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Abstract—Hyperdimensional computing (HD) is an emerging
brain-inspired paradigm used for machine learning classifica-
tion tasks. It manipulates ultra-long vectors—hypervectors—
using simple operations, which allows for fast learning, energy
efficiency, noise tolerance, and a highly parallel distributed
framework. HD computing has shown a significant promise in
the area of biological signal classification. This paper addresses
group-specific premature ventricular contraction (PVC) beat
detection with HD computing using the data from the MIT-BIH
arrhythmia database. Temporal, heart rate variability (HRV),
and spectral features are extracted, and minimal redundancy
maximum relevance (mRMR) is used to rank and select features
for classification. Three encoding approaches are explored for
mapping the features into the HD space. The HD computing
classifiers can achieve a PVC beat detection accuracy of 97.7%
accuracy, compared to 99.4% achieved by more computationally
complex methods such as convolutional neural networks (CNNs).

I. INTRODUCTION

Hyperdimensional (HD) computing is an emerging machine
learning model inspired by the cognitive functions of the brain.
It is based on the cognitive model proposed by Kanerva, where
information is encoded and equally distributed across the high
dimensional vectors, which are referred to as hypervectors,
typically with the dimensionality d > 1,000 [1]. Rather
than computing with real numbers like the typical cognitive
computing model, HD computing manipulates hypervectors to
perform cognitive tasks such as pattern recognition instead of
conventional numeric computation [2]. Furthermore, the HD
computing model can quickly learn from provided training
data in a one-shot learning manner with acceptable test accu-
racy [3]. One of the strongest advantages of HD computing
is that an energy-efficient classifier can be used on Internet
of Things (IoT) devices deployed for real-time learning and
classification [4]. The best performing HD models can be used
with acceptable accuracy, but may be outperformed by low-
level neural networks as illustrated in [5], [6].

HD computing has been applied to various cognitive recog-
nition tasks during its emergence. These tasks can include
language recognition [7], DNA sequencing [8], and text clas-
sification [9]. One of the most prominent applications of HD
computing lies in biological signal classification. Literature
has illustrated the success of HD computing in EEG event and
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seizure detection [10]-[12], EMG-based gesture classification
[13], and biological gender classification [14]. One of the less
explored fields in which HD computing could be applied to is
in classification of electrocardiography (ECG) signals. Specif-
ically, there is a gap in literature illustrating the applicability
of HD computing in classification of cardiac arrhythmia.

Cardiac arrhythmia is the variation of normal heart rate
and rhythm which is characterized by abnormal pulses [15].
In a recent survey [16], cardiac rhythm abnormalities have
been found present in 2.3% of the adult population and in
4.8% for those ages 65 to 73. Cardiac rhythm abnormalities
have been associated with a number of substantial morbidity
costs, including increased risks of stroke [17], hospitalization
[18], and sudden death [19]. There are several beat classes
recommended for detection by the ANSI/AAMI standard for
detection of arrhythmia, and many classifier models have been
developed to categorize recorded ECG data into these different
classes. Many features can be extracted for automatic detection
of beat type, including heart rate variability (HRV), temporal,
and spectral features [20]-[23].

This paper addresses a group-specific arrhythmic beat clas-
sification using binary HD computing, specifically premature
ventricular contractions (PVCs). PVCs are prevalent in 40%
to 75% subjects on Holter monitoring [24], [25], and they
represent an increased risk of sudden death and heart failure
in the presence of structural heart disease [19], [26]. HD
computing is used for binary classification between heartbeats
classified as normal and PVC. A combination of HRV, tem-
poral, and spectral features are extracted from the ECG data.
Then, feature ranking and selection are performed through the
minimal redundancy maximum relevance (mRMR) algorithm,
which is based on maximum statistical dependency based on
mutual information [27].

The remainder of this paper is organized as follows. Section
IT illustrates the theoretical framework and concepts behind
binary HD computing and the proposed three encoding ap-
proaches. Section III presents the ECG data from MIT-BIH
Arrhythmia database, feature extraction, and feature selection
for classification. Section IV highlights the results using the
proposed three HD computing classifiers. Finally, Section V
concludes the paper.
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Fig. 1. Three HD encoding approaches for a feature sample. The corresponding dimensionality of the sample hypervector is Kd, d% and d, respectively.

II. BACKGROUND AND METHODS
A. Basics

The components for hypervectors in HD computing can
be binary, bipolar, integer, real, and complex values [1], [2].
However, this paper employs binary hypervectors, which are
more energy efficient and require less hardware resources [28].

Three operations are typically used in HD computing to
transform hypervectors: multiplication, addition, and permu-
tation (MAP). In terms of multiplication, two hypervectors
are bound through point-wise multiplication. For binary HD
computing, the resulting hypervector takes on the form X =
A @& B, where X is exactly the bit-wise XOR of two input
hypervectors A and B. Addition in binary HD computing is
a point-wise operation that generates the result using majority
rule. Permutation is a shuffling operation that can be easily
implemented as a circular shift in hardware. Different com-
binations of MAP operations can be used to transform input
hypervectors into a single resulting hypervector for usage in
classification.

B. Classification with HD Computing

In HD classification, class hypervectors are generated based
on the training data, whereas query hypervectors are generated
by the test data. Afterwards, a similarity measurement will
be conducted between the query and class hypervectors. For
binary hypervectors, the established check for similarity is the
Hamming distance as computed by (1), where d represents the
dimensionality of hypervectors. For identical hypervectors, the
result Ham(A,B) = 0, indicating that no bits are different.
In contrast, completely orthogonal and dissimilar hypervectors
are represented by Ham(A,B) = 0.5 [2]. For classification,
the predicted label of the test data is determined by the
minimum Hamming distance.
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When building the HD classifiers, two memories are typi-
cally used to store the seed hypervectors: item memory (IM)
and continuous item memory (CiM). IM stores the randomly
generated hypervectors which are completely orthogonal to
each other, whereas CiM stores correlated hypervectors. For
data representation, hypervectors in IM are used to encode
discrete information, while those in CiM are employed to rep-
resent correlated values in order to preserve similarity. A CiM
can be built through generating a single binary hypervector

as the base hypervector and then flipping a distinct number of
randomly selected bits based on the required quantization level
M of the CiM. As described in [11], for an M -level CiM with
M hypervectors, the minimum feature value will be mapped
to hypervector L; and for each consecutive hypervector L,,,
ﬁ bits will be flipped until the final vector Ly, is orthogonal
to the original L. In this paper, M is 50 for all CiMs.

C. Encoding Approaches

Three approaches are employed in this paper to encode
feature samples in HD computing.

1) Approach 1 (Concatenation of Hypervectors): Inspired
by [11], Approach 1 solely harnesses the seed hypervectors
in CiMs to represent each feature sample. As shown in Fig.
1, a sample ¢ contains K different features, indicating K
different quantization schemes, where 1 < ¢ < N, and N,
is the total number of feature samples in the training data
for a certain class c¢. An M-level CiM is built to contain
level hypervectors {L1, -+ ,Ljs}. Based on the statistics of a
certain feature k, the corresponding feature value is quantified
to the value bins of the CiM and mapped to the CiM as
hypervector Hy. Thus, K feature hypervectors are used and
then concatenated to form the sample hypervector Hgymple, as
shown in (2a), where () denotes the concatenation operation.
The final class hypervector Hj,, for a certain class are
generated by adding all N, sample hypervectors as shown in
(2b), where [-] indicates the majority rule.

Hsamp]e, = (Hl, ...,Hk, ...,HK)7 where Hk S {:[117 LR ,L]y[}, (23)
I_IclassC = [Hsamplc1 i HsampleNc]- (Zb)

2) Approach 2 (Ranked Hypervectors): Similar to Ap-
proach 1, a single CiM is built with M level hypervectors to
represent the feature values. However, this proposed Approach
2 considers the feature ranking information to determine the
hypervector size for given features. The dimension of the fea-
ture hypervectors decreases as the importance of that feature
decreases. The highest ranked feature will be encoded by its
level hypervector with the maximum bit length d. Then the ky,
ranked feature will be represented by the first d(1 — £21) bits
of the corresponding CiM hypervector. The resultant sample
hypervector is the concatenation of the K feature hypervectors.

3) Approach 3 (Short Hypervectors): Approach 3 is exactly
the record encoding method summarized in [2]. As shown
in Fig. 1, to encode a given feature sample, the indexes
of the features are represented by the feature identifier ID



hypervectors in the IM, while the quantized feature values
are encoded by the feature hypervectors in CiM. Equation (3)
illustrates how to generate the sample hypervector Hgumpie, -

Hsamplci = [H1 ®ID) +.+Hg @ IDK}, where HkG{Ll, s ,L]u}. (3)

III. EXPERIMENTAL SETUP
A. MIT-BIH Arrhythmia Database

We use the ECG dataset provided by the MIT-BIH arrythmia
database, which contains 48 half-hour recordings of two-
channel ambulatory ECG data recorded between 1975 and
1979 [29]. The data is recorded at a sampling frequency of 360
Hz per channel within a 10 mV range. Based on cardiologist
review, annotations for beat types and their respective locations
can be found in the annotation files. Refer to [29] for more
details.

B. Flow Chart of Proposed Algorithm

Figure 2 shows the proposed algorithm for PVC detection.
1). The original 48 ECG recordings are divided into two
groups as described in Table 1. Recordings for patients with
paced beats (patients 102, 104, 107, and 214) are thrown out
based on AAMI standards. Within the 30-min recordings, the
first 5-min of data are used for training while the remaining
25-min of data are used for test. 2). Since the recordings are
a mix of normal ([N]), PVC ([V]) and other types of beats,
we only extract the information for normal and PVC beats.
All other types of beats are thrown out. The segmentation
is conducted by a 400-ms window with 200-ms before and
after the already marked R-wave peak location. Therefore, the
original 30-min recordings are split into 400-ms segments. 3).
Feature extraction is performed over all segments. Then, the
feature set is subjected to a feature selection step using the
mRMR algorithm [27], to select the top K features. Therefore,
each 400-ms segment corresponds to a feature sample with
K features. 4). These feature samples are fed into the HD
classifiers using the proposed approaches in Section II-C.
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Fig. 2. Flow chart of proposed algorithm.
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C. Feature Extraction

Literature has shown that a variety of features can be used
for classification of the different types of beats present in MIT-
BIH Arrhythmia database [30]-[32]. These can include HRYV,
temporal (morphological), and spectral (frequency) features. A
total of 164 beat features are extracted in this paper consisting
of 6 HRV, 22 temporal, and 136 spectral features.

HRV features are those determined from measuring the
duration between adjacent R peaks, called the R-R interval.
The annotated R-peaks provided by the database files are used

TABLE I
PATIENT GROUPINGS

Test Beat
Count
PVC | Normal

Training Beat
Count
Normal

Patient Group Recording

PVC

101,106,108,109,
110,112,114,115,
116,118,119,122,
124,201,203,205,
207,208,215,220,
223,230
100,103,105,111,
113,117,121,123,
200,202,210,212,
213,214,219,221,
222,228,231,232,
233,234

Group 1 554 6434 3107 31391

Group 2 512 5743 2683 30449

to find adjacent R-peak locations surrounding a given beat.
Examples of features extracted for HRV analysis include the
R-R intervals, relative R-R intervals, and root mean square of
successive differences (RMSSD) for beats near the test beats.

Temporal beat features are extracted from the time domain
within the 400-ms segments. For each channel, statistical
measurements of the beat window are extracted. These include
the mean, maximum, minimum, peak-to-RMS, kurtosis, and
skewness values. The spectral features are extracted from each
lead using the same 400-ms beat window as during temporal
feature extraction. These features come from the orthogonal
wavelet transform features described in [32], 180-point Fast
Fourier Transform (FFT), and band powers. Similar to the
temporal features, statistical measurements of the absolute
values for the single-sided real FFT are extracted. Also, the
absolute values of each 1-20 Hz values generated from the
FFT are recorded. For band power features, the band power
and relative band power are extracted for band ranges 0.5-12
Hz, 12-25 Hz, 25-40 Hz, 40-57 Hz, and 63-90 Hz.

D. Performance Evaluation

For this group-specific PVC classification, the data is di-
vided into two folds since there are two groups. Within each
fold, the classification model is trained from one group and
then tested over the whole two groups. The final performance
shown in this paper is the average results of the two folds. Con-
forming to the state-of-the-art methods for this PVC detection
[33]-[35], test accuracy, sensitivity, specificity and precision
are used as the main metrics to evaluate the performance.

IV. EXPERIMENTAL RESULTS

The number of selected features utilized for encoding in
the HD space are varied between 5, 10, and 20. Table II
highlights the top twenty features ranked by the mRMR feature
selection algorithm collected from the training data of each
patient group. As demonstrated, there are 10 common selected
features, although their ranking differs between the two groups
of training data. The top three features for both training
and test data are illustrated in Figs. 3 and 4. Furthermore,
the impact of hypervector size is explored by varying the
dimensionality d to be 100, 200, 500, 1,000, and 2,000 for
all approaches.



TABLE III
SIMULATION RESULTS FOR THREE APPROACHES

TABLE I
ToP 20 SELECTED FEATURES USING MRMR
Rank Group 1 Group 2
1 [ Ch. I Temporal Kurtosis Ch. 1 Temporal Peak-to-RMS
2 | Ch. 2 DWT Detail Lvl. 7 Coef. Prev. RR Interval / Ave. RR Intervals of 10s
3 | Ch. 2 Rel. Power Band 40-57 Hz Ch. 2 DWT Detail Lvl. 4, 3rd Coef.
4 | Prev. RR Interval / Ave. RR Intervals of 10s | Ch. 1 DWT Detail Lvl. 4, 6th Coef.
5 | Ch. 1 DWT Detail Lvl. 6, 1st Coef. Next RR Interval / Ave. RR Intervals of 10s
6 | Ch. 1 DWT Detail Lvl. 6, 2nd Coef. Ch. 1 DWT Detail Lvl. 5, 1st Coef.
7 | Next RR Interval / Ave. RR Intervals of 10s | Ch. 2 DWT Detail Lvl. 5 St. Dev.
8 | Ch. 2 Rel. Power Band 0.5-12 Hz Ch. 2 Rel. Power Band 40-57 Hz
9 | Ch. 2 DWT Detail Lvl. 5 St. Dev. Ch. 1 DWT Detail Lvl. 6, 1st Coef.
10 | Ch. 1 Rel. Power Band 40-57 Hz Ch. 1 Temporal Min.
11 | Ch. 1 FFT Amp., |1 Hz Ch. 1 DWT Detail Lvl. 4, 5th Coef.
12 | Ch. I Temporal Peak-to-RMS Ch. 2 DWT Detail Lvl. 5, 3rd Coef.
13 Ch. 2 DWT Detail Lvl. 4, 5th Coef. Ch. 1 DWT Detail Lvl. 4 Variance
14 | Ch. 2 DWT Detail Lvl. 6 Variance Ch. 1 Temporal Kurtosis
15 | Ch. 1 Rel. Power Band 12-25 Hz Ch. 1 DWT Detail Lvl. 5 St. Dev.
16 | Ch. 2 Temporal Peak-to-RMS Ch. 2 DWT Detail Lvl. 4 Skewness
17 | Ch. 2 DWT Detail Lvl. 5, 3rd Coef. Ch. 1 FFT Kurtosis
18 | Ch. 1 DWT Detail Lvl. 4 Variance Ch. 1 DWT Detail Lvl. 6, 2nd Coef.
19 | Ch. 1 DWT Detail Lvl. 6 St. Dev. Ch. 1 DWT Detail Lvl. 4 Max
20 | Ch. 1 DWT Detail Lvl. 7 Coef. Ch. 1 FFT Amp., 2 Hz
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Fig. 3. 3D scatter plot of the PVC and normal beats top three mRMR training
features for Group 1 (left panel) and the test features for Group 2.

Simulation results are shown in Tables III. 7). For Approach
1, modifying feature hypervector size does not affect perfor-
mance as demonstrated in Table III. However, the number of
features used does impact performance. The highest accuracy
measured for Approach 1 is using 10 features with 97.5%
accuracy. 2). Approach 2 achieves the best performance among
these three approaches: 97.7% accuracy, 90.4% sensitivity,
98.4% specificity, 85.1% precision, and AUC of 0.944 using
the maximum number of selected features and dimensions.
With just 10 features, the AUC of the model increases beyond
0.950 starting with maximum dimension of 1000 3). Approach
3 achieves its best performance in regards to AUC when the
hypervector size is 1000 bits and beyond. This is indicative that
lower overall dimensionality of hypervectors may not store
enough information for an accurate classifier.
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Fig. 4. 3D scatter plot of the PVC and normal beats top three mRMR training
features for Group 2 (left panel) and the test features for Group 1.

Appmach 1: Concatenation of Hypervectors

Selected Di Measure
Features | per Feature | Sensitivity | Specificity | Precision | Accuracy | AUC
100 91.8% 97.3% 79.6% 96.8% 0.945
200 91.8% 97.3% 79.6% 96.8% 0.945
5 500 91.8% 97.3% 79.6% 96.8% 0.945
1000 91.8% 97.3% 79.6% 96.8% 0.945
2000 91.8% 97.3% 79.6% 96.8% 0.945
100 82.6% 99.0% 88.5% 97.5% 0.908
200 82.6% 99.0% 88.5% 97.5% 0.908
10 500 82.6% 99.0% 88.5% 97.5% 0.908
1000 82.6% 99.0% 88.5% 97.5% 0.908
2000 82.6% 99.0% 88.5% 97.5% 0.908
100 84.5% 98.4% 83.9% 97.2% 0915
200 84.5% 98.4% 83.9% 97.2% 0.915
20 500 84.5% 98.4% 83.9% 97.2% 0.915
1000 84.5% 98.4% 83.9% 97.2% 0.915
2000 84.5% 98.4% 83.9% 97.2% 0.915

Approach 2: Ranked Hypervectors

Selected Maximum Measure
Features Dimension Sensitivity | Specificity | Precision | Accuracy | AUC
100 92.9% 96.3% 74.9% 96.1% 0.946
200 93.6% 95.5% 71.9% 95.3% 0.946
5 500 93.9% 95.6% 72.3% 95.5% 0.947
1000 93.8% 96.0% 73.5% 95.8% 0.949
2000 94.0% 95.5% 71.6% 95.4% 0.947
100 92.9% 96.5% 76.4% 96.2% 0.947
200 91.3% 97.3% 79.2% 96.8% 0.943
10 500 92.3% 97.4% 80.2% 97.0% 0.949
1000 93.1% 97.3% 79.2% 96.9% 0.952
2000 92.5% 97.4% 80.1% 97.0% 0.950
100 92.0% 98.0% 82.7% 97.5% 0.950
200 90.5% 98.2% 84.0% 97.5% 0.944
20 500 90.2% 98.4% 85.0% 97.7% 0.943
1000 90.0% 98.5% 85.5% 97.7% 0.942
2000 90.4% 98.4% 85.1% 97. 7% 0.944

Approach 3: Short Hypervectors

Selected Di Measure
Features Sensitivity | Specificity | Precision | Accuracy | AUC
100 91.5% 95.5% 71.1% 95.1% 0.935
200 90.8% 96.5% 71.6% 96.0% 0.936
5 500 90.0% 95.6% 70.0% 95.1% 0.928
1000 91.8% 96.2% 71.6% 95.8% 0.940
2000 92.4% 96.0% 73.3% 95.7% 0.942
100 67.6% 89.4% 52.9% 87.5% 0.785
200 82.4% 95.8% 72.6% 94.7% 0.891
10 500 79.5% 95.5% 68.7% 94.2% 0.875
1000 90.5% 94.8% 68.0% 94.5% 0.927
2000 90.9% 93.8% 67.3% 93.6% 0.923
100 71.2% 97.2% 70.2% 94.9% 0.842
200 89.7% 91.7% 52.9% 91.6% 0.907
20 500 78.7% 98.4% 82.8% 96.7% 0.886
1000 90.9% 96.7% 75.1% 96.2% 0.938
2000 86.5% 97.5% 78.4% 96.6% 0.920

TABLE IV
COMPARISON WITH LITERATURE
Method Features Accuracy Sensitivity  Specificity  Precision
HD Computing
with Feature Ranked 20 97.7 90.4 98.4 85.1
Hypervectors
Kth Nearest-Neighbors [33] 26 - 96.7 97.2 -
Variation of
Principal Directions [34] 150 98.77 96.12 98.96 86.48
CNN + LSTM

+ Rules Inference [35] 150 99.41 97.59 99.54 93.55

The HD computing model using mRMR algorithm with
variable hypervector sizes for group-specific PVC classifi-
cation is compared against the state-of-the-art methods as
described in Table IV. These methods include a Kth nearest-
neighbor classifier [33], a PCA-based classifier [34], and
combination of CNN and LSTM [35]. These methods achieve
high accuracy with over 96% sensitivity. The HD model is
able to perform at a similar accuracy level, albeit at the cost
of sensitivity and precision.



V. CONCLUSION

This paper conducts a group-specific binary classification
for PVC detection by analyzing the ECG data. Out of the
totally extracted 164 features, up to 20 features are selected by
the mRMR algorithm. Based on the top-ranked features, three
HD encoding approaches are employed in this paper. Among
them, Approach 2 achieves the best performance: 97.7%
accuracy, 90.4% sensitivity, 98.4% specificity and 85.1% pre-
cision. This performance is comparable to the state-of-the-
art results using 20 features, with an acceptable performance
loss based on the sparse representation of the model. Future
work will address multi-class arrhythmia classification using
HD computing. Additionally, the low energy property of HD
computing for biological signal classification will be explored
through synthesis and implementation on an FPGA.
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