kHz respectively, with down sampling at a 

factor of 16 to reach one second window. 

The estimation residuals are calculated using equation (36) 

and they are shown in Figures 18-20. The first noticeable 

observation is the variations in the experimental residuals are 

higher than the simulation data due to noise apparent in the 

measurement system. To examine the distribution more 

closely the probability densities of residual distributions are 
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plotted for the experimental data in Fig. 21. There are offset 
errors in online variations where WDMDc does not have any. 
The offset errors are slightly rectified in windowed and 
weighted ODMDc when compared to regular ODMDc. It can 
be observed from these figures that the overall estimations are 
correct. It can also be inferred from the residuals that the 
system correctly represents initialization data, so that under 
changing conditions or with new data, estimates still converge 
correctly.  

The variance of WDMDc is the largest one even though it 
does not have any offsets. It is a matter of parameter tuning as 
explained in [30], by selecting a larger window size or 
increasing down-sampling rate, the variation can be 
minimized.  

B. Scenario 2: Faulty Case 
To show the strength of the estimations, a fault scenario is 

designed. For the fault, open circuit failure is considered as 
one of the inverter phases is set to zero current. This is 
emulated by disconnecting one phase from inverter to the IM. 
The phase current waveforms at the failure are shown in Fig. 
22. 

 

 
Fig.18:  residuals for the healthy experimental implementation.  

 
Fig. 19:   residuals for the healthy experimental implementation 

 
Fig. 20: residuals for the healthy experimental implementation 
  

 
Fig.21: Probability distributions of residuals for healthy experimental 
data. 

 
Fig. 22: Phase currents, green shade indicates healthy operation and 
the red shade indicates faulty operation. 
 

For faulty case a standard test condition is created and 
applied to all four estimation schemes. The speed is started 
from 1200 rpm, it is increased to 1500 rpm. Two seconds after 
speed increment, 2 N.m load torque is applied. While the 
machine is loaded speed is increased to 1700 rpm and it is 
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reduced to 1200 rpm again. In the next cycle, fault is applied 
to the system and shortly after experiment is stopped. 
Following figures depict the overall experiment as well as 
zoomed in versions of the same quantities. Same sampling 
conditions as healthy case are used for each DMDc variant 
and general guidelines given in section IV are followed. 
Estimation results for the faulty operation is shown in Figures 
23 to 26 for the four DMDc variants. It should be noted that 
by tuning parameters, estimation performances may vary 
considerably.  

An example of the difference in performance is given 
using We-ODMDc in Fig. 27 where the half-life parameter is 
tuned. Inherently, there is a trade-off between noise and the 
sensitivity of the estimation. By adjusting parameters such as 
the half-life, the estimation can be set more resistant to noise 
or it can be made more sensitive. Adjusting this variable can 
change system’s resistance to noise and its sensitivity to the 
sudden changes. For a longer half-life system is more 
responsive to changes but also open to noise. When half-life is 
decreased, noise can be suppressed but it becomes insensitive 
to sudden changes such as faults. For a control application, 
having a low half-life is beneficial whereas a longer half-life is 
more useful for condition monitoring.   

WDMDc falters in estimating the faulty behavior, the 
down sampling rate limits the measurable frequency range. It 
can be thought of as sampling, with 200Hz sampling rate, 
faster signals cannot be captured. As seen in Fig. 23, WDMDc 
cannot capture high frequency fault content. Fig. 24 shows 
WODMDc has higher error in speed estimation.  

 

 
Fig. 23: WDMDc estimates for faulty case, green shade shows 
healthy state and red shade shows faulty state. 

 
Fig. 24: WODMDc estimates for faulty case, green shade shows 
healthy state and red shade shows faulty state. 
 

 
Fig. 25: ODMDc estimates for faulty case, green shade shows healthy 
state and red shade shows faulty state.  
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Fig. 26: We-ODMDc estimates for faulty case, green shade shows 
healthy state and red shade shows faulty state.  

 
Fig. 27: Parameter tuning example for We-ODMDc. Forget factor is 
set to 0.2 and 5 seconds respectively. 

VI. DISCUSSION, CONCLUSION AND FUTURE WORK 
In this paper, the strength of the DMDc algorithm in state 

estimation and prediction in a VSI-fed motor drive is 
explored. Derivation for the windowed online version is given 
in detail. Four variations of the algorithm are given. The 
weighted ODMDc gives a very close estimation while 
requiring not many resources but falls short if not initiated 
correctly. The WDMDc does not have any offset problems but 
it suffers from high computational requirements and high 

variance. The selection of down sampling rate effects the 
performance of windowed variants. Online versions show 
better tracking performance during the fault transient. 

The choice of DMDc version can vary between 
applications. These estimators can be used in other power 
electronics and motor drive applications as a system 
identification and estimation tool. The estimation is a powerful 
method and it is useful for both adaptive control and condition 
monitoring systems.  

The DMDc and its variants are derived and it is tested in 
exhaustive hardware scenarios. Future work includes utilizing 
the DMDc for VSI fed IM condition monitoring, including 
fault detection and diagnosis. 
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