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Abstract. Underwater navigation presents several challenges, including
unstructured unknown environments, lack of reliable localization sys-
tems (e.g., GPS), and poor visibility. Furthermore, good-quality obsta-
cle detection sensors for underwater robots are scant and costly; and
many sensors like RGB-D cameras and LiDAR only work in-air. To en-
able reliable mapless underwater navigation despite these challenges, we
propose a low-cost end-to-end navigation system, based on a monocu-
lar camera and a fixed single-beam echo-sounder, that efficiently navi-
gates an underwater robot to waypoints while avoiding nearby obstacles.
Our proposed method is based on Proximal Policy Optimization (PPO),
which takes as input current relative goal information, estimated depth
images, echo-sounder readings, and previous executed actions, and out-
puts 3D robot actions in a normalized scale. End-to-end training was
done in simulation, where we adopted domain randomization (varying
underwater conditions and visibility) to learn a robust policy against
noise and changes in visibility conditions. The experiments in simulation
and real-world demonstrated that our proposed method is successful and
resilient in navigating a low-cost underwater robot in unknown under-
water environments. The implementation is made publicly available at
https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.

Keywords: monocular camera and sonar-based 3D underwater navigation, low-
cost AUV, deep reinforcement learning, domain randomization

1 Introduction

This paper presents an integrated deep-learning-based system, contingent on
monocular images and fixed single-beam echo-sounder (SBES) measurements,
for navigating an underwater robot in unknown 3D environments with obstacles.

⋆ Authors contributed equally.
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sim-to-real gap problem by leveraging domain randomization into our system.
We generated realistic simulated environments with different underwater visibil-
ity and randomized training environments, enhancing the model robustness to
the changing visual conditions in real underwater domain. Extensive experimen-
tal analysis with tests and ablation studies of the proposed navigation system
were conducted both in simulation and real-world. Results demonstrated high
safety and efficiency compared to traditional navigation baselines and other sen-
sor/model configurations, as well as reliable transferability to new environments.

2 Related Work

Obstacle avoidance and navigation without a prior map has been studied start-
ing with wheeled mobile robots equipped with bumpers and sonar sensors [12]
and later branching off into different environments and sensor configurations.
For underwater domains, one of the main challenges is the limit of choices for
sensors. While some underwater LiDAR solutions are available [13], they are
expensive (US$100,000 or more) and bulky – requiring a laser scanner and a
camera. In addition, there is a lack of global positioning systems and the acous-
tic based positioning systems are affected by noise, making mapping underwater
challenging [1]. Our goal is to enable navigation for low-cost AUVs. Therefore,
in the following, we discuss applications using sensors (i.e., SBES, cameras) that
are typically configured on low-cost underwater robots.

In practice, many underwater navigation systems depend on acoustic, iner-
tial, and magnetic sensors [14–16]. For example, Calado et al. [17] proposed a
method where the robot used a SBES to detect obstacles and construct a map of
them. However, SBES can only provide a fixed single distance measurement and
has high uncertainty given the wide beam cone – around 30°. To infer more about
the complex scene, the robot must frequently turn in multiple directions, which
negatively affects navigation efficiency. Alternatively, multi-beam and mechani-
cal scanning sonars can cover a larger field of view [18]. Hernández et al. [19] used
a multi-beam sonar to simultaneously build an occupancy map of the environ-
ment and generate collision-free paths to the goals. Grefstad et al. [20] proposed
a navigation and collision avoidance method using a mechanically scanning sonar
for obstacle detection. However, a scanning sonar takes a few seconds to scan a
360◦ view. The acoustic sensors’ accuracy depends on the environment structure
and the type of reflections that arise. In addition, multi-beam and mechanical
scanning sonars are significantly more expensive than monocular cameras and
SBES (in the order of >US$10k vs. US$10 - US$100).

While cameras have shown to provide dense real-time information about the
surroundings out of the water [21], there are fewer underwater obstacle avoid-
ance methods that use cameras. The underwater domain indeed poses significant
challenges, including light attenuation and scattering. Most work considers re-
active controls, i.e., no goal is specified. Rodŕıguez-Teiles et al. [22] segmented
RGB images to determine the direction for escape. Drews-Jr et al. [23] esti-
mated a relative depth using the underwater dark channel prior and used that
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estimated information to determine the action. There has been recent efforts in
3D trajectory optimization for underwater robots. Xanthidis et al. [24] proposed
a navigation framework for AUV planning in cases when a map is known or
when a point cloud provided by a visual-inertial SLAM system [5] is available.
Our proposed method navigates the robot to 3D waypoints without explicit
representation of the environment.

Recently, deep learning (DL) methods have shown to work well with under-
water robots. Manderson et al. [25] proposed a convolutional neural network
that takes input RGB images and outputs unscaled, relative path changes for
AUV driving. The network was trained with human-labeled data with each im-
age associated with desired changes in yaw and/or pitch to avoid obstacles and
explore interesting regions. Later it was extended with a conditional-learning
based method for navigating to sparse waypoints, while covering informative
trajectories and avoiding obstacles [26]. Our proposed method does not require
human-labeled data.

Amidst the progress in DRL, there is more research on robots operating
out of water with monocular cameras. Some of these methods addressed the
problem of safe endless 2D navigation without specifying any target location.
Xie et al. [27] trained a Double Deep Q-network to avoid obstacles in simulated
worlds and tested it on a wheeled robot. Kahn et al. [28] proposed a generalized
computation graph for robot navigation that can be trained with fewer samples
by subsuming value-based model-free and model-based learning. Other works
provided the goal as a target image instead of a location [29–31]. Some methods,
based on an end-to-end network, guided the robot to the goal using LiDAR
or RGB-D cameras [10, 32–34] and goal’s relative position for path planning.
Recently, a DD-PPO based method was used to navigate a robot in an unknown
indoor (simulated) environment, using a RGB-D camera, GPS, and compass [11].
Our method will be based on PPO, with the additional challenge of not having
depth information directly from the camera.

Nevertheless, due to the difficulties of applying DRL in real-world environ-
ments, most works performed training in simulation. However, policies learned in
simulated environments may not transfer well to the real-world environment, due
to the existence of reality (sim-to-real) gap [35]. To address this, several methods
utilized domain randomization, where parameters of the simulated world were
varied so that policies learned remained robust in real-world domain. For exam-
ple, Sadeghi and Levine [36] proposed a DRL approach for indoor flight collision
avoidance trained only in CAD simulation that was able to generalize to the real
world by highly randomizing the simulator’s rendering settings.

Our approach draws from the advances in DRL: we design an end-to-end
pipeline for low-cost underwater robot navigation to address the underwater
challenges, combining multiple sensors and applying domain randomization.
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tuple: state space S that cannot be directly observed by the robot, action space A
modifying the current state of the robot, observation space Ω, a state-transition
model T , the observation probability distribution O, and a reward function R

which returns the reward after a state transition.
Observation space. The observation Ot at time step t consists of: (1) the

predicted depth image o
imageDepth
t ∈ R

128×160; (2) an SBES range measure-

ment oranget ∈ R; (3) the current relative goal position o
goal
t ∈ R

3 – specifically,
[Dh

t
, Dv

t
, θh

t
]¦, where Dh

t
, Dv

t
are robot’s current horizontal, vertical distances to

the goal and θh
t
represents the relative yaw heading difference; and (4) the past

executed actions oaction
t

∈ R
2. We stack observations considering a time window

k to capture the robot’s progress towards the goal and to avoid obstacles that
left the periphery view. In experiments, model using 5 time steps (decision pe-
riod lasts 0.5 second for each step) showed good performance without adding
too much computational expense.

Action space. The action space is at = [vt, ωt] ∈ R
2, where vt is the vertical

linear velocity and ωt is the yaw angular velocity. To generalize the applicability
of the learned behavior to different robots, we consider the actions to be in a
range of [−1.0, 1.0] which will be linearly mapped to the range of velocities of
a specific robot. Note that while we could include the horizontal forward linear
velocity, we decided to keep it constant to facilitate surveying missions that
require the same velocity to collect consistent high-quality measurements.

The action is then given by the policy:

at = π(Ot) (1)

The goal is to find the optimal policy π∗ which maximizes the navigation policy’s
expected return over a sequence τ of observations, actions, and rewards:

π∗ = argmax
Ã

Er∼p(Ä |Ã)

[

∑

γtrt
]

(2)

where γ ∈ [0, 1.0] is the discount factor. The optimal policy would translate in
a path that is safe and minimizes the time it takes to travel to the goal.

Reward function. Our reward function rt at time t encodes the objectives
to stay not too close to any obstacle (robs

t
) and to reach the goal area as soon as

possible (rgoalt ).
When the robot is close to an obstacle, it will compute a negative reward:

robst =







−rcrash, dht < δh ∨ dvt < δv ∨ dsurt < δv
−s0(2δh − dht ), δh ≤ dht < 2δh
0 otherwise

(3)

where δh, δv represent the thresholds for the distances of the robot to the closest
obstacle dh

t
, dv

t
– horizontally or vertically, respectively. We also check the dis-

tance to the water surface dsur
t

, as there might be surface obstacles that cannot be
detected given the sensor configuration of the robot. The threshold values δh, δv
should consider the robot’s size and turning radius. When any of the constraints
are met – i.e., the robot is too close to an obstacle or the surface – the current
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episode terminates with a large negative constant reward −rcrash. In addition,
to guarantee safety, a penalty for motions within a range [δh, 2δh) of distance
to nearby obstacles is given according to the current distance. Otherwise, if the
robot is far from the obstacles, no negative reward is applied.

To guide the robot towards the goal both horizontally and vertically, we split
the goal-based reward into two parts. First, the horizontal goal-based reward:

rgoalht =

{

−s1|θ
h
t |, ∆h < Dh

t

rsuccess − s2|θ
h
t |, otherwise

(4)

If the robot’s horizontal distance to the goal Dt

h
is greater than a threshold

∆h, then the penalty is based on the robot’s orientation to the goal – i.e., a
robot already facing the goal gets a smaller penalty, as the constant forward
velocity will ensure shorter arrival time. Otherwise, if the robot is within the goal
area, then there is a positive reward with a preference to the robot’s orientation
towards the goal.

Likewise, the vertical goal-based reward:

rgoalvt =







s3|Ḋ
v
t |, Ḋv

t ≤ 0 ∧ ∆h < Dh
t

−s3|Ḋ
v
t |, Ḋ

v
t > 0 ∧ ∆h < Dh

t

−s4|D
v
t |, otherwise

(5)

When the robot is not near the goal, the vertical goal-based reward is a positive
value if the change in vertical distance over time Ḋv

t
is negative or 0 – i.e., the

robot is getting closer to the target depth. On the contrary, it is a negative
value if the change is positive – i.e., the robot is getting farther from the target
depth. Otherwise, if the robot is within goal area, the negative reward is relative
to the distance to the target depth. This split (horizontal and vertical) of the
goal reward showed better stability in experiments than when a single combined
goal reward was applied, potentially due to the separate focus of two mostly
independent actions.

The above obstacle- and goal-based rewards conflict with each other; they
could lead to oscillations at local optima when an obstacle is nearby. Thus, we
devised a priority-based strategy (when the robot is not in the goal area) that

focuses on moving away from the obstacle by scaling r
goalh
t :

rgoalht ∗= s5(d
h
t − δh)/δh, ∆h < Dh

t ∧ δh ≤ dht < 2δh (6)

In all the reward equations, s0, . . . , s5 are positive scaling factors. Intuitively,
they are set so that rewards are in an appropriate scale for a balanced training
performance.

Finally, the collective reward at time t can be obtained as:

rt = robst + rgoalht + rgoalvt (7)

Network architecture. The network structure depicted in Fig. 3(left) il-
lustrates how we integrate the information vectors from the sensors. First, the
stacked predicted depth images are processed by three convolutional layers, then
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dataset, which, however, is not available. Another solution is to enhance the in-
put underwater images to its approximate in-air counterpart [40, 41]. Yet, most
image enhancement techniques require difficult-to-retrieve information (e.g., wa-
ter attenuation coefficients, depth maps).

Our approach is to integrate underwater features into the simulation used
for training. We modified an existing underwater simulator framework for games
to create the training and testing simulations for our proposed approach. The
framework contains custom shaders that incorporates a light transmission model
to simulate underwater optical effects, thus providing a good amount of realism.

Domain randomization. We integrated domain randomization to generate
underwater environments with different visual conditions, thus enabling trans-
ferability. In particular, at the start of every training episode, we randomize the
underwater visibility – the gradient and conditions in visibility over distance.
Visibility was selected as it significantly impacts the relative depth estimation,
thus affecting to a large extent how the robot perceives its surroundings.

We decided not to apply domain adaptation [42] – i.e., the process of learning
different environment encoding and corresponding adapted policy during train-
ing, so that during testing the best environment encoding will be found with the
corresponding adapted policy – because searching the best environment encoding
is not very practical for underwater deployments. For instance, the search would
require robot motions towards obstacles to identify the (potentially changing)
visibility feature of the specific environment.

Multi-scenario training. We built the simulated training environment via
Unity Engine3. We generated two activity areas to represent two classes of envi-
ronments that an AUV might encounter: A – a small area with fewer obstacles,
and B – a big cluttered area with obstacles at various positions and heights
(see Fig. 3(right)). In each training episode, the robot’s starting pose and goal
location are randomly reset in the environment. This exposure to different train-
ing scenarios ensures that the learned policy will be more likely to handle more
complex environments [35].

4 Experimental Results

We trained and performed experiments in simulation, in real-world with a vector-
thruster underwater robot, and with underwater datasets to validate our DRL-
based multi-modal sensor navigation system. We performed comparisons and
ablation studies with other methods. Our framework is publicly available4.

4.1 Training Experimental Settings

Our model was first trained and tested on a workstation with two 12GB NVIDIA
2080Ti GPUs. It was implemented with PyTorch and Adam optimizer [43].

3
http://www.unity.com/

4
https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation
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considered our model trained without the echo-sounder as ablation study to
observe the effect of the SBES.

We generated a test environment in simulation with multiple obstacles. The
robot’s task was to navigate to five randomly set consecutive waypoints. We set
all waypoints at the same depth, as typical navigation with an MBS involves the
robot first arriving to the target depth and then navigating along the 2D plane.

Fig. 4 shows the trajectories of the three navigation methods and Table 1
reports the quantitative results measured in terms of traveling time and suc-
cess ratio. Our proposed system with inexpensive monocular camera and SBES
achieved the highest navigation efficiency with comparable safety to Bug2 with
MBS. While the Bug2 trajectory appeared not to be affected by noise, it spent
the longest navigation time especially when moving along the obstacles. Note the
echo-sounder played a fundamental role in safe navigation. If the echo-sounder
was excluded, the model relied solely on relative monocular image depth esti-
mation to detect surrounding obstacles. As a result, at times the chosen action
might be conservative, leading to sub-optimal paths in terms of distance, or too
aggressive, increasing the likelihood of collision.

4.3 Ablation Study with Transferability Tests

To show the transferability of our proposed model to different environments and
visibilities, we performed an ablation study with the same hyper-parameters
and protocols, but considering the following combinations of training settings in
a simulated underwater environment: (1) Rand : proposed domain randomiza-
tion, (2) No Rand (Water): fixed underwater visibility (approximately 11m),
and (3) No Rand (Air): no underwater features. To firstly exhibit the models’
generalizability, another simulated environment5 was employed for testing. With
different materials, textures, lightings and custom shaders, it had a different vi-
sual appearance compared to the training environment. In this environment, the
models were tested in three different scenes, constructed to resemble possible un-
derwater obstacles present in the real-world, such as natural structures (Scene1),
submerged wrecks (Scene2) and man-made structures (Scene3).

Table 2. Quantitative Results for Transferability Tests. 10 runs for the three models
in three scenes with different visual conditions. Note: N/A means the method failed to
reach the goal during the runs and bold means the best result.

Method
Scene1 Scene2 Scene3

Blurry Medium Clear Blurry Medium Clear Blurry Medium Clear

reward 5.74 ± 2.17 6.5 ± 5.95 28.14 ± 2.85 0.43 ± 2.26 10.93 ± 11.31 12.05 ± 8.92 24.64 ± 10.19 20.58 ± 13.7 29.18 ± 8.01
No Rand (Air) success 0% 10% 100% 0% 40% 50% 70% 60% 90%

trav. time N/A 70.0 67.2 ± 0.84 N/A 53.12 ± 0.65 55.2 ± 2.84 63.29 ± 0.88 66.5 ± 4.53 66.11 ± 1.07

reward 25.27 ± 8.42 18.35 ± 11.18 13.46 ± 14.51 2.19 ± 1.78 -1.58 ± 5.94 15.04 ± 10.6 18.03 ± 11.32 30.14 ± 7.5 29.42 ± 3.27
No Rand (Water) success 90% 90% 40% 0% 10% 70% 60% 90% 100%

trav. time 70.5 ± 4.93 88.17 ± 18.36 69.25 ± 1.35 N/A 115.0 59.79 ± 8.25 71.42 ± 6.9 73.39 ± 2.63 65.35 ± 0.78

reward 24.66 ± 9.3 28.39 ± 2.26 29.56 ± 2.58 21.68 ± 9.61 23.36 ± 7.49 24.86 ± 2.92 29.17 ± 11.34 30.26 ± 9.25 36.26 ± 0.83

Rand success 90% 100% 100% 80% 90% 100% 80% 90% 100%

trav. time 67.56 ± 0.44 68.45 ± 0.72 67.05 ± 1.27 52.0 ± 0.35 53.44 ± 1.23 50.75 ± 0.46 60.75 ± 0.56 62.56 ± 0.98 61.05 ± 0.57

5
https://github.com/Scrawk/Ceto
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