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Abstract—Real-time parameter and state estimation is an 

interesting topic in motor drive applications, especially with more 

autonomous systems employing motor drives. With no parameter 

dependency, data-driven methods have become more popular. 

One of these methods is dynamic mode decomposition (DMD). Its 

controllable variant, DMDc, and online variant, online-DMDc, are 

of interest in this paper. DMD and DMDc require large datasets 

for training, but ODMDc requires smaller datasets to be 

initialized. The comparisons for these algorithms are made by 

looking into MATLAB/ Simulink simulations and experiments. It 

is shown that DMD and DMDc are powerful algorithms but online 

implementation is comparable to the offline versions in terms of 

estimation performance. 

Keywords—data-driven estimation, system identification, 

induction motor drives 

I. INTRODUCTION 

Dynamical systems are prone to disturbances, noise, and 
faults that can alter system behavior and thus alter the 
mathematical model of the plant. This also applies to power 
electronics and motor drives. Any closed-loop system with a 
model-based controller or estimator relies on healthy operating 
conditions unless a fault-tolerant control technique is applied to 
mitigate faults or model variations. This can be achieved 
through real-time system identification and estimation.  

Building an estimator for real-time system identification 
applications can be challenging. In addition to uncertainty 
contributed by system model and noisy measurements, 
estimation adds memory and computational complexity. These 
estimators can be model-based, where the underlying dynamics 
of the model are known. Such estimators can be deterministic 
such as state observers, or they can be probabilistic such as 
Kalman filters.  

The topic of estimation in machines and drives is not novel, 
there are established methods to estimate system parameters and 
states [1-4]. However, most of these methods are dependent on 
machine parameters. Having a data-driven and parameter-free 
estimation tool is thus of interest as it eliminates model 
inaccuracies when the system sees unexpected or uncertain 
disturbances.  

There are many system identification methods reported in 
the literature but in this paper, online implementation of 
dynamic mode decomposition (DMD) and its extension to 
dynamic mode decomposition with control (DMDc) is 

considered. Online-DMDc (ODMDc) is compared to DMDc in 
[5] with system-theoretic considerations but with no 
implementation in power electronic systems. Previously, DMDc 
is introduced to the power electronics community in [6], and it 
is taken as the foundation for the work presented here where 
real-time implementation considerations, such as the 
computational burden and parameter selection, are investigated. 
Simulation results from a MATLAB/Simulink model are shown 
for different cases and are implemented on a real-time platform 
as a proof of concept.  

In the following section of the paper, the basics of DMD, 
DMDc, and ODMDc are explained and applied to an induction 
motor drive. In Section III, simulations for different cases are 
shown. Section IV shows experimental results for validation. 
Section V compares the algorithms and results, and discusses 
implementation considerations. Section VI concludes the paper 
with potential applications and future work. 

II. BACKGROUND 

Before delving into the algorithm derivation, it is useful to 
investigate the target system. A voltage-source inverter (VSI)-
fed induction motor (IM) with indirect field-oriented control 
(IFOC) is considered in this study where the high-level block 
diagram is given in Figure 1(a).  The IM model uses flux-based 
differential equations which are summarized in the equation set 
(1) [9]. In (1); �, �, �, and � represent flux, voltage, inductance, 
and resistance respectively. Subscripts �  and �  are qd 
components of these quantities whereas s represents a stator 
variable and r represents a rotor variable. 	
 and 	� are slip and 
rotor frequencies. �� is the mutual inductance, P is the number 
of poles, J is the inertia and 
�  is the load torque.  

 

For experiments, a 1.5hp IM is supplied with a VSI, and its 
rotating shaft is coupled with a dynamometer for load variation. 
The digital control and estimation platform is dSpace and is 
shown in Fig. 2. 
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Consider a discrete-time dynamical system with a system 
matrix A, an input matrix B, a state vector x[n], and an input 
vector u[n], where n is the sample time.  The DMD algorithm 
considers u[n]=0 and DMDc takes the control input u[n] into 
consideration. A mapping can be found from x[n] to x[n+1] as 
shown in (2). The next step model can be given as a function of 
the current state and the input as shown in (3). By utilizing 
matrix manipulation and time-shifting (assuming matrix G is 
time-invariant), we can follow the steps described in equations 
(4)-(6). In most cases, the matrix ϒ is not a square matrix, hence 
its inverse cannot be taken directly. In this case, the pseudo 
inverse is used and is denoted by the superscript (†).  The final 
equation can be put as in equation (7) where X1 is X[2: n] and X2 
is X[1:n-1]. 

 

Figure 1: Block diagram of the system. The induction motor is driven 
by a voltage source inverter and controlled with IFOC. 

 

Figure 2: Hardware setup consisting of induction motor and dyne set, 
inverter driven by power supply and dSpace controller 
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These derivations can be seen in more detail in [6]. The 
original DMD [7] and DMDc [8] methods are system 

identification methods, and they are not suited for online and 
adaptive applications. As we get new data, the matrices *%, *+ 
and ,+ would grow unboundedly. If these algorithms are to be 
implemented online, then a ‘window’ is required to have a finite 
amount of data. The authors in [6] gave detailed analyses on 
windowed DMDc (WDMDc). But WDMDc requires significant 
computational and memory resources,  which burdens the 
embedded system.  

Online-DMD is a variation of DMD for streaming data and 
real-time updates to matrix G [5]. It aims to reduce the 
computational effort of the DMD using recursive algorithms. In 
this paper, the idea of the Online-DMD is applied to DMDc 
(non-windowed) and the authors propose an update algorithm as 
follows. 

Start with collecting enough data to calculate initial G and P 
using (9), and update G and P using (10). Derivation of (10) is 
not trivial, it is produced using recursive least squares regression 
and matrix manipulations. 

� � *%Υ', . � �Υ Υ/�$% �9�      �123 � �456 � �7 ( �456,�Γ9:%,;.9  �10�  

where V, U, and Γ are intermediate matrices [5]. The main 
advantage of this approach is the significant reduction of 
computation and memory requirements. This algorithm will be 
referred as online DMDc (ODMDc). After identifying the 
system using past data, the next states can be estimated using the 
identified model, which can be considered as predictive 
modeling. Predictive modeling is explained visually in Figure 3. 
The calculation of A and B matrices can be done using DMD, 
DMDc or ODMDc algorithms; but, to estimate the next state, 
the current measurements and control inputs are being used with 
the calculated A and B matrices. 

 
Figure 3. Predictive modeling process for DMDc 

III. SIMULATIONS FOR DIFFERENT OPERATING CONDITIONS 

To make the state estimations and identify the system; DMD, 
DMDc and ODMDc methods are implemented in 
MATLAB/Simulink for a VSI-fed induction motor drive setup. 
The proposed system is given in Figure 1. Two test cases are 
constructed to reflect different speed and load conditions. In the 
first case, step-type speed reference changes are considered with 
a quadratic load condition. The load formulation is given in (11) 
where 
54=6  is the load torque in N.m and 	� is the rotor speed 
in rad/s. The speed reference is set to 1200 rpm at the start and 
it is changed to various values ranging between 800 rpm to 1800 
rpm throughout the 25 s simulation. The simulation results for 
this case are given in Figure 4.  


54=6 � 0.9 ∗ 10$@ ∗ 	�+ �11� 
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The second case has ramp type changes which are 
introduced to both increment and decrement reference changes. 
Speed reference starts from 1200 rpm and then it takes values 
between 500 rpm and 1500 rpm. The load also dynamically 
varies with sharp step changes between 0-5N.m. The results for 
this case are shown in Figure 5. 

 

Figure 4: Simulation results for the first test case. Top:  speed of the 
motor, speed reference and load torque. Bottom: Stator currents, d and 
q components. 

 

 

Figure 5: Simulation results for the second test case. Top:  speed of the 
motor, speed reference and load torque. Bottom: Stator currents, d and 
q components. 

The reason to have two different scenarios is to test models 
generated by the DMD, DMDc and ODMDc algorithms. 
Loading and the reference types are drastically different in the 
two scenarios but they are applied to the same system. A good 
model should estimate states regardless of the operating 
conditions. 

The results from the first case are used as training or 
initialization data. The term training data is used for offline 
estimators DMD and DMDc whereas the term initialization data 
is for online estimator ODMDc. For both estimators, models are 
generated and these models are tested using the results from the 
second simulation case. The online estimator ODMDc is 
initialized with a small portion of the data of the first simulation 
case. And then the model is updated in each sampling time, 
resulting in an adaptive model. Figure 6 summarizes this 
procedure.  

Estimation results for DMD, DMDc and ODMDc are given 
in Figures 7-9. Figure 7 shows the estimation of id and estimation 
errors or residuals for each estimation. Figure 8 shows the 
estimation for iq and resulting residuals, and Figure 9 shows 
estimations for speed as well as resulting residuals. The plotted 
residuals are not normalized and are calculated using (12) where � represents a state and �A represents an estimated state.  

BCDE��FG � � ( �A �12� 

 Figures 7-9 show clearly that a well-trained model can 
accurately estimate under different operating and load 
conditions. DMD and DMDc have almost identical results 
whereas ODMDc has slightly different results. It should be 
noted that the data quality of the simulations is perfect, there is 
no noise or any data loss while obtaining data. 

The A and B matrices are generated by the estimators and 
compared. Since they generate similar results, they should be 
close to one another. To compare the models, eigenvalues of the 
A matrices can be compared. 

 

�6�6 � H 0.975 0.013 1.45C$@
0.0056 0.951 (1.26C$I

(0.0243 0.373 0.999 J �13� 

K%,+,L$MNM � �1, 0.978 ,0.948� �14� 

�6�6O � H 0.9702 0.0081 2.47C$@
(0.0036 0.9220 (0.0044(0.0466 0.3331 0.9961 J  �15� 

K%,+,L$MNMO � �0.974, 0.957 P 0.014E� �16� 

 

As can be seen from (13) and (14), even though the 
estimations are close to one another, the eigenvalues are 
different. The model generated by the ODMDc is not static like 
DMD or DMDc as changes in every iteration. The table below 
shows the evolution of the eigenvalues of ODMDc from 
initialization to the end. Table I shows that as ODMDc evolves, 
two eigenvalues also change from a complex conjugate to real 
values. The nature of the incoming data shapes the eigenvalues 
as well. One important point is the stability of the algorithm, 
where the eigenvalues did not move outside of the unit circle. 
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Figure 6: Estimation procedure. Large amounts of data are 
necessary to train DMD and DMDc, a smaller portion is enough for the 
ODMDc. The initialization or training portion is done offline in 
MATLAB. After models are generated, the estimation stage can be 
performed in an embedded platform. The estimation procedure is 
performed as (2). 

 

Figure 7: Estimation of id and residuals for three estimates. 

 

 

Figure 8: Estimation of iq and residuals for three estimates. 

 

Figure 9: Speed estimation and residuals for three estimates. 
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Table I: Eigenvalues of ODMDc model 

 K% K+ KL 

Initialization 0.9591 0.974+0.017i 0.974-0.017i 

N=5000 0.8972 0.985+0.006i 0.985-0.006i 

N=10000 0.8587 0.9887 0.9691 

N=15000 0.8322 0.985+0.005i 0.985-0.005i 

N=20000 0.8322 0.9923 0.9628 

N=25000 0.8239 0.9925 0.9582 

IV. IMPLEMENTATION & EXPERIMENTAL RESULTS 

Three algorithms are tested in the experimental setup which 

consisted of a VSI-fed IM coupled with a dynamometer, as 

shown in Figure 2. The inverter is controlled by IFOC which is 

built along with the estimators in dSpace.  

The implementation flowchart is similar to the flowchart of 

simulation as depicted in Fig. 6. First a dry-run is performed to 

obtain machine data under varying operating conditions, then 

this data is used to train or initialize the algorithms. Later, these 

models are put into the dSpace environment for real-time 

estimation. Models generated by DMD and DMDc are simple 

state-space models following (2). However, the implementation 

of ODMDc is slightly different. After initialization, estimation 

and the model update happen sequentially in two steps. When 

new information (measured quantities) is received, the 

initialized system is updated following (10). Then, the 

estimation is performed following (2). These two steps are 

performed in every time step.  

The experimental training data is shown in Fig. 10 which 

contains 30 seconds of data. The sampling rate is 5 kHz. The 

speed reference is varied between 800 and 1600 rpm while 

applying 1 to 2 N.m of load torque. The DMD and the DMDc 

models use this whole window to train, the ODMDc is 

initialized with 4 seconds of data. After training or 

initialization, models in (17)-(20) are obtained with their 

respective eigenvalues.  

�6�6 � H 0.967 0.0164 1.25C$Q
(0.025 1.0033 3.847C$Q
0.709 0.202 0.9978 J �17� 

K%,+,L$MNM � �0.999, 0.9841 P 0.0095E� �18� 

�6�6O � H0.9477 0.019 1.81C$@
(0.046 1.0022 (1.21C$@
2.926 (0.9 0.956 J �19� 

K%,+,L$MNMO � �0.9422, 0.9819 P 0.011E� �20� 

These models are put into dSpace for real-time estimation. 

The experimental test data is shown in Fig 11. As in the 

simulation, ramp type input is applied with a constant 1.6 N.m 

load torque. The speed is varied between 800 and 1600 rpm as 

well. The estimation results and residuals are given in Figures 

12-14 in a similar fashion to the simulated results for 

comparison ease. As seen from Figures 12-14, estimates follow 

the reference very closely with minimal error.   

 
Figure 10: Experiment conditions for the training/initialization phase. 

Top: Speed reference, actual and load torque, bottom: id and iq.  

 
Figure 11: Experiment conditions for the testing phase. Top: Speed 

reference, actual and load torque, bottom: id and iq.  

V. COMPARISON OF THE IMPLEMENTED ALGORITHMS & 

INITIALIZATION 

These algorithms are compared for performance and 

computational cost, and it is important to select the right 

parameters when comparing them. Since DMD and DMDc are 

considered offline and ODMDc is considered online, 

comparing their real-time processing time is not informative. 

Comparing performance is straightforward, but comparing the 
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computational cost needs more elaboration. The whole 

estimation operation should be dissected into different 

windows: 1) Training/ initialization time, 2) Real-time 

estimation time, 3) Model update time. DMD and DMDc do not 

have the model update time. Instead of providing processing 

times for each processing window, the number of operations 

can be calculated.  

For the initialization phase, there is a pseudo-inverse and 

matrix multiplication operation. This is valid for all three cases. 

For the real-time estimation phase, there are matrix 

multiplication and matrix addition operations. This is again 

common for the three algorithms. For the model update, there 

are additional operations as shown in (10).   

Using MATLAB built-in timers, training/ initialization 

times are measured for the DMD, DMDc and ODMDc. They 

are 6.7ms, 11ms, and 2.9 ms, respectively. For real-time 

estimation, DMD has � ∗ �� ( 1� �: S��+� operations, DMDc 

and ODMDc have � ∗ �� ( 1� � T�� ( 1� �: S��+� 

operations, where � is the number of states and T is the number 

of control inputs. In our case n=3 and m=2. The real-time model 

update is unique to the ODMDc, so we cannot compare it to 

other estimators. 

The training time will vary based on the data length, but the 

numbers give a perspective. Since DMDc uses both output and 

control input data, it takes more time to train. Whereas DMD 

uses outputs only. ODMDc can be initialized with only 3-4 

seconds of data regardless of the total data length, so the 

training time will not scale up as data length gets longer.  

Performance-wise, the experimental estimation errors are 

calculated and normalized with the maximum peak-to-peak 

value of the estimated state. For example, the maximum value 

of E6  is 5A, maximum estimation error for DMD in Fig.13 is 

0.1A, which yields about a 2% maximum estimation error. 

Table II shows the estimation errors for the rest of the results. 

Table II: Maximum estimation errors 

 E6 EU  DVCC� 

DMD 2% 0.4% 0.1% 

DMDc 3.4% 0.8% 1% 

ODMDc 2.4% 0.8% 2% 

As for the initialization of ODMDc, it uses an initial system 
matrix shown in equation (3), and it modifies it as new data 
arrives. This approach reduces the computational time as only 
additions and multiplications are performed for each variable, 
rather than performing an inversion. As good as it seems, it 
brings the problem of initialization. If not initialized correctly, 
the estimations can have large offsets or then can even go 
unstable. For real-time applications, initialization can be done 
offline and required information can be given to the algorithm 
manually.  

 
Figure 12: Estimation of id and residuals for three estimates. 

 
Figure 13: Estimation of iq and residuals for three estimates. 
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Figure 14: Estimation of speed and residuals for three estimates. 

There are two points to consider when creating the 
initialization matrix. The first one is to include some portion of 
the transient and some portion of the steady-state behavior. But 
if a system is initialized in the transient state, it will not perform 
well. The second point is to include different excitations so that 
during the initialization phase, each dynamic is captured and 
modeled correctly.  

 

 

VI. CONCLUSION, POTENTIAL APPLICATIONS AND FUTURE 

WORK 

In this paper, dynamic mode decomposition with control 

and its online extensions are presented and analyzed for data-

driven state estimation in IM drive systems. Derivations of 

these algorithms are shown to include control signals. Their 

performances are compared and some insight regarding 

initialization is given. Rotor speed and qd-currents are 

estimated. The estimation error in steady-state is satisfactory 

and well below 3.4% in all cases for all parameters.  

Potential applications include but are not limited to health 

monitoring, adaptive control, system identification under faults, 

fault detection and isolation. 
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