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Abstract— COVID-19 and the ensuing vaccine capacity con-
straints have emphasized the importance of proper prioriti-
zation during vaccine rollout. This problem is complicated by
heterogeneity in risk levels, contact rates, and network topology
which can dramatically and unintuitively change the efficacy
of vaccination and must be taken into account when allocating
resources. This paper proposes a general model to capture a
wide array of network heterogeneity while maintaining compu-
tational tractability and formulates vaccine prioritization as an
optimal control problem. Pontryagin’s Maximum Principle is
used to derive properties of optimal, potentially highly dynamic,
allocation policies, providing significant reductions in the set of
candidate policies. Extensive numerical simulations of COVID-
19 vaccination are used to corroborate these findings and
further illicit optimal policy characteristics and the effects of
various system, disease, and population parameters.

I. INTRODUCTION

Since its beginning in December 2019, the COVID-19
pandemic has resulted in nearly 500 million infections and
over 6 million deaths as of March 2022 [1]. Vaccines
have proven to be the most effective countermeasure to the
pandemic by limiting further transmission and protecting
especially vulnerable populations [2]. During its early stages,
the vaccination drive was heavily capacity constrained with
demand far outstripping supply and administration capability
— a challenge that continues to plague Low- and Middle-
Income Countries (LMICs) [3]. This is bound to be the case
for vaccines developed for every infectious disease. Under
such constraints, governments and public health organization
must make the critical choice of whom to vaccinate first: 1)
those who are likely to transmit the disease most, 2) those
who are at risk for developing a serious form of the disease
due to age or comorbidity, or 3) a combination of the first and
second set. For COVID-19 most public health bodies opted
for the second category first, but was it the optimal choice
even if we consider the limited objective of minimizing say
only the fatality count?

To appreciate the complications in resolving this decision
process consider the example scenario of a retirement com-
munity, which comprises of two categories of individuals:
1) residents and 2) employees who serve the residents (eg.
essential service providers). The residents have an increased
risk of developing a serious form of the disease due to age,
while employees who are younger usually suffer from mild
symptoms even when infected, but transmit the disease to
a large number of individuals due to their contacts with
large and dynamic sets. The residents usually come in

The authors are with the Department of Electrical and Systems Engi-
neering at the University of Pennsylvania, Philadelphia PA 19104.

contact with the employees regularly and with other residents
infrequently. Thus, the residents have a high contact rate
with the employees and a low contact rate among each other.
Suppose our goal is to minimize the fatalities and only the
residents are at risk of succumbing to the disease.

The question now is whether the optimal vaccination pol-
icy first vaccinates the residents, the employees, or resorts to
a potentially complex combination of the two extremes. The
answer is far from clear even under the above simplifying
assumptions. For example, it is entirely conceivable that the
optimal strategy will first vaccinate the residents or that
it may vaccinate the employees first, particularly when 1)
the number of employees is much smaller than the number
of residents, 2) contact rates between the employees and
residents is much higher than that between residents, or 3)
vaccination capacity is low. In this scenario, it will take a
long time to vaccinate a substantial number of residents if the
decision is to vaccinate the residents first, meanwhile if some
employees imbibe the disease they can spread the disease to
a large number of residents who are yet to be vaccinated
leading to a large death count. In contrast, the small number
of employees can be vaccinated in a short time, thus the
disease can now spread among the residents only through
direct contacts between them which happen infrequently.
Thus, the disease spreads slowly, allowing enough time for
the residents to be vaccinated before a substantial fraction
among them incurs the disease. The optimal policy may also
in principle be a complex temporal combination of the two
extremes. We therefore need a systematic methodology to
determine the optimal strategy which is the focus of this
paper.

The challenge in determining the optimal vaccination
strategy is multi-fold. First, the populations are naturally
heterogeneous with different individuals exhibiting different
social contact patterns and risk factors. Yet, considering
networks where each individual is a separate entity usually
leads us to analytical intractability and numerical infeasibility
because of the curse of dimensionality. In contrast, homoge-
neous abstractions, though both numerically and analytically
tractable, lose the essence of the system. We resolve this
dilemma by grouping different sections of the populace in
accordance with their risk factors and contact rates. Each
group is referred to as a cluster, and the individuals in
the same cluster are assumed to be statistically identical in
terms of risk factors and contact rates among each other and
across clusters. The contact rates between clusters depend on
pairs in question. This clustered modeling provides a tunable
tradeoff between retaining analytical and numerical tractabil-
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ity and capturing the inherent heterogeneity. Vaccination in
different clusters however remains coupled due to capacity
constraints on overall rate of vaccination across all clusters
together.

We subsequently formulate the determination of the opti-
mal vaccination strategy that attains a global objective, eg,
minimizing the fatality count, as an optimal control prob-
lem. The formulation accommodates arbitrary time-varying
combinations of vaccination strategies that potentially si-
multaneously vaccinate individuals from different clusters
subject to the capacity constraints at rates that can constitute
complex functions of time. Despite the rich decision space,
we prove that there exist optimal vaccination strategies
which devote the entire vaccination capacity to one group
at a time, except when the available capacity exceeds the
number of individuals who are yet to be vaccinated in some
groups, in which case, the spare capacity can be directed to
other groups. These optimal vaccination strategies are mixed
only during such limited durations. This result implies that
complicated decision strategies involving arbitrary mixture
of vaccination rate allocation across groups need not be
considered; such policies can not usually be implemented
any way.

Ideally, we would like the optimal vaccination strategy to
be even simpler, e.g. one that starts with a group, vaccinates
it in entirety and then moves on to another group. That is, a
bang bang strategy with the number of jumps equaling the
number of groups less 1. This is because only policies with
a limited number of switches between groups are likely to
be implemented in practice. Here we first obtain a negative
result which shows that the optimal policy may have a greater
number of switches. Subsequently, through an extensive
numerical investigation we show that the negative result
arises only for limited ranges of parameters, mostly there
are no extra switches. Even when the number of switches
exceeds the number of groups the difference is small. For
our numerical results we focus on the simplest scenario that
captures the heterogeneities that arise in practice. Specifically
we focus on a scenario in which there are three distinct types
of individuals: high risk (65+ yo, immunocompromised,
etc.), high contact (essential workers, healthcare workers,
etc.), and baseline.! These categories allow us to account
for the disparate effects of COVID on people with underly-
ing conditions [4] and individuals with high centrality and
dynamic contacts who may act as super-spreaders [5]. This
is especially important for settings like retirement homes
where high risk individuals are overrepresented or LMICs
which exhibit dramatically different contact networks and
age structures [6].

The existing literature and contributions of our work are
detailed in Section II. We then introduce our model and for-
mulate our optimal control problem (Section III). In Section
IV we employ PMP to determine structural properties of
optimal policies, followed by numerical results (Section V)

IThe group with high contacts and high risk is omitted because it is a
relatively small demographic, and eliminates the need to tradeoff between
prevention and protection.

to corroborate and contextualize our findings. For brevity,
additional numerical results and extensions can be found in

[7].
II. RELATED WORKS

There is a long history of mathematical modelling applied
to epidemiology and the control of epidemics [8], [9], [10],
[11]. These efforts can broadly be categorized as either
graph-based models or homogenized models [12]. Graph-
based models have the flexibility to consider arbitrary topolo-
gies [13] and individual heterogeneity [14], but suffer from
computational intractability. In fact, optimization of control
measures over arbitrary graphs is provably NP-hard [15],
leading to a focus on approximation algorithms [16], [17].

As a result, homogenized models, most notably the SIR
compartmental model [18] and its variations [19], [20], are
often used to study the control of epidemics. These models
can yield elegant, interesting, and practical applications (e.g.
[21]), but often lack the heterogeneity and flexibility to
properly address the multitude of factors that affect the
spread and control of infectious diseases. Augmented com-
partmental models, often incorporating disease stages or
age stratification by expanding the state space [22], [23],
incorporate particularly impactful forms of heterogeneity to
chart a middle ground between graph-based models and full
homogenization.

We build upon the framework proposed in [24], imbuing
the compartmental model with generalized clusters of agents
of different types, allowing us to capture heterogeneity in
contact rates, risk factors, and network topology. We add a
constraint on the number of vaccines applied at any time
to account for shortages in vaccine supply or administra-
tion capacity. This constitutes a mixed path constraint on
both the state and control [25] with a significant effect
on optimal control structure and system dynamics [26],
[27]. The combination of the mixed path constraint and
the heterogeneity of our model allows us to answer the
questions of vaccine prioritization, the crux of our modelling
and analytical contributions.

Our application of this model to COVID-19 vaccination
also constitutes a significant contribution. There have been
a number of works studying COVID-19 vaccine allocation
strategies [28]. [29] considers a few age-based vaccination
policies in an augmented compartmental model. [30] con-
siders a similar stratification while optimizing over initial
static vaccine allocations. A number of other works have
considered factors such as essential workers or geography,
most still relying on simulation or a harsh restriction of the
set of possible vaccine policies [31], [32], [33], [34]. By
application of optimal control and PMP, we optimize over a
much broader set of feasible policies while incorporating a
more generalized framework for heterogeneity and cluster-
ing.

III. VACCINE PRIORITIZATION MODEL

Throughout this paper, we make use of the results of
[35], allowing us to describe the evolution of a pandemic
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via a system of ordinary differential equations. We will
first describe a simplified SIRD model of a pandemic in a
heterogeneous population. This will prove useful in deriving
theoretical results before employing an expanded state space
to accurately depict stages of COVID-19 infection for our
numerical results in Section V. It should be noted that the
simplified model maintains the essential components that
dictate the structure of optimal policies broadly. The addition
of intermediate states and asymptomatic infection does not
significantly affect these findings.

A. System Dynamics

Assume a network of N individuals partitioned into three
types of size N1, No, N3 corresponding to high risk, baseline,
and high contact groups, respectively. Each individual exists
in one of four states: susceptible (S), infected (I), recovered
(R), and deceased (D).

A susceptible individual of type ¢ becomes infected upon
interacting with an infected person of type j at rate 3;; /N =
Bji/N with (1, = Ba; < f3;/C where C is the minimum
ratio between high contact rates and baseline. The length of
the infected period is an exponential random variable with
mean Wi after which a person either dies with probability
m; or recovers with probability (1 — m;). It is assumed
that mg = mg < m;y to delineate the high risk group.
Define M = ;’:—; to be the mortality ratio between the risk
groups. Susceptible individuals of type ¢ are also vaccinated
at a rate of u;, leading them directly to the recovered state.
The maximum instantaneous vaccination rate is Vp. It is
assumed that once in the recovered state reinfection is not
possible and that the total number of individuals of each type
remains constant. We denote the fraction of individuals who
are susceptible, infected, recovered, and dead at time ¢ by
Si(t), Ii(t), Ri(t), and D;(t), respectively?.

This engenders the following set of ordinary differential
equation describing the system:

3

Si=—5; Zﬂjifj — Siu; (1)
j=1
' 3

Ii=8 Bul; — Iy (1b)

j=1
Ry = Siu; + Liyi(1 —my) (Io)
D; = Iiyim (1d)
We will use V(t) = Y27 Siu; to denote the vaccine

capacity used at time ¢. Note that, while we focus on three
clusters corresponding to high contact, high risk, and baseline
groups, this framework (as well as Thm. 1) generalizes
to any number of clusters with arbitrary contact rates and
risk parameters. Partitioning could more generally be based
on geography, risk factors, contact rates, or contact tracing
data. It can also be augmented with more stages of disease
progression as in Section V.

2The time argument is often omitted for clarity.

B. Objective and Optimal Control Formulation

We adopt overall mortality as our objective function (in-
cluding a terminal cost for remaining infected individuals)
and assume a time horizon 7" > %g) so that there is sufficient
time to vaccinate all susceptibles. This yields the following

optimal control formulation

3
minimize Y D;(T) + m;1;(T)
1=1
subject to (1)
Vi(t)<Vo Vtel[0,T] 2
2(0) = z9, xo = 0

where x refers to the full state vector and x( its correspond-
ing initial condition.

Remark 1: The system described by (1) with nonnegative
initial conditions has a unique state solution which satisfies
the initial condition and state constraints of (2) ([24], Theo-
rem 1). This allows us to drop the state constraints in further
considerations.

IV. OPTIMAL VACCINE PRIORITIZATION

Solving (2) directly is intractable as it would require
optimizing over uncountably many potential control policies.
Instead, we use PMP to obtain necessary conditions for an
optimal control from which we discern structural properties
[36], [37].

We first formulate the Hamiltonian and Lagrangian as
follows:

3
Moo=y (NS + M = Lryimi) (3)
i=1
3
L=H—p <Z Siu; — V0> €
i=1

where the A costate functions are absolutely continuous and
satisfy

. oL : oL

A= M= (5)
! 05, ¢ oI
0=A(T) —m; = N(T) (©6)

and p is an integrable function satisfying

3
1z (Z Siug — Vo) =0, pu(t)>0ae. (N
i=1

ni(t) = =AYS; — uS; a.e. where n;(t) € Nio1y(uj (1))
(®)

where Npg 1) denotes the normal cone to [0, 1].

This leads immediately to the following property of the
costate variables which will prove useful while discerning
the structure of optimal vaccination policies.

Lemma I: For all t € [0,T) and i = 1,..., M, Xl <0,
A¥ < 0and M — )Y <.

Intuitively, the costate variables can be thought of as
shadow costs associated with their respective states (see [37]
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Sec. 3.3.4). In this context, Lemma 1 states that marginal
increases in the number of susceptible or infected individuals
increase the objective function and the associated increase is
greater for infected individuals.

PMP then states that u* € argmax H where u* refers to
an optimal control function. Plugging in expressions for H
and (la)-(1d), we obtain:

3
u*(t) € argmax,, o, Z —/\fSiu,- 9)
i=1
where Y = {v:0 =2 v =< 1,23’:1 Siv; < Vp} denotes the
set of admissible controls.

Note that (9) provides a large and convenient reduction
in the set of potentially optimal vaccination policies which
must be considered summarized in the following theorem.

Theorem 1: Suppose without loss of generality that
—A9S, > —\JS, > —\ZS. at time t where a,b,c €
{1,2,3}. Then there exists an optimal control which takes
the following form:

u) (t) = min <17 Sa(‘;))
. = mi Vo — u:(t)sa(t)
ui (t) = min <1, Sb(t))
w(t) = min <1, Yo “a@)Sgit()t) ui <t>sb<t>)

Further, if ¢o is the first time at which S;(t) < Vj for
some ¢. Then

wi(t) e{SiV(Ot),o} Vit < to

i.e. until £y the optimal controller devotes all vaccine capacity
to one group at a time

Put simply, as much vaccine as possible is allocated to
the highest priority group with the remainder going to the
next highest priority until no vaccine capacity remains or no
susceptible individuals remain.

To understand the importance and impact of the vaccine
capacity constraint, it is useful to compare the result above
to an unconstrained analogous result.

Lemma 2: If the vaccine capacity constraint is removed
and replaced by a vaccine cost function of the form
Zle h;(u;) with h; concave, then the optimal policy is of
the following form for some ¢y > 0

t <ty

1
0 {0 o

If h; is strictly convex, the transition between u; = 1 and
u; = 0 is continuous and monotonic.
In this case, all clusters that can benefit from vaccination
are vaccinated at full capacity. Without the mixed path
constraint, the planner is not forced to prioritize any one
group over another.

Although Thm. 1 does not provide as drastic a simplifica-
tion of the optimal policy, it still retains the bang-bang-like
structure due to the linearity of Hamiltonian in the control

g

Fig. 1: State diagram of disease progression. Red arrow
indicates exposure to an infectious individual, black arrows
denote natural disease progression, and blue arrow denotes
vaccination.

variable. By allowing us to ruling out mixed policies which
split vaccine capacity between multiple groups, this yields a
significant reduction in the set of potential optimal policies.

This reduction is also of practical importance: policies
which focus on one group at a time are more easily im-
plemented and align with the common practice of phased
vaccine rollout to target groups. To this end, a particularly
implementable class of optimal policies would be those
corresponding to an ordering of the three types in which
a group is fully vaccinated before moving on to vaccinate
another. In such a policy, the number of times the highest
priority vaccine target changes is exactly 2.

Such a structure is not guaranteed by Thm. 1, and, in fact,
there are scenarios in which such policies are not optimal,
however they are relatively uncommon (see Section V).

V. NUMERICAL RESULTS

In this section we detail our numerical investigations of
both structural properties of the optimal policy as well as
the impact of parameters on the optimal and implications
for public health protocol.> To more accurately depict the
progression and spread of COVID, we expand our state
space from the simplified model presented in Section III to
the richer one presented in Figure 1. Our state space now
includes susceptible (S), exposed (E), presymptomatic (P),
asymptomatic (A), infected (I), late-stage infected (L), hos-
pitalized (H), recovered (R), and deceased (D). Intuitively,
our findings for the model described in Section III generalize
as the additional states (E, P, A, L, H) can be collapsed into
the infected state. More specifically, this system retains the
linearity of the Hamiltonian in the control variable.

Optimal contrel with extra switch

High Conlact Vaccinations | |

60

MNumber of Vaccinations
a
S

o 2 4 6 8 10 12 14

Fig. 2: Optimal policy with extra switch

3We use Yop [38] and CasADi [39] to obtain numerical results.
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Fig. 5: Effects of high contact population size on optimal policy

A. Structural Properties of Optimal Vaccination

We solved the optimal control problem over a fine grid
on contact rates, mortality levels, initial state, disease char-
acteristics, population demography, and vaccine capacity,
representing feasible ranges for various localities and COVID
variants [2], [4], [6]. In all solutions, the baseline was
vaccinated last as expected. Any fixed parameters, such as
transition rates between disease states, were set based on
best estimates from the Centers for Disease Control and
Prevention [40].

In 94.3% of instances, the optimal solution found was a
simple bang-bang policy with exactly 2 switches; however a
minority of problems return solutions with an extra switch
as depicted in Fig. 2 where the optimal policy switches from
high contact vaccination to high risk before returning to the
high contact. In these few cases, the closest performing sim-
ple policy incurred only 1.3% more deaths than the optimal.
Based on Thm. 1, extra switches are indicative of two groups
with similar vaccine priority, thus even when the optimal

is not a simple policy, the reduction in deaths is marginal.
This lends justification to the simple, phased vaccine rollout
adopted by most countries for COVID — any marginal gain
of a more complicated policy may even be countered by the
increased logistical difficulty of implementation.

B. Impact of Initial State, Disease, and Network Parameters

Now we focus our attention on choosing between two
simple bang-bang policies (high contact, high risk, then
baseline or high risk, high contact, then baseline) and an-
alyze the effect of certain key parameters and their broader
implications.

1) Initial Infection Prevalence (see Fig. 3):

An increase in initial infection prevalence decreases the
prioritization of high contact individuals in optimal vacci-
nation policies. Intuitively, the primary goal of vaccinating
high contact individuals is to limit the proliferation of the
pandemic. Thus, if the infection is already more widespread,
the marginal benefit of vaccinating super-spreaders is lower.
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Conversely, in the stylized example of a retirement com-
munity from Section I, if initial infections are low, vacci-
nating employees could mitigate the spread of the disease
sufficiently early to curtail mortality among vulnerable resi-
dents.

2) Viral Transmissibility (see Fig. 4):

As viral transmissibility increases, the impact of super-
spreaders is exaggerated and, as such, the prioritization of
high contact individuals increases. The effect of viral trans-
missibility is crucial as new variants emerge with disparate
transmission characteristics. More or less virulent strains can
call for dramatically different public health responses.

3) High Contact Population Size (see Fig. 5):

High contact prioritization decreases with increasing size of
the high contact group. This result seems to conflict with
Thm. 1 where the relative priority of a group is —\;.S,.
Again it is useful to consider the ultimate goal of high contact
vaccinations — to limit spread. As the high contact group
grows, it is less possible to quickly vaccinate the group and
cut off the vectors for disease spread. Thus, the crucial factor
is the time taken to fully vaccinate the group and the disease
spread that can happen in the interim.

In the case of LMICs, where contact rates even for more
senior populations tend to be higher [6], this could require
more targeted vaccination of individuals with particularly
detrimental comorbidities.

VI. CONCLUSION

We present a generalized epidemic model that balances nu-
merical tractability with the heterogeneity required to reason
about vaccine prioritization. By casting vaccine prioritization
as an optimal control problem and applying PMP, we prove
that there exist optimal policies which are not mixed, instead
focusing on one group at a time. Although we show that,
generally, the optimal policy may include extra switches
between priority groups, our extensive numerical results
show that such regimes are uncommon and simple policies
are near-optimal even in these cases. We also illicit the
effects of several important parameters on the structure of the
optimal policy and their implications for vaccine allocation.
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