

Real-Time Data-Driven System Identification of

Motor Drive Systems Using Online DMDc

Muhammed Ali Gultekin, Student Member, IEEE

Electrical and Computer Engineering Department

University of Connecticut

Storrs, CT

muhammed_ali.gultekin@uconn.edu

Ali Bazzi, Senior Member, IEEE

Electrical and Computer Engineering Department

University of Connecticut

Storrs, CT

Abstract—Real-time parameter and state estimation is an

interesting topic in motor drive applications, especially with more

autonomous systems employing motor drives. With no parameter

dependency, data-driven methods have become more popular.

One of these methods is dynamic mode decomposition (DMD). Its

controllable variant, DMDc, and online variant, online-DMDc, are

of interest in this paper. DMD and DMDc require large datasets

for training, but ODMDc requires smaller datasets to be

initialized. The comparisons for these algorithms are made by

looking into MATLAB/ Simulink simulations and experiments. It

is shown that DMD and DMDc are powerful algorithms but online

implementation is comparable to the offline versions in terms of

estimation performance.

Keywords—data-driven estimation, system identification,

induction motor drives

I. INTRODUCTION

Dynamical systems are prone to disturbances, noise, and
faults that can alter system behavior and thus alter the
mathematical model of the plant. This also applies to power
electronics and motor drives. Any closed-loop system with a
model-based controller or estimator relies on healthy operating
conditions unless a fault-tolerant control technique is applied to
mitigate faults or model variations. This can be achieved
through real-time system identification and estimation.

Building an estimator for real-time system identification
applications can be challenging. In addition to uncertainty
contributed by system model and noisy measurements,
estimation adds memory and computational complexity. These
estimators can be model-based, where the underlying dynamics
of the model are known. Such estimators can be deterministic
such as state observers, or they can be probabilistic such as
Kalman filters.

The topic of estimation in machines and drives is not novel,
there are established methods to estimate system parameters and
states [1-4]. However, most of these methods are dependent on
machine parameters. Having a data-driven and parameter-free
estimation tool is thus of interest as it eliminates model
inaccuracies when the system sees unexpected or uncertain
disturbances.

There are many system identification methods reported in
the literature but in this paper, online implementation of
dynamic mode decomposition (DMD) and its extension to
dynamic mode decomposition with control (DMDc) is

considered. Online-DMDc (ODMDc) is compared to DMDc in
[5] with system-theoretic considerations but with no
implementation in power electronic systems. Previously, DMDc
is introduced to the power electronics community in [6], and it
is taken as the foundation for the work presented here where
real-time implementation considerations, such as the
computational burden and parameter selection, are investigated.
Simulation results from a MATLAB/Simulink model are shown
for different cases and are implemented on a real-time platform
as a proof of concept.

In the following section of the paper, the basics of DMD,
DMDc, and ODMDc are explained and applied to an induction
motor drive. In Section III, simulations for different cases are
shown. Section IV shows experimental results for validation.
Section V compares the algorithms and results, and discusses
implementation considerations. Section VI concludes the paper
with potential applications and future work.

II. BACKGROUND

Before delving into the algorithm derivation, it is useful to
investigate the target system. A voltage-source inverter (VSI)-
fed induction motor (IM) with indirect field-oriented control
(IFOC) is considered in this study where the high-level block
diagram is given in Figure 1(a). The IM model uses flux-based
differential equations which are summarized in the equation set
(1) [9]. In (1); �, �, �, and � represent flux, voltage, inductance,
and resistance respectively. Subscripts � and � are qd
components of these quantities whereas s represents a stator
variable and r represents a rotor variable. 	
 and 	� are slip and
rotor frequencies. �� is the mutual inductance, P is the number
of poles, J is the inertia and
� is the load torque.

For experiments, a 1.5hp IM is supplied with a VSI, and its
rotating shaft is coupled with a dynamometer for load variation.
The digital control and estimation platform is dSpace and is
shown in Fig. 2.

This work is supported by the National Science Foundation under Award
1752297.

978-1-7281-9387-8/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 E
ne

rg
y

Co
nv

er
sio

n
Co

ng
re

ss
 a

nd
 E

xp
os

iti
on

 (E
CC

E)
 |

 9
78

-1
-7

28
1-

93
87

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EC

CE
50

73
4.

20
22

.9
94

75
77

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

Consider a discrete-time dynamical system with a system
matrix A, an input matrix B, a state vector x[n], and an input
vector u[n], where n is the sample time. The DMD algorithm
considers u[n]=0 and DMDc takes the control input u[n] into
consideration. A mapping can be found from x[n] to x[n+1] as
shown in (2). The next step model can be given as a function of
the current state and the input as shown in (3). By utilizing
matrix manipulation and time-shifting (assuming matrix G is
time-invariant), we can follow the steps described in equations
(4)-(6). In most cases, the matrix ϒ is not a square matrix, hence
its inverse cannot be taken directly. In this case, the pseudo
inverse is used and is denoted by the superscript (†). The final
equation can be put as in equation (7) where X1 is X[2: n] and X2
is X[1:n-1].

Figure 1: Block diagram of the system. The induction motor is driven
by a voltage source inverter and controlled with IFOC.

Figure 2: Hardware setup consisting of induction motor and dyne set,
inverter driven by power supply and dSpace controller

��� � 1� � � ���� � � ���� �2� ��� � 1� � ������, ����� �3�
� � �� ��, Υ��� � ��������! �4�

 ��� � 1� � �Υ��� �5�� � ��� � 1�Υ$%��� �6� � � ����Υ' �� (1� �7�
 Υ � *+,+! , � � *%Υ' �8�

These derivations can be seen in more detail in [6]. The
original DMD [7] and DMDc [8] methods are system

identification methods, and they are not suited for online and
adaptive applications. As we get new data, the matrices *%, *+
and ,+ would grow unboundedly. If these algorithms are to be
implemented online, then a ‘window’ is required to have a finite
amount of data. The authors in [6] gave detailed analyses on
windowed DMDc (WDMDc). But WDMDc requires significant
computational and memory resources, which burdens the
embedded system.

Online-DMD is a variation of DMD for streaming data and
real-time updates to matrix G [5]. It aims to reduce the
computational effort of the DMD using recursive algorithms. In
this paper, the idea of the Online-DMD is applied to DMDc
(non-windowed) and the authors propose an update algorithm as
follows.

Start with collecting enough data to calculate initial G and P
using (9), and update G and P using (10). Derivation of (10) is
not trivial, it is produced using recursive least squares regression
and matrix manipulations.

� � *%Υ', . � �Υ Υ/�$% �9� �123 � �456 � �7 (�456,�Γ9:%,;.9 �10�

where V, U, and Γ are intermediate matrices [5]. The main
advantage of this approach is the significant reduction of
computation and memory requirements. This algorithm will be
referred as online DMDc (ODMDc). After identifying the
system using past data, the next states can be estimated using the
identified model, which can be considered as predictive
modeling. Predictive modeling is explained visually in Figure 3.
The calculation of A and B matrices can be done using DMD,
DMDc or ODMDc algorithms; but, to estimate the next state,
the current measurements and control inputs are being used with
the calculated A and B matrices.

Figure 3. Predictive modeling process for DMDc

III. SIMULATIONS FOR DIFFERENT OPERATING CONDITIONS

To make the state estimations and identify the system; DMD,
DMDc and ODMDc methods are implemented in
MATLAB/Simulink for a VSI-fed induction motor drive setup.
The proposed system is given in Figure 1. Two test cases are
constructed to reflect different speed and load conditions. In the
first case, step-type speed reference changes are considered with
a quadratic load condition. The load formulation is given in (11)
where
54=6 is the load torque in N.m and 	� is the rotor speed
in rad/s. The speed reference is set to 1200 rpm at the start and
it is changed to various values ranging between 800 rpm to 1800
rpm throughout the 25 s simulation. The simulation results for
this case are given in Figure 4.

54=6 � 0.9 ∗ 10$@ ∗ 	�+ �11�

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

The second case has ramp type changes which are
introduced to both increment and decrement reference changes.
Speed reference starts from 1200 rpm and then it takes values
between 500 rpm and 1500 rpm. The load also dynamically
varies with sharp step changes between 0-5N.m. The results for
this case are shown in Figure 5.

Figure 4: Simulation results for the first test case. Top: speed of the
motor, speed reference and load torque. Bottom: Stator currents, d and
q components.

Figure 5: Simulation results for the second test case. Top: speed of the
motor, speed reference and load torque. Bottom: Stator currents, d and
q components.

The reason to have two different scenarios is to test models
generated by the DMD, DMDc and ODMDc algorithms.
Loading and the reference types are drastically different in the
two scenarios but they are applied to the same system. A good
model should estimate states regardless of the operating
conditions.

The results from the first case are used as training or
initialization data. The term training data is used for offline
estimators DMD and DMDc whereas the term initialization data
is for online estimator ODMDc. For both estimators, models are
generated and these models are tested using the results from the
second simulation case. The online estimator ODMDc is
initialized with a small portion of the data of the first simulation
case. And then the model is updated in each sampling time,
resulting in an adaptive model. Figure 6 summarizes this
procedure.

Estimation results for DMD, DMDc and ODMDc are given
in Figures 7-9. Figure 7 shows the estimation of id and estimation
errors or residuals for each estimation. Figure 8 shows the
estimation for iq and resulting residuals, and Figure 9 shows
estimations for speed as well as resulting residuals. The plotted
residuals are not normalized and are calculated using (12) where � represents a state and �A represents an estimated state.

BCDE��FG � � (�A �12�

 Figures 7-9 show clearly that a well-trained model can
accurately estimate under different operating and load
conditions. DMD and DMDc have almost identical results
whereas ODMDc has slightly different results. It should be
noted that the data quality of the simulations is perfect, there is
no noise or any data loss while obtaining data.

The A and B matrices are generated by the estimators and
compared. Since they generate similar results, they should be
close to one another. To compare the models, eigenvalues of the
A matrices can be compared.

�6�6 � H 0.975 0.013 1.45C$@
0.0056 0.951 (1.26C$I

(0.0243 0.373 0.999 J �13�

K%,+,L$MNM � �1, 0.978 ,0.948� �14�

�6�6O � H 0.9702 0.0081 2.47C$@
(0.0036 0.9220 (0.0044(0.0466 0.3331 0.9961 J �15�

K%,+,L$MNMO � �0.974, 0.957 P 0.014E� �16�

As can be seen from (13) and (14), even though the
estimations are close to one another, the eigenvalues are
different. The model generated by the ODMDc is not static like
DMD or DMDc as changes in every iteration. The table below
shows the evolution of the eigenvalues of ODMDc from
initialization to the end. Table I shows that as ODMDc evolves,
two eigenvalues also change from a complex conjugate to real
values. The nature of the incoming data shapes the eigenvalues
as well. One important point is the stability of the algorithm,
where the eigenvalues did not move outside of the unit circle.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Estimation procedure. Large amounts of data are
necessary to train DMD and DMDc, a smaller portion is enough for the
ODMDc. The initialization or training portion is done offline in
MATLAB. After models are generated, the estimation stage can be
performed in an embedded platform. The estimation procedure is
performed as (2).

Figure 7: Estimation of id and residuals for three estimates.

Figure 8: Estimation of iq and residuals for three estimates.

Figure 9: Speed estimation and residuals for three estimates.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

Table I: Eigenvalues of ODMDc model

 K% K+ KL

Initialization 0.9591 0.974+0.017i 0.974-0.017i

N=5000 0.8972 0.985+0.006i 0.985-0.006i

N=10000 0.8587 0.9887 0.9691

N=15000 0.8322 0.985+0.005i 0.985-0.005i

N=20000 0.8322 0.9923 0.9628

N=25000 0.8239 0.9925 0.9582

IV. IMPLEMENTATION & EXPERIMENTAL RESULTS

Three algorithms are tested in the experimental setup which

consisted of a VSI-fed IM coupled with a dynamometer, as

shown in Figure 2. The inverter is controlled by IFOC which is

built along with the estimators in dSpace.

The implementation flowchart is similar to the flowchart of

simulation as depicted in Fig. 6. First a dry-run is performed to

obtain machine data under varying operating conditions, then

this data is used to train or initialize the algorithms. Later, these

models are put into the dSpace environment for real-time

estimation. Models generated by DMD and DMDc are simple

state-space models following (2). However, the implementation

of ODMDc is slightly different. After initialization, estimation

and the model update happen sequentially in two steps. When

new information (measured quantities) is received, the

initialized system is updated following (10). Then, the

estimation is performed following (2). These two steps are

performed in every time step.

The experimental training data is shown in Fig. 10 which

contains 30 seconds of data. The sampling rate is 5 kHz. The

speed reference is varied between 800 and 1600 rpm while

applying 1 to 2 N.m of load torque. The DMD and the DMDc

models use this whole window to train, the ODMDc is

initialized with 4 seconds of data. After training or

initialization, models in (17)-(20) are obtained with their

respective eigenvalues.

�6�6 � H 0.967 0.0164 1.25C$Q
(0.025 1.0033 3.847C$Q
0.709 0.202 0.9978 J �17�

K%,+,L$MNM � �0.999, 0.9841 P 0.0095E� �18�

�6�6O � H0.9477 0.019 1.81C$@
(0.046 1.0022 (1.21C$@
2.926 (0.9 0.956 J �19�

K%,+,L$MNMO � �0.9422, 0.9819 P 0.011E� �20�

These models are put into dSpace for real-time estimation.

The experimental test data is shown in Fig 11. As in the

simulation, ramp type input is applied with a constant 1.6 N.m

load torque. The speed is varied between 800 and 1600 rpm as

well. The estimation results and residuals are given in Figures

12-14 in a similar fashion to the simulated results for

comparison ease. As seen from Figures 12-14, estimates follow

the reference very closely with minimal error.

Figure 10: Experiment conditions for the training/initialization phase.

Top: Speed reference, actual and load torque, bottom: id and iq.

Figure 11: Experiment conditions for the testing phase. Top: Speed

reference, actual and load torque, bottom: id and iq.

V. COMPARISON OF THE IMPLEMENTED ALGORITHMS &

INITIALIZATION

These algorithms are compared for performance and

computational cost, and it is important to select the right

parameters when comparing them. Since DMD and DMDc are

considered offline and ODMDc is considered online,

comparing their real-time processing time is not informative.

Comparing performance is straightforward, but comparing the

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

computational cost needs more elaboration. The whole

estimation operation should be dissected into different

windows: 1) Training/ initialization time, 2) Real-time

estimation time, 3) Model update time. DMD and DMDc do not

have the model update time. Instead of providing processing

times for each processing window, the number of operations

can be calculated.

For the initialization phase, there is a pseudo-inverse and

matrix multiplication operation. This is valid for all three cases.

For the real-time estimation phase, there are matrix

multiplication and matrix addition operations. This is again

common for the three algorithms. For the model update, there

are additional operations as shown in (10).

Using MATLAB built-in timers, training/ initialization

times are measured for the DMD, DMDc and ODMDc. They

are 6.7ms, 11ms, and 2.9 ms, respectively. For real-time

estimation, DMD has � ∗ �� (1� �: S��+� operations, DMDc

and ODMDc have � ∗ �� (1� � T�� (1� �: S��+�

operations, where � is the number of states and T is the number

of control inputs. In our case n=3 and m=2. The real-time model

update is unique to the ODMDc, so we cannot compare it to

other estimators.

The training time will vary based on the data length, but the

numbers give a perspective. Since DMDc uses both output and

control input data, it takes more time to train. Whereas DMD

uses outputs only. ODMDc can be initialized with only 3-4

seconds of data regardless of the total data length, so the

training time will not scale up as data length gets longer.

Performance-wise, the experimental estimation errors are

calculated and normalized with the maximum peak-to-peak

value of the estimated state. For example, the maximum value

of E6 is 5A, maximum estimation error for DMD in Fig.13 is

0.1A, which yields about a 2% maximum estimation error.

Table II shows the estimation errors for the rest of the results.

Table II: Maximum estimation errors

 E6 EU DVCC�

DMD 2% 0.4% 0.1%

DMDc 3.4% 0.8% 1%

ODMDc 2.4% 0.8% 2%

As for the initialization of ODMDc, it uses an initial system
matrix shown in equation (3), and it modifies it as new data
arrives. This approach reduces the computational time as only
additions and multiplications are performed for each variable,
rather than performing an inversion. As good as it seems, it
brings the problem of initialization. If not initialized correctly,
the estimations can have large offsets or then can even go
unstable. For real-time applications, initialization can be done
offline and required information can be given to the algorithm
manually.

Figure 12: Estimation of id and residuals for three estimates.

Figure 13: Estimation of iq and residuals for three estimates.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

Figure 14: Estimation of speed and residuals for three estimates.

There are two points to consider when creating the
initialization matrix. The first one is to include some portion of
the transient and some portion of the steady-state behavior. But
if a system is initialized in the transient state, it will not perform
well. The second point is to include different excitations so that
during the initialization phase, each dynamic is captured and
modeled correctly.

VI. CONCLUSION, POTENTIAL APPLICATIONS AND FUTURE

WORK

In this paper, dynamic mode decomposition with control

and its online extensions are presented and analyzed for data-

driven state estimation in IM drive systems. Derivations of

these algorithms are shown to include control signals. Their

performances are compared and some insight regarding

initialization is given. Rotor speed and qd-currents are

estimated. The estimation error in steady-state is satisfactory

and well below 3.4% in all cases for all parameters.

Potential applications include but are not limited to health

monitoring, adaptive control, system identification under faults,

fault detection and isolation.

REFERENCES

[1] H. Kubota, K. Matsuse and T. Nakano, "DSP-based speed adaptive flux

observer of induction motor," in IEEE Transactions on Industry
Applications, vol. 29, no. 2, pp. 344-348, March-April 1993.

[2] S. Bolognani, R. Oboe and M. Zigliotto, "Sensorless full-digital PMSM
drive with EKF estimation of speed and rotor position," in IEEE
Transactions on Industrial Electronics, vol. 46, no. 1, pp. 184-191, Feb.
1999.

[3] H. Kubota and K. Matsuse, "Speed sensorless field-oriented control of
induction motor with rotor resistance adaptation," in IEEE Transactions
on Industry Applications, vol. 30, no. 5, pp. 1219-1224, Sept.-Oct. 1994,

[4] T. Orlowska-Kowalska and M. Dybkowski, "Stator-Current-Based
MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor
Drive," in IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp.
1296-1308, April 2010

[5] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “Online
dynamic mode decomposition for time-varying systems,” SIAM Journal
on Applied Dynamical Systems, vol. 18, no. 3, pp. 1586–1609, 2019

[6] M. A. Gultekin, Z. Zhang, and A. Bazzi, “Data-driven modeling of
inverter-fed induction motor drives using DMDc for faulty conditions,”
in 2021 IEEE International Electric Machines Drives Conference
(IEMDC), 2021, pp. 1–5.

[7] J P. J. Schmid, “Dynamic mode decomposition of numerical and
experimental data, “Journal of fluid mechanics, vol. 656, pp. 5–28, 2010

[8] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode
decomposition with control,” SIAM Journal on Applied Dynamical
Systems, vol. 15, no. 1, pp. 142–161, 2016.

[9] P. C. Krause, O. Wasynczuk, S. D. Sudhoff and S. Pekarek, Analysis of
electric machinery and drive systems, Wiley Online Library, vol. 2, 2002.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 09,2023 at 16:22:48 UTC from IEEE Xplore. Restrictions apply.

