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Incompressible active phases at an interface.
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Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active
monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically
its free-boundary dynamics. The surface droplet is described as a general 2-D linear,
incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving
stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts
with itself through its driven internal mechanics and by driving flows in the underlying
3-D Stokes phase. We pose the dynamics as the solution to a singular integral—differential
equation, over the droplet surface, using the mapping from surface stress to surface
velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets,
exact representations for the chiral surface flow are given in terms of solutions to a
singular integral equation, solved using both analytical and numerical techniques. For
a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges
on an orthogonal basis of Bessel functions and allows for efficient computation of the
monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional
edge current, depending on the subphase depth and the Saffman—Delbriick length. Except
in the near-wall limit, these solutions have divergent surface shear stresses at droplet
boundaries, a signature of systems with codimension-one domains embedded in a 3-D
medium. We further investigate the effect of a Hall viscosity, which couples radial and
transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses
are seen to drive inward radial motion, even in the absence of edge tension.
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1. Introduction

In this work, we develop a mathematical description of the free-boundary dynamics
of a two-dimensional (2-D) incompressible droplet moving atop a bulk Stokes fluid.
Following the approach of Soni ef al. (2019), this incompressible surface phase can
be either active or passive, and is described by the most general linear isotropic fluid
model. This model allows a viscous shear stress, an antisymmetric ‘chiral’ stress reflecting
the driven rotation of the fluid constituents and an ‘odd’ Hall stress allowed by the
consequent loss of time-reversal symmetry at the microscopic level. Given its generality,
this model touches upon both classical and emerging areas of fluid dynamics and applied
mathematics, including Langmuir films, mixed dimension boundary value problems,
Euler and quasigeostrophic vortex systems and active matter systems. We briefly describe
connections with these areas before stating our main results.

The interaction of rotating elements in a fluid is a foundational topic in fluid dynamics,
going back to the explication of 2-D point vortices of the Euler equations interacting
through the Biot—Savart law (Saffman 1995). A 2-D patch of constant vorticity interacts
with itself similarly and its dynamics can be reduced to a free-boundary problem (Pullin
1992). The surface quasigeostrophic equations (SQG) of atmospheric physics have their
own singular and free-boundary analogues (Held ef al. 1995; Rodrigo & Fefferman 2004).
Rotational interaction problems also arise, in the guise of so-called active matter, in the
zero Reynolds limit of the Stokes equations where solid particles are driven to rotate
by an external field, or through internal actuation. Ensembles of such particles will
interact through their induced fluid flows, steric interactions and possibly other fields
such as magnetic. These systems can show activity-induced phase separation (Yeo, Lushi
& Vlahovska 2015), crystallization and hyperuniformity Petroff, Wu & Libchaber 2015;
Oppenheimer, Stein & Shelley 2019; Oppenheimer et al. 2022), odd surface waves and
edge currents (Soni et al. 2019), complex interactions of vortical structures (Bililign et al.
2021) and forms of active turbulence (Kokot et al. 2017).

When such many-particle systems are modelled as continuous fluidic materials, novel
internal stresses can arise. Firstly, the driven rotation of the fluid’s constituents gives rise
to an anti-symmetric driving stress. Consequent to the microscopic driving of rotation,
these out-of-equilibrium fluids do not obey time-reversal symmetry and so can possess
an odd or Hall stress which, in its simplest case, is linear in rates of strain and couples
longitudinal and transverse flow components. Examples of such systems include quantum
Hall fluids (Avron, Seiler & Zograf 1995), vortex fluids (Wiegmann & Abanov 2014) and
electron fluids in graphene (Berdyugin et al. 2019). Fluids with an odd viscosity can
exhibit rheological properties and exotic flow phenomena markedly different from their
Newtonian counterparts such as unidirectional edge currents or topological waves (Soni
et al. 2019; Souslov et al. 2019).

Many of the examples above are of rotor assemblies sitting on a 2-D fluid interface
either embedded within, or sitting atop, a viscous fluid bulk. Other active matter systems,
particularly active nematics formed of microtubule bundles and molecular motors, have
been studied in this geometry both experimentally (see, e.g. Sanchez et al. 2012) and
theoretically (see, e.g. Gao et al. 2015). These systems have generally been modelled
as a 2-D incompressible active material covering the entire surface, and the bulk as an
incompressible Stokes fluid driven by the surface shear stress. It has been shown that the
bulk flows can profoundly modify the active surface dynamics, for example by introducing
new length scales of system instability at the onset of active nematic turbulence (Gao et al.
2017; Martinez-Prat et al. 2019). A complementary line of study concerns the turbulent
statistics and intermittency of flows within a flat surface that overlay a turbulent and
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incompressible 3-D bulk (Goldburg et al. 2001; Cressman et al. 2004). Some part of the
complexity of surface flows in this case derives from the 2-D compressibility of the 2-D
surface velocity in their reflection of 3-D inertial turbulence.

Soni et al. (2019) studied theoretically the dynamics of active chiral surface droplets
where the contribution of the underlying bulk fluid was modelled as a simple local drag
term, as is appropriate for the dynamics of large droplets near a solid substrate. This
yields a homogeneous Brinkman equation, with activity-driven boundary conditions, for
the droplets’ in-plane velocity field. The kinematic boundary condition then evolves the
droplet domain. Interactions through the bulk fluid, much less with other droplets, are
completely screened in this near-wall limit. Here, we allow full coupling between the
surface phase and the bulk fluid subphase, allowing the droplet to interact with itself both
through its internal stresses, and through induced 3-D fluid motions. In our formulation
we use the Neumann-to-Dirichlet map for the 3-D Stokes equations in a finite-depth
layer or half-space (Masoud & Shelley 2014) to express the surface velocity as a surface
convolution of a singular kernel with the surface stress, with that shear stress produced by
the surface phase. This relation is quite general and here gives rise to a difficult and novel
free-boundary problem.

As first exploratory problems, we restrict our study here to axisymmetric solutions. To
study rotational flows we determine the activity-driven flows within circular droplets and
in the bulk. To study moving interfaces, we also study domains with holes (annuli) and
study the course of hole closure and how it is affected by system parameters. Our analyses
and computations thereof show that the bulk surface shear stresses diverge as an inverse
square root at the droplet boundary. Nonetheless, despite the divergence, the in-plane
velocities remain bounded and continuous. For the disk, this divergence is associated
with the rotational drive. Singular flows arise in other rotational systems, such as for
an infinitely thin solid disk rotating in a Stokes fluid (Jeffery 1915) whose edge shear
stress diverges similarly, and for the SQG vortex patch problem (Rodrigo & Fefferman
2004), which exhibits logarithmic divergences in tangential surface velocity. An identical
logarithmic divergence is found, in a continuum limit, for planar assemblies of rotating
particles rotating in a Stokes fluid (Yan et al. 2020).

This work also adds to classic work in applied mathematics on the solution of 3-D
mixed boundary value problems in potential theory, which arise when considering elliptic
problems on two or more different domains, each of which has a different boundary
condition that must be satisfied. Such problems, in axisymmetric settings, are frequently
converted into multiple integral equations, and powerful methods have been developed
to extract their near-analytical solutions; see Sneddon (1966) for an overview. These
techniques are not readily applicable as our inhomogeneous forcing does not come from a
prescribed stress or velocity field on any domain. Since the boundary includes a 2-D fluid
monolayer, there is an additional 2-D elliptic problem with its own higher codimension
boundary conditions coupled to the base 3-D one. Other authors have more recently
examined related problems in similar geometries but included simplifying assumptions
such as the complete absence of a vertical flow component (Stone & McConnell 1995)
or a vanishing monolayer viscosity that reduces the order of the monolayer equation
(Alexander et al. 2006). Here, we preserve full generality and formulate a dual integral
equation — in addition to the Green’s function formulation — to obtain a near-analytical
solution for a circular droplet, and demonstrate the formulation as triple integral equations
for flow in an annulus.

We begin by giving the mathematical formulation and governing equations in § 2. The
solution to the general mathematical problem is stated in terms of a Green’s function.
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Figure 1. (a) Schematic of a 2-D monolayer domain D situated on the upper surface of a Stokesian sublayer of
depth H, whose motion generates a shear stress on the monolayer. Outside of D, the surface is stress free. The
inhomogeneous forcing arises from line tension as well as rotational stresses at the boundary of D, represented
by coloured triangles. (b) Top-down view of an annular domain with inner radius R; and outer radius R, and the
corresponding axisymmetric surface flow field U. Note that the rotational traction vectors follow the direction
of the local tangent vector.

We then proceed to specialize the formulation to the axisymmetric case in § 3. In §§4
and 5, we demonstrate the solutions to the discal and annular geometries. An appendix
reviews the experimental system and parameter values, lists the non-dimensional groups
associated with the parameters and considers the solution in the infinite strip geometry.

2. A mathematical model

We consider a surface phase domain D on the upper surface, z = 0, of a layer of passive
3-D Stokes fluid (subphase) of depth H and infinite extent in the x and y directions
(figure 1a). Gravitational forces and curvature of the interface are ignored, and we assume
that the vertical velocity vanishes at the surface z = 0. At z = —H, the 3-D fluid subphase
is in contact with a wall where it satisfies a no-slip condition. We assume that the 3-D
velocity field u and pressure field p of the subphase satisfy the incompressible Stokes
equations

—~Vipp+puVipu=0 and Vip-u=0, (2.1a,b)

where p is the viscosity of the subphase and Vj3p is the 3-D gradient operator
(9/0x,d/dy, 3/97).

Let U be the 2-D fluid velocity field in the z =0 plane. The surface and bulk
velocities are related by continuity: u(x, y, z = 0) = (U(x, y), 0), a notation that captures
the condition that the surface remains flat. Following Soni ef al. (2019), we take the surface
phase in D to be described by a general incompressible and isotropic 2-D fluid with linear
viscous and Hall stresses, and driven by an anti-symmetric stress. And so, firstly, we have

V.U=0, xeD, (2.2)

where V = (d/0dx, d/dy) is the 2-D gradient on the surface. Secondly, the stress tensor, o,
of the 2-D active surface phase takes the form from Soni et al. (2019)

0 =—Pl+ (VU + VU 4+ nz22 — ) + no(V*U + VU"), (2.3)

where P is the planar pressure enforcing that V- U = 0, w = z - (V3p x U) is the scalar
vorticity and §2 is the rotation frequency of the external magnetic field, taken to be
spatially uniform and time independent. The tensors / and J are the 2-D identity and
anti-symmetric Levi-Civita tensors, respectively, while the operator | maps a 2-D vector
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to its rotation by 1/2, i.e. (vy, v2)T = (—va, v1). There are three different viscous moduli
in our model: 7 is a standard shear viscosity that arises from overcoming the magnetic
attraction between nearby dipoles in relative motion, ng is the rotational viscosity that
models friction between neighbouring rotating particles and 7o is the odd viscosity (also
known as the Hall viscosity) that gives rise to viscous forces acting transversely to a
velocity gradient. As first noted in Avron (1998), the odd viscous stress is a non-dissipative
term that is only permissible in 2-D fluids that do not obey local time-reversal symmetry.
Its presence is intimately tied to the anti-symmetric driving stress.

The transverse motion of the surface phase droplet generates a shear stress on the bulk
fluid below, and so we have for u = (uy, us, u3)

0(uy, uz)
M—

V 0 =
9z 7z=0

=f, xeD, 2.4)
which can be interpreted as a boundary condition on the subphase. Outside of the surface
phase domain D we have a simple stress-free boundary condition on the subphase, or

=0, x¢0D. (2.5)
Hence, (2.4) and (2.5) can be combined using a characteristic function y,

0(u1, uz)
l’l/—

; = x(D)(V - 0). (2.6)
Z z=0

Here, it has been assumed that the normal stress of the bulk phase at z = 0 is whatever it
needs to be to maintain surface flatness. This could be achieved, for example, by having a
high surface tension there.

The expression for V - ¢ has a remarkably simple form. Using the notation of the skew
gradient, we note that the scalar vorticity can be written as w = VL . U. It then follows,
using (2.2), that V . (wJ) = —vL(vl.U) = —AU. Similar manipulations yield the
identities V - (V-U) =0 and V - (VU') = —Vw for the divergence of the odd viscous
tensor, which leads to the important consequence that the effect of the odd viscous stress
in the bulk is simply to generate a ‘pressure field” proportional to vorticity. In fact, it is
convenient to define 7 = n + ng and P — P + now so that we may write

V.o =-VP+iV?U, xeD. (2.7)

That is, the active phase is described by a 2-D Stokes equation with the viscosity and
pressure redefined. The fact that (2.7) does not depend explicitly on §2 or 1o implies that
the drive and Hall stress can appear only through boundary conditions. Thus, we have

o(ur, uz)

x(D)(—VP+7V2U) = u
0z =0

: (2.8)

coupled to the Stokes equations (2.1a,b) for the bulk phase.
The surface Stokes equation requires additional, transverse boundary conditions. We
impose a stress balance condition on the surface phase boundary 9D

o-n=ykn, x¢ciD, (2.9)

where y is the line tension, « is the local curvature of 3D and # is its inward facing normal
vector (in the z = 0 plane). In the local Frenet frame of 3D where U = Tt + N#, we find
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that (VU + VU?) - i =2UF — wt, J- A =1, and (VIU + VU?L) - i = 2U; — wht so
that (2.9) can be written as

—P +2n(Ts — kN) + 210Ny + «T)[ap = y«|sD> (2.10)
—1w — 2n(Ny + «T) + 2no(Ts — kN)lop = —2nr$2|5D, (2.11)

where the subscript s denotes differentiation in the direction of 7. This form of the
boundary condition makes it clear that the role of the odd viscosity is to ‘complement’
the shear viscosity by producing a tangential boundary stress that depends on the local
normal velocity and vice versa, thus coupling the flows in the two directions. We remark
that the £2 term in (2.11) provides the inhomogeneous forcing through which a non-trivial
solution arises.

The dynamics of the active surface phase is a free-boundary problem for 9D. If its
velocity is V' then we evolve 9D through the kinematic boundary condition lim,_, 3p(V —
U) - n=0. Here, we assume the limit is taken from the interior of the monolayer,
so that no assumptions are made about continuity of velocity along 0D. Equations
((2.1a,b)—(2.3)), (2.6) and (2.9), together with the conditions Z - u|,—o = 0 and continuity
of subphase and surface phase horizontal velocities at z = 0, yield a complex, but
complete, formulation for the determination of U.

Some length and time scales: the many parameters of the model (Appendix A) give rise
to a number of relevant length and time scales, a detailed analysis of which is provided
in Appendix B. Here, we mention of few. One important length scale, independent of
geometry and activity, is the Saffman—Delbriick length €sp = n/u (Saffman & Delbriick
1975). On length scales smaller than £gp, momentum travels primarily in the plane of
the surface phase, while for length scales larger than £sp, momentum travels through
the subphase as well. For the system at hand, £sp can be between 0.1 and 100 pm,
depending on the viscosity of the subphase. For problems in which the characteristic
size is variable, such as the edge tension-driven closure of a cavity punctured in the
monolayer, the dynamics may take place in both regimes (Jia & Shelley 2022). A related
length scale for surface phase droplets very close to the bottom wall is the penetration
depth § = (Hij/u)'/?. This is the length scale of edge currents driven by the rotational
drive (Soni et al. 2019), and typically measures around 5 wm (roughly 3 particle lengths).
One obvious time scale is that of the rotational drive 7; = 2!, while another is the
relaxational time scale 7, = nR/y driven by line tension; here, R is the characteristic size
of the monolayer. Both arise in the solutions constructed herein, even though the time
scale for rotation is approximately one hundredth of that for relaxation (that is, for the
experiments of Soni et al. 2019).

2.1. A Green’s function formulation for the free-boundary problem

The infinite horizontal extent of the domain makes the problem amenable to classical
Fourier transform methods. Masoud & Shelley (2014) showed that in this geometry, 2-D
Fourier transforming (2.4) in x and y and applying boundary conditions yields the relation

f = pklA(kH)I + B(kH)kk1U, (2.12)
with
A(a) = cotha, (2.13)
and ,
B(a) = a” cotha — 2« + sinh o cosha’ (2.14)
sinh® o — &2
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where k is the 2-D wavenumber with magnitude k and unit vector k. If the surface velocity
further satisfies V - U = 0 everywhere on z = 0, as has been assumed in other works (e.g.
Stone & McConnell 1995; Lubensky & Goldstein 1996; Alexander et al. 2007), (2.12) then
simplifies dramatically to

f = pkA(kH)U = pk coth(kH) U. (2.15)

Such an assumption confers the advantage of making w = 0 and p = 0 in the bulk fluid,
which in turn makes some problems analytically tractable. However, we emphasize that
this simplification does not follow from assuming that V - U = 0 in D alone, even in the
axisymmetric case, so we will not make that assumption here.

Equation (2.12) can be rewritten as

0_L[ 1 B(kH) k]
T pk |AGH)  AGH)[AGH) + B(kH)] A

(2.16)

which can be interpreted as a statement that U is a convolution of f* against some tensorial
Green'’s function Gy, expressible as an inverse 2-D Fourier transform

27 00
G = —— / d¢ / dkki[ —— DU kk] elfreos@=),
2m? Jo 0 pk LAKH) — AKH)[A(KH) + B(kH)]
(2.17)

where r and 6 are the polar coordinates of real space and k and ¢ are the polar coordinates
of Fourier space. We define § = 6 — ¢, change variables, and apply periodicity in g to
obtain

2 00
h= / dﬁ/ dkl[ L, BkH) ZZ} elfreosh,
2m)? Jo 0 n LAGH)  A(kH)[A(kH) + B(kH)]
(2.18)
where Z = cos X — sin BX~ comes from expressing k in the {X, X1} basis. Performing a
Jacobi—Anger expansion (formula 8.511.1 of Gradshteyn & Ryzhik 2007) to evaluate the
integrals over 8, we arrive at

_L * Jo(kr) B B(kH) , o ik
o= 2 dk{A(kH)' AGH)IAGEH) + BUID)] [Jl(k”x” o ]}
(2.19)

where Jy and J; are Bessel functions of the first kind. By the convolution theorem and
(2.6),

U=Gux*[x(D)V-0]=Gnx*[x(D)(—=VP+7V>U)]. (2.20)

This equation holds for all points in the z = 0 plane and, if evaluated inside of D, generates
an integral relation for the unknown U. No standard method exists for its solution. The
first expression involving V - o serves only to emphasize its generality — other surface
stress tensors could be considered. For example, if o is Newtonian, (2.20) could model
a classical incompressible Langmuir film (see Alexander et al. 2006). Equation (2.20) is
likewise applicable to other materials such as active nematic films (e.g. Gao et al. 2015).

Thus, (2.20), together with the incompressibility condition (2.2), the stress boundary
condition (2.9) and the kinematic boundary condition, lim,_, 3p(V — U) - A, where the
limit is taken from the interior of D, completely specify the initial value problem for 0D.
Note (2.20) is easily extended to a domain composed of multiple monolayers.

There are two limits where Gy takes a particularly simple closed form.
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(1) In the limit of infinite H, A(kH) and B(kH) both approach unity with zero slope, and
Gp approaches

1 1
Goo = (/ — 55&5&) . (2.21)

A

Using the fact that I = XX + X%, we can rewrite this expression as

EE::

 dwur’

Go (2.22)

That is, in the case of infinite subphase depth, the Green’s function is proportional to the
classical Stokeslet.

(ii) In the limit of small depth, H — 0, A(kH) — (kH)~' and B(kH) — (kH/3)"'.In
this case, we interpret the formal limit

H [® 3 Ji(k
Go=~—— [ dkykJo(kr)l — >k | J) (kX% + ISOPNESH IS (2.23)
2t Jo 4 kr

using generalized functions. Starting with the orthogonality relation (formula 6.512.8 of
Gradshteyn & Ryzhik 2007)

00 S(tr — 7
/ Ak ko (kryJo 'y = S =) (2.24)
0
and letting ¥ — 0, we find that
* (r)
/ dk kJo(kr) = —. (2.25)
0 r
This can be combined with the convergent integral
o Ji(k 1
/ ek LKD) =, (2.26)
0 kr r
to show
o0 o Ji(k ) 1
/ dk kJ, (kr) =/ dk |:J0(kr) _ r)] =20 _ . 2.27)
0 0 kr r r
Thus,
H [$ 3[/$ 1 1
Go= 1o {(_r): 23 [(ﬂ - —2) 5+ —25&5&]} . (2.28)
| r 4 r r r

We can rewrite the quantity in square brackets by observing that its Fourier transform upon
convolution with f is

A

2n(kk) - f = —2ni%€(ik -f). (2.29)

Since —1/k? is the Fourier transform of the fundamental solution to the Laplace equation,
—ik/k is the Fourier transform of its gradient, namely X/(27r) in two dimensions.
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Applying the convolution theorem to the quantity on the right-hand side of (2.29) thus
establishes the relation

[(@ - rlZ) XX + rlzch;cL] *f = ’; % (V +f), (2.30)
so that
U=Go*f=i|:@l*f—§%*(v-f)] =E[f—§i*(V-f):|. (2.31)
2up | 4r " 4 27r

Taking a divergence and using the fact that V - (x/r) = 218 (x), where 8,(x) is the 2-D
Dirac delta distribution, we arrive at the simple relation

H
V.U=—(V.f). (2.32)
4p
Note that this result is also directly obtainable by letting H — 0 in (2.12), which gives
F= %(/ + 3k U, (2.33)

multiplying by ik, and taking an inverse Fourier transform.
Equation (2.32), in addition to the assumptions that V - U = 0 in D and f = 0 in D,
is sufficient to guarantee that V - U = V . f = 0 on the entire surface so that ultimately

W

G , 2.34
0 T (2.34)
where I" = u/H. Equation (2.20) then becomes

x(D)(=VP+ijV?U) =T'U. (2.35)

That is, at leading order, the forcing is not only linear but local in U, and the equation
of motion reduces to a Brinkman equation. Equation (2.35) can also be derived by taking
a thin film lubrication approximation in the subphase (Barentin et al. 1999; Elfring, Leal
& Squires 2016). The Brinkman equation arises frequently in the modelling of porous
materials and especially Newtonian mono- and bilayers (Evans & Sackmann 1988). It is
readily seen that in this limit, the pressure inside the monolayer is harmonic, and the fluid
velocity outside of the monolayer is zero. Expanding (2.15) further in small H yields

Few( L +™M o Nozro+ ey (2.36)
M\ T 3 - 3 ' '

Thus, in real space the O(H) correction enters as a term proportional to —A U, which has
the effect of slightly increasing the monolayer viscosity (Lubensky & Goldstein 1996).

In summary, the small H limit of the low friction case is the high friction case with
substrate drag coefficient I".

3. The axisymmetric case

We proceed to specialize the integral equation derived above to axisymmetric domains of
either disks or annuli. It is advantageous to consider the radial and azimuthal equations
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separately. To this end, let U = U(r)X + V(r)x* and f = f(r)x + g(r)X". Substituting
into (2.8), we obtain the momentum equations

P _
x(D) (—5 + n/J[U]> =1, (3.1
x(D)nL[V] =g, (3.2)
where we have defined the differential operator

2 19 1
S (3.3)

a2 ror 2

L

For axisymmetric quantities, 2-D Fourier transforms reduce to Hankel transforms
n n [e¢] n e.¢]
U= —Znik/ drrU(r)Jy(kr) — ZTEikJ‘/ drrV(r)Jy(kr), 3.4
0 0
R “ oo R [e¢]
f= —Znik/ drrf(r)Jy(kr) — 27rikl/ drrg(r)Jy(kr). 3.5
0 0

Substituting these expressions into (2.16) yields the relations

1
k[AKH) + B(kH)

foo drrU(r)J, (kr) = ] /OO drrf(r)Jy(kr), (3.6)
0 0

(0,0 1 o
/(; drrV(r)Ji(kr) = m/(; drrg(r)Jy (kr). (3.7

These equations show that the azimuthal and radial dynamics are decoupled in the bulk,
but as we will see, this is not always the case at the boundary aD, where the two interact
through the odd viscosity. By taking another Hankel transform to solve for the velocity
components, we obtain the axisymmetric analogues of (2.20)

U(r) = l /'00 dk—J1 (kr) dr' rF(H I (kr') = l /Rg dr' M (r, ¥ )F(r)
"o AGH) + B(kH) Tk, ’ ’
(3.8)

Vi = / T kD ey = L / Y AL ). G9)
“wlo A ST B

where R; < R,, R; can be zero, and R, can be positive infinity. We have also defined the
kernels

M) — / ¥ g LN k) (3.10)
o A(kH) + B(kH)
L(r.r) = /oo dkw_ (3.11)
0 A(KH)
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In the limit H — oo, we obtain closed form expressions for M and L, which we denote
with a bar, from Gradshteyn & Ryzhik (2007) formulas 6.512.1, 8.126.3 and 8.126.4

L(r, ) =2M(r,7) = / dk Jy (kr)Jy (kr') (3.12)
0

i(—E[rz/r/z] + K[rz/r’z]) ifr<v
= Tg (3.13)
F(—E[r’z/rz] + K[/ i <7
p

[+ EE - P OKEDL (G
Ty’ (r + ')

where & = 4r7/(r 4+ 1), and K and E are complete elliptic integrals of the first and
second kind, respectively. The reader is cautioned that our notational convention for
elliptic integrals differs from that of Gradshteyn & Ryzhik (2007) by a square root in the
argument. Since K has a logarithmic singularity when its argument approaches unity, these
expressions illustrate that L(r, ¥') and M(r, r’) are both logarithmically singular when
r ~ r', and it becomes useful to isolate the most singular behaviour. We write

log|r — /|
mr

L(r,r) = +L(r, 1), (3.15)
where L has a removable singularity at » = 7/, with an analogous expansion for M.
In the opposite limit of H — 0, A(kH) ~ (kH)~! and L is proportional to a Dirac delta

o0 , S(r—17r)

/ dk kH J1 (kr)Jy (kr') = HT, (3.16)
0

using orthogonality properties of J; (formula 6.512.8 from Gradshteyn & Ryzhik 2007).
The convolution integral thus reduces to a Brinkman ordinary differential equation whose
solution is discussed in §§4.3 and 5.3. For the radial direction, we similarly find M —
4HS(r —r)/r.

As noted by Yan & Sloan (1988), integral equations with logarithmically singular
kernels generally have unique solutions that diverge like an inverse square root of the
distance to the boundary. For our domains, we can therefore expect the surface shear

stresses of the bulk fluid f(r) and g(r) to take the form
f)

X(R;i <1 <Ry,), 3.17)

f(r) =

and
R
= r—Ri/R, =7

for smooth functions f and g that do not vanish at r = R; and r = R,,. As such, V" (r),
as well as P/(r) in the case of an annulus, similarly diverge like an inverse square root
of the distance to the boundaries when the limit is taken from the domain interior.
(The exterior velocity fields will also exhibit singularities in their derivatives as the
boundary is approached; see § 5.2 for one analytical example.) Nonetheless, in spite of
these divergences, both V(r) and V' (r) remain bounded. This phenomenon is consistent
with other axisymmetric systems with vanishingly thin domains immersed in a continuous
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3-D medium, such as the rotating solid disk submerged in a Stokes fluid analysed by Jeffery
(1915) or the penny-shaped crack in a 3-D elastic medium analysed by Sneddon (1946).
For the rotating disk, Sherwood (2013) has found that relaxing the no-slip condition by
allowing for a finite slip length can regularize this singularity, but such a condition is not
present in our model. A consequence of the divergence at the boundary is that even the
problem of the linearly perturbed disc requires a great deal of subtlety, as linearization
requires further differentiation of the boundary terms. Linear stability analysis of a related
system was previously treated by Stone & McConnell (1995), although they included a
simplifying global incompressibility assumption as well as a non-zero surface viscosity
everywhere, which circumvents the issue at hand. A linear stability analysis for the H — 0
case was previously completed in Soni er al. (2019) since the integral kernel is delta
singular rather than logarithmically singular and velocity gradients do not diverge in this
case.

In the following sections, we describe several ways to derive and numerically solve the
singular integral equations (3.8) and (3.9) for two important axisymmetric geometries: the
disc and the annulus.

4. A disc-shaped domain

We begin with the simplest non-trivial axisymmetric geometry and take the domain D
to be the disc of radius R centred at the origin. The incompressibility of the monolayer
disc centred at the origin automatically implies that there is no radial component to the
axisymmetric flow; consequently, the entire surface flow field is incompressible and (2.15)
holds. The pressure gradient also vanishes. Hence, we can formulate the problem of finding
the flow field on the surface as a scalar mixed boundary value problem using (2.6). Let
v(r, z) be the azimuthal component of u(r, z) and let V(r) = v(r, z = 0). The azimuthal
momentum equation can be written as

v _(d*V 1dv VvV ; R
— =l—-—+-——-- orr <

Koz =0 Na2 Trar ™ 2 (4.1)
0 ’ '
av =0 forr > R
9z z=0

or, more compactly,
g(r) =nLIVlx(r <R), (4.2)

where the 2-D vector Laplacian operator £ was defined in (3.3). If the 2-D surface pressure
outside of the monolayer is taken to be zero, the stress boundary condition (2.9) in this
geometry reduces to the Robin boundary condition

N — 1R 2nR$2

V(R) =

V(RT) — — —
nR n

, (4.3)

in the azimuthal direction; it is unnecessary to analyse the radial direction as it ultimately
simply sets the pressure difference. Note that in this situation, the absence of a radial
velocity means the odd stress only produces a transverse stress which is balanced by
the pressure. Also note this boundary condition is what introduces an inhomogeneous
forcing into the problem. We demonstrate two techniques to solve for the droplet flow
field: a direct inversion of the singular integral equation in convolution form (3.9) and
an equivalent formulation as a dual integral equation for the Hankel transformed velocity
field that admits a semi-analytic solution.
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4.1. Solution via Green’s function

We begin by noting that the solution to (4.1) for r < R can be written as

V(r) = Vp(r) + Vi), 4.4)
where the particular solution is of the form
Vy(r) = / dr' G(r, ¥)g(r), 4.5)
with the Green’s function G of the operator 7L satisfying
(9% 19 1 . .
n m'ﬁ‘;g—ﬁ G(r,r) =48(r—r), (4.6)

and the homogeneous solution is of the form
By
Vi(r) = Apr + - 4.7)

with constants Aj;, and By, that are chosen to satisfy the boundary condition (4.3) as well as
the condition V(0) = 0 that is a consequence of axisymmetry.

The Green’s function G(r, r') is easily calculated via any of a multitude of methods
(Hankel transforms for instance). We find

, 1 [ Ji(kr)Jy(kr) 1 [r o }
G(r,r):—:/ dbk————=—=|=x(r<r)+ —x{F <nr|, 4.8)
nJo k nl2 2r

so that
R 1 r r R
Vy(r) = f dr G(r,Hg(r') = —— / dr’ (r)’g(r) — —_/ dr g(). (4.9
0 2nr Jo 2n J,

It remains to solve for A, and Bj. The condition V(0) =0 implies that Bj = 0.
The azimuthal velocity V =V, + Ayr is continuous and piecewise smooth, so upon
substitution into (4.3), we obtain

77R n / —
V,(R) — —V (R), 4.10
R Vp®) = 5 V(R ) (4.10)

n —
Ap= 52
h + 277R

where R~ denotes the limit as r approaches R from the left. Using (4.9), this can be written
as

R

n N,

Ap =82 — - / dr (r)“g(r). 4.11)
2nrIR? Jo 8

Finally, substituting everything into (3.9) yields the following integral equation for g in the
interval 0 < r < R:

R n R 1 R
/ dr' G(r,r)g(r) +r |:S2 - / dr (r/)zg(r/)] =— / dr' ¥'L(r,r)g(r).
0 2nrNR= Jo n Jo @)

The discretization of the singular kernel L(r, r’) is handled as follows. First, we expand in
H so that

L(r,¥)=L(r, 7)Y+ L, 1), (4.13)
951 A36-13
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where

L*(r,r') = / dk Jy (kr)Jy (kr')(tanh kH — 1). (4.14)
0

Because the integrand of L* decays to zero exponentially, this integral is well approximated
by taking a finite cutoff, say by replacing the upper limit of oo by 10/H, and numerically
integrating. Next, we focus on the diagonal terms by writing the integral as

1 R _ 1 R _ 1 R =
—/ dr' ¥L(r,¥)g(r) = —/ dr' ¥'L(r, ¥)[g(r) — g(r)] + —g(r)/ dr’ ¥L(r, r).
K Jo K Jo 2 0
(4.15)

The first term on the right-hand side vanishes as r approaches r’ if g is smooth enough.
Formula 6.561.13 from Gradshteyn & Ryzhik (2007) allows us to evaluate the second
integral on the right-hand side, which we denote L, in terms of hypergeometric functions
F,
plq

R
Ly(r) :/ dr' F'L(r, )
0

00 R
= / dk J; (kr) f dr’ ¥ Jy (k')
0 0

r 3r? 35 r? 4R
=3 (—8 — F4F3 [{1 1, X 5} ,{2,2, 3}, ﬁ} + 16log 7) . (4.16)
Once g is known, (4.9) and (4.11) can be used to calculate V inside the monolayer. When
r > R, the integral equation is non-singular away from r = R and the same g can be
substituted into (3.9) to calculate V directly.

Figure 2(a) shows V(r) calculated for various subphase thicknesses H. Within D, V(r)
is upwardly convex and at larger values of H (well described by the infinite H case) shows
nearly solid-body rotation near the droplet centre with a delocalized, faster edge current.
This agrees qualitatively with the observations of Soni et al. (2019). We find that V is
continuous and smooth everywhere except at the interface » = R. As the limit is taken from
either side of the interface, V' is found to be finite valued but V" diverges like |r — R|~V/2,
as previously discussed. The maximal V is always found at » = R; outside of the disc, V(r)
decays exponentially with increasing r if H is finite. (For infinite H, the rate of decay is
an inverse quadratic.) Decreasing H has the effect of generally reducing the motion both
in the monolayer bulk and in the exterior. In the limit of H < R, the motion becomes
largely localized to a boundary layer at r = R whose thickness scales with the penetration
depth § = /nH /1, and V is well-approximated by (4.44). This agrees with the analytical
prediction of an edge current in the high friction case, as discussed in § 4.4 and in Soni
et al. (2019).

The above results can be framed in terms of the Saffman—Delbriick length, £s5p = n/u.
Non-dimensionalizing the monolayer momentum equation in the simplest case where n =
ng and H — 00, we obtain

BLIV] = il , (4.17)
0z z=0

where all lengths have been scaled by R and 8 = 2¢sp/R is a dimensionless parameter
formed from a ratio of the only remaining length scales. If 8 >> 1, then within the region
where r < R < £5p, momentum is dissipated primarily through the monolayer, and L[V]
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Figure 2. (a) The surface azimuthal velocity V' across an active disc-shaped monolayer of radius R as
subphase depth H is varied. As H — 0, a boundary layer of width § = \/nH/u becomes visible and V is
well approximated by (4.44). Parameters: ng/n = 1.875, uR/n = 30. Here, R is large compared with the
Saffman—Delbriick length ¢sp = n/u, and V scales like £spS2 for fixed H. Since the radial velocity U = 0
for the disc, the flow fields are independent of line tension and odd viscosity. (b) For the same parameters, with
H/R = 1, the azimuthal velocity at different sublayer depths.

is necessarily small. Taken with the boundary condition (4.3), this implies V ~ §2r inside
of the monolayer. Thus, we recover the rotating rigid disc on a half-space of Stokes fluid
with vanishing surface viscosity analysed by Goodrich (1969) (see also the solution of
Jeffery (1915) to the problem of a rotating solid disc in an infinite Stokes medium). In this
case, the bulk shear stress at the surface is

v

_ 4us2 r
# 0z

z=0_ T JR?—r?

and the surface velocity field is given by

x(r < R), (4.18)

2r O<r<R
= 282 R
vin — |:r2 sin~! (—) — RV — R2:| r>R ’ (4.19)
nr r

so that the aforementioned regularity properties are all explicitly observable.

In the opposite limit of f < 1, momentum is dissipated primarily through the bulk
subphase, and the dimensionless velocity profile is nonlinear. Now, the dimensionless
(dv/0z)|,=q scales like B so that the dimensional velocity scales like £5p£2 in this regime.
This is the § regime depicted in figure 2.

Once the surface velocity has been found, the subphase velocity and pressure can be
calculated by specializing the formulas that appear in Masoud & Shelley (2014). Define
the Hankel transformed velocity component

HIU )] (k) = /OO dr' ¥ Ih(khhHU ), (4.20)
0

and similarly for V(r’). For axisymmetric geometries

sinhk(z + H)

, 4.21
sinh kH ( )

v(r, z) = / dk kJ1 (kr)H[V ()]
0
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u(r,z) = / dk kJ1 (kr)H[U(F)]
0

{ sinhk(z + H)  kzsinhkH coth k(z + H) + kH[(kH coth kH — 1) sinh kz — kz cosh kz]

sinh kH sinh? kH — k2H?2 '

(4.22)

00 k*H(z + H) sinh kz — kz sinh kH sinh k(z + H)

w(r,z) = dk kJo(kr)H[U (¥ ,

(r,2) /0 okrYHIU ()] S K — CH
(4.23)
o© sinh kH sinh k(z + H) — kH sinh kz

rz) =2 dk k2 Jo(krYHIU (¥ . (424
p(r,2) =2p /0 ok HIU ()] o (4.24)

For the disc, u, w and p are clearly seen to vanish because U = 0. The azimuthal velocity in
the subphase v is plotted for various depths z in figure 2(b). It satisfies the no-slip boundary
condition at z = —H and the continuity condition v =V at z = 0. For —H < z < 0, the
exponential decay of the integrand as k — oo in (4.21) ensures that the subsurface velocity
field is smooth.

4.2. A formulation as dual integral equations

As a check, and as an extension of more classical approaches, we now reframe the problem
of finding V as solving a pair of integral equations, one each on the adjoining intervals
(0, R) and (R, 00). Define a(k) to be the Hankel transform of g(r)

o
g(r) = / dk ka(k)Jy(kr), (4.25)
0
which, by virtue of (3.7), implies
1 o
V() =— / dk tanh kH a(k)J (kr). (4.26)
wJo
Substitute into (4.1) to obtain
* 1
/ dk k (—ktanth + 1) a(k)Ji(kr)y =0, 0<r <R, 4.27)
0 122
o
/ dk ka(k)Ji(kr) =0, r>R. (4.28)
0

Equations (4.27) and (4.28) constitute a set of dual integral equations with Bessel-type
kernel in the unknown a(k) that is homogeneous for » > R. Several powerful methods,
such as those developed by Busbridge (1938), Cooke (1956) or Sneddon (1975), have
been introduced over the years in order to solve problems of this form. Perhaps the most
computationally straightforward of these is the method of Tranter (1954), who found an
explicit countable basis for a(k) and cast the problem as an infinite linear system, thus
reducing the problem of finding the azimuthal velocity field to the problem of finding a
small number of coefficients. Tranter’s method has previously been used in works such
as Stone (1995), Henle & Levine (2009) and Martin & Smith (2011) to solve Cartesian
or axisymmetric mixed boundary problems in fluid mechanics where the flow or a stress
is prescribed on an inner region, but the procedure here requires a modification since no
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such information is provided in our system — in the problem at hand, the inhomogeneous
forcing comes from the boundary condition (4.3). In the following section, we show how
to modify Tranter’s procedure in such a way that the boundary data naturally enter into the
problem.

4.2.1. Solution via Tranter’s method
We begin by deriving the momentum equation in Fourier space. In the case of an
axisymmetric monolayer, 2-D Fourier transforms reduce to Hankel transforms

) R R
f= / dA7AU e ** = _2xikt / dr ri LIV, (kr), (4.29)
D 0
and
A . ~ w
U= / dAUe 0> — _2xikt / dr rV(r)J, (kr). (4.30)
D 0

Here, L is the differential operator defined in (3.3). It is advantageous to integrate by parts

R
f = —2mink* [V/(R)RJI (kR) + V(R)[J, (kR) — kRJo(kR)] — k> / drrV(r)J (kr):| ,
0
(4.31)

and substitute in the stress boundary condition (4.3), to arrive at the integral version of the
inhomogeneous momentum equation in Fourier space

R
— 2nr$2RJ1 (kR) = V(R)[2nJ1(kR) — nkRJo(kR)] — ﬁkz/ drrV(r)Ji(kr) — a(k).
0

(4.32)
Here, we have defined a(k) to be the Hankel transform of g(r) as in (4.25).
Tranter (1954) observed that, without loss of generality, we may take our a(k) to be of
the form

o0
atk) =k™P Y anlaus14p(kR). (4.33)
n=0

where B > 0 is arbitrary and the coefficients a, are unknown; such a form for a(k)
automatically satisfies the condition f = 0 for r > R. This expression is substituted into
the integral equation and projected back onto the basis to yield an infinite system of linear
equations for the {a,}, which are then truncated and solved to obtain V. By (3.7) and the
Hankel inversion theorem

1 [ 1 & 0
V(r) = — / dka(k) tanh kH Jy (kr) = — > " ay / dk k=P tanh kH Jay 4115 (kR)Jy (kr).
" Jo 0

n=0
(4.34)
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Upon substitution into (4.32),
— 2nr2RuJ 1 (kR)

S 00
= [20J1(kR) — kRJo(R)] Y ay f dk' k' ~F tanh K'H T, 114 g K R)T, (K'R)
0
n=0

00 R [ee)
— k> ay /0 dr rJy (kr) /0 dk' k' =P tanh kH Ja 1145 (K'R)J1 (K'r)
n=0

(0,0)
— 1wk " andon 11 p(kR). (4.35)
n=0

We now multiply the equation by k=17 Jom+1+p(kR), where m is a non-negative integer,
and integrate k from 0O to oco. This yields the infinite system of equations

o
— 20RQRUgn = ) aml(20gn — 1En) Ay — My — 1A ], (4.36)

m=0

where, using formulas from Gradshteyn & Ryzhik (2007),

_ —1-p _
gn = fo I KR 14p KR = b, (4.37)
o0
b = / Ak ko (kR) o145 (ROKF = 0, (4.38)
0
o0
A, = / dk' (k') tanh K'H Japs145 (K R)J1 (K'R), (4.39)
0
o0
M = / dk’ (k)7 tanh K'H Jopy14p (K R) omy 14 (K'R), (4.40)
0

oo
Ay = / k™28 4 g (KR) o115 (KR)
0

B BR*P (28 — 1)!(m + n)!
S ABB+m—n)(B—m+n)!(1+28+m+n)!

and 8,0 = 1 if n =0 and O otherwise. Here, non-integer factorials assume their usual
definition via the gamma function (formula 8.310.1 of Gradshteyn & Ryzhik 2007). In
cases where a negative integer factorial is being taken in the denominator, the factorial is
interpreted as infinity so that the integral vanishes.

At this stage, we choose B = 1/2 so that the matrix M,,, is nearly diagonal for large k.
If H— oo, then 8 = 1/2 ensures M,,, is exactly diagonal. This choice of B aids the
convergence of the numerical routine by capturing the anticipated inverse square root
divergence of g(r) at the boundary and is hence optimal, although we emphasize that
the routine converges to the same solution regardless of §.

The infinite system of (4.36) is truncated and inverted to solve for the coefficients a,,.
We find that keeping the first twenty terms is generally sufficient, so the computation is
fast, and the flow field at the surface can be reconstructed from the solution via (4.34).
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Figure 3. Comparison of the solution of the integral equation (3.9) computed using Tranter’s method (20
terms, dashed line) with the solution using the Green’s function formulation (800 Chebyshev nodes on the
interval 0 < r < R, solid line) for a disc-shaped monolayer on a subphase of infinite depth. Parameters: ng/n =
1.875, uR/n = 30.

Analytical formulas exist for A, and M,,, in the case where H is either vanishingly small
or infinitely large. In the remaining cases, these integrals must be computed numerically,
for instance with an asymptotic expansion that exploits the rapid decay of tanh kH to unity
or a specialized computational package for oscillatory integrals like the IIPBF package
developed by Ratnanather et al. (2014). The results obtained using Tranter’s method are
in excellent agreement with those obtained by using the Green’s function approach, as
demonstrated in figure 3.

4.3. Asymptotic solution when H — 0

In the limit of vanishing subphase thickness, the substrate drag dominates. This can be
seen by letting H — 0 in (2.15), which reduces to the simple condition

f=ru, (4.42)

where I" = p/H is the substrate drag coefficient. Inverting the Fourier transform yields a
Brinkman equation inside the disc

—VP+iVU=TU, (4.43)

whose general solution in the axisymmetric case is of the form V(r) = CK; (r/g) +
DIy (r/5), where 8% = n/I", I and K7 are modified Bessel functions and C and D are
constants. In order to avoid a blowup at the origin, C = 0; the constant D is then found by
applying the stress boundary condition (4.3) at r = R, ultimately yielding the solution

&l (/) X
nl2(R/8) + nrlo(R/8)
Note this function is discontinuous at r = R. Figure 2 shows (4.44) is the asymptotic limit

of the solution to (4.1) as H — 0. In this ‘high friction case’, the flow is largely confined
to a boundary layer of width &.

V(r) =286 (r <R). (4.44)
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5. An annular domain
We now take D to be the annulus with radii 0 < R;(f) < R, (). Unlike the disc case, there
will be a radial component to the flow field in addition to a azimuthal one, and the odd
viscosity will play a non-trivial role in this geometry (figure 10).

The divergence of the surface velocity field is assuredly non-zero since the interface
moves inward; however, for R; < r < R,, the divergence is still zero by assumption. This
condition restricts the radial flow to something of the form

F
Ur)=—, Ri<r<R,, (GR))
r

for some constant F' < 0, to be determined. The operator £ annihilates U on R; < r < R,,
and the radial momentum equation simply reduces to

dpr

- — =, 5.2
P f (5.2)
where
u
F=ws (5.3)
z z=0

obeys (3.6) when Hankel transformed. While (5.2) seems to imply the radial bulk dynamics
is completely independent of the three monolayer viscosities in this geometry, we recall
the definition of P contains 1. If we take the surface pressure outside of the annulus to be
zero, the radial and azimuthal stress boundary conditions for the annulus are found to be

2nF V(r
R N YL R 4 ) 54)
r r r r=R;,R,
e V(r) F
—nV(r) +2nr$2 + (n — nr) +2n0— =0, (5.5
r " lr=Ri.R,

where in the radial boundary conditions, the negative sign corresponds to » = R; and the
positive sign corresponds to r = R,. Note that when 1o #0, the radial and azimuthal
flows are coupled through the boundary conditions.

5.1. Solution via Green’s function

The solution to the annulus problem using the Green’s function formulation mirrors that
of the disc problem. We begin with the azimuthal velocity which is again decomposed as

V(r) = Vp(r) + Vi(r), (5.6)
where the definition of V), is slightly modified to account for the new limits of integration

R, 1 r R,
V,(r) = / dr G(r, )g(r) = —— / dr 2e(r) — - / ar ¢y, (5.7)
R; 2nr Jg, 2n J,

and the definition of V), remains intact. For the annulus, the constants A;, and By, satisfy

B,  n—ng By, 2ngrS2
V(R +Ap — = — Vo(R) + ApRi + — | = , 5.8
p( z)+ h Riz 7R; |: p( i)+ A 1+Rl:| 7 (5.3)
_ B, n—ngr By, 2nRrS2
V(R Ay — — — V,(R AR — | = , 5.9
p( 0)+ h R% 7_7Ro |: p( o) +Ap 0+R0:| 7_7 ( )
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where R;r and R, are right and left limits, respectively. Solving for Aj, and B,

(1 — NR)RiV,(Ri) — RoVp(R)] + IREV) (R;) — RIV/(R)]
2nr(RF — R2)

) -1
=2 [ (50000 ), T ] (- )

Ap=2+ . (5.10)

n 2n R; R, RZ R
(5.11)
From (5.7), we obtain the identities
1 (R
RiVp(R) = RoVp(Ro) = = / dr’ (* — R?)g(r), (5.12)
1 JR;
217 (D— 2v7 rpt+ 1 R, /2 2 /
ROVp(Ro) —R; Vp(Rl. ) = 2_77 N dr' (= + R)g(), (5.13)
Vo(R) V(R 1 /Ro , N\
— = — d -1+ = , 5.14
X R =5 ), & (1)) (5.14)
1 R, r/2
VI(R)) — V(R = —/ dr (14 = ) g(@). (5.15)
p\o p\ 271 Jr. R2

Substituting everything into (3.9), we finally have

R, R, R2 R,
/ dr' G(r, )g(r)y +r| 2+ + / dr' r?g(r') + # / dr’ g(r)
R Zan(Ri - R%) R; 277(R,- - R%) R;

i

1 2npF R, Ro 1 R,
+ - |:— 0% L P 5 / ar' rg(r') + IRP / dr/g(r’):| = —/ dr' ¥ L(r,r)g(r),
r n 20R2 J, 2qn Jg, K JR;
(5.16)

where p = [(1/R,)> — (1/R)*]!. As before, this integral equation can be inverted for
g as a function of F, which in turn gives V in terms of F. Note that the definition of Ly
changes due to the new limits of integration

R, _
Ly(r) = f dr' ¥'L(r, 1)
Ri
o0 R,
= f dk Ji (kr) / dr’ ¥ Jy (kr')
0 R;

B R?F 133] [,5 R?
T e 1222 720

(1610 ¥R g3 g 1132 2,2,3) . (5.17)
32 Og R243 ”2’2 9 9~ ’Rz . .

r o o

Also note that if R; and F are allowed to approach zero, the integral equation reduces to
that of the disc case, (4.12), with R = R,,.
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With the azimuthal velocity essentially solved, we turn to the radial velocity. Since L[U]
vanishes in (3.8), we are left with

F 1 RU /) / /
- =— dr' rM(r, r)f(r'). (5.18)
r " JR;

By expanding M(r, r’) in the same way as L(r, r’) above, this integral equation can be
numerically inverted to solve for f/F. Since V is known (up to F), the constant F can be
determined from the fact that

R,
P(R)) —P(R}) = — / dr' £(r), (5.19)
R;

along with (5.4). This completes the solution of the instantaneous surface flow field.
Representative solutions for different values of H are shown in figure 4. The scaling
arguments established in the disc case carry over: in the 8 > 1 limit, the appropriate
length scale for the velocity is R, while it is £gp in the small S limit. However, the radial
and azimuthal components have different time scales. For instance, in figure 4, U and
V exhibit a disparity in scale, with U being approximately a hundred times smaller in
magnitude than V. This can be traced back to (2.10) and (2.11), which show that in the
no = 0 case, the azimuthal motion originates from the rotational drive while the radial
motion originates from the line tension. The corresponding time scales are 7; = £2~! and
7p = nR;/y; for the curves plotted in figure 4, the ratio of these time scales was taken to be
71/72 = y/(MR;§2) = 0.01. Thus, for B> 1,V ~ R;/11 =R;§2 and U ~ R;/12 = y /7,
while for 8 < 1,V ~ lsp/t1 =182/ and U ~ Lsp/t2 = y/(uR;). Figure 5 illustrates
the subphase velocity field for the H = R; case calculated from (4.21)-(4.23). Dynamics
follows from advection of the domain boundary according to the kinematic boundary
condition, which we describe in more detail in § 5.4.

5.2. Formulation as triple integral equations

Similar to the disc case, we can convert the problem into two sets of triple integral
equations. Keeping the definition of a(k) from (4.25), the azimuthal set is

o0
f dkka(k)Ji(kr) =0, O <r <R;, (5.20)
0
* 1
/ dk k <—ktanth + 1) a(k)Ji(kr) =0, R; <r <R,, (5.21)
0 M
o0
/ dkka(k)Ji(kr) =0, r>R,, (5.22)
0
and the radial set is
o0
/ dkkb(k)Ji(kr) =0, 0 <r<R;, (5.23)
0
00 . uF
dkb(k)[A(kH) + B(kH)]” "Ji(kr) = —, R;i <r <R,, (5.24)
0 r
[e.¢]
/ dkkb(k)Ji(kr) =0, r>R,, (5.25)
0
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Figure 4. The instantaneous surface azimuthal velocity V (a) and radial velocity U (b) as well as the
monolayer pressure P (c¢) due to an annular monolayer of radius R,/R; = 2 as subphase depth H is varied.

As H — 0, boundary layers of width § = /7JH/jx becomes visible in V. Parameters: ng/n = 1.875, uR/n =
30,n0/n =0, t1/10 = y/(nR;$2) = 0.01. Since €sp K R,V scales like £sp/t1 = n$2/n and U scales like

Lsp/T2 =y /(LR)).

where we have defined
o0
b(k) = / drrf(r)Jy(kr), (5.26)
0

and used (3.6).

Difficulties similar to the dual integral equations of the previous section plague the
azimuthal triple integral equations. In particular, ((5.20)—(5.22)) again erroneously appear
to be homogeneous because the problem as stated above is not closed. Unfortunately,
no convenient basis analogous to Tranter’s for the disc appears to resolve the problem;
attempting to use the Tranter basis as before will lead to a result that is discontinuous
at r = R;, as the basis is ‘unaware’ of the divergence there. One possible workaround
is to Fourier transform the equations to include boundary conditions and discretize the
equations directly on the interval (0, oo) to yield a large linear system of equations.
However, this method converges very slowly and performing it repeatedly to time step the
kinematic boundary condition is not practical. Thus, we content ourselves with solving the
equations using the aforementioned singular integral formulation.

On the other hand, several methods exist for solving the radial triple integral equations.
One approach due to Cooke (1965) involving Erdélyi—Kober operators (generalized
fractional derivatives) can be used to solve the radial equations, up to the unknown

951 A36-23


https://doi.org/10.1017/jfm.2022.856

https://doi.org/10.1017/jfm.2022.856 Published online by Cambridge University Press

L.L. Jia, W.T.M. Irvine and M.J. Shelley

@ 4010

(a) 0.15
—z=0 )
—z=-025H —
0.10 — -5y = ~
z=-0.75H 0 _— S
005 =H
S 8~
5 0 5 -4
3 T 6
-0.05 — =0
-8 — z=-0.25H
— z=-0.5H
-0.10 _10 §=—0,75H
z=-H
—0.15 -12
0 05 1.0 15 20 25 30 0 05 1.0 15 20 25 30

«10-6
S (<109

)
g
=
—z=0,H
— z=-025H
— z=-0.5H
z=-0.75H

0 05 10 15 20 25 30
r/Rl.

Figure 5. The azimuthal component v (a), radial component « (b) and vertical component w (c¢) of the velocity
field u in the subphase at various depths for an annular monolayer of R,/R; =2 and H = 1. Parameters:
nr/n = 1.875, uR/n =30,n0/n =0, y/(nRis2) = 0.01.

constant F. In the simpler case of H — oo, a different method also devised by Cooke
(1963) involving rewriting the equation as a composition of Abel transforms (see Noble
1958) can be used as well. These methods reduce the set of triple integral equations to a
single Fredholm integral equation, which must be numerically solved, ultimately making
them more work than the solution we have presented.

It is notable that the radial set of triple integral equations has a simple exact solution in
the limit H, R, — o0, as found by Alexander et al. (2006). In this limit

sin kR;
kR;

which, via the Hankel inversion theorem, leads to (cf. Gradshteyn & Ryzhik (2007)
formula (6.693.1) and differentiate under the integral)

b(k) = uF (5.27)

dpP uF

dr rr? — Ri2

so that the pressure (with constant of integration zero) is

x(r > R;), (5.28)

Fcos_1 (Ri/1) ’
R;

P=- (5.29)
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F( r2>
v="(1- -2}, (5.30)

for 0 < r < R;. For r > R;, U = F/r as previously.

for r > R;, and

5.3. Asymptotic solution when H — 0

As with the disc-shaped domain, the small H case reduces to a Brinkman equation; we
will impose U = 0 on D€ so that V - U = 0 everywhere and the drag is isotropic. The
general solution in the axisymmetric case is

F
Ur)=—, (5.31)

r
V(r) = CKj (8) + DI, (8) (5.32)
P(r)=—TFlogr+G. (5.33)

The four unknowns C, D, F and G are found by substituting these expressions into the
four boundary conditions (5.4) and (5.5). Exact but cumbersome expressions for these
constants can be found; in the interest of brevity, we omit them. However, in the simple
case of zero odd viscosity, the constant F is found to be

o y[(1/R) + (1/R,)] (5.34)

I log(Ro/Ri) + 2n[(1/R}) — (1/R))
which, through the kinematic boundary condition, determines the size of the cavity. Note
that R, is related to R; through the monolayer incompressibility constraint: A = T(R2 —
Rl.z). We remark that as in the disc case, boundary layers of width § = \/7j/T are visible
in the azimuthal velocity field in this limit (figure 4). Figure 6 shows the parameter F as a
function of time as 7o is varied. The impact of this parameter on the closing of the cavity
is discussed in the next section.

5.4. Hole closure dynamics and the effect of odd viscosity

For the disc-shaped domain, the absence of a radial velocity means that the boundary never
moves. The odd viscous stresses are in the radial direction but are offset by the pressure
and hence have no effect on the domain shape or flow field.
For the annular domain, the kinematic boundary condition states that the radii of the
circular boundaries will change according to the local radial surface velocity
Ri_vwy=L 5.35
dt_(’)_R,-’ (5.35)
and similarly for the outer radius. Equivalently, the outer radius can be found by applying
the constraint that the monolayer area TI?(R(% - Riz) is constant. Equation (5.35) can be
numerically integrated to find R;(¢), up until R; = 0, at which point the circular disc case
is recovered. At each time step, we must solve for F' by solving for the flow field using the
procedure outlined in the previous section.
We first obtain some simple limits for the high friction case. Followmg the discussion
in Appendix B, the Saffman—Delbriick length for the high friction case is 8. For § > R;,
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Figure 6. The parameter F as a function of time for various odd viscosities in the high friction case. The
initial slope depends on y and no, where line tension and odd viscosity are the dominant contributors to the
radial dynamics. As the hole closes and the hole radius becomes comparable to §, F reaches a local minimum
and then rapidly approaches zero in a small shear viscosity dominated regime so that F(¢) appears nearly
vertical. Initially, R, 0/Ri0 = 5. Curves from right to left: no/n = 0,0.5, 1.0, 1.5, 2.0. Parameters: ng/n =
1.857 x 1072, I'R; o /n = 4.074 x 107, y /(nR;,082) = 5.214 x 10~%.

the expected radial velocity scale is R;/t» = y/n, while for § < R, itis §/1 = ZS /(nRy)).
In the initial phase of the experiment, the cavity radius is large compared with §, so F ~
y$8/n. However, as the hole is just about to close, F ~ yR;/n. These two regimes are
illustrated in figure 6, where F is initially nearly constant in the np = 0 case and transitions
to a linear regime with large slope when R; becomes comparable to §.

An asymptotic analysis of the small R; limit reveals the closure time is finite. The
argument proceeds as follows: for simplicity, assume that H — oo and V(R;) — O.
If R; < R,, we can use the exact solution (5.27) to calculate the pressure difference
P(R,) — P(R;)) = —unF/(2R;), which is negligible compared with the shear viscous

stress which scales like F /Rl.z. The boundary condition (5.4) shows that this stress must
be balanced by the line tension, from which we find F ~ —yR;/(2n). The kinematic
boundary condition (5.35) then implies dR;/d¢ is constant in this limit so that there is
no blowup. Prior to this regime, the cavity area decreases at a nearly constant rate, and is
well approximated by A¢c = TL'R%O + 2mtFy, where R; ¢ is the initial cavity radius and Fy
is the value of F at time ¢ = 0. Figure 7 illustrates these different regimes and compares
the cavity radius and area as functions of time for different odd viscosities. Note that in the
high friction case, the ¢+ — ¢* shear viscosity-dominated regime occurs at a cavity radius
comparable to §, which is itself comparable to the particle size, and is thus not expected to
be experimentally detectable.

The most noticeable effect of odd viscosity is that it decreases the time it takes for
the hole to close. If no = 0, the closure time is independent of §2 and ng. On the other
hand, a non-zero odd viscosity couples the azimuthal and radial velocities via the stress
boundary conditions. At both the inner and outer boundaries, the line tension forces point
radially inward toward the origin. The odd stress is oriented inward at the outer boundary
but outward at the inner boundary; naively, one may think this causes the hole to close
slower. However, this argument does not account for the pressure. As a consequence of
domain incompressibility, the rate of change of the inner radius must be larger than that of
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Figure 7. (a) Cavity radius as a function of time for various odd viscosity values in the high friction
case. Initially, R, 0/Rio =35. Curves from right to left: no/n =0,0.5, 1.0, 1.5, 2.0. Parameters: ng/n =
1.857 x 1072, I'/ (R} ) = 4.074 x 102, y /(nR; 02) = 5.214 x 10~*. (b) Corresponding area of cavity Ac as
a function of time using the same parameters and colour scheme. Increasing odd viscosity changes the apparent
concavity of the cavity area vs time curve. Inset: larger version of the no = 0 curve near t = r*, where the hole

size is comparable to the penetration depth §. In this limit, the closing is dominated by shear viscosity and the
area decreases quadratically.

(a) 1.0 .

0.8 1%

0 05 10 15 20 25 20 0 05 10 15 20 25 30
o) (x10%) 1e) (x10%)

Figure 8. Cavity radius (a) and area () as functions of time for the low friction H — oo case. Increasing the
odd viscosity decreases the time needed to close the hole. The quadratic behaviour of the cavity area in the
shear viscosity-dominated regime is visible at larger radii compared with the high friction case. Parameters:

Ro.0/Rio =5, nr/n = 1.857 x 1072, ¥ /(nR;.082) = 5.214 x 10™*, uR; o/n = 8.79. In the figure on the right,
the transition from linear to quadratic behaviour takes place when R; ~ £sp = 0.11R; ¢.

the outer radius
dRi . Ro dRo
dr R dt’

This restriction implies that if the outer boundary is moving in faster with non-zero 7o,
so too must the inner boundary. The odd viscosity also changes the concavity of the area
vs time curve. If np < 7, the curve is concave (except for the shear viscosity-dominated
region when the hole is very small, where it is always convex) but if 1o is sufficiently
large, it experiences regions of convexity as well. This behaviour is not observed in the
low friction case (figure 8).

For the low friction case, we find the same general trends (figure 9). For zero odd
viscosity, infinite substrate depth and asymptotically large outer radius R,/R; — 00, a
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Figure 9. Increasing substrate height drastically decreases the time it takes for the hole to close.
(a) Parameters: R, 0/Rio=>5,nr/n=1.857 x 1072, no/n =0, uRio/n = 8.79, ¥ /(nR;.0§2) = 5.214 x
10~%. (b) Same parameters except no/n = 0.5.

complete analytical description is possible using (5.27). The cavity area as a function of
time in this case is given by Ac = 7R;(1)%, where

Ri(f) = TZE—Z [\/1 L TruE = 1} , (5.37)

2n?

and * = 2nR; 0 + TE,U,RI-Z’O /4)/v is the closing time of the cavity written in terms of the
initial radius R; o at time r = 0. When R; is large compared with £sp, the area changes
linearly in time with a constant 2tF ~ —4y /. In the limit where R; < £sp, we find that
F ~ —yR;/(2n) just as in the high friction case (in fact, this limit is independent of H).
Figure 8 shows the analogous radius and area curves as a function of time for the low
friction case. The small radius viscosity-dominated regime is more clearly visible. The

reader is referred to Jia & Shelley (2022) for details about this analytically tractable case.

5.5. Odd viscosity drives hole closure

We next turn to the case where line tension is small compared with MR?SZ. As seen by
letting y — 0 in (5.34), an ordinary Brinkman fluid (i.e. one with no = 0) with no line
tension has F = 0 so that no radial dynamics occurs. However, for an odd fluid with a
non-trivial tangential velocity, it is possible for odd viscosity to serve as a driver of normal
motion, even when there is no line tension. In this case, we might expect the constant
F to be proportional to np$2/I", on the basis of dimensional analysis. While the exact
expression for F in this scenario is still too cumbersome to reproduce here, in the limit of
8§ < R; < R,, we find

_ 2nos2 nrSL(1/R;) + (1/R,)]

F~ =
r n1og(R,/R;)

(5.38)

There are prominent similarities between this expression and (5.34), highlighting the
interpretation of odd viscosity as an additional line tension-like stress that in this geometry
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Figure 10. (a) The parameter F as a function of time for various odd viscosities in the high friction case, with
no line tension. Parameters same as in figure 6, with the exception of y, which has been set to zero. When
no = 0, inhomogeneous forces are absent in the system, and F = 0, corresponding to no motion. Increasing
no increases the radial stress, showing that odd viscosity alone can drive the radial dynamics. Dashed black
line represents the asymptotic values of F for the no/n = 0.5 line. Inset: larger version of the np/n = 0.5
curve and its asymptotic approximation on a semilogarithmic scale, showing long term exponential decay of
F as a function of 7. The plateau corresponds to the smallest positive floating-point number representable in
MATLAB. (b) The corresponding cavity radius as a function of time, also exhibiting an exponential decay as
R; becomes comparable to §. Without line tension, the hole does not close in finite time. (c) The corresponding
cavity area as a function of time.

drives radial motion. In the opposite limit of R, > 8 > R;, the scaling is quadratic in R;

_ 10NR2R;

F~ ;
n? + g

(5.39)

which, using (5.35), implies that the radius decays exponentially with time scale
[nonr$2/(n* + n%)]*l. Consequently, in the zero line tension case, the cavity does not
close up in finite time, as figure 10 shows. However, this limit is not expected to apply to
experiments as it requires R; to be much smaller than §, which is itself comparable to the
particle size.

While a full analytical description is not available for the low friction case with odd
viscosity in the R,/R; — oo limit, (5.27) is still valid and (5.4) thus provides a relation
between F and V(R;)

_ Ri(y =210V (R)))

F =
2n + muR;

(5.40)
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Figure 11. Cavity area as a function of time in the low friction case without edge tension, H/R;o = 10.
Parameters as in figure 8, with the exception of y, which has been set to zero. The area decays exponentially in
time, with time scale set by (5.39).

As for the high friction case, if y — 0, the odd viscous stress becomes the driver of
radial motion (recall that generally V(R;) < O for the annulus). This expression shows that,
similar to the no = 0 case, the viscous dissipation is mostly due to « when R; > €sp and
due to n when R; < £sp. However, if V(R;) > 0, which is possible in certain parameter
regimes such as the large n limit, this expression actually implies that the hole expands.
Figure 11 shows the cavity area as a function of time for the low friction case with near
infinite subphase depth. As with the low friction case, the area decays exponentially, with
F scaling as in (5.39).

5.6. Conclusion and future work

We have developed a formulation for the dynamics of an active, chiral surface phase
coupled to a passive fluid underneath. We showed how to formulate the problem as
calculating the surface velocity, given the surface stress, using a Green’s function; this
formulation is highly general and could be used to model other types of active (or passive)
surface phases, or to study the dynamics in more complicated, multi-connected domains
with little to no modification. Using analytical and numerical methods, we proceeded to
calculate the velocity fields for a disc-shaped and an annular monolayer. For the case of a
disc-shaped monolayer, a modification of Tranter’s method allowed for a semi-analytical
description and efficient numerical solution. For the case of an annulus, we thoroughly
explored the effects of odd viscosity on the closing of a 2-D circular cavity. Our main
results include a decrease in the cavity closure time in the presence of odd viscosity and a
change in concavity of the cavity area vs time curve as 7o is increased in the high friction
case. These results may provide another way to experimentally estimate the odd viscosity
coefficient. We have also seen that in the absence of edge tension, odd viscosity alone can
drive cavity closure.

Ongoing work is focused in several different directions. Firstly, a boundary integral
formulation for the high friction case to handle non-axisymmetric shapes is under
development. A full numerical formulation of the low friction case, much less its linear
stability theory, is particularly challenging. Great care is needed to accommodate the
divergent surface stresses, which are a fundamental part of the basic model. As a basic
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problem in applied mathematics, it would be interesting to find an analogue to the
countable Tranter basis for the annular case and in that way develop a near analytical
solution for its dynamics.
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Appendix A. The physical system and experimental parameter values

The active chiral fluid we consider is a monolayer composed of thousands to millions
of hematite particles, each roughly 1.6 wm in size and equipped with a magnetic dipole
moment. The colloids are suspended in water and sedimented onto either a glass slide or
an air/water interface; we refer to the former as the ‘high friction case’ and the latter as
the ‘low friction case’. Note that the particles are denser than water so that in the low
friction case, the monolayer is found at the bottom of the water ‘subphase’, which is a
top-down reflection of what is depicted in the schematic in figure 1. For the monolayer
sizes considered here (R < 500 jwm), the interface is well approximated by an infinite
plane, so for convenience, we may take the reflected configuration as our model without
affecting any of our results. The depth of the water subphase, H, is typically comparable
to R in low friction experiments.

Under the application of an external rotating magnetic field, the particles spin; for
frequencies in the range of roughly 2 = 2 to 12 Hz, the particles’ rotational inertia is
negligible so that the dipole moments are effectively always aligned with the external
magnetic field. Since the average magnetic interaction is attractive, the system experiences
effective surface and line tensions that form a cohesive 2-D incompressible fluid. Soni
et al. (2019) showed experimental examples of fluidic behaviour and put forth a descriptive
zero Reynolds number hydrodynamic theory accounting for three kinds of bulk viscous
interparticle stresses: a shear viscous stress arising from attractions between neighbouring
dipoles, a rotational stress arising from rotor—rotor friction and an odd stress possibly
arising from the collisions of rotating particles.

Rheological tests by Soni ef al. (2019) suggest that the shear viscosity n of the
colloidal fluid is around fifty times greater than its rotational viscosity ng, while fitting
the dispersion relation of low friction edge waves suggests that the odd viscosity 1o
is comparable in magnitude to the shear viscosity: n =4.94+0.2 x 1078 Pam s, ng =
9.1+0.1 x107Pam s and np = 1.54 0.1 x 1078 Pa m s. In the high friction case,
these stresses are balanced against an external substrate friction I = 2.49 £ 0.03 x
103 Pa s m~! that is generally found to be isotropic and proportional to the monolayer
velocity. In the more complicated low friction case, the external forcing comes from the
shear stress due to the motion of the fluid subphase with viscosity w, which is intimately
coupled to that of the monolayer. At the boundary, the internal stresses are balanced by
an edge tension y = 2.3 £ 0.2 x 1013 N. The theoretical analysis in Soni er al. (2019) is
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restricted to the simpler high friction case of a monolayer situated on glass substrate; here,
we will focus on the more general low friction case of a fluid subphase.

Appendix B. Non-dimensional groups

It is instructive to consider the dimensionless versions of the monolayer momentum
equation and associated boundary conditions. In the case of a monolayer with length scale
R, we take velocity scale to be U = §2R and the pressure scale to be uU = $2R. Note
that there are other possible choices for the velocity scale associated with the line tension,
such as V = y/(uR). In keeping with the experiments, where the time scale of rotation
is much smaller than that of relaxation due to line tension, we elect to scale velocities by
U instead of V. Temporarily identifying dimensionless quantities with their dimensional
counterparts, the momentum equation for the monolayer in arbitrary coordinates that are
consistent with the Frenet frame at the boundary becomes

n+mAU:8u

1R 8_Z z=0

—VP+ ) (B1)

which reveals the ratios of two types of Saffman—Delbriick length to the monolayer size as
two dimensionless parameters

Ps = WTM, (B2)
B = 77R1§ " (B3)
Rescaling the stress boundary conditions (2.10) and (2.11) in the same manner yields
—P +25(Ts — kN) + 2Bo(Ns + «T)lgp = ak|yp, (B4)
—(Bs + Br)w — 2Bs(Ny + «T) + 2Bo(Ts — kN)|yp = —2BrlaD, (B5)
where )
A (B6)

o= — = =,
uR?2 U

is the ratio of the two aforementioned velocity scales and

no/m
Bo = : (B7)
R
Thus, the five dimensionless parameters for the low friction problem are «, 8s, Br, Bo and

¢ =H/R.

The analysis proceeds nearly identically for the high friction Brinkman equation, with
one modification: the velocity scale V is written in terms of the substrate friction,
becoming y / (I'R?). We find the corresponding definitions of Bs, Sg and Bo

U IR no

Bs = TR Br = TR Bo = TR (B8a—c)
Note that, in terms of the penetration depth 8,
52
Bs + Br = o (B9)
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Appendix C. An infinite strip

Here, we consider the flow field when D is an infinite strip of half-width R oriented axially
along the y-axis. The flow is assumed to be steady and unidirectional. For this section,
we will use Cartesian coordinates so that the flow field may be expressed as u(x, y, z) =
v(x, 2)p, with U(x, y) = u(x, y, 0) = V(x)p. This type of flow field satisfies V - U = 0 on
the entire surface, so that (2.15) applies. Defining g(x) = pndv/9z|,—9, the x-component of
the momentum equation inside the monolayer is

P _d?v
dx T T

8 (ChH

when |x| < R. On the other hand, when |x| > R, we have g = 0. At the boundary, x = 0
and 7 = %X, so the boundary conditions (2.9) for this geometry are

dv
—Ply—2g =0 and n— —2nR$2 =0, (C2a,b)
dx x=+R

where the outer pressure has been taken to be zero. Analogous to the disc case, the odd
viscosity does not enter explicitly in this strip geometry. Note that because the flow is
unidirectional, the pressure P inside the domain is harmonic. Since (C2a,b) shows P
vanishes along its boundary, P must be zero everywhere. The momentum equation is then
simply

2

_d°v
2 X <R =g (C3)

Since the flow field has an odd symmetry, we define a(k) to be the Fourier sine transform
of g(x)

o0

a(k) = /OO dx g(x)sinkx <= g(x) = %/ dk a(k) sin kx. (C4)
0 0

We take the Fourier sine transform of the momentum equation in x to obtain

R d?v
ﬁ/ dx—= sinkx = a(k). (C5)
0 dx
Integration by parts yields
R
2ngr$2 sinkR — 7V (R)k cos kR — 7jk? / dx V(x) sinkx = a(k), (C6)
0

where the fact that V(x) is odd and (C2a,b) have been used to simplify boundary terms.
Since sinz = /mz/2J1,2(2), this equation is amenable to Tranter’s method, which we
now demonstrate; the prescription is nearly identical to that of the disc geometry given in
§ 4.2.1. Naturally, adapting the Green’s function formulation as in § 4.1 yields an identical
answer.
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Adapting Tranter (1954), we let

o
a(k) = K'">P > " apbongr o s (kR),

n=0

(C7)

where 8 > 0 is arbitrary and the coefficients {a,} are unknown. Note that (2.15) combined

with (C4) and (C7) implies

2 & o
V(x) = EE ay / dk k=127 tanh kH Jay 412+ (kR) sin kx,
0
n=0

for the geometry at hand. Substituting this into (C6) gives

(C8)

27 — o0
27k sin kR — k cos kR > ay / dk' (K)~'/27P tanh k' H Japi1 245 (K'R) sin k'R
T 0
n=0

27 S R o)
- > ank’ / dx sin kx / d&’ (K'y~V>7P tanh k' H Ja 41 /215 (K'R) sin k'x
T 0 0

o
=K' anhan 1015 KR).
n=0

(C9)

Multiplying both sides by k=3/ 2_'3]2m+1+[3(kR), where m is a non-negative integer,

integrating from O to oo in k and interchanging integrals yields the system
e.¢] - —
20R2ugl =) an [Zfs,ﬁfmﬁf) + 2;"M,52 + MA;(1§1)1:| :
n=0
where

T(R/2)PT1/2

208+ 1/2)1 "

00
g = / dk k=327 Iyt o4 5 (KR) sin kR =
0
00
Sr%s) = / dk k_3/2_ﬁ.]2m+1/2+/3 (kR)k cos kR = 0,
0
00
ASZY) — / dk, (k/)_1/2_/3 tanh k/H J2n+l/2+/3 (k/R) Sil‘l k/R,
0

o0
M) = /0 Ak (K2 tanh K'H Tons1 /20 s KR a1 /205 K'R)

o0
Al = /O dk k™' "2 1 4 p (KR) Ty 1 /2.4 (KR)

= BQ2B — D!m+n—1/2)!
T ABB+m—m)B+n—m)!(1/2+28+m+n)!’

(C10)

(C11)

(C12)

(C13)

(C14)

(C15)

and factorials assume their usual definition via the gamma function (formula 8.310.1 of
Gradshteyn & Ryzhik 2007). Note the strong resemblance to (4.36) to (4.41) for the disc.
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Figure 12. The surface azimuthal velocity V due to an infinite strip of half-width R as subphase depth H is
varied. As H — 0, a boundary layer of width § = \/nH/u becomes visible and V is well approximated by
(C17). Parameters: ng/n = 1.875, uR/n = 30.

Following the discussion in § 4.2.1, we choose § = 1/2 and numerically evaluate M,(,f,)l and
Aﬁ,s) for m and n < 20. The truncated linear system is quickly solved for the coefficients
{a,}. Figure 12 depicts the resulting surface flow field V(x) for different values of H/R,
which is found by evaluating equation (C8).
Finally, we turn to the high friction (H — 0) case, where V satisfies the Brinkman
equation
2

_d7v
@X(M <R =TV, (Cl106)

with I = u/H. Using the boundary condition (C2a,b), the solution is

2028ng sinh(x/8)
7 cosh(R/8)

Vx) = x(Ixl < R), (C17)

where 8 = /i7/T is the penetration depth of the edge current. The convergence to this
solution as H is decreased can be seen in figure 12.
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