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Abstract—In applications of group testing in networks, e.g.
identifying individuals who are infected by a disease spread
over a network, exploiting correlation among network nodes
provides fundamental opportunities in reducing the number of
tests needed. We model and analyze group testing on n correlated
nodes whose interactions are specified by a graph G. We model
correlation through an edge-faulty random graph formed from
G in which each edge is dropped with probability 1− r, and all
nodes in the same component have the same state.

We consider three classes of graphs: cycles and trees, d-regular
graphs, and stochastic block models or SBM, and obtain lower
and upper bounds on the number of tests needed to identify the
defective nodes. Our results are expressed in terms of the number
of tests needed when the nodes are independent and they are in
terms of n, r, and the target error. In particular, we quantify the
fundamental improvements that exploiting correlation offers by
the ratio between the total number of nodes n and the equivalent
number of independent nodes in a classic group testing algorithm.

The lower bounds are derived by illustrating a strong depen-
dence of the number of tests needed on the expected number of
components. In this regard, we establish a new approximation
for the distribution of component sizes in “d-regular trees” which
may be of independent interest and leads to a lower bound on
the expected number of components in d-regular graphs.

The upper bounds are found by forming dense subgraphs in
which nodes are more likely to be in the same state. When G is
a cycle or tree, we show an improvement by a factor of log(1/r).
For grid, a graph with almost 2n edges, the improvement is
by a factor of (1− r) log(1/r), indicating drastic improvement
compared to trees. When G has a larger number of edges, as in
SBM, the improvement can scale in n.

I. INTRODUCTION

Group testing [1] is a well studied problem at the inter-
section of many fields, including computer science [2]–[6],
information theory [7]–[9] and computational biology [10],
[11]. The goal is to find an unknown subset of n items that
are different from the rest using the least number of tests.
The target subset is often referred to as defective, corrupted
or infected, in this work we use the term defective. To find
the subset of defectives, items are tested in groups. The result
of a test is positive if and only if at least one item in the
group is defective. Group testing is beneficial when the number
of defective items is o(n), often assumed that the (expected)
number of defective items is nα, α < 1.

Over the years, this problem has been formulated via two
approaches: the combinatorial approach and the information
theoretic approach. In the “combinatorial” version of the
problem, it is assumed that there are d defective items that
are to be detected with zero error [1]. Using adaptive group

testing (i.e., when who to test next depends on the results of
the previous tests), there is a matching upper and lower bound
on the number of tests in the form d log n+O(d) [1]. Using
non-adaptive group testing (i.e., when the testing sequence is
pre-determined), there is an upper bound of O(d2 log(n/d))

and an almost matching lower bound of Ω(d
2 logn
log d ). The

“information theoretic” approach, on the other hand, assumes
a prior statistic on the defectiveness of items, i.e., item i is
assumed to be defective with probability pi. The aim in this
case is to identify the defective set with a high probability
[12]. Roughly speaking, there is a lower bound in terms of the
underlying entropy of the unknowns, and an almost matching
upper bound up to a log n factor of the lower bound.

In most existing works, it is assumed that the state of the
items are independent from each other, which is not realistic
in many applications. Group testing for example can identify
the infected individuals using fewer tests, and therefore in a
more timely manner, than individual testing, during the spread
of an infectious disease (eg, COVID-19) [13]–[17]. But the
infection state of individuals are in general correlated, with
correlation levels ranging from high to low, depending on how
close they live: same household (high), same neighborhood,
same city, same country (low). Correlation levels also depend
on other factors such as frequency of contact, the number of
paths between the individuals in the network of interactions.
We elaborate on this further in Section I-A. With this motiva-
tion, we aim to model such correlation, design group testing
techniques that exploit it, and quantify the gain they provide
in reducing the number of tests needed.

Some recent papers have designed and analyzed group
testing under specific correlation models, e.g., [18]–[20]. In
[18], the authors consider correlation that is imposed by a
one day spread of an infectious disease in a clustered network
modeled by a stochastic block model (SBM). Each node is
initially defective (infected) with some probability and its
neighbors become defective probabilistically in the next day.
The authors provide a simple adaptive algorithm and prove
optimality in some regimes of operation and under some
assumptions. In [19], the authors model correlation through
a random edge-faulty graph and design novel near-optimal
group testing techniques for a specific subset of the realizations
of the correlation graph. We consider a similar correlation
model. Through a different approach, we have been able to
take a significant leap forward in that we can accommodate
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all possible realizations of the graph.
In other related works, a graph could represent potential

constraints on testing [21], [22]. In [21], the authors design op-
timal non-adaptive testing strategies where each group should
be path connected. In particular, they use random walks to
obtain the pool of tests. In a follow up work, [22] shows that
either the constraints are too strong and no algorithm can do
better than testing most of the nodes, or optimal algorithms can
be designed matching with the unconstrained version of the
problem. They attain sampling each edge with an optimized
probability r . If a connected component is large enough, the
algorithm tests the entire component. Our approach in this
paper has similarities with [22] in aiming to find parts of the
graph that are large and connected enough so that they remain
connected with a decent probability after realizing the edges.

A. Our Model

We start by motivating the key attributes we capture in
our model, and consider the interaction network for spread
of COVID-19 in a network of people (nodes) towards that
end. There is an edge between two nodes if the corresponding
individuals are in physical proximity for a minimum amount of
time each week. Such individuals are more likely to be in the
same state than those who have been distant throughout. Thus,
firstly, the probability of being in the same state decreases with
increase in the length of paths (i.e., distance in interaction
network) between nodes. Second, infection is more likely to
spread from one node to another if there are many distinct
paths between them. Thus, the probability that two nodes are
in the same state increases with the increase in the number of
distinct paths between them.

We capture correlation through a faulty-edge graph model.
Consider a graph G = (V,E) where the node set V represents
the items and the edge set E represents connections/corre-
lations between them. Suppose each edge is realized with
probability 0 ≤ r ≤ 1. After the sampling, we have a random
graph that we denote by Gr. Each node is either defective or
non-defective. All nodes in the same component of Gr are in
the same state, rendering defectiveness a component property.
We consider that each component is defective with probability
(w.p.) p independent of others. As an example, consider graph
G with five nodes and eight edges, and a sampled graph
realization Gr as shown in Figure 1 (left) and Figure 1 (right)
respectively. When r = 1/3, Gr is realized w.p. ( 13 )

3( 23 )
5.

There are two components in Gr, namely, v1, v4, v5 and v2, v3;
v1, v4, v5 are in the same state, which is defective w.p. p,
independent of the state of v2, v3.

This model importantly captures the two attributes we
discussed: Clearly, a long path between two nodes in G has
a smaller chance of survival in Gr, compared to a short path,
making the end nodes less likely to be in the same state as the
length of the path in G between them increases. Moreover, the
probability that at least one path between two nodes survive
in Gr increases with increase in the number of distinct paths
between them in G, so having distinct paths between a pair of
nodes in G makes them more likely to be in the same state.

v1

v2

v3v4

v5

v1

v2

v3v4

v5

Fig. 1: Left: Graph G; Right: Graph Gr.

We aim to find the minimum expected number of tests
needed to find the defective items with at most εn errors (or
sometimes referred to as error of εn), where ε can potentially
be o(1). To be precise, let #ERR(H) be the number of nodes
mispredicted by an algorithm on graph H . Then we require
to have EH∼Gr

[#ERR(H)] ≤ εn where the expectation is
taken over Gr and possible randomization of the algorithm.

Our approach is to relate the problem to an equivalent inde-
pendent group testing problem with fewer nodes and provide
a basis for comparison and quantification of the improvements
that our methods offer by exploiting correlation. The tests can
not be designed with the knowledge of Gr, only the value of
r is known apriori. In the extreme case of r = 0, the problem
is reduced to the classic group testing with |V | independent
nodes. If r = 1, all components of G remain connected and
hence the problem is reduced to independent group testing
with only components of G. When 0 < r < 1, the problem is
non-trivial, because there can be multiple components, some
with more than one node, and the number and composition of
the components is apriori unknown. Thus, it is not apriori
known which nodes will be in the same state. Our group
testing strategies will seek to circumvent this challenge by
identifying parts of G that are connected enough so that they
remain connected in Gr with a high probability.

We use the following notations for the rest of the paper.
Let CRLTOPT(G, r, p, ε) be the expected number of tests in an
optimal algorithm on graph G with parameters r, probability
of defectiveness p, and an error of εn. Note that we use
expected number of tests here as even if our algorithm is
deterministic, we will use classic group testing as a black-
box which is a randomized algorithm. Let INDEPOPT(n, p, ε)
be the minimum expected number of tests needed for n items
in order to find the defective set with the error probability
at most ε, where each item is independently defective with
probability p. It is noteworthy to mention that the definition
of error in INDEPOPT is different from CRLTOPT. In their
design of INDEPOPT, they ensure that with probability 1− ε
all nodes are predicted correctly, and with probability ε at least
one node is mispredicted, which is also the error defined in
INDEPPOT in our notation. When clear from the context, we
may drop p, r, ε from the notations.

B. Contributions

We obtain upper and lower bounds on the number of group
tests needed to determine the states, defective or otherwise,
of individual nodes in a large class of interaction graphs
in presence of correlation among the states of nodes. We
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progressively consider 1) cycles and trees (about n links), 2)
d−regular graphs (about dn/2 links) and 3) stochastic block
models or SBM (Θ(n2) links). The correlation is captured
by the factor r (see Section I-A). The bounds are obtained
in terms of the number of tests needed when the states are
independent, and help us quantify the efficiency brought forth
by group testing in terms of r.

For trees and cycles, we prove an upper bound on the
optimal number of tests in terms of the number of group tests
when there are n log(1/r) independent nodes. Note that one
can trivially determine the states of each node by disregarding
correlation and testing among n nodes (e.g. using classic group
testing techniques). Our upper bound therefore shows that
group testing can reduce the tests by a factor of log(1/r),
which is less than 1 when r > 1/2. As r approaches 1
the multiplicative factor reduces even further implying even
greater benefits due to group testing. Our lower bound, on the
other hand, shows an improvement factor (1− r).

For d−regular graphs we prove new bounds for the dis-
tribution of components. This leads to a lower bound that is
expressed as a sum series depending on r and n. We further
prove an upper bound for a specific 4-regular graph, namely
grid, in terms of the number of group tests when there are
n(1− r) log(1/r) independent items. Thus, the improvement
factor is (1− r) log(1/r), as opposed to only log(1/r) for
trees; this hints us that group testing gets more efficient
drastically for denser graphs.

SBM divides network into communities such that nodes
in the same community are more connected than nodes in
different communities. We show that the reduction in the
test count due to group testing can be classified into three
regimes: 1) strong intra-community connectivity but sparse
inter-community connectivity, which reduces the effective
number of independent nodes to the number of communities,
2) fully connected graph, thus, all nodes have the same state
3) most of the nodes are isolated, thus states of all nodes
are independent. The number of tests in 1) and 3) can be
determined from the characterizations of networks in which
all nodes are independent, and only one test is necessary in
2).

II. A LOWER BOUND FOR SPARSE GRAPHS

In this section, we give lower bounds for the number of tests
needed when the underlying graph has o(n2) edges. Cycles
(n edges) and trees (n− 1 edges) belong to this category for
example. We obtain these bounds by reducing the problem to
the number of tests needed for the independent case.

Let C(Gr) be the number of components of Gr. Then:

Lemma 1. For each realization of Gr with C(Gr) compo-
nents, we have

INDEPOPT(C(Gr), p, εn) ≤ CRLTOPT(G, r, p, ε).

Remark 1. Note that the bound is non-trivial when ε < 1/n,
and this error or smaller errors can be satisfied in the
algorithms in [12].

We now obtain a concentration result on the random variable
C(Gr) in terms of the number of edges m.

Lemma 2. Let δ>0. With probability 1−δ we have

|C(Gr)− E[C(Gr)|] ≤ O(
√
m log 1/δ).

Specifically, when E[C(Gr)] = cn for a constant c, and m
is o(n2), with high probability the number of components is
within cn± o(n)

√
log 1/δ.

The above concentration result has been obtained from an
application of classical results on Edge Exposure Martingale
and Node Exposure Martingale defined on Graphs (in [23]).
Roughly speaking, the edges (respectively, nodes) of the
graph are exposed sequentially and martingales are defined by
applying a desired graph function to the exposed set of edges
(respectively, nodes). Using these martingales, concentration
results can be obtained for any function of the graph with a
desired edge Lipschitz condition [23]. Considering the number
of components as the graph function, the above lemma follows
from these classical concentration results (see [23, Chapter 7]).

We can now obtain the following specialized result for a
cycle or a tree:

Theorem 1. For a cycle or a tree, G,

INDEPOPT((1− r)n− 10
√

n log n, p, εn)

≤ CRLTOPT(G, r) +O(1/n).

Proof. In a tree, by removing each edge we get one more
component, so after removing k edges the tree and the cycle
respectively has k + 1 and k components.
Gr is obtained by removing each edge in G w.p. 1− r, so

E[C(Gr)|] is 1 + (1 − r)(n − 1) for trees, and 1 + (1 − r)n
for cycles. By Lemma 2 and δ = 1/n2, C(Gr) is (1− r)n±
O(

√
n log n) with probability 1−1/n2. The difference in tests

is at most n, and since the difference from (1− r)n exceeds
O(

√
n log n) w.p. 1/n2, the expected difference is O(1/n).

Applying Lemma 1 thus completes the proof.

III. AN UPPER BOUND FOR GRAPHS WITH A FEW EDGES:
CYCLES AND TREES

In this section, we provide algorithms to find the defective
items and provide theoretical bounds. We start with a simple
cycle, and subsequently generalize the method to devise algo-
rithms for any tree. Note that an algorithm for arbitrary trees
provides potentially suboptimal algorithms for general graphs,
by just considering a spanning tree of it.

First, we provide an algorithm for cycles.
1) Let l = max{ log[1/(1−ε/2)]

log 1/r , 1}. Partition the cycle into
dn/le paths P1, P2, . . . , Pdn/le of the same length l,
except one path that may be shorter.

2) for each path, choose one of its nodes at random and let
the corresponding nodes be vP1 , vP2 , . . . vPdn/le .

3) Use an INDEPOPT(dn/le, p, ε′) algorithm (by [12, The-
orem 2] for adaptive or [12, Theorem 4] for non-
adaptive group testing) to find the defective items among
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vP1 , vP2 , . . . vPdn/le where ε′ < ε
2 and the probability of

being defective equals to p.
4) Assign the state of all the nodes in Pi as vi for all i.
Note that for each i, the defectiveness probability of vi is p.

The probability that Pi is actually connected after a realization
is rl−1. So the probability that Pi is not in the same state of
vi is 1−rl−1. Then assuming that we detect all vi’s correctly,
the error in G is at most dn/le · (1 − rl−1) · l. By replacing
l = max{ log[1/(1−ε/2)]

log 1/r , 1}, the error becomes less than εn/2.
But we might also have ε′ probability of error for the vi’s
(given the criteria set in INDEPOPT), means with probability
1−ε′ all the nodes are predicted correctly, and with probability
ε′ we have at least one mispredicted node, and at most n
mispredicted nodes. So the total error from this part is at most
ε′n < εn/2. Then we have the following upper bound:

CRLTOPT(Cycle, r, p, ε) ≤ INDEPOPT(dn/le, p, ε′). (1)

We now generalize the ideas for trees. As before, we
partition the graph into dn/le groups of l nodes, find the
probability of them being connected in a random realization,
and then optimize it over l. At a high level, we try to group
nodes that have small paths to each other, as shorter paths
remain in the graph with higher probabilities.

Definition 1. Let S ⊆ V of a graph G. The smallest
connecting closure of S is a subset S′ ⊆ V such that the
induced graph over S ∪ S′ is connected.

For example, in Figure 1, if S = {v1, v5}, then S = {v4},
as S becomes connected once v4 is added to it.

Lemma 3. Let G be a tree with n nodes. Given l ≤ n there is
a partition of the nodes into dn/le groups of size l (except one
that may have fewer nodes) such that the size of the smallest
connecting closure for each group is at most l.

Theorem 2. Consider a tree with n nodes and let l =
max{ log[1/(1−ε/2)]

2 log 1/r , 1}. Let ε′ < ε/2. Then there is an algo-
rithm that uses INDEPOPT(dn/le, p, ε′) tests and finds the
defective set with at most ε · n errors. I.e.,

CRLTOPT(G, r, p, ε) ≤ INDEPOPT(dn/le, p, ε′).

Proof. Consider the following algorithm:
1) By Lemma 3, partition the tree into dn/le groups

g1, g2, . . . , gdn/le of the same length l, one group might
be shorter than the other ones.

2) For each group, choose one of its nodes at random and
let them be vP1

, vP2
, . . . vPdn/le .

3) Use an INDEPOPT(dn/le, p, ε′) algorithm to find the
defective set among vP1

, vP2
, . . . vPdn/le .

4) Assign the state of all the nodes in gi as vi, for all i.
First, we calculate the probability that gi is connected. By
Lemma 3, we know that each gi has the property that its
smallest connecting closure is less than or equal to l. This
ensures that at most l edges (over the edges already in gi) are
needed to to make gi connected. Therefore, the probability of
gi be connected is at least r2l. So the probability that gi is

not in the same state as vi is at most 1− r2l. The rest of the
proof revolves around proving that the total error is less than
εn as was done for cycle and this completes the proof.

IV. GRAPHS WITH MORE EDGES: GRID AND SBM

In this section, we focus on graphs that potentially have
many edges. As the number of edges increases, the correlation
between nodes increases even when r is not large. We know
that there is a threshold phenomenon in some edge-faulty
graphs, meaning that when r is below a threshold, there are
many isolated nodes (and hence many independent tests are
needed) and when r is above that threshold, we have a giant
component (and hence a single test suffices). Most famously,
this threshold is logn

n for Erdős-Rényi graphs. When G is a
random d-regular graph, that is, it is drawn uniformly from the
set of all d-regular graphs with n nodes, 1

d−1 is a threshold
almost surely in Gr [24].

We first study a (deterministic) 4-regular graph, known
as the grid1 and then provide near-optimal results for the
stochastic block model. For deterministic graphs, the threshold
results of random d-regular graphs (as in [24]) do not apply
because the specific chosen graph may not be among the
“good” graphs that constitute the almost sure result. We
develop new statistical results on the number of components
in the corresponding Gr.

A. The Grid

A grid with n nodes and side length
√
n is a graph where

nodes are in the form of (a, b) : 1 ≤ a, b ≤
√
n. Node (a, b)

is connected to its four close neighbors (if exist), namely (a−
1, b), (a+ 1, b), (a, b+ 1), (a, b− 1). Border nodes (with a ∈
{1,

√
n} or b ∈ {1,

√
n}) might have three or two neighbors.

The first step is to obtain a lower bound on the expected
number of components in Gr. For this one first seeks the
expected component size that nodes would belong to, see [23],
[24]. Consider the following process. Pick a node v ∈ V (G),
mark it as processed, and let it be the root of a tree. For each
u ∈ V (G) that is not processed and is a neighbor of v, uv is
realized w.p. r and added as a child of v. The same process
is repeated for each realized u in a Breath First Search (BFS)
order. When the process ends, there is a tree with root v,
and the expected size of the tree is the expected size of the
component that v ends up in.

An example is show in Figure 2. Node v11 is the root
(colored in blue), and the children that are realized are in
green, and the children that are not realized are in red. The
component would be {v11, v12, v7, v2}.

By repeating the process for each node that is not processed
yet, we get a spanning forest. The expected number of com-
ponents in the forest is the expected number of components in
Gr. Here, the challenge is that we don’t know the number of
available (unprocessed) neighbors of a node. It highly depends
on the previously chosen nodes, especially when d is small,
like in the grid. We circumvent this issue by analyzing an

1The degree regularity does not hold on the boundaries of the grid.
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v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

v11 v12 v13 v14 v15

v16 v17 v18 v19 v20

v21 v22 v23 v24 v25

Fig. 2: An example of the procedure described in Sec-
tion IV-A, starting with border node v11.

infinite regular tree process that effectively corresponds to a
more connected graph and therefore leads to the desired lower
bound.

1) 3-regular Trees: Consider an infinite tree with root v
such that each node in the tree has three children and each
edge is realized w.p. r. Let C(v) be the component that v ends
up in. The following lemma approximates the distribution of
|C(v)|.

Lemma 4. Under the above process and for t ∈ N,

P (|C(v)| = t) =
1

2t+ 1

(
3t

t

)
rt−1(1− r)2t+1.

Proof. Let T be an embedded tree with t nodes. In order for
T to be realized, all the edges in T should be realized and the
rest of the edges that have an end node in T should not be
realized. There are t− 1 edges in T , and each node has three
potential edges, so there are 2t+1 edges that are not realized.
So T is realized w.p. rt−1(1− r)2t+1. We now only need Ct,
the number of trees with t nodes and v as the root. Using a
recursive argument we show that Ct has the same form as of
second-order Catalan numbers with solution Ct = 1

2t+1

(
3t
t

)
.

Full proof is provided in the long version [25].

In the long version [25] we prove a threshold 1/3 beyond
which the probability of having infinitely large components is
non-zero. For r ≤ 1

3 , the expected component size is:

E(|C(v)|) =
∞∑
t=1

t

2t+ 1

(
3t

t

)
rt−1(1− r)2t+1 (2)

The proof generalizes to general d−regular tree processes.
2) A Lower Bound for the Grid: In the BFS Spanning

Forest of grid, any node in the tree, besides the root, has at
most three children. If we choose the root from the border of
the grid at each step, the root also has at most three children.
Then, a random 3-regular graph is more connected than the
trees appear in the process. Therefore the expected component
size that we found in (2) provides an upper bound on the
expected component size in the grid. So a lower bound on the

number of components for 3-regular graphs is a lower bound
for the grid. Let NC be the number of connected components
as captured by the 3-regular tree process. This process is
symmetric over all the nodes, so E[NC] = |V (G)|/E[C(v)].
Then immediately we have the following result.

Theorem 3. For a grid with n nodes and r ≤ 1/3, we have

E(NC) =
n∑∞

t=1
t

2t+1

(
3t
t

)
rt−1(1− r)2t+1

' n

1−r
r

√
3
4π

∑∞
t=1

√
t

(2t+1) (
27
4 r(1− r)2)t

.

Corollary 1. Similar to Theorem 1, by using Lemma 1 in
conjunction with Theorem 3, we get

INDEPOPT(
n

1−r
r

√
3
4π

∑∞
t=1

√
t

(2t+1) (
27
4 r(1− r)2)t

, p, εn)

≤ CRLTOPT(Grid, r) +O(1/n).

3) An Upper Bound for the number of tests in a Grid:
We partition the grid into subgrids of length k, where k is
to be optimized, and compute the probability of error for
each subgrid. We first estimate the probability that a subgrid
becomes connected.

Theorem 4. Let Pk be the probability that a grid of length
k > 1 becomes connected when each of its edge is realized
with probability r. Then we have:

Pk ≥ rΘ((1−r)k2) = eΘ(log(r)(1−r)k2)).

Now similar to Theorem 2, by setting error probability of
each group small enough, that is 1 − Pk < ε/2, we get k <√

log(1−ε/2)
(1−r) log r . Then the error is less than εn with at most n/k2

independent node tests with error probability ε′ < ε/2.

B. The Stochastic Block Model

A stochastic block model has g clusters of size k = n/g,
where there exists an edge between any pair of nodes in the
same and different cluster w.p. q1, q2 respectively, and q2 < q1.
Gr can be described similar to G except that r1 = rq1 and
r2 = rq2 replace q1, q2. Here, we assume that k � log n. We
prove in [25] the following characterization of the components
and therefore the number of tests as follows:

Theorem 5. • If r1 ≥ 100 log n
k and 1 − (1 − r2)

k2 ≥
100 log g

g , then with high probability G is connected. (first
regime, one test needed)

• If r1 ≥ 100 log n
k and 1 − (1 − r2)

k2 ≤ 1
100g , then with

high probability each cluster is connected but most of the
clusters are isolated. (second regime, g independent tests
needed)

• If r1 ≤ 1
100k and r2 ≤ 1

100n , then with high probability G
has many isolated nodes. (third regime, Ω(n) independent
tests needed)

• If r1 ≤ 1
100k and r2 ≥ 100 log n

n , and g > 1, then with
high probability G is connected. (fourth regime, one test
needed)
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