
Atmospheric Gravity Wave Detection Using Transfer
Learning Techniques

1Jorge López González, 2Theodore Chapman, 3Kathryn Chen, 4Hannah Nguyen, 5Logan Chambers,
4Seraj A.M. Mostafa, 4Jianwu Wang, 4Sanjay Purushotham, 4,6Chenxi Wang, 6,7Jia Yue

1University of Puerto Rico, Rı́o Piedras, San Juan, PR, USA
2University of Rochester, Rochester, NY, USA

3University of California, Santa Barbara, Santa Barbara, CA, USA
4University of Maryland, Baltimore County, Baltimore, MD, USA

5Albany State University, Albany, GA, USA
6NASA Goddard Space Flight Center, Greenbelt, MD, USA

7Catholic University of America, Washington DC, USA
Emails: 1jorge.lopez19@upr.edu, 2tchapma6@u.rochester.edu, 3kathryn chen@ucsb.edu,

4{hannahn2, serajmostafa, jianwu, psanjay}@umbc.edu, 5lchambe3@students.asurams.edu,
6{chenxi.wang, jia.yue}@nasa.gov

Abstract—Atmospheric gravity waves are produced
when gravity attempts to restore disturbances through
stable layers in the atmosphere. They have a visible effect
on many atmospheric phenomena such as global circulation
and air turbulence. Despite their importance, however, little
research has been conducted on how to detect gravity
waves using machine learning algorithms. We faced two
major challenges in our research: our raw data had a lot
of noise and the labeled dataset was extremely small. In
this study, we explored various methods of preprocessing
and transfer learning in order to address those challenges.
We pre-trained an autoencoder on unlabeled data before
training it to classify labeled data. We also created a custom
CNN by combining certain pre-trained layers from the
InceptionV3 Model trained on ImageNet with custom layers
and a custom learning rate scheduler. Experiments show
that our best model outperformed the best performing
baseline model by 6.36% in terms of test accuracy.

Index Terms—atmospheric gravity waves, deep learning,
image denoising, transfer learning, model customization

I. INTRODUCTION

Gravity waves (or, to be more precise, buoyancy
waves) are air oscillations caused by gravity and buoy-
ancy force. They are common in fluids like the atmo-
sphere and the ocean. Gravitational waves, on the other
hand, are spatial and temporal “ripples” caused by ener-
getic processes in the universe. Gravity waves are created
when parcels of air are displaced from their equilibrated
position and the force of gravity attempts to restore the
equilibrium. Various atmospheric disturbances, such as
airflow over mountains, jet streams, and thunderstorms,
cause atmospheric gravity waves.

These disturbances can occur when air is forced to
rise upwards in stable air, creating a wave pattern as the
air sinks back down over time, similar to how ripples are
formed when a stone is thrown into a still water surface

[1]. Gravity waves can sometimes be detected using
radar or satellites, and they can be seen inside images as
producing patterns resembling ripples or clouds.

When present, gravity waves have a significant impact
on many weather phenomena. Simulations of middle
atmosphere circulation are more accurate when gravity
waves are correctly factored in, indicating that they
influence circulation. They may even have an effect on
tidal waves [2], and are also capable of causing a type
of turbulence known as Clear Air Turbulence, which is
responsible for up to 40% of all aviation accidents [3].
Because of a better understanding of the importance of
gravity waves in recent years, interest in detecting these
waves has skyrocketed. To gain a better understanding
of this phenomenon, some researchers are turning to
machine learning techniques.

During the research, we focused on machine learning
techniques for detecting gravity waves in the atmosphere.
Two major challenges in detecting gravity waves from
satellite images were addressed. The first major chal-
lenge involved working with a noisy dataset. Because the
images were scanned from a satellite, they could have
been corrupted by a defective sensor, a faulty channel,
or other factors that degraded the quality of the scanned
images. The problem with using noisy images for train-
ing is that the data may not be correctly interpreted by
the learning model. The second major challenge was
dealing with the only dataset available at the time of
research, which was a small dataset provided to use for
the gravity waves classification problem. This dataset
included 710 images for training, 140 for validation, and
236 for testing. When dealing with a small dataset, the
problem arises because the model has fewer examples
from which to learn general features. If a model is trained



on data that contains too many specific details, it will be
unable to learn generalized features and thus will not be
able to make correct predictions.

To address the aforementioned two challenges, we
investigated various techniques, and our contributions are
summarized below. We also made our implementation
open source, with the source code available at Big Data
REU GitHub repository [4].

• Different techniques were explored to signify the
signals and remove noises from the data in our
datasets. Because the radiation signals in our raw
data were very weak, we transformed the data
before saving them as images. We further used Fast
Fourier transform (FFT) to reduce noises in satel-
lite images. With these preprocessing techniques,
gravity waves were more visible, and both signal to
noise ratios (SNR) and pixel distributions improved
significantly.

• To overcome the restrictions of training with a
small dataset, numerous transfer learning strategies
using various types of models were proposed. The
first model made use of an autoencoder pre-trained
on unlabeled data. The second model is a cus-
tom model that combines some aspects of a pre-
trained model with a convolutional architecture and
a trainable custom classifier. The pre-trained model
is utilized for feature extraction and is trained with
the ImageNet dataset.

• Several experiments were carried out to assess the
performance of all models used for training and
testing. The results compare the accuracy scores
of all models and demonstrate the ability of deep
learning methods to predict the presence of gravity
waves on scanned satellite images.

The sections for the remainder of the paper were
organized as follows. In Section II, we presented related
work on studies that address problems related to this
research. Following that, in Section III, we provided de-
tails about the overall pipeline from our work, followed
by a demonstration of the dataset and the techniques
used for image preprocessing in Section IV. Section V
provided details on the methods used for the approaches
of using an autoencoder and a custom model for training
and testing. Section VI contains a detailed discussion of
the experiments and their results. This paper’s conclusion
can be found in Section VII.

II. BACKGROUND AND RELATED WORKS

A. Gravity Wave Detection

Most existing methods for detecting gravity waves
require researchers to take measurements of atmospheric
features in the target region. For example, Zink et al.
[5] and Colligan et al. [6] identified gravity waves
using radiosonde sounding measurements of horizontal

wind speed. Linear transformation was applied to make
the measurements to more interpretable. To isolate the
superimposed gravity waves, the resulting function for
local maxima was scanned and the wave packet data
was recorded at those points.

That data was recorded and further analyzed with
Stokes parameter analysis to determine wave direction,
speed, and height- all of which aid in the identification
of gravity waves. This general technique produced fairly
accurate results, but required access to various weather
predicting instruments. Furthermore, it can only detect
gravity waves in small areas.

Coı̈sson et al. determined that it was possible to de-
tect tsunami-induced gravity waves using satellite radio
occultation measurements [7]. By analyzing the radio
waves’ changing amplitude and frequency, they could
identify characteristics suggesting that the waves were
not from the ionosphere, instead the gravity waves were
excited by tsunamis. Koch et al. proposed an automatic
mesoscale gravity wave detection system in 1997 [8].

Gravity wave detection can be made more efficient
and accessible using the bountiful and publicly avail-
able satellite image data. Thus far, very little research
has been conducted regarding detection using artificial
intelligence. There is a notable study by Lai et al.
that developed a convolutional neural network based
program, which extracts gravity wave patterns in all-sky
airglow images [9]. This could be achieved by using
a convolutional neural network to classify images of
clear skies, and unwarp them onto geographic maps.
The gravity waves were then localized using the Object
Detection API from TensorFlow.

Our study seeks to establish machine learning meth-
ods for gravity wave detection using satellite imagery.
Specifically, we aimed to create a model that could
classify a small dataset of satellite images with 95%
validation accuracy.

B. Transfer Learning

Transfer learning involves training a model on two
tasks, typically referred to as the source tasks and target
tasks, while attempting only to maximize the model’s
ultimate performance on the target task. This differs
from multi-task learning because, in multi-task learning,
the researcher aims for good performance in all of the
domains where the model is being trained on. [10].
The strategy of transfer learning covers a wide variety
of approaches, which are often further subdivided. One
popular taxonomy categorizes approaches according to
the sort of labels available for the source and target tasks,
and how closely the samples in the source task resemble
those in the target task [11].

The transfer learning we attempted involves transfer
from the source task of categorizing images in the

https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2022-projects/team-1/
https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2022-projects/team-1/


Fig. 1. Diagram of the Overall Pipeline.

Imagenet dataset to categorizing grayscale satellite im-
agery. This is referred to as “inductive transfer learning”
because the training on the source domain was not meant
to directly improve performance on the target domain,
but rather to improve the model’s ability to learn the
target task. More specifically, Pan and Yang categorize
our approach of using training on the source domain
as an initialization algorithm for our model as “feature-
representation-transfer” [10].

Generally, feature-representation transfer learning in-
volves training a model on a domain structured similarly
to the target domain. For this training, the features
would be important for the understanding of the samples
from the source domain. Therefore, this same features
would tend to also be informative for the target domain.
For instance, Blitzer et al. designed a training method
to perform transfer sentiment classification from one
domain of text to another. They relied on structural
commonalities between documents in the same language
but in different domains [12].

Another common approach to feature representation
transfer learning would be to perform unsupervised fea-
ture extraction on unlabeled images from a domain, very
similar to the target domain. Typically such approaches
would compress the inputs with the intent of forcing
a model to produce abstract representations of the raw
inputs, which capture regularities within the input do-
main. For instance, Glorot et al. used an unsupervised
autoencoder model to transform textual reviews into
compressed summaries, which was used as input for
sentiment classifiers, resulting in significantly improved
classification performance [13].

III. OVERALL PIPELINE

Figure 1 shows the overall pipeline we used. The
pipeline starts with raw data in the format of hdf5
files supplied by the NASA Soumi NPP satellite. We
transformed the data into PNG images that were com-
prehensible to humans. Some PNG images were labeled

manually, while the rest remained unlabeled. Since our
input data consisted of noisy images which can neg-
atively impact performance of the models, the labeled
images were also denoised with FFT denoising.

We used two methods for classification. For the first
method (more at Section V-A), we leveraged the unla-
beled images to train an autoencoder. After that we saved
the encoder block and used it as part of a classification
model trained on the labeled denoised dataset. For the
second method (more at Section V-B), we cut off the
Inception V3 model pretrained on ImageNet at the last
layer with the larger (14x14) feature map. We added
custom layers to this model and used transfer learning
to train the model with the labeled dataset.

IV. DATA PREPROCESSING

In this study we used NASA VIIRS DNB (Day Night
Band) images [14] collected from satellite Suomi NPP.
The raw data were in Hierarchical Data Format version
5 (HDF5) [15]. Later we processed the data into PNG
format for the rest of the experiments.

A. Image Generation From Raw Data

The raw data consisted of measurements of the
radiance of light with wavelengths in the range
(0.5µm, 0.9µm). It was stored in a 1000x1000 matrix,
the cells of which corresponded to a spatial mapping
over a portion of the Earth’s atmosphere. Images were
recorded every six minutes of the region visible to
the satellite at that time. Radiance values were in the
range (−10−9, 10−9). We transformed the raw data
files according to Algorithm 1 to produce images that
were comprehensible to humans. See Figure 2 for an
illustration. The resulting images were classified by
hand and then further processed.



Fig. 2. Normalized raw data (left), preprocessed PNG (middle) and FFT denoised PNG (right).

Algorithm 1 HDF5 to PNG
Require: arr ∈ R1000x1000

1: F (x) ← P (Z <= x) for Z ∼ Normal distribution
fitted to the values of arr

2: arr ← arr −min(arr)
3: arr ← arr

median(arr) ∗ 0.5
4: arr ← clip(arr, 0, 1)
5: arr ← F (arr) ▷ Transform the approximately

normally distributed values to uniform ones
6: arr ← clip(arr, 0, 1)

B. Image Denoising using Fourier Transforms

One common technique for image processing is
Fourier filtering. In Fourier filtering, one zeroes out a
subset of elements of the image’s frequency domain
representation. This often serves to significantly reduce
the complexity of the image significantly with minimal
impact on its visual clarity. We did the implementation
by taking the 2D Fourier Transform of the image and
zeroing out all but the highest and lowest frequencies.
Finally we took the inverse Fourier transform of the
remaining frequencies to produce a denoised image.

Algorithm 2 FFT Denoising
INPUT : i← image
OUTPUT : image→ I

1: i← fft2(i)
2: i← (1− 2 ∗ fraction) ∗ i
3: I ← ifft2(i)

Fourier transform technique transforms an image into
sines and cosines of varying amplitudes and phases to
the frequency domain. This, in fact reveals the repeating
patterns of amplitudes and phases [16] which is the
special case of the “orthogonal functions”. Breaking
down complicated signals into linear superposition to get
the result for the original signal is the main idea of the
function.

Fig. 3. SNR plot for images before and after denoising.

All the PNG images were denoised using FFT tech-
nique as it offered an improvement in model perfor-
mance (more at Section 5 & 6) compared to other
denoising techniques such as image thresholding. A
pseudo representation of the fourier filtering used is
shown in Algorithm 2 that we used in this work to
denoise all the images.

At first, we applied the FFT (fft2) algorithm that
returns the two-dimensional fourier transform matrix
using a fast fourier transformation. The following step
was to crop out all the signals except the top and bottom
10%, row and column-wise, so we could remove the
unnecessary frequency elements. In the next steps we
would reverse the process of the first two steps, where we
reconstruct the image from signals. We utilized Python’s
SciPy package in this process. Figures 3 and 4 illustrate
the impact of denoising the images from the dataset in
different ways. In Figure 3 we plotted 150 images to
compare the differences between the noisy images and



Fig. 4. Histograms of pixel values of an image before and after FFT
denoising.

the denoised images at the same scale in terms of the
signal to noise ratio (SNR). On the other hand, Figure
4, represents a histogram distribution comparison, of a
single image, that shows how the FFT impacted the noise
removal within an image.

V. TRANSFER LEARNING BASED DETECTION

A. Autoencoder based Feature Learning from Unlabeled
Data

An autoencoder is a self-supervised learning model
that is trained to output a recreation of its input. They
typically comprise of an encoder block, which reduces
the input’s dimensions, and a decoder block, which
reconstructs the input back from the lower-dimensional
representation [18]. We used a convolutional autoen-
coder, which is an autoencoder that uses convolutional
layers in the encoder and decoder blocks and is therefore
more effective at reconstructing images [17]. Figure 5
shows the typical structure of a convolutional autoen-
coder. Lu et al. obtained favorable results by training an
autoencoder on a larger unlabeled dataset before using
the convolutional layers in a classification model [19].

This approach seemed likely to help with our diffi-
culties caused by our limited supply of labeled data and
the unusual structure of the images we were modeling.
Training an autoencoder allowed us to leverage our
relatively large supply of unlabeled images to acquire
a model which had been pre-trained on images from
our domain rather than attempting to perform transfer
learning from models trained on the ImageNet dataset.
By learning how to reconstruct input images from our
dataset, the autoencoder learned the images’ important
features. We hypothesized that if an autoencoder would

learn to reconstruct images from our domain, it would
also learn a high-level representation of gravity wave
patterns which could be extracted from the encoded
representation of the images. This knowledge can then
be transferred to a classification model.

We converted the raw hdf5 files into images and
trained a convolutional autoencoder on these images.
The autoencoder input data for this study is a three-
dimensional array with the dimensions height x width
x channel (256, 256, 1). The encoder block consists of
three sets of alternating convolution and max pooling
layers. The convolutional layers all have kernels of size
3 x 3, and the max pooling layers all have kernels of
size 2 x 2. For all convolution layers, padding is set to
“same,” the activation function is ReLU, and the layers
have 16, 8, and 8 filters respectively.

The decoder block consists of three sets of alternating
convolution and upsampling layers, which ends with a
convolution layer that outputs an image of the input
image’s dimensions. The convolutional layers have the
same kernel size, padding, and activation functions as
in the encoder block, and the order of the filters would
be reversed with the layers having 8, 8, and 16 filters
respectively. The autoencoder uses the Adam optimizer
and the loss binary cross-entropy [20]. It was then trained
over 100 epochs with a batch size of 32.

The classification model used the encoder block of the
autoencoder after it had been trained on the unlabeled
data. The layers in the encoder block were frozen, but
each convolutional layer was given an l2 regularizer
(l = 0.01) and the UnitNorm kernel constraint. The
encoder layer of 64 x 64 x 8 was flattened into a
dense layer of 32768 elements. Two dense layers of 256
and 64 units were added, each with ReLU activation
and followed by dropout layers with rate 0.5. Dropout
layers would reduce overfitting by randomly dropping
a certain percentage of the input layer during training
[21]. We found that for the autoencoder, dropping 50%
of each dense layer yielded the best results for the
autoencoder. The output layer has one neuron, for binary
classification, and a sigmoid activation function. This
model also used the Adam optimizer and binary cross-
entropy loss, and was trained over 100 epochs with a
batch size of 32. Figure 6 shows the architecture of the
classification model.

B. Customization of Pre-trained Models

Training a new model from scratch would require
a large quantity of labeled training data. One of the
challenges for this research was about working with a
dataset that was relatively small, because no more data
or datasets were available at the time of research. For
this reason, it was necessary to work around the problem
of using small dataset. We decided to create a custom



Fig. 5. Architecture of the convolutional autoencoder [17].

Fig. 6. Structure of the classification model. The left half is from convolutional autoencoder.

model that would require some parts of a pre-trained
model together with a trainable custom classifier.

The underlying principle of this concept is to employ
the transfer learning technique to apply the features that
a pre-trained model learns while solving a problem, and
use those learned features to apply it to the task at hand
for this research, to acquire better results.

Since the pre-trained model InceptionV3 has already
been trained on a large and general dataset, we may use
that model’s learned features instead of creating a new
model from scratch.

This is because a deep learning model’s initial layers
are able to identify simple shapes, while later layers can
identify more intricate visual patterns, and the last layer
can be employed to create predictions.

We can reuse the majority of the pre-trained Incep-
tionV3 model layers because employing the same low-
level visual patterns is a need for any task. By doing
so, we may overcome the issue with the limitations of
only having a small dataset at our disposal, by building
and training a customized model that is tailored for
identifying gravity waves from our dataset.

The InceptionV3 [22] was chosen as the base model
because it outperformed other state-of-the-art architec-
tures.

The ImageNet dataset, which is a dataset contains
fourteen million annotated images in over 20,000 cat-
egories, was used to train the InceptionV3 image recog-
nition model. As shown in Figure 7, InceptionV3’s deep
learning network consists of 11 concatenated layers, or
modules, named from “mixed0” to “mixed10”. Convo-
lutions, average pooling, max pooling, and other layers
are included in each module. Following each convolution
layer is a batch normalization and an activation input,
which is typically “ReLU”, which stands for Rectified
Linear Activation Function. Lower layers detect simple
patterns, while higher layers detect increasingly complex
patterns.

We configured the InceptionV3 Model to exclude the
top classification layers and made the pre-trained model’s
layers non-trainable, allowing us to use the model’s
network as an arbitrary feature extractor. By stopping
at a specific layer, we can take the final layer’s output as
the features learned from the pre-trained model’s neural
network. The concatenated layer ‘mixed7’ was chosen as
the final layer since it was the last module to preserve
a big feature map (14x14), comprising of low and mid-
level features.

Any additional layers would have preserved a 6x6
feature map instead, resulting in a smaller map with
high level features that would only have brought specific
details from the ImageNet dataset but would not have



Fig. 7. Structure of the pre-trained model InceptionV3 [22].

Fig. 8. Structure of the Customized Model.

helped us with gravity wave classification.
We added L1 and L2 Regularizers with 0.0001 values

to each 2D convolutional layer in the InceptionV3 model
to reduce overfitting. We added one Flatten layer on
top of the final layer of the model to convert the
multidimensional input to one-dimensional. A Dense
layer of 1024 units was added to define the dense layer’s
output, followed by a Dropout layer of 0.3, which meant
that 30% of the inputs would be randomly excluded
from each update cycle. Finally, a Dense layer with a
“sigmoid” activation was added to check only the labels
that could be 0 or 1. Figure 8 depicts the custom layers.

With an initial learning rate of 1e-4, we used ‘Adam’

as the optimizer for the custom model. The metrics
were from the accuracy class, and the loss function was
binary cross-entropy. A learning rate scheduler called
“ReduceL-ROnPlateau” was also added as a callback
function. If the accuracy or loss value would not im-
prove, the learning rate would be reduced by this func-
tion.

VI. EXPERIMENTS

We have 1086 image files in total for the experiment
equally divided in ‘gravity’ and ‘non gravity’ classes.
Figure 9 shows a real life example of an actual gravity
and non gravity image.



Fig. 9. An example of gravity wave image (left) and non gravity wave
image (right).

For the experiment, we used UMBC’s High Per-
formance Computing Facility (HCPF) [23] and google
colab as the operating platform. We used Python 3.7
along with tensorflow 2.4.0, keras 2.9.0, numpy 1.18.1,
scikit-learn 0.23, Pandas 1.1.0, h5py 2.10.0, and Pillow
7.1.0 as the supporting libraries.

A. Comparison Between Pre-Trained Computer Vision
Models

To see how leading architectures performed on our
data, we first ran several pretrained models on the same
preprocessed dataset. ResNet50 is a deep CNN that
achieved high accuracy on ImageNet by utilizing skip
connections [24]. EfficientNetV2 is a small CNN that
trains very quickly [25]. VGG16 is a 16-layer CNN that
employs a series of small 3x3 filters [26]. As shown in
Table I, the original InveptionV3 model outperformed all
other tested base models.

We also compared Lai et al.’s [9] model, which
consists of ten layers: an input, two CNN, two pooling,
three dropout, one flatten, and finally a dense layer. The
model performed poorly when tested with our dataset
(shown in the Table I). Possible explanations for such
low scores include a lack of data while training the
model. We chose InceptionV3 as the base model for our
custom model after considering all possibilities.

TABLE I
PERFORMANCE FROM BASELINES AND PRE-TRAINED MODELS

Model Train Acc. Val Acc. Test Acc. F1 Score
ResNet50 1.0000 0.5000 0.5508 0.2418

EfficientNet 0.5507 0.6643 0.6525 0.5922
VGG16 0.5104 0.5156 0.5593 0.2637

InceptionV3 0.9394 0.7286 0.6949 0.4672
CNN model [9] 0.5900 0.5000 0.5800 0.0000

B. Effects of AutoEncoder Approach

Table II shows the effects of transfer learning using an
autoencoder pre-trained on unlabeled data, as explained
in Section V-A. To make a comparison of the autoen-
coder model’s performance, we constructed two models
using the same architecture: the convolutional layers
were the encoder layers of the autoencoder, and the

dense layers were also the same. For the first model, we
chose randomly initialized weights for the convolution
layers. For the second model, we loaded the pre-trained
autoencoder weights for the convolution layers. Both
models were trained on the same dataset.

The results show that without any pre-training, the
model predicts only the “non gravity waves” class. On
an evenly split dataset, the training, validation, and test
accuracies remained at 0.5 for both classes. Clearly, the
baseline model was not learning. The train accuracy in-
creased to over 97% when the autoencoder’s pre-trained
weights were used, and the validation and test accuracies
increased to 70%. The pretrained model outperformed
the randomly initialized baseline despite being overfitted.

TABLE II
PERFORMANCE FROM THE MODELS WITH AND WITHOUT THE

AUTOENCODER TRANSFER

Model Train Acc. Val Acc. Test Acc. F1 Score
Without

Autoencoder 0.5000 0.5000 0.5000 0.0000

Autoencoder
pretraining 0.9753 0.7000 0.6992 0.7296

C. Effects of Model Customization Approaches

Table III shows the performance of the custom models
that used a pre-trained model for transfer learning,
explained in Section V-B. The two models in the table
share the same structure. The only difference is that the
learning rate from the second model is decreased by
the ReduceLROnPlateau function if the validation loss
does not improve during training. The model using the
learning rate scheduler outperformed the best performing
baseline model, which was the pre-trained InceptionV3
architecture in Table I, by 6.36% in terms of test accu-
racy.

The results showed that both custom models could
predict the “gravity waves” and “non gravity waves”
classes. For the dataset that was split evenly for both
classes, we can see that for the first customized model,
which a constant learning rate of 0.0001, the training
accuracy could achieve the 100 percent mark, but the
validation accuracy, test accuracy and F1 Scores were
still lower compared to the second customized model.
As shown in Figure 10 and Figure 11, the overfitting
has been reduced for the second approach of the custom
model. Figure 12 shows how the learning rate for the
model changes when ReduceLROnPlateau was activated.

TABLE III
PERFORMANCE FROM THE CUSTOM MODELS

Model Train Acc. Val Acc. Test Acc. F1 Score
Constant LR 1.0000 0.9063 0.6144 0.8800
Changing LR 0.9506 0.9499 0.7585 0.8181



Fig. 10. Two plots showing the performance of the Custom Model
with a Constant Learning Rate during the training.

D. Effects of FFT Denoising

To deal with the noise in the dataset images, we im-
plemented a denoising method that reconstructs cleaner
images using the Fast Fourier Transform technique.
Table IV compares the performance of our models when
using noisy and denoised datasets.

With the exception of the randomly initialized model,
which consistently predicts only one class, the results
show that the majority of the models had a higher F1
score when classifying the denoised dataset.

TABLE IV
PERFORMANCES IN MODELS WITH NOISY AND FFT DENOISED

DATA

Model F1 Score Noisy F1 Score Denoised
Random Initialization 0.0000 0.0000

Autoencoder pretraining 0.6577 0.7296
Constant LR 0.5714 0.8800
Changing LR 0.7500 0.8181

E. Discussion

By referring to the results above, it is clear that using
a state-of-the-art pre-trained model yields better results
than using an autoencoder for transfer learning.

Even though the autoencoder was trained using data
more relevant to our dataset, it was trained in less time

Fig. 11. Two plots showing the performance of the Custom Model
with a Changing Learning Rate during the training.

Fig. 12. Plot showing the learning rate changes during the training
for the custom model that uses ReduceLROnPlateau.

and with a smaller dataset, unlike the InceptionV3. We
discovered that when the autoencoder bottleneck gets too
tight, the decoder stops reproducing gravity waves. This
indicated that gravity wave patterns were difficult for
the autoencoder to compress, whereas the other satellite
image features were easier to compress. Because gravity
wave shapes vary and are unstructured, more research
may be required to address these concerns.

The custom models had the highest validation and
test accuracies, with the model that used the learning



rate scheduler being the only one to achieve the goal
of reaching 95% validation accuracy. This demonstrates
that combining the transfer learning method with a pre-
trained model aided the custom model in predicting
gravity waves. A larger dataset of satellite images would
have allowed the model to learn more accurate general
features and further reduce overfitting.

VII. CONCLUSIONS

We presented preprocessing methods for converting
raw HDF5 data from our chosen domain into usable
images, as well as evaluated the performance of two
transfer learning methods on our classification dataset.
Our autoencoder method enabled us to use our large
supply of unlabeled image data to identify meaningful
structures within our images, which we then used to per-
form the classification task. Our customized InceptionV3
model used the most important parts of a cutting-edge
architecture while adding our own layers and modifica-
tions that best fit our needs.

We anticipate that these findings will be useful for
classifying gravity waves in small datasets of noisy
satellite images, as well as for future gravity wave
classification research. This work may also be useful
for other transfer learning efforts, particularly those
involving small datasets.

In the future, we will investigate how our models
perform on datasets from other satellites, address overfit-
ting issues, investigate other promising transfer learning
models, and refine fake data generation techniques to
compensate for our lack of labeled data.

ACKNOWLEDGMENTS

This work is supported by the NSF grant “REU Site:
Online Interdisciplinary Big Data Analytics in Science
and Engineering” (OAC–2050943) and the NASA grant
“Machine Learning based Automatic Detection of Upper
Atmosphere Gravity Waves from NASA Satellite Im-
ages” (80NSSC22K0641).

REFERENCES

[1] A. Mann, “To improve weather and climate models, re-
searchers are chasing atmospheric gravity waves,” EARTH, AT-
MOSPHERIC, AND PLANETARY SCIENCES, 2019.

[2] D. C. Fritts and M. J. Alexander, “Gravity wave dynamics
and effects in the middle atmosphere,” Reviews of Geophysics,
vol. 41, no. 1, 2003. [Online]. Available: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2001RG000106

[3] D. Moran, “What are gravity waves?” https://www.weather.gov/
source/zhu/ZHU Training Page/Miscellaneous/gravity wave/
gravity wave.html, accessed: 2022-07-17.

[4] “Github repository for atmospheric gravity wave detection
using transfer learning techniques.” https://github.com/
big-data-lab-umbc/big-data-reu/tree/main/2022-projects/team-1,
[Online; Accessed: 2022-07-30 ].

[5] F. Zink and R. A. Vincent, “Wavelet analysis of stratospheric
gravity wave packets over macquarie island: 2. intermittency
and mean-flow accelerations,” Journal of Geophysical Research,
2001.

[6] T. Colligan, J. Fowler, J. Godfrey, and C. Spangrude, “Detection
of stratospheric gravity waves induced by the total solar eclipse
of july 2, 2019,” Sci Rep 10, 2020.

[7] P. Coı̈sson, P. Lognonné, D. Walwer, and L. M. Rolland, “First
tsunami gravity wave detection in ionospheric radio occultation
data,” Earth and Space Science, vol. 2, no. 1, pp. 125–133, 2015.

[8] S. E. Koch and C. O’Handley, “Operational forecasting and
detection of mesoscale gravity waves,” Weather and Forecasting,
vol. 12, no. 2, pp. 253–281, 1997.

[9] C. Lai, J. Xu, J. Yue, W. Yuan, X. Liu, W. Li, and Q. Li,
“Automatic extraction of gravity waves from all-sky airglow
image based on machine learning,” Remote Sensing, vol. 11,
no. 13, p. 1516, 2019.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, pp.
1345–1359, 2010.

[11] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He, “A comprehensive survey on transfer
learning,” CoRR, vol. abs/1911.02685, 2019. [Online]. Available:
http://arxiv.org/abs/1911.02685

[12] J. Blitzer, M. Dredze, and F. C. Pereira, “Biographies, bollywood,
boom-boxes and blenders: Domain adaptation for sentiment
classification,” in ACL, 2007.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for
large-scale sentiment classification: A deep learning approach,”
in ICML, 2011.

[14] NASA LAADS DAAC, “VNP02DNB Data Product:
VIIRS/NPP Day/Night Band 6-Min L1B Swath 750m,” https:
//ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/
products/VNP02DNB, DOI:10.5067/VIIRS/VNP02DNB.002,
accessed August 2, 2022.

[15] “The hierarchical data format version 5 (hdf5),” https://portal.
hdfgroup.org/display/HDF5, [Online; Accessed: 2022-06-30 ].

[16] S. W. Smith et al., “The scientist and engineer’s guide to digital
signal processing,” 1997.

[17] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with con-
volutional autoencoders,” in International conference on neural
information processing. Springer, 2017, pp. 373–382.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[19] J. Lu, N. Verma, and N. K. Jha, “Convolutional autoencoder-
based transfer learning for multi-task image inferences,” IEEE
Transactions on Emerging Topics in Computing, vol. 10, no. 2,
pp. 1045–1057, 2022.

[20] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein,
“A tutorial on the cross-entropy method,” Annals of Operations
Research, vol. 134, pp. 19–67, 2005.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research
15, pp. 1929–1958, 2014.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2818–2826.

[23] “UMBC High Performance Computing Facility,” https://hpcf.
umbc.edu/, accessed August 2, 2022.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, 2016.

[25] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster
training,” ArXiv, vol. abs/2104.00298, 2021.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2015.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001RG000106
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001RG000106
https://www.weather.gov/source/zhu/ZHU_Training_Page/Miscellaneous/gravity_wave/gravity_wave.html
https://www.weather.gov/source/zhu/ZHU_Training_Page/Miscellaneous/gravity_wave/gravity_wave.html
https://www.weather.gov/source/zhu/ZHU_Training_Page/Miscellaneous/gravity_wave/gravity_wave.html
https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2022-projects/team-1
https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2022-projects/team-1
http://arxiv.org/abs/1911.02685
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP02DNB
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP02DNB
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP02DNB
https://portal.hdfgroup.org/display/HDF5
https://portal.hdfgroup.org/display/HDF5
http://www.deeplearningbook.org
https://hpcf.umbc.edu/
https://hpcf.umbc.edu/

	Introduction
	Background and Related Works
	Gravity Wave Detection
	Transfer Learning

	Overall Pipeline
	Data Preprocessing
	Image Generation From Raw Data
	Image Denoising using Fourier Transforms

	Transfer Learning based Detection
	Autoencoder based Feature Learning from Unlabeled Data
	Customization of Pre-trained Models

	Experiments
	Comparison Between Pre-Trained Computer Vision Models
	Effects of AutoEncoder Approach
	Effects of Model Customization Approaches
	Effects of FFT Denoising 
	Discussion

	Conclusions
	References

