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Abstract— COVID-19 and the ensuing vaccine capacity con-
straints have emphasized the importance of proper prioriti-
zation during vaccine rollout. This problem is complicated by
heterogeneity in risk levels, contact rates, and network topology
which can dramatically and unintuitively change the efficacy
of vaccination and must be taken into account when allocating
resources. This paper proposes a general model to capture a
wide array of network heterogeneity while maintaining compu-
tational tractability and formulates vaccine prioritization as an
optimal control problem. Pontryagin’s Maximum Principle is
used to derive properties of optimal, potentially highly dynamic,
allocation policies, providing significant reductions in the set of
candidate policies. Extensive numerical simulations of COVID-
19 vaccination are used to corroborate these findings and
further illicit optimal policy characteristics and the effects of
various system, disease, and population parameters.

I. INTRODUCTION

Since its beginning in December 2019, the COVID-19

pandemic has resulted in nearly 500 million infections and

over 6 million deaths as of March 2022 [1]. Vaccines

have proven to be the most effective countermeasure to the

pandemic by limiting further transmission and protecting

especially vulnerable populations [2]. During its early stages,

the vaccination drive was heavily capacity constrained with

demand far outstripping supply and administration capability

– a challenge that continues to plague Low- and Middle-

Income Countries (LMICs) [3]. This is bound to be the case

for vaccines developed for every infectious disease. Under

such constraints, governments and public health organization

must make the critical choice of whom to vaccinate first: 1)

those who are likely to transmit the disease most, 2) those

who are at risk for developing a serious form of the disease

due to age or comorbidity, or 3) a combination of the first and

second set. For COVID-19 most public health bodies opted

for the second category first, but was it the optimal choice

even if we consider the limited objective of minimizing say

only the fatality count?

To appreciate the complications in resolving this decision

process consider the example scenario of a retirement com-

munity, which comprises of two categories of individuals:

1) residents and 2) employees who serve the residents (eg.

essential service providers). The residents have an increased

risk of developing a serious form of the disease due to age,

while employees who are younger usually suffer from mild

symptoms even when infected, but transmit the disease to

a large number of individuals due to their contacts with

large and dynamic sets. The residents usually come in
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contact with the employees regularly and with other residents

infrequently. Thus, the residents have a high contact rate

with the employees and a low contact rate among each other.

Suppose our goal is to minimize the fatalities and only the

residents are at risk of succumbing to the disease.

The question now is whether the optimal vaccination pol-

icy first vaccinates the residents, the employees, or resorts to

a potentially complex combination of the two extremes. The

answer is far from clear even under the above simplifying

assumptions. For example, it is entirely conceivable that the

optimal strategy will first vaccinate the residents or that

it may vaccinate the employees first, particularly when 1)

the number of employees is much smaller than the number

of residents, 2) contact rates between the employees and

residents is much higher than that between residents, or 3)

vaccination capacity is low. In this scenario, it will take a

long time to vaccinate a substantial number of residents if the

decision is to vaccinate the residents first, meanwhile if some

employees imbibe the disease they can spread the disease to

a large number of residents who are yet to be vaccinated

leading to a large death count. In contrast, the small number

of employees can be vaccinated in a short time, thus the

disease can now spread among the residents only through

direct contacts between them which happen infrequently.

Thus, the disease spreads slowly, allowing enough time for

the residents to be vaccinated before a substantial fraction

among them incurs the disease. The optimal policy may also

in principle be a complex temporal combination of the two

extremes. We therefore need a systematic methodology to

determine the optimal strategy which is the focus of this

paper.

The challenge in determining the optimal vaccination

strategy is multi-fold. First, the populations are naturally

heterogeneous with different individuals exhibiting different

social contact patterns and risk factors. Yet, considering

networks where each individual is a separate entity usually

leads us to analytical intractability and numerical infeasibility

because of the curse of dimensionality. In contrast, homoge-

neous abstractions, though both numerically and analytically

tractable, lose the essence of the system. We resolve this

dilemma by grouping different sections of the populace in

accordance with their risk factors and contact rates. Each

group is referred to as a cluster, and the individuals in

the same cluster are assumed to be statistically identical in

terms of risk factors and contact rates among each other and

across clusters. The contact rates between clusters depend on

pairs in question. This clustered modeling provides a tunable

tradeoff between retaining analytical and numerical tractabil-
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ity and capturing the inherent heterogeneity. Vaccination in

different clusters however remains coupled due to capacity

constraints on overall rate of vaccination across all clusters

together.
We subsequently formulate the determination of the opti-

mal vaccination strategy that attains a global objective, eg,

minimizing the fatality count, as an optimal control prob-

lem. The formulation accommodates arbitrary time-varying

combinations of vaccination strategies that potentially si-

multaneously vaccinate individuals from different clusters

subject to the capacity constraints at rates that can constitute

complex functions of time. Despite the rich decision space,

we prove that there exist optimal vaccination strategies

which devote the entire vaccination capacity to one group

at a time, except when the available capacity exceeds the

number of individuals who are yet to be vaccinated in some

groups, in which case, the spare capacity can be directed to

other groups. These optimal vaccination strategies are mixed

only during such limited durations. This result implies that

complicated decision strategies involving arbitrary mixture

of vaccination rate allocation across groups need not be

considered; such policies can not usually be implemented

any way.
Ideally, we would like the optimal vaccination strategy to

be even simpler, e.g. one that starts with a group, vaccinates

it in entirety and then moves on to another group. That is, a

bang bang strategy with the number of jumps equaling the

number of groups less 1. This is because only policies with

a limited number of switches between groups are likely to

be implemented in practice. Here we first obtain a negative

result which shows that the optimal policy may have a greater

number of switches. Subsequently, through an extensive

numerical investigation we show that the negative result

arises only for limited ranges of parameters, mostly there

are no extra switches. Even when the number of switches

exceeds the number of groups the difference is small. For

our numerical results we focus on the simplest scenario that

captures the heterogeneities that arise in practice. Specifically

we focus on a scenario in which there are three distinct types

of individuals: high risk (65+ yo, immunocompromised,

etc.), high contact (essential workers, healthcare workers,

etc.), and baseline.1 These categories allow us to account

for the disparate effects of COVID on people with underly-

ing conditions [4] and individuals with high centrality and

dynamic contacts who may act as super-spreaders [5]. This

is especially important for settings like retirement homes

where high risk individuals are overrepresented or LMICs

which exhibit dramatically different contact networks and

age structures [6].
The existing literature and contributions of our work are

detailed in Section II. We then introduce our model and for-

mulate our optimal control problem (Section III). In Section

IV we employ PMP to determine structural properties of

optimal policies, followed by numerical results (Section V)

1The group with high contacts and high risk is omitted because it is a
relatively small demographic, and eliminates the need to tradeoff between
prevention and protection.

to corroborate and contextualize our findings. For brevity,

additional numerical results and extensions can be found in

[7].

II. RELATED WORKS

There is a long history of mathematical modelling applied

to epidemiology and the control of epidemics [8], [9], [10],

[11]. These efforts can broadly be categorized as either

graph-based models or homogenized models [12]. Graph-

based models have the flexibility to consider arbitrary topolo-

gies [13] and individual heterogeneity [14], but suffer from

computational intractability. In fact, optimization of control

measures over arbitrary graphs is provably NP-hard [15],

leading to a focus on approximation algorithms [16], [17].

As a result, homogenized models, most notably the SIR

compartmental model [18] and its variations [19], [20], are

often used to study the control of epidemics. These models

can yield elegant, interesting, and practical applications (e.g.

[21]), but often lack the heterogeneity and flexibility to

properly address the multitude of factors that affect the

spread and control of infectious diseases. Augmented com-

partmental models, often incorporating disease stages or

age stratification by expanding the state space [22], [23],

incorporate particularly impactful forms of heterogeneity to

chart a middle ground between graph-based models and full

homogenization.

We build upon the framework proposed in [24], imbuing

the compartmental model with generalized clusters of agents

of different types, allowing us to capture heterogeneity in

contact rates, risk factors, and network topology. We add a

constraint on the number of vaccines applied at any time

to account for shortages in vaccine supply or administra-

tion capacity. This constitutes a mixed path constraint on

both the state and control [25] with a significant effect

on optimal control structure and system dynamics [26],

[27]. The combination of the mixed path constraint and

the heterogeneity of our model allows us to answer the

questions of vaccine prioritization, the crux of our modelling

and analytical contributions.

Our application of this model to COVID-19 vaccination

also constitutes a significant contribution. There have been

a number of works studying COVID-19 vaccine allocation

strategies [28]. [29] considers a few age-based vaccination

policies in an augmented compartmental model. [30] con-

siders a similar stratification while optimizing over initial

static vaccine allocations. A number of other works have

considered factors such as essential workers or geography,

most still relying on simulation or a harsh restriction of the

set of possible vaccine policies [31], [32], [33], [34]. By

application of optimal control and PMP, we optimize over a

much broader set of feasible policies while incorporating a

more generalized framework for heterogeneity and cluster-

ing.

III. VACCINE PRIORITIZATION MODEL

Throughout this paper, we make use of the results of

[35], allowing us to describe the evolution of a pandemic
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via a system of ordinary differential equations. We will

first describe a simplified SIRD model of a pandemic in a

heterogeneous population. This will prove useful in deriving

theoretical results before employing an expanded state space

to accurately depict stages of COVID-19 infection for our

numerical results in Section V. It should be noted that the

simplified model maintains the essential components that

dictate the structure of optimal policies broadly. The addition

of intermediate states and asymptomatic infection does not

significantly affect these findings.

A. System Dynamics

Assume a network of N individuals partitioned into three

types of size N1, N2, N3 corresponding to high risk, baseline,

and high contact groups, respectively. Each individual exists

in one of four states: susceptible (S), infected (I), recovered

(R), and deceased (D).

A susceptible individual of type i becomes infected upon

interacting with an infected person of type j at rate βij/N =
βji/N with β1j = β2j ≤ β3j/C where C is the minimum

ratio between high contact rates and baseline. The length of

the infected period is an exponential random variable with

mean 1
γi

after which a person either dies with probability

mi or recovers with probability (1 − mi). It is assumed

that m3 = m2 < m1 to delineate the high risk group.

Define M = m1

m2
to be the mortality ratio between the risk

groups. Susceptible individuals of type i are also vaccinated

at a rate of ui, leading them directly to the recovered state.

The maximum instantaneous vaccination rate is V0. It is

assumed that once in the recovered state reinfection is not

possible and that the total number of individuals of each type

remains constant. We denote the fraction of individuals who

are susceptible, infected, recovered, and dead at time t by

Si(t), Ii(t), Ri(t), and Di(t), respectively2.

This engenders the following set of ordinary differential

equation describing the system:

Ṡi = −Si

3∑
j=1

βjiIj − Siui (1a)

İi = Si

3∑
j=1

βjiIj − Iiγi (1b)

Ṙi = Siui + Iiγi(1−mi) (1c)

Ḋi = Iiγimi (1d)

We will use V (t) =
∑3

i=1 Siui to denote the vaccine

capacity used at time t. Note that, while we focus on three

clusters corresponding to high contact, high risk, and baseline

groups, this framework (as well as Thm. 1) generalizes

to any number of clusters with arbitrary contact rates and

risk parameters. Partitioning could more generally be based

on geography, risk factors, contact rates, or contact tracing

data. It can also be augmented with more stages of disease

progression as in Section V.

2The time argument is often omitted for clarity.

B. Objective and Optimal Control Formulation

We adopt overall mortality as our objective function (in-

cluding a terminal cost for remaining infected individuals)

and assume a time horizon T > S(0)
V0

so that there is sufficient

time to vaccinate all susceptibles. This yields the following

optimal control formulation

minimize

3∑
i=1

Di(T ) +miIi(T )

subject to (1)

V (t) ≤ V0 ∀t ∈ [0, T ] (2)

x(0) = x0, x0 � 0

where x refers to the full state vector and x0 its correspond-

ing initial condition.

Remark 1: The system described by (1) with nonnegative

initial conditions has a unique state solution which satisfies

the initial condition and state constraints of (2) ([24], Theo-

rem 1). This allows us to drop the state constraints in further

considerations.

IV. OPTIMAL VACCINE PRIORITIZATION

Solving (2) directly is intractable as it would require

optimizing over uncountably many potential control policies.

Instead, we use PMP to obtain necessary conditions for an

optimal control from which we discern structural properties

[36], [37].

We first formulate the Hamiltonian and Lagrangian as

follows:

H :=
3∑

i=1

(λS
i Ṡi + λI

i İi − Iiγimi) (3)

L := H− μ

(
3∑

i=1

Siui − V0

)
(4)

where the λ costate functions are absolutely continuous and

satisfy

λ̇S
i = − ∂L

∂Si
λ̇I
i = − ∂L

∂Ii
(5)

0 = λS
i (T ) −mi = λI

i (T ) (6)

and μ is an integrable function satisfying

μ

(
3∑

i=1

Siui − V0

)
= 0, μ(t) ≥ 0 a.e. (7)

ni(t) = −λS
i Si − μSi a.e. where ni(t) ∈ N[0,1](u

∗
i (t))

(8)

where N[0,1] denotes the normal cone to [0, 1].
This leads immediately to the following property of the

costate variables which will prove useful while discerning

the structure of optimal vaccination policies.

Lemma 1: For all t ∈ [0, T ) and i = 1, . . . ,M , λI
i < 0,

λS
i ≤ 0 and λI

i − λS
i ≤ 0.

Intuitively, the costate variables can be thought of as

shadow costs associated with their respective states (see [37]
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Sec. 3.3.4). In this context, Lemma 1 states that marginal

increases in the number of susceptible or infected individuals

increase the objective function and the associated increase is

greater for infected individuals.

PMP then states that u∗ ∈ argmax H where u∗ refers to

an optimal control function. Plugging in expressions for H
and (1a)-(1d), we obtain:

u∗(t) ∈ argmaxu∈U

3∑
i=1

−λS
i Siui (9)

where U = {v : 0 � v � 1,
∑3

i=1 Sivi ≤ V0} denotes the

set of admissible controls.

Note that (9) provides a large and convenient reduction

in the set of potentially optimal vaccination policies which

must be considered summarized in the following theorem.

Theorem 1: Suppose without loss of generality that

−λS
aSa > −λS

b Sb > −λS
c Sc at time t where a, b, c ∈

{1, 2, 3}. Then there exists an optimal control which takes

the following form:

u∗
a(t) = min

(
1,

V0

Sa(t)

)

u∗
b(t) = min

(
1,

V0 − u∗
a(t)Sa(t)

Sb(t)

)

u∗
c(t) = min

(
1,

V0 − u∗
a(t)Sa(t)− u∗

b(t)Sb(t)

Sc(t)

)

Further, if t0 is the first time at which Si(t) < V0 for

some i. Then

u∗
i (t) ∈

{ V0

Si(t)
, 0
}

∀t < t0

i.e. until t0 the optimal controller devotes all vaccine capacity

to one group at a time

Put simply, as much vaccine as possible is allocated to

the highest priority group with the remainder going to the

next highest priority until no vaccine capacity remains or no

susceptible individuals remain.

To understand the importance and impact of the vaccine

capacity constraint, it is useful to compare the result above

to an unconstrained analogous result.

Lemma 2: If the vaccine capacity constraint is removed

and replaced by a vaccine cost function of the form∑3
i=1 hi(ui) with hi concave, then the optimal policy is of

the following form for some t0 ≥ 0

u∗
i (t) =

{
1 t < t0

0 t ≥ t0

If hi is strictly convex, the transition between u∗
i = 1 and

u∗
i = 0 is continuous and monotonic.

In this case, all clusters that can benefit from vaccination

are vaccinated at full capacity. Without the mixed path

constraint, the planner is not forced to prioritize any one

group over another.

Although Thm. 1 does not provide as drastic a simplifica-

tion of the optimal policy, it still retains the bang-bang-like

structure due to the linearity of Hamiltonian in the control

Fig. 1: State diagram of disease progression. Red arrow

indicates exposure to an infectious individual, black arrows

denote natural disease progression, and blue arrow denotes

vaccination.

variable. By allowing us to ruling out mixed policies which

split vaccine capacity between multiple groups, this yields a

significant reduction in the set of potential optimal policies.

This reduction is also of practical importance: policies

which focus on one group at a time are more easily im-

plemented and align with the common practice of phased

vaccine rollout to target groups. To this end, a particularly

implementable class of optimal policies would be those

corresponding to an ordering of the three types in which

a group is fully vaccinated before moving on to vaccinate

another. In such a policy, the number of times the highest

priority vaccine target changes is exactly 2.

Such a structure is not guaranteed by Thm. 1, and, in fact,

there are scenarios in which such policies are not optimal,

however they are relatively uncommon (see Section V).

V. NUMERICAL RESULTS

In this section we detail our numerical investigations of

both structural properties of the optimal policy as well as

the impact of parameters on the optimal and implications

for public health protocol.3 To more accurately depict the

progression and spread of COVID, we expand our state

space from the simplified model presented in Section III to

the richer one presented in Figure 1. Our state space now

includes susceptible (S), exposed (E), presymptomatic (P),

asymptomatic (A), infected (I), late-stage infected (L), hos-

pitalized (H), recovered (R), and deceased (D). Intuitively,

our findings for the model described in Section III generalize

as the additional states (E, P, A, L, H) can be collapsed into

the infected state. More specifically, this system retains the

linearity of the Hamiltonian in the control variable.

Fig. 2: Optimal policy with extra switch

3We use Yop [38] and CasADi [39] to obtain numerical results.
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Fig. 3: Effects of initial infection prevalence on optimal policy

Fig. 4: Effects of baseline contact rate on optimal policy

Fig. 5: Effects of high contact population size on optimal policy

A. Structural Properties of Optimal Vaccination

We solved the optimal control problem over a fine grid

on contact rates, mortality levels, initial state, disease char-

acteristics, population demography, and vaccine capacity,

representing feasible ranges for various localities and COVID

variants [2], [4], [6]. In all solutions, the baseline was

vaccinated last as expected. Any fixed parameters, such as

transition rates between disease states, were set based on

best estimates from the Centers for Disease Control and

Prevention [40].
In 94.3% of instances, the optimal solution found was a

simple bang-bang policy with exactly 2 switches; however a

minority of problems return solutions with an extra switch

as depicted in Fig. 2 where the optimal policy switches from

high contact vaccination to high risk before returning to the

high contact. In these few cases, the closest performing sim-

ple policy incurred only 1.3% more deaths than the optimal.

Based on Thm. 1, extra switches are indicative of two groups

with similar vaccine priority, thus even when the optimal

is not a simple policy, the reduction in deaths is marginal.

This lends justification to the simple, phased vaccine rollout

adopted by most countries for COVID – any marginal gain

of a more complicated policy may even be countered by the

increased logistical difficulty of implementation.

B. Impact of Initial State, Disease, and Network Parameters

Now we focus our attention on choosing between two

simple bang-bang policies (high contact, high risk, then

baseline or high risk, high contact, then baseline) and an-

alyze the effect of certain key parameters and their broader

implications.

1) Initial Infection Prevalence (see Fig. 3):

An increase in initial infection prevalence decreases the

prioritization of high contact individuals in optimal vacci-

nation policies. Intuitively, the primary goal of vaccinating

high contact individuals is to limit the proliferation of the

pandemic. Thus, if the infection is already more widespread,

the marginal benefit of vaccinating super-spreaders is lower.
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Conversely, in the stylized example of a retirement com-

munity from Section I, if initial infections are low, vacci-

nating employees could mitigate the spread of the disease

sufficiently early to curtail mortality among vulnerable resi-

dents.

2) Viral Transmissibility (see Fig. 4):

As viral transmissibility increases, the impact of super-

spreaders is exaggerated and, as such, the prioritization of

high contact individuals increases. The effect of viral trans-

missibility is crucial as new variants emerge with disparate

transmission characteristics. More or less virulent strains can

call for dramatically different public health responses.

3) High Contact Population Size (see Fig. 5):

High contact prioritization decreases with increasing size of

the high contact group. This result seems to conflict with

Thm. 1 where the relative priority of a group is −λS
i Si.

Again it is useful to consider the ultimate goal of high contact

vaccinations – to limit spread. As the high contact group

grows, it is less possible to quickly vaccinate the group and

cut off the vectors for disease spread. Thus, the crucial factor

is the time taken to fully vaccinate the group and the disease

spread that can happen in the interim.

In the case of LMICs, where contact rates even for more

senior populations tend to be higher [6], this could require

more targeted vaccination of individuals with particularly

detrimental comorbidities.

VI. CONCLUSION

We present a generalized epidemic model that balances nu-

merical tractability with the heterogeneity required to reason

about vaccine prioritization. By casting vaccine prioritization

as an optimal control problem and applying PMP, we prove

that there exist optimal policies which are not mixed, instead

focusing on one group at a time. Although we show that,

generally, the optimal policy may include extra switches

between priority groups, our extensive numerical results

show that such regimes are uncommon and simple policies

are near-optimal even in these cases. We also illicit the

effects of several important parameters on the structure of the

optimal policy and their implications for vaccine allocation.
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