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Fracton order features point excitations that either cannot move at all or are only allowed to move in a lower-
dimensional submanifold of the whole system. In this paper, we generalize the (2 + 1)-dimensional [(2 + 1)D]
U(1) Chern-Simons (CS) theory, a powerful tool in the study of (2 + 1)D topological orders, to include infinite
gauge field components and find that they can describe interesting types of (3 + 1)-dimensional fracton order
beyond what is known from exactly solvable models and tensor gauge theories. On the one hand, they can
describe foliated fractonic systems for which increasing the system size requires insertion of nontrivial (2 + 1)D
topological states. The CS formulation provides an easier approach to study the phase relation among foliated
models. More interestingly, we find simple examples that lie beyond the foliation framework, characterized by
2D excitations of infinite order and irrational braiding statistics. This finding extends our realm of understanding
of possible fracton phenomena.
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I. INTRODUCTION

Fracton models [1,2] are characterized by the peculiar fea-
ture that some of their gapped point excitations are completely
localized or are restricted to move only in a lower-dimensional
submanifold. Two large classes of models have been studied
extensively, with very different features. The exactly solvable
fracton models (see, for example, [3–8]), on the one hand,
are gapped and exhibit properties like exponential ground-
state degeneracy, nontrivial entanglement features [9–12], and
foliation structure [13]. The higher-rank continuum gauge
theories (see, for example, [14–17]), on the other hand, host
gapless photon excitations, on top of which gapped fracton
excitations emerge due to nontrivial forms of symmetrylike
dipole conservation. The fracton models discovered so far host
features that are very similar to those in topological models
like fractional quantum Hall and (rank-1) gauge theories, but
also generalize the topological framework in nontrivial ways.

One theoretical tool that plays an important role in the
study of (2 + 1)-dimensional [(2 + 1)D] topological phases
is Chern-Simons gauge theory [18]. In particular, it has
been shown that multicomponent U(1) gauge theories with
a Chern-Simons term give a complete characterization of
(2 + 1)D Abelian topological phases [19]. The Lagrangian of
the theory is given by

L = − 1

4e2
∑
i

F i
μνF i,μν + 1

4π

∑
i j

Ki jε
μνλAi

μ∂νA j
λ, (1)

where μ, ν, λ = 0, 1, 2, and i, j label the different gauge
fields and take values in a finite set i, j = 1, . . . ,N . The
matrix K is an N × N symmetric integer matrix. The universal

topological features are captured in the K matrix, from which
one can derive the ground state degeneracy, anyon fusion,
and braiding statistics, edge states, etc., of the topological
phase [19].

Can we take the number of gauge fields to infinity and
extend this formalism to describe (3 + 1)-dimensional [(3 +
1D)] fractonic order? In this paper, we call such theories
“iCS” theories, “i” for infinite. This idea comes from the
simple observation that if we take this extension and choose
the infinite-dimensional K matrix to be simply diagonal (with
diagonal entries being, for example, 3),

K =

⎛⎜⎜⎜⎜⎜⎝
. . .

3
3

3
. . .

⎞⎟⎟⎟⎟⎟⎠, (2)

then the Lagrangian describes a decoupled stack of (2 + 1)D
fractional quantum Hall states (each with filling fraction ν =
1
3 in this example). Such decoupled stacks of (2 + 1)D topo-
logical states, while simple, contain several of the key features
of fracton physics: ground state degeneracy that increases
exponentially with the height of the stack, anyon excitations
that are mobile in 2D planes only and cannot hop vertically,
and entanglement entropy of subregions that contains a sub-
leading term which scales linearly with the height of the
region [9]. Therefore, this simple stack system described by a
diagonal infinite K matrix is a fracton model, although a very
trivial one.
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Can iCS theories with more complicated K matrices
lead to more interesting types of fractonic behavior? In
this paper, we show that this is indeed the case. In Sec. II,
we show that some gapped iCS theories have foliated
fractonic order, which was first identified in several exactly
solvable fracton models [12,13,20]. The iCS models cover
both twisted and nontwisted foliated fractonic phases and
can represent foliated phases without an exactly solvable
limit. More interestingly, in Sec. III, we present a gapped
iCS theory that is qualitatively different from any exactly
solvable fracton model we know before. The ground state
degeneracy does not follow exactly a simple exponential
form, but approaches one in the thermodynamic limit.
Quasiparticles move in planes and braiding statistics become
ever more fractionalized as system size increases. This
example represents a new class of gapped fractonic order
beyond the foliation framework, and it is not yet clear to us
how the renormalization procedure should work so that this
model becomes a renormalization fixed point. Note that the
gapped iCS theories discussed in this paper are “fractonic”
in the sense that they contain point “planon” excitations that
move in 2D planes only but not the third direction. There
are no true “fracton” excitations in these models which are
completely localized when on their own. Next, in Sec. IV,
we discuss an iCS theory which is gapless. On top of the
gapless photon excitation, the system has a constant ground
state degeneracy and fractional excitations generated by
membrane operators. What kind of (3 + 1)D physics this
model describes is an intriguing question. Some of these iCS
theories have been studied in the context of three-dimensional
quantum Hall systems [21–24] where their unusual
properties of braiding statistics, edge states, etc., were
first pointed out.

To substantiate the results we obtain from field theory anal-
ysis, we present an explicit lattice construction in Sec. V. The
construction works for any K matrix that is 1. integer-valued,
2. symmetric, Ki j = Kji, 3. quasidiagonal, i.e., nonzero entries
of K are restricted to some finite distance from the diagonal.
This lattice construction demonstrates that the corresponding
iCS theory indeed describes the effective low-energy physics
of an anomaly-free (3 + 1)D local model. In particular, we
write a lattice Hamiltonian and the lattice form of the string
operators for the planons, and calculate the spectrum (from
field theory). We emphasize here that the main purpose of the
lattice construction is to confirm the legitimacy of the iCS field
theory, rather than for numerical or experimental study.

Finally, in Sec. VI, we summarize our result and discuss
the various open questions that follow the initial exploration
of iCS theory presented here.

In Appendix C we discuss the tangential problem of how to
construct the K matrix representation of a (2 + 1)D Abelian
topological order if we are given the fusion group and statis-
tics of its anyons. This translates to the math problem of
quadratic forms on finite Abelian groups and a complete solu-
tion is known [25,26]. We present the procedure step by step
for interested physics readers.

Note that in this paper, we are considering (2 + 1)D gauge
fields with (2 + 1)D gauge symmetries although the model is
a (3 + 1)D model. It is possible to add a z component to the
gauge field and modify the model so that it satisfies (3 + 1)D

FIG. 1. Foliated fracton order and its interpretation in terms of
K matrix. In (a) (first line), we start with a system H (L) of size L
in the z direction. A finite-depth local unitary circuit U is applied
to the green region {(x, y, z) : z1 � z � z2}. The result is the same
system H (L − 1) of size L − 1 in the z direction and a decoupled
(2 + 1)D gapped system (red layer). In (b) (second line), we start
with a quasidiagonal K (N ) of size N ∝ L with periodic boundary
condition. Only entries in the blue region can be nonzero. We ap-
ply the transformation K (N ) �→ WK (N )WT , where W ∈ GL(N,Z)
shown in the dashed box is equal to the identity except in the green
block, so the action of W on K (N ) is within the green cross in
the second figure. The result is the direct sum of the same system
K (N − a) of size N − a and a decoupled block K ′ of size a = O(1)
(red block).

gauge symmetries. We find that in most such cases, the model
becomes gapless, similar to the case studied in [27]. We leave
these cases out of the scope of this paper.

In the following discussion, we will always use the con-
vention that each gauge field has x and y spatial components,
but not a z one. As we will show, the i index of the
K matrix can be interpreted as the z direction spatial coor-
dinate.

II. GAPPED FOLIATED THEORIES

A number of the fracton models discovered so far have
a “foliation structure” [12,13,20]. That is, a model with a
larger system size can be mapped under a finite-depth local
unitary circuitU to the same model with a smaller system size
together with decoupled layers of (2 + 1)D gapped states, as
shown in Fig. 1(a). For example, it was shown [13] that the
X-cube model of size Lx × Ly × Lz can be mapped to one with
size Lx × Ly × (Lz − 1) together with a (2 + 1)D toric code.
Actually, the same process can be implemented in all x, y,
and z directions, and hence the X-cube model is said to be
“3-foliated.” Other fracton models with a “foliation structure”
include the semionic X-cube model [28,29], the checkerboard
model [30], and the Majorana checkerboard model [31].

An iCS theory can have a “foliation structure” as well
and the K matrix formulation provides a particularly simple
mathematical framework to study it, as explained in Fig. 1(b).
Obviously the diagonal K matrix, for example the one in
Eq. (2), represents a rather trivial 1-foliated fracton model
where a model of height L (in the stack direction) is the
same as a model of height L − 1 together with a decoupled
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2D layer. Moreover, in Ref. [20], it was shown that it is
possible to represent more nontrivial types of foliated fracton
order using an iCS theory. In particular, it was shown that an
infinite-dimensional K matrix of the form

KF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 m1 e2 m2 e3 m3 e4
. . .

0 2 −1
2 0

−1 0 2 −1
2 0
-1 0 2 -1

2 0
-1 0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

describes a twisted 1-foliated fracton order. All nonzero
entries in the matrix lie within distance 2 from the main
diagonal; the matrix is hence said to be quasidiagonal. It is
translation invariant with a period of 2: i �→ i + 2, j �→ j + 2.
We have added a subscript “F” to indicate that it is foliated.
The meaning of the column labels will become clear once we
take the inverse of this matrix.

To see what kind of physics this KF matrix describes, we
first notice that the determinant of the KF matrix of size 2L
is given by detKF(2L) = (−4)L. Therefore, the ground state
degeneracy on a 3D torus is given by

log2 GSD = 2L,

which takes a simple linear form in L. Next, the quasiparticle
content can be read from the K−1

F matrix

K−1
F = 1

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 e1 m1 e2 m2 e3 m3
. . .

0 1
0 2

1 2 0 1
0 2

1 2 0 1
0 2

1 2 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

The column labels ei and mi follow from those in Eq. (3). It is now easy to see that we choose these labels because the statistics
of ei and mi are similar to those in a Z2 gauge theory where the e and m excitations are bosons and have a mutual −1 braiding
statistics. But this KF matrix represents not just a decoupled stack of Z2 gauge theories, because the m excitations have mutual i
statistics between neighbors. Indeed, it was shown in Ref. [20] to describe a twisted 1-foliated fractonic order. That is as follows:

(1) The model is gapped and has fractional excitations that move only in the xy plane, hence a fracton model.
(2) The model of height L in the z direction (corresponding to a KF matrix of size 4L) can be mapped to one of height L − 1

(corresponding to a KF matrix of size 4L − 4) together with a (2 + 1)D topological state layer (a twisted Z2 × Z2 gauge theory
in this case).

(3) The model is not equivalent to a pure stack of (2 + 1)D topological layers. Note that the entries in K−1
F are strictly zero

once we move sufficiently far away from the main diagonal.
Comparing this to examples discussed in later sections, we see that this is a hallmark of foliated iCS theories.
The way to see the foliation structure is to apply a local, general linear transformationW of the form

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3
. . .

e1 1 -1 -1
m1 1
e2 1
m2 1 1
e3 1
m3 1 1
e4 -1 1
m4 1
e5 1

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)
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so that KF is transformed into

WKFW
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3
. . .

0 2 -1
2 0

0 2 -1 0
2 0 0 0
-1 0 0 2
0 0 2 0

-1 0 2 -1
2 0
-1 0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the middle 4 × 4 block is decoupled from the rest
of the system and the remaining part of the transformed K
matrix is the same as the original one in Eq. (3), only slightly
smaller. Note that, although the W matrix looks quite big, it
acts nontrivially only within the finite block shown in Eq. (5).
Its action is the identity outside. This transformation hence
realizes the renormalization group transformation [13,32] of
the 1-foliated fracton model formulated in terms of infinite-
dimensional K matrices, as shown schematically in Fig. 1(b).

The iCS theory, and correspondingly the infinite-
dimensional K matrix, hence provide a convenient formula-
tion for studying the foliation structure in a 1-foliated fracton
model. The example discussed above can be generalized to
a whole class of 1-foliated models with a similar foliation
structure, as discussed in Appendix A.

III. GAPPED NONFOLIATED THEORIES

While the iCS formulation is useful in the study of foliated
fracton models, a more surprising finding is that iCS theories
can also be nonfoliated. Among all type-I fracton models,
ones with mobile fractional excitations, that we know so far,
the Abelian ones are all foliated. The iCS theory, being an
Abelian type-I fracton model, hence extends our understand-
ing of what is possible within the realm of fractonic order.

Consider the iCS theory with a simple tridiagonal K matrix

KnF =

⎛⎜⎜⎜⎜⎝
3 1 1
1 3 1

. . .
. . .

. . .

1 3 1
1 1 3

⎞⎟⎟⎟⎟⎠. (6)

Note that we have taken periodic boundary condition in the
matrix. The “nF” subscript denotes nonfoliated. This theory
was studied in Refs. [22–24] as an effective theory for coupled
fractional quantum Hall layers. Many aspects of its properties
have been studied. Here we look at the theory from a fracton
perspective, that is, to address the following question: Is this
a fracton model and, if so, what type of fracton model?

A field-theory calculation shows that this theory is gapped
(see Sec. VB). The determinant D(N ) of the matrix of size N ,
and hence the ground state degeneracy of the model on a 3D
torus of height N , follow a rather complicated form

D(N ) =
(
3 + √

5

2

)N

+
(
3 − √

5

2

)N

− 2(−1)N . (7)

The exponential growth of GSD in system size indicates frac-
tonic order. However, unlike in the foliated case, the GSD does
not follow a simple exponential form (with possible prefac-
tors), but only approaches such a form in the thermodynamic
limit N → ∞ with an irrational base (3 + √

5)/2.
Another way to see that this model is “weird” is from the

fusion group and statistics of its planons. Such information
can be read from the inverse of the matrix, which for size N =
5 takes the form

K−1
nF = 1

25

⎛⎜⎜⎜⎝
11 −4 1 1 −4
−4 11 −4 1 1
1 −4 11 −4 1
1 1 −4 11 −4

−4 1 1 −4 11

⎞⎟⎟⎟⎠,

and for size N = 7 takes the form 1

K−1
nF = 1

65

⎛⎜⎜⎜⎜⎜⎜⎜⎝

29 −11 4 −1 −1 4 −11
−11 29 −11 4 −1 −1 4
4 −11 29 −11 4 −1 −1

−1 4 −11 29 −11 4 −1
−1 −1 4 −11 29 −11 4
4 −1 −1 4 −11 29 −11

−11 4 −1 −1 54 −11 29

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

1The integers 1, 4, 11, 29, etc., form a sequence known as the Lucas
numbers.

195124-4



FRACTONIC ORDER IN INFINITE-COMPONENT … PHYSICAL REVIEW B 105, 195124 (2022)

Note the difference from the foliated case [for example,
Eq. (4)]. First of all, the magnitude of the entries decay expo-
nentially away from the main diagonal, but they never become
exactly zero. Second, each entry varies as the system size
increases and approaches an irrational number as the system
size goes to infinity:

(
K−1
nF

)
i j → (−1)i− j

√
5

(
3 + √

5

2

)−|i− j|
. (8)

In terms of quantum Hall physics, this indicates an irrational
amount of charge in layer j attached to a flux inserted in layer
i [21]. In terms of Abelian topological order, this indicates an
irrational phase angle in the braiding statistics between the ith
anyon and the jth anyon:

θi j = 2π
(−1)i− j

√
5

(
3 + √

5

2

)−|i− j|
.

KnF of size N gives a fusion group GN = ZFN × Z5FN , where
FN is the N th number in the Fibonacci sequence. Therefore,
the fusion group has two generators, one of order FN , the other
of order 5FN .

These features preclude a foliation structure in KnF. In both
cases, the fusion group is exponentially large and correspond-
ingly the ground state degeneracy grows exponentially with
system size. But the underlying reasons for this growth are
very different. In the foliated models, as the planons come
from the hidden 2D layers, they have finite orders and cor-
respondingly rational statistics. At the same time, the fusion
group has a lot of generators, a number that grows linearly
with system size. In the nonfoliated example, however, the
fusion group has only two generators, each of infinite order
(exponentially growing with system size). Their self- and
mutual statistics also become more and more fractionalized as
the system size grows and eventually approach an irrational
number.

It is therefore straightforward to see that the theory repre-
sented by KnF cannot be foliated. In particular, not every local
(in the z direction) planon can be decoupled into an anyon in
a foliation layer. First, the ground state degeneracy does not
follow a simple formula of abN , with b being an integer or a
root of an integer, as expected in a foliated model. Second,
the elementary planon has an infinite order and nontrivial
(although exponentially decaying) statistics with planons a
large distance away. This cannot happen in a foliated model.
In a foliated model, when each foliation layer is inserted, we
can apply a local unitary transformation to “integrate” the
layer into the bulk. The anyons that come from the layers can
acquire a different (but still local) profile in the z direction
when becoming a planon. In particular, if the unitaries have
exponentially decaying tails, the profile can have exponential
tails, which is not surprising. But it is not possible for the
planons to have exponentially decaying tails in its statistics
because unitary transformations cannot change statistics. The
only thing we can do when mapping the anyons in the fo-
liation layers into planons is to relabel them, i.e., choose a
different set and call them elementary. But when combin-
ing anyons into a new generating set, it is not possible to
combine fractions of them together in the form of an expo-
nentially decaying tail. Therefore, the exponential decaying

infinite statistics precludes a foliation structure. Moreover, this
“profile” of braiding statistics defines an intrinsic length scale
in the system along the z direction, determined entirely by the
topological order and can not be tuned continuously. As we
show below, the length scale characterizes the spread of anyon
string operators in the z direction.

Similar phenomena can be found in many other iCS the-
ories, as discussed in Appendix B. In fact, the properties of
KnF are so unusual that one may wonder if it represents a
physical (3 + 1)D theory at all and, if so, whether the planons
are indeed point excitations. In Refs. [22–24], the theory was
studied in terms of its related Laughlin wave function and
the corresponding quantum Hall Hamiltonian, which partially
addresses this question. In Sec. V, we address this question
for all iCS theories with quasidiagonal K matrices through
explicit lattice construction. We show that all such theories
are local (3 + 1)D models and in particular for KnF, the ele-
mentary planons are indeed point excitations. They move in
the xy plane and are hence planons.

IV. GAPLESS THEORIES

If we change the diagonal entries in Eq. (6) from 3 to 2,

Kgl =

⎛⎜⎜⎜⎜⎝
2 1 1
1 2 1

. . .
. . .

. . .

1 2 1
1 1 2

⎞⎟⎟⎟⎟⎠, (9)

we get a very different theory. In particular, the calculation
in Sec. VB shows that the theory becomes gapless. The “gl”
subscript denotes “gapless.” It is not clear what the nature of
the gapless phase is. In this section, we will simply list some
of the properties of Kgl.

The eigenvalues ofKgl form a gapless band with a quadratic
dispersion. Therefore, according to discussion in Sec. VB, the
photon sector in the theory is gapless with a quadratic disper-
sion in the z direction. As the band touches the zero-energy
point when the size N of the matrix is even, the determinant
of the matrix is zero with even N . With odd N , the determinant
is always 4.

The inverse of the matrix looks like, for N = 5,

K−1
gl = 1

4

⎛⎜⎜⎜⎝
5 −3 1 1 −3

−3 5 −3 1 1
1 −3 5 −3 1
1 1 −3 5 −3

−3 1 1 −3 5

⎞⎟⎟⎟⎠,

while for N = 7,

K−1
gl = 1

4

⎛⎜⎜⎜⎜⎜⎜⎜⎝

7 −5 3 −1 −1 3 −5
−5 7 −5 3 −1 −1 3
3 −5 7 −5 3 −1 −1

−1 3 −5 7 −5 3 −1
−1 −1 3 −5 7 −5 3
3 −1 −1 3 −5 7 −5

−5 3 −1 −1 3 −5 7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The fusion group in this case turns out to be Z4 and the
topological spin of the generating anyon is θ = qπ/4, where
q = N mod 8. Hence, the topological order is that of the
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ν = 2q fermionic Z2 gauge theory in Kitaev’s 16-fold way
[33]. The entries in K−1

gl decay linearly away from the main
diagonal. However, unlike for KnF in Eq. (6), the statistics do
not become more fractional as the system size grows. Instead,
the fractional part remains± 1

4 no matter the distance. Because
of this, the fractional excitations are hence very different from
those in KnF. As we will show in Sec. V, while the fractional
excitations in KnF have a localized profile in the z direction
and can be considered as point excitations, those in Kgl have
an extensive profile in the z direction and should be regarded
as a line excitation (if such consideration is valid at all given
the existence of gapless modes in the model).

Kgl is a representative of the class of gapless iCS theories
with quasidiagonal K matrices. In Ref. [22], it was mentioned
that some of these theories might have an instability towards
“staging,” that is, translation symmetry breaking in the z di-
rection. Whether that always happens, or whether some of
these theories might be gapless spin liquids or gapless fracton
phases is not clear. We will leave more in-depth study of these
gapless phases to future work.

V. LATTICE CONSTRUCTION

In the previous sections, we have presented some inter-
esting and sometimes even surprising properties of the iCS
theories without addressing one crucial question: Are the iCS
theories legitimate (3 + 1)D models? In particular, can we
interpret the i index in Eq. (1) as a z-direction spatial coordi-
nate? After all, the Chern-Simons gauge fieldsAi are not local
degrees of freedom and can have complicated commutation
relations between one another. For example, when e → ∞,[

Ai
x,A j

y

] ∝ K−1
i j .

The situation is particularly worrisome in the case of KnF

and Kgl where the entries in K−1 are all nonzero. It means
that if we try to interpret i and j as the z-direction spatial
coordinate, the gauge field in the ith layer Ai would have
nontrivial commutation relation with the gauge field in the jth
layer even though they are very far away.

This is related to the question of what the fractional excita-
tions look like, in particular whether the ones associated with
the unit vectors (. . . , 0, 0, 1, 0, 0, . . .) have a local profile in
the z direction. In the CS formulation, this seems to be the
case because these excitations are unit gauge charges of the
gauge field Ai and are created simply by string operators of
the form (in the e → ∞ limit)

W i = exp

[
− i

∫
path

dxαAi
α

]
,

but this seems to be at odds with the fact that the ith excitation
has a nontrivial braiding statistic with the jth excitation no
matter how far away they are.

In this section, we clarify these issues by presenting a
lattice construction whose low-energy effective theory is de-
scribed by Eq. (1). Our construction works for any iCS theory
with a quasidiagonal K matrix, i.e., symmetric integer ma-
trices whose entries are zero beyond a certain distance from
the main diagonal and whose nonzero entries are all bounded
by some finite number. Therefore, our construction shows that
all such iCS theories are legitimate (3 + 1)D local models. We

FIG. 2. Lattice model realizing K = (2). The matter content of
the system is two IQH layers 	1 and 	2 (blue lines) with Chern
number Cl = 1. The layers are coupled each with unit charge to a
dynamical U(1) gauge field A.

stress that the main purpose of constructing the lattice models,
which are rather complicated, is not to aid numerical study
or to propose an experimental realization, but to confirm the
legitimacy of the field theory. We also write the explicit form
of the string operators that generate fractional excitations and
show that for KF, KnF, the elementary excitations associated
with unit vectors (. . . , 0, 0, 1, 0, 0, . . .) are local in the z di-
rection and are hence point excitations. For Kgl, however, the
elementary excitation is not localized in the z direction and
should not be thought of as a point excitation.

A. Lattice model

We now describe the lattice model that realizes a
quasidiagonal iCS theory. For clarity, we start with a toy
example K = (2), a 1 × 1 matrix. Although this K matrix
has finite dimension, it contains much of the relevant physics,
and will also be revisited in Sec. VC when we study string
operators. We then proceed to the less trivial example of KnF

defined in Eq. (6). Finally, we present the construction in full
generality which works for arbitrary quasidiagonal K with
bounded entries.

The K = (2) CS theory can be realized as a chiral spin liq-
uid, as discussed, for example, in Ref. [34]. Here we present a
more complicated construction so that it can be generalized to
all iCS theories. As shown in Fig. 2, we start with two integer
quantum Hall (IQH) layers 	l , l = 1, 2, with Chern number
Cl = 1. Each layer is a free-fermion hopping model in the xy
plane. The fermions in each layer carry unit charge under a
global charge conservation symmetry and we can gauge the
system by coupling the layer to a dynamical U(1) gauge field
A. More precisely, we add gauge degrees of freedom Arr′ on
the horizontal links 〈rr′〉. As usual, we define the electric
field Err′ as the conjugate variable to Arr′ , [Arr′ ,Err′ ] = i. The
Hamiltonian after gauging is

H =
∑
l=1,2

∑
〈rr′〉

urr′eiArr′ c†l,r′cl,r +
∑
〈rr′〉

gE (Err′ )2

− gB
∑
p

cosBp + gQ
∑
r

(Qr )
2, (10)

where r, r′ are two-component vectors labeling the sites in
each layer, urr′ is the IQH hopping coefficient, Bp is the flux
of A through plaquette p, and

Qr = (∇ · E)r −
∑
l=1,2

c†l,rcl,r (11)

is the Gauss’s law term (see Fig. 3). Note that here Gauss’s
law is only being imposed as an energetic constraint, not a
Hilbert space constraint. Because of this, the resulting theory
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FIG. 3. The flux and Gauss’s law terms in Eq. (14). Reversing the
direction of the edges changes the signs in front of A and E . In the
context of our first example K = (2), the index i should be ignored
and qil = 1 for l = 1, 2.

is fermionic instead of bosonic. More specifically, we will
show below that the resulting theory is the K = 2 bosonic
theory together with two decoupled fermionic IQH layers.

At low energies, the model is described by an effective CS
theory (we kept only the topological CS terms and omitted the
Maxwell term and source term AμJμ)

L = − 1

4π

∑
l=1,2

Clεμνλalμ∂νa
l
λ + 1

2π

∑
l=1,2

εμνλAμ∂νa
l
λ, (12)

whose K matrix with respect to the basis (a1, a2,A) is

K0 =
⎛⎝−1 0 1

0 −1 1
1 1 0

⎞⎠. (13)

Note that an IQH layer with Chern number 1 corresponds
to a −1 in the K matrix. To see how K0 relates to the
desired K = (2), we apply the transformation K0 �→ K̃0 =
WK0WT with

W =
⎛⎝1 0 0
0 1 0
1 1 1

⎞⎠.

We obtain

K̃0 =
⎛⎝−1 0 0

0 −1 0
0 0 2

⎞⎠
in terms of the new fields⎛⎝ã1

ã2

Ã

⎞⎠ = (
W−1

)T⎛⎝a1

a2

A

⎞⎠ =
⎛⎝a1 − A
a2 − A

A

⎞⎠.

We see that K̃0 contains the decoupled block K = (2) in its
lower right corner. We also have two decoupled IQH layers in
K̃0, but these have no anyon content. Therefore, the construc-
tion, as written, realizes not exactly the K = 2 theory, but a
very close fermionic cousin represented by K̃0.

Next, we consider the example of KnF defined in Eq. (6).
To realize KnF, we take infinitely many IQH layers 	l , l ∈ Z,
each with Chern number Cl = 1. We couple the layers to
infinitely many dynamical U(1) gauge fields Ai, i ∈ Z, as
follows: fermions in layers 	1, 	2, 	3 have unit charge under
A1, those in layers	3,	4,	5 have unit charge under A2, those

FIG. 4. Lattice model realizing KnF. The matter content of the
system is infinitely many IQH layers 	l (blue lines) with Chern
number Cl = 1. The layers are coupled with unit charge to infinitely
many dynamical U(1) gauge fields Ai in the way indicated by the
curly brackets.

in layers 	5, 	6, 	7 have unit charge under A3, etc. All other
pairs of 	l and Ai not following this pattern are uncoupled
(see Fig. 4). This model has a low-energy effective CS theory
similar to Eq. (12), but now with K matrix

K0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

−1 1
−1 1

1 1 0 1
1 −1 1

−1 1
1 1 0 1

1 −1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

with respect to the basis (. . . , a1, a2,A1, a3, a4,A2, a5, . . . ).
Like in the previous example, we apply the transformation
K0 �→ K̃0 = WK0WT with

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1
1

1 1 1 1
1

1
1 1 1 1

1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

W is a local transformation in the sense that it can be de-
composed into two layers where each layer is a product
of nonoverlapping general linear transformations that act on
three nearest-neighbor dimensions. Borrowing the terminol-
ogy for local unitary transformations, W is a “finite-depth
circuit” of general linear transformations. This is an important
point because it shows that locality is preserved when we map
from the lattice model to the effective iCS theory. Specifically,
W can be decomposed into a finite product of block-diagonal
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integer matricesW = W1W2, where

W1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1
1

1 1
1

1
1 1

1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1
1
1 1 1

1
1
1 1 1

1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The result of this transformation is

K̃0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

−1
−1

3 1
−1

−1
1 3

−1
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which breaks into KnF consisting of rows and columns with
indices . . . , 3, 6, 9, . . . together with decoupled ν = 1 IQH
layers. Similar to the previous case, we get almost the theory
we want except for some extra IQH layers which do not have
any impact on the anyon statistics of the theory.

Having discussed two examples, we finally present a con-
struction that works for an arbitrary quasidiagonal K with
bounded entries. Similar to the KnF example, we start with a
stack of IQH layers 	l . The Chern number of layer l is Cl =
±1, to be fixed later. We introduce gauge degrees of freedom
Ai
rr′ and their conjugate momenta Ei

rr′ on the horizontal links
〈rr′〉 and impose the commutation relation [Aj

rr′ ,Ek
rr′ ] = iδ jk

as usual. We then couple 	l to Ai with charge qil , also to be
fixed later. The resulting Hamiltonian is

H =
∑
l

∑
〈rr′〉

ul,rr′ exp

(
i
∑
i

qilAi
rr′

)
c†l,r′cl,r

+
∑
i

[ ∑
〈rr′〉

gE (E
i
rr′ )2 − gB

∑
p

cosBi
p

+ gQ
∑
r

(Qi
r )

2

]
, (14)

where ul,rr′ is the IQH hopping coefficient determined by Cl ,
Bi
p is the flux of Ai through plaquette p, and

Qi
r = (∇ · E)ir −

∑
l

qil c†l,rcl,r (15)

is the Gauss’s law term (see Fig. 3). We think of the fermion
and gauge field layers as interlaced in the z direction. The
interactions are local as long as only a finite number of neigh-
boring layers are charged under each Ai or, equivalently, each
row and column of qil has bounded support, which turns out to
hold with our choice of qil later. The low-energy field theory
of Eq. (14) is given by

L = − 1

4π

∑
l

Clεμνλalμ∂νa
l
λ + 1

2π

∑
il

qilεμνλAi
μ∂νa

l
λ.

(16)

Here we have only kept the CS terms and omitted the Maxwell
and source terms.

To realize a particular K = (Ki j ), we need to specify 	l ,
Cl , and qil . We adopt the following setup:

(1) For each index i ofK , we have a dynamical U(1) gauge
field Ai.

(2) For each i such that

�i := Kii −
∑
j �=i

Ki j �= 0,

we have IQH layers 	i,s
d where s = 1, 2, . . . , |�i| and the

subscript “d” stands for “diagonal.” Each 	i,s
d has Chern num-

ber Ci
d = sgn(�i ) and carries +1 charge under Ai only. The

emergent gauge field of 	i,s
d is denoted by ai,sd . If �i = 0, no

diagonal layer is needed.
(3) For each pair i < j such that Ki j �= 0, we have IQH

layers 	
i j,t
o where t = 1, 2, . . . , |Ki j | and the subscript “o”

stands for “off diagonal.” Each 	
i j,t
o has Chern number Ci j

o =
sgn(Ki j ) and carries +1 charge under Ai and Aj only. The
emergent gauge field of 	

i j,t
o is denoted by ai j,to .

Since K is quasidiagonal with bounded entries, all these
IQH layers 	 and physical gauge fields A can be interlaced in
the z direction in such a way that the interaction is local. We
denote by A the collection of emergent and physical gauge
fields ordered in this particular way, and K0 the K matrix of
the CS theory (16) with respect to the basisA. Next, we apply
the local transformation Ãi = ∑

j (W
−1) jiA j , K̃0 = WK0WT

defined by

ãi,sd = ai,sd − sgn(�i )A
i,

ãi j,to = ai j,to − sgn(Ki j )(A
i + Aj ),

Ãi = Ai.

This transformation is local in the sense thatW can be decom-
posed into a finite-depth circuit (i.e., a finite product) of local,
block-diagonal integer matrices. In fact, the circuit has depth
2. The first step of the circuit is to map

ai,sd �→ ai,sd − sgn(�i )A
i,

ai j,to �→ ai j,to − sgn(Ki j )A
i,

195124-8



FRACTONIC ORDER IN INFINITE-COMPONENT … PHYSICAL REVIEW B 105, 195124 (2022)

and the second step is to map

ai j,to �→ ai j,to − sgn(Ki j )A
j .

Each step is block diagonal because each a is modified by at
most one A, and each block is local because we have arranged
the degrees of freedom in the z direction such that each Ai

is some finite distance away from each ai,sd and ai j,to . After
the transformation, the ãd and ão fields are in decoupled IQH
states, and the Ã fields have the desired K matrix.

We conclude this section by relating the general construc-
tion to the two examples we gave. For K = (2), we have

A = (a1, a2,A)

= (
a1,1d , a1,1d ,A1

)
,

with no “off-diagonal” layers. For KnF, we have

A = (. . . , a1, a2,A1, a3, a4,A2, a5, . . . )

= (. . . , a01,1o , a1,1d ,A1, a12,1o , a2,1d ,A2, a23,1o , . . . ).

B. Spectrum of iCS theory

Given an iCS theory, we can calculate its spectrum from its
Lagrangian 1. Note that it is important to include the Maxwell
term for this calculation. In the temporal gauge A0 = 0, the
equations of motion are

∂2
t A

i
x + ∂x∂yA

i
y − ∂2

y A
i
x + e2

2π
Ki j∂tA

j
y = 0,

∂2
t A

i
y + ∂x∂yA

i
x − ∂2

x A
i
y − e2

2π
Ki j∂tA

j
x = 0.

They are solved by

Ai
x,y = αx,yv

i
q exp [i(kxx + kyy − ωt )],

where vi
q is an eigenvector of K with eigenvalue Kq, labeled

by q. We find the spectrum

ω2 = k2x + k2y +
(
e2

2π
Kq

)2

.

If K is invariant under translation along the diagonal such
as KnF and Kgl, then q is the momentum in the z direction.
For KnF we have Kq = 3 + 2 cos q, therefore, the whole spec-
trum is gapped. For Kgl we have Kq = 2 + 2 cos q which is
gapless and the full spectrum has a zero mode at momentum
(kx, ky, q) = (0, 0, π ).

C. String operators

We now study the string operators of the fractional excita-
tions in our lattice model (14). We work in the limit of gE = 0,
and will argue later about the case where gE is nonzero but
small. For simplicity, we first consider the example K = (2)
studied in Sec. VA, for which we wrote a lattice model
with low-energy CS theory given by Eq. (13). This system
contains one type of fractional excitation, which is a semion.
A charge vector that lies in the semion superselection sector is
Q = (0, 0, 1)T ; the general form of a semion charge vector is
(−a,−b, a + b+ 2c + 1)T where a, b, c ∈ Z. The flux vector

FIG. 5. The string operator for the lattice model realizing K =
(2). Fermions live in the blue layers	1 and	2, and the gauge field in
the middle, green layer. The operators Ol are generated by hopping
operators c†l,r′e

iArr′ cl,r. The action of Ol is nontrivial only near the
path (gray region), and is exponentially close to the identity away
from the path. The string operator W consists of e−iA acting on the
dashed red line, e−iπE acting on the solid red segments, and O1, O2

acting near the path.

attached to Q is


 = −2πK−1
0 Q =

⎛⎝−π

−π

−π

⎞⎠. (17)

The −π fluxes for the emergent fields a1 and a2 should be
interpreted as − 1

2 fermion charges in each fermion layer.
Therefore, the semion consists of a +1 external charge, a −π

dynamical flux, a − 1
2 charge in 	1, and a − 1

2 charge in 	2.
The string operator W consists of three parts, W =

W1W2W3, as follows (see Fig. 5):
(1) W1 = ∏

path e
−iA acts on the dynamical gauge field

along the path and creates a +1 external charge at the end
of the path (and a −1 charge at the start).

(2) W2 = ∏
⊥path e

−iπE acts on the dynamical gauge field
along adjacent links to the right of and perpendicular to the
path, and creates a −π flux at the end of the path. W2 acts
only on the gauge DOF.

(3) W3 is the quasiadiabatic response [35] of the fermions
to the −π flux insertion. More precisely, in each gauge field
sector {Arr′ } of the Hilbert space, we insert an external −π

flux adiabatically, which is implemented by an A-dependent
evolution operator W3[A] on the fermion Hilbert space. As
the fermion hopping model is not exactly solvable, we do not
know the exact expression for W3[A] except that it is of the
form

W3[A] = O1
[
c†1,r′eiArr′ c1,r

]
O2

[
c†2,r′eiArr′ c2,r

]
,

where Ol [c
†
l,r′eiArr′ cl,r] is some gauge-invariant operator

generated by hopping operators c†l,r′eiArr′ cl,r. Nonetheless,
properties of quasiadiabatic evolution ensure that W3[A] is
local, acting only near the path (gray region in Fig. 5). A − 1

2
charge in 	1 and a − 1

2 charge in 	2 are accumulated in the
process near the end of the string operator, which correspond
to the −π fluxes of a1 and a2.
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We check the correctness of our string operator by com-
puting the semion braiding phase, which we expect to be
2πQTK−1

0 Q = π . To see this from the string operator, we
break the overall commutation relation into the commutations
of the following:

(1) W1 withW2. This takes a +1 charge counterclockwise
around a −π flux, giving a phase of π .

(2) W2 with W1. This gives a phase of π for the same
reason.

(3) The product W2W3 with itself. This contributes a
phase −π which can be understood as the Berry phase ob-
tained due to the following actions on the fermions: increasing
the (background) flux in the x direction by π , increasing the
flux in the y direction by π , decreasing the flux in the x
direction by π , decreasing the flux in the y direction by π . In
each IQH layer, the Berry phase over the entire flux parameter
space [0, 2π )2 is −2π . The Berry phase over a quarter of
the parameter space is therefore −π/2. As we have two IQH
layers, the total phase is −π .

(4) W1 with itself, W1 with W3 and W3 with W1. All of
these are trivial.

Summing these contributions up, we find a total braiding
phase π + π − π = π as expected. Of course, phases are
defined mod 2π , but we have been careful distinguishing,
e.g., −π from π so that this argument extends naturally to
general K .

So far we have considered the gE = 0 limit, where we
showed that W is a string operator for the charge vec-
tor Q = (0, 0, 1)T . In fact, in this limit we could write
many other different string operators for Q which all com-
mute with the Hamiltonian except near the end points. For
example, we could have W ′ = W ′

1W ′
2W ′

3 where W ′
1 =∏

path e
−iA as before, W ′

2 = ∏
⊥path e

iθE for arbitrary θ , and
W ′

3 is the quasiadiabatic response of the fermions to a θ

flux insertion. To see why we chose the particular W that
satisfies the charge-flux attachment condition (17), we turn on
a small gE > 0, much smaller than the other couplings in the
Hamiltonian and the Landau-level spacing. Now if the string
operator creates a θ flux and hence a θ/2π charge in each IQH
layer, then Gauss’s law [Eq. (11)] implies

∇ · E = 1 + θ

π
.

If ∇ · E �= 0, then we have an electric energy that diverges at
least logarithmically. Therefore, we must choose θ = −π so
that ∇ · E = 0. This way, when gE > 0, it is possible to mod-
ifyW in a region near the path such that the electric energy is
finite. Furthermore, since gE is small, the gauge field sectors
{Arr′ } that are present in the ground state can differ from
the flat configuration B ≡ 0 at most by a small perturbation.
Therefore, even with the new hopping coefficients ul,rr′eiArr′ ,
the fermions are still in a Cl = 1 IQH state, so the −π flux
is indeed bound with a − 1

2 charge in each layer. The exact
expression of the new W is not important, and the braiding
statistic remains unchanged as long as the correct amount of
external charge, fermion charge, and flux are created.

A similar construction of string operators works for iCS
theories. When gE = 0, the string operator W i corresponding
to standard basis vector ei takes the form W i = W i

1W i
2W i

3.

First,W i
1 = ∏

path e
−iAi

creates a +1 external Ai charge. Next,

W i
2 =

∏
⊥path

exp

[
−2π i

∑
j

(K−1)i jE j

]

creates fluxes according to the ith row of K−1, as required
by Gauss’s law 15 when a small gE > 0 is present. The IQH
layers then respond quasiadiabatically, giving an evolution
operatorW i

3. The braiding statistic ofW i andW j results from
the commutations of W i

1 with W j
2 , W i

2 with W j
1 , and W i

2W i
3

with W j
2W

j
3 . In particular, the commutation of W i

2W i
3 with

W j
2W

j
3 corresponds to the following actions on the fermions:

increasing the (background) Ak flux in the x direction by
2π (K−1)ik for all k, increasing the Al flux in the y direction by
2π (K−1) jl for all l , decreasing the Ak flux in the x direction
by 2π (K−1)ik for all k, decreasing the Al flux in the y direction
by 2π (K−1) jl for all l . A diagonal layer 	k,s

d is coupled to Ak

only, and contributes a Berry phase of

θ k
d,ij = −2π sgn(�k )(K

−1)ik (K−1) jk,

whereas an off-diagonal layer 	kl,t
o , k < l , is coupled to Ak

and Al , and contributes

θ kl
o,ij = −2π sgn(Kkl )[(K

−1)ik + (K−1)il ]

× [(K−1) jk + (K−1) jl ].

The braiding phase of W i
2W i

3 withW
j
2W

j
3 is then∑

k

|�k|θ k
d,ij +

∑
k<l

|Kkl |θ kl
o,ij = −2π (K−1)i j,

as can be confirmed by a straightforward calculation. Finally,
we find the total braiding phase to be

2π (K−1)i j + 2π (K−1)i j − 2π (K−1)i j = 2π (K−1)i j,

as expected.
The string operators allow us to understand the profile of

fractional excitations in the z direction, which is determined
by the fractional part of K−1 (the integral part of K−1 cor-
responds to local fermion and integer flux excitations). In
particular, for the example of KnF, the entries of each row of
K−1
nF decay exponentially, which means that both W i

2 and W i
3

become exponentially close to the identity as we move in the
z direction (W i

1 is always local in the z direction). Therefore,
W i is local in the z direction with an exponentially decaying
tail, and the fractional excitations are localized particles. On
the other hand, for Kgl, the fractional parts of the entries of
K−1
gl do not decay. This means that the fractional excitations

in the Kgl theory, if valid at all, are line excitations extended
along the z direction.

VI. DISCUSSION

In this paper, we established the iCS theory as a viable
path to study a variety of fractonic phases. First of all, we
showed in Sec. VA that iCS theories with a quasidiagonal K
matrix are indeed legitimate local (3 + 1)D models by giving
an explicit lattice realization for the theory. Using the method
discussed in Sec. VB, we can further determine which iCS
theories are gapped and which are gapless. Moreover, we
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found in Sec. VC the explicit form of the string operators
that create the fractional excitations in the model. From the
string operators, we can learn about the nature of the frac-
tional excitations (for example, when they are localized point
excitations versus when they are extensive line excitations).
Based on these understandings, we found through examples
an interesting variety of fractonic phenomena in iCS theories
with quasidiagonal K matrices. There are 1-foliated fracton
models; there are Abelian type-I models which do not have a
foliation structure, a feature not present in previously stud-
ied models; and there are gapless theories whose nature is
not clear. Some of the nonfoliated gapped models have been
studied previously from the perspective of coupled fractional
quantum Hall layers [22–24], which interestingly suggests
a route toward experimental realization of these particular
fracton phases.

The next step would be to study iCS theories more system-
atically and address questions such as follows:

(1) For gapped iCS theories, how can foliated theories be
distinguished from nonfoliated ones?

(2) If an iCS theory is foliated, how does one find the RG
procedure that extracts 2D layers?

(3) How can we understand the nonfoliated models, for
example, in terms of RG s sourcery [36]?

(4) What is the nature of the gapless models?
We hope that by addressing these questions, we can have a
more complete picture of possible fractonic orders, beyond
what we can learn from exactly solvable models or other
frameworks.

Of course, the possibilities represented by the iCS theories
are limited. The only kind of fractional excitations in these
models are planons in the xy plane. They do not even contain
fracton excitations which are completely immobile. But, as we
have learned from previous studies, planons play an important
role in type-I models. Once we have a better understand-
ing of planons, maybe we can combine them with fractons
and other subdimensional excitations to achieve a more com-
plete story.
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APPENDIX A: A CLASS OF FOLIATED ICS THEORIES

The twisted 1-foliated fractonic order (3) can be gener-
alized to a class of foliated iCS theories, with K matrix
parametrized by integers n and r:

KF(N ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

0 n −r
n 0

−r 0 n −r
n 0

−r 0
n 0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4N×4N

,

where n > 0 and r takes value in {0, 1, . . . , n − 1}. This KF

can be obtained by boson condensation in a stack of Zn × Zn

twisted gauge theories, in a way that naturally generalizes the
procedure in Ref. [20]. To see the foliation structure, take

W=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
1

1 −1
1 −1

1
1 1

1
1 1

1 −1
1 −1

1 −1 1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the action ofW outside this 12 × 12 block is the iden-
tity. We find that WKF(N )WT decouples into KF(N − 2) and
two copies of Zn × Zn twisted gauge theories described by

K0 =

⎛⎜⎝ 0 n −r
n 0

−r 0 n
n 0

⎞⎟⎠.

The fusion group when n and r are coprime is

G =

⎧⎪⎨⎪⎩
Z2N−2

n2 × Z4
n if N is even,

Z2N
n2 if N is odd, n is odd,

Z2N−2
n2 × Z2

n2/2 × Z2
2 if N if odd, n is even.

When n and r are not coprime, we can factor out gcd(n, r)
from K and analyze similarly.

APPENDIX B: A CLASS OF NONFOLIATED ICS
THEORIES

In this Appendix, we generalize KnF and Kgl to a class of
nonfoliated iCS theories described by

K (N ) =

⎛⎜⎜⎜⎜⎝
n 1 1
1 n 1

. . .
. . .

. . .

1 n 1
1 1 n

⎞⎟⎟⎟⎟⎠
N×N

,

195124-11



XIUQI MA et al. PHYSICAL REVIEW B 105, 195124 (2022)

n ∈ Z, and derive various quantities regarding K (N ). We first
consider a different matrix

K ′(N ) =

⎛⎜⎜⎜⎜⎝
n 1
1 n 1

. . .
. . .

. . .

1 n 1
1 n

⎞⎟⎟⎟⎟⎠
N×N

,

which is obtained from K (N ) by removing the entries in the
top-right and bottom-left corners. We will compute D′(N ) :=
detK ′(N ), which will be useful when we compute D(N ) :=
detK (N ) and K (N )−1 later in this Appendix. To do this, we
need to take exactly one entry from each row and one from
each column. If entry (1,1) is used from the first row, then the
rest is just K ′(N − 1). Otherwise, entry (1,2) must be used,
and therefore so must be entry (2,1), and the rest is K ′(N − 2).
We thus obtain the recurrence relation

D′(N ) = nD′(N − 1) − D′(N − 2). (B1)

Solving this with the initial conditions D′(0) = 1 and D′(1) =
n, we find

D′(N ) = 1√
n2 − 4

(xN+1
+ − xN+1

− ),

where x± = (n ± √
n2 − 4)/2.

Now we compute D(N ). Depending on whether entries
(1,N ) and (N, 1) are used, we can write

D(N ) = D′(N ) + (−1)N+1 + (−1)N+1 + D′(N − 2), (B2)

where the first term uses neither of the entries (1,N ) and
(N, 1), the second and third terms uses exactly one, and the
third term uses both. Further simplification then gives Eq. (7).
Incidentally, the recurrence relation (B1) has characteristic
polynomial

p′(x) = x2 − nx + 1,

and Eq. (B2) implies that D(N ) satisfies a third-order re-
currence relation whose characteristic polynomial p(x) has a
third root −1 in addition to those of p̃(x). Thus,

p(x) = (x + 1)p′(x)

= x3 − (n − 1)x2 − (n − 1)x + 1,

and D(N ) satisfies a third-order recurrence relation

D(N ) = (n − 1)D(N − 1) + (n − 1)D(N − 2) − D(N − 3).

The fusion group for K (N ) is of the form

G = G1 × G2 = Za−1/2D1/2 × Za1/2D1/2 ,

where a depends on n and N as follows:
(i) If N is odd, then a = n + 2. A choice of generators is

(n + 1)e1 + e2 for G1 and e1 for G2.
(ii) If N is even and n is odd, then a = n2 − 4. A choice of

generators is [n(n + 1)/2 − 2]e1 + e2 for G1 and e1 for G2.
(iii) If N is even and n is even, then a = (n2 − 4)/4. A

choice of generators is (n/2)e1 + e2 for G1 and e1 for G2.
Finally, after manipulating determinants like we did when

computing D′ and D, we find

[K (N )−1]i j = 1

D(N )
[(−1)N−dD′(d − 1)

+ (−1)dD′(N − d − 1)],

where d = |i − j|. Equation (8) then follows by plugging in
n = 3.

APPENDIX C: DETERMINING K MATRIX FROM
STATISTICS

In this Appendix, we answer the following question: Given
an Abelian topological order with its anyon fusion and statis-
tics specified, how does one construct a corresponding CS
theory?

More precisely, the setup of the problem consists of the
following:

(1) A finite Abelian fusion group G. We write the fusion
product of x and y as x + y instead of the usual xy.

(2) A symmetric bilinear function b : G × G → Q/Z
which gives the braiding statistic e2π ib(x,y) between anyons
x and y. Bilinearity means that b(x + y, z) = b(x, z) + b(y, z)
and similarly for the second argument.

(3) A function q : G → Q/2Z which is related to b via

b(x, y) = 1
2 [q(x + y) − q(x) − q(y)],

and determines topological spins by θx = eiπq(x). With re-
spect to a minimal generating set {e1, . . . , en} of G, we can
write q as a matrix (q)i j where qii = q(ei ) ∈ Q/2Z and qi j =
b(ei, e j ) ∈ Q/Z if i �= j.
Note that b does not determine q even though the converse is
true. Indeed, q(x) = b(x, x) mod 1, but q(x) itself is defined
mod 2. This is the minus sign ambiguity in determining ex-
change statistic from braiding statistic. We focus on bosonic
topological orders and assume modularity of the topological S
matrix, which in our language means that (G, q) is nondegen-
erate in the sense that if b(x, y) = 0 for all y, then x = 0. We
comment on fermionic topological orders in Appendix C 4.

Our goal is to find a K matrix that produces the (G, q)
specified above. Naively, this is achieved by inverting the
matrix q. For example, the toric code has

q =
(
0 1

2
1
2 0

)
,

so we can take

K = q−1 =
(
0 2
2 0

)
.

However, q−1 is not an integer matrix for a generic q. For
example, the three-fermion theory has G = Z2 × Z2 and

q =
(
1 1

2
1
2 1

)
,

but q−1 is not an integer matrix. Instead, we need to “enlarge”
q to q̃ by adding transparent bosons (i.e., bosons that braid
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trivially with everything) to the bottom right corner:

q̃=

⎛⎜⎜⎜⎝
1 1

2 0 0
1
2 1 1 0
0 1 2 1
0 0 1 2

⎞⎟⎟⎟⎠⇒K=q̃−1=

⎛⎜⎜⎝
4 −6 4 −2

−6 12 −8 4
4 −8 6 −3

−2 4 −3 2

⎞⎟⎟⎠.

To obtain an enlargement algorithm that works for arbitrary
(G, q), we follow the strategy byWall [25,26]: first we present
a structure theorem for (G, q), which classifies all irreducible
building blocks of q and gives an algorithm for decomposing
q into these blocks. Then, we write an enlargement for each
irreducible block.

1. Structure theorem

Given (G, q) and subgroups G1, G2 of G, we say that G
is the orthogonal direct product of G1 and G2 if G = G1 ×
G2 and b(x1, x2) = 0 for all x1 ∈ G1, x2 ∈ G2. We have the
following structure theorem:

Theorem 1. If (G, q) is nondegenerate, then G can be
written as an orthogonal direct product G = ∏

i Gi such that
(Gi, q|Gi ) is in one of the following irreducible classes labeled
by letters A through F :

(1) A2k
∼= Z2k , and q = (2−k ).

(2) Apk
∼= Zpk , p > 2 prime, and q = (2αp−k ) where α

is coprime with p and is a quadratic residue mod p. (x is a
quadratic residue mod p if x = y2 mod p for some y.) Differ-
ent choices of α lead to the same q up to change of generator.

(3) B2k
∼= Z2k , and q = (−2−k ).

(4) Bpk
∼= Zpk , p > 2 prime, and q = (2βp−k ) where β is

coprime with p and is not a quadratic residue mod p. Different
choices of β lead to the same q up to change of generator.

(5) C2k
∼= Z2k , k � 2, and q = (5 × 2−k ).

(6) D2k
∼= Z2k , k � 2, and q = (−5 × 2−k ).

(7) E2k
∼= Z2k × Z2k , and q = (

0 2−k

2−k 0
).

(8) F2k ∼= Z2k × Z2k , and q = (
21−k 2−k

2−k 21−k ).

The above decomposition is not unique, e.g., Apk × Apk =
Bpk × Bpk and A2 × A2 × A2 = A2 × E2. The toric code is in
class E2 and the three-fermion theory is in F2.

Before we describe how the decomposition in Theorem 1
can be performed, we state the following useful lemma:

Lemma 1. Let (G, q) be nondegenerate, H a subgroup of
G such that (H, q|H ) is nondegenerate. Then G is the or-
thogonal direct product of H and its orthogonal complement
H◦ := {g ∈ G : b(g, h) = 0 ∀ h ∈ H}, and (H◦, q|H◦ ) is also
nondegenerate.

We perform the decomposition in Theorem 1 using the
following three steps:

Step 1. We can uniquely decompose

G =
∏

p prime

Gp, (C1)

where Gp is the unique Sylow p subgroup of G. This product
is always orthogonal.

Step 2. Now we replace G = Gp for fixed p. Let pr be the
exponent of G, i.e., the least common multiple of the orders of
all elements in G. Write G as a (nonorthogonal) direct product

of a homogeneous subgroup H of exponent pr , i.e., H ∼= Zm
pr

for some m, and another subgroup of smaller exponent. One
can show that (H, q|H ) is nondegenerate. Lemma 1 then gives
G = H × H◦ which is an orthogonal direct product, and H◦
has exponent smaller than pr . Proceeding in this way, we can
decompose G into an orthogonal direct product of homoge-
neous subgroups.

Step 3. Replace G again by a homogeneous group of expo-
nent pr , r � 1. We look for x ∈ G such that prb(x, x) ∈ Zpr

is coprime with p. Such x need not exist when p = 2, but
when it exists it is often easy to spot by inspection. However,
for generality we present a more organized method (readers
may skip this part and jump to cases 3.1 and 3.2 below).
Consider the subgroup G0 = {g ∈ G : ord(g) � pr−1} of G,
where ord(g) is the order of g, and write [x] for the coset
containing x in G/G0. Define a new bilinear function b′ :
(G/G0) × (G/G0) → Q/Z by

b′([x], [y]) = pr−1b(x, y) ∈ Q/Z.

Now we look for some [x] such that pb′([x], [x]) ∈ Zp is
coprime with p. If p �= 2, such [x] always exists, and although
we may still need an exhaustive search, this search is easier
since G/G0 has a smaller size than G. If p = 2, such [x] exists
if and only if the ith diagonal element of pr−1q is nonzero for
some i, in which case the generating element [ei] satisfies our
requirement. Our next step depends on whether or not such
[x] was found:

Case 3.1. We found some [x] ∈ G/G0 with pb′([x], [x])
coprime with p. Then (〈x〉, q|〈x〉) is nondegenerate, where x ∈
[x] is an arbitrary coset representative and 〈x〉 is the subgroup
of G generated by x. Lemma 1 then gives G = 〈x〉 × 〈x〉◦, and
we go back to step 3.

Case 3.2 (Occurs only if p = 2). b′([x], [x]) = 0 for all
[x] ∈ G/G0. Pick some x ∈ G of order 2r , e.g., a generating
element x = ei. One can show that there exists y ∈ G (not
necessarily unique) such that b′([x], [y]) = 1

2 . Let x ∈ [x] and
y ∈ [y] be arbitrary coset representatives. Then (〈x, y〉, q|〈x,y〉)
is nondegenerate, and 〈x, y〉 ∼= E2r or F2r . Again we apply
Lemma 1 and then go back to step 3.
Recursive application of the above steps leads to full decom-
position of (G, q).

2. Enlargement algorithm

Now we describe how to enlarge the matrix q to q̃ such that
K = q̃−1 is an integer matrix with even diagonal, so that K
describes a bosonic CS theory. Using Theorem 1, we assume
without loss of generality that (G, q) is in one of the classes A
through F .

(1) (G, q) ∼= A2r , B2r , or E2r . No enlargement is needed.
(2) (G, q) ∼= Apr or Bpr with p > 2. Write q = (np−r ) for

some −pr < n < pr . Then there exist d1 even and d2 odd such
that 1 = nd1 − prd2 and 0 < d2 < |d1|. Next, choose a1 even
such that a1d2 is the closest even multiple of d2 to d1, and
write d1 = a1d2 − d3. Continuing this algorithm, we obtain

1 = nd1 − prd2,

d1 = a1d2 − d3,

d2 = a2d3 − d4,
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· · ·
dk−1 = ak−1dk − 1,

dk = ak,

where a jd j+1 is always the closest even multiple of d j+1 to d j .
Then we take

q̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

np−r 1
1 a1 1

1 a2
. . .

ak−1 1
1 ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The algorithm we employed to produce {ai} is a variation of
the Euclidean algorithm.

(3) (G, q) ∼= C2r or D2r . In this case the Euclidean
algorithm still works, but we need to take d1 odd and d2 even.

(4) (G, q) ∼= F2r . We take

q̃ =

⎛⎜⎜⎜⎝
21−r 2−r

2−r 21−r 1

1 2
3 (2

r + (−1)r−1) 1
1 2(−1)r−1

⎞⎟⎟⎟⎠. (C2)

3. Example

We demonstrate the procedures in the previous
sections with a coined example G = Z5

8 = 〈e1, . . . , e5〉,

q =

⎛⎜⎜⎜⎜⎜⎜⎝

5
8

1
4

1
8 0 3

8
1
4

5
4 0 7

8
1
4

1
8 0 5

8
7
8

3
4

0 7
8

7
8

3
2

1
2

3
8

1
4

3
4

1
2

7
8

⎞⎟⎟⎟⎟⎟⎟⎠.

Since G is already homogeneous, we jump straight to step 3.
First we spot that eT1 qe1 = 5

8 has additive order 8 mod 1, so
(〈e1〉, q|〈e1〉) is nondegenerate. We therefore compute 〈e1〉◦ =
〈 f1, f2, f3, f4〉, where f1 = −2e1 + e2, f2 = e1 + 3e3, f3 =
e4, f4 = e1 + e5. With respect to these generators, we have

q1 := q|〈e1〉◦ =

⎛⎜⎜⎜⎝
3
4

1
4

7
8

1
2

1
4 1 5

8
5
8

7
8

5
8

3
2

1
2

1
2

5
8

1
2

1
4

⎞⎟⎟⎟⎠.

Since all diagonal entries of q1 have denominators at most
4, we turn to case 3.2 and pick any generator, say f1.
The equation f T1 q1y = 1

8 has a solution y = − f3. Then we
work out

〈 f1,− f3〉◦ = 〈−3 f1 + f2, 4 f1 + 4 f3 + f4〉.
With respect to the generators { f1,− f3,−3 f1 + f2, 4 f1 +
4 f3 + f4}, we have

q1 = q2 ⊕ q3 =
( 3

4
1
8

1
8

3
2

)
⊕

( 1
4

1
8

1
8

1
4

)
,

where ⊕ is the direct sum of matrices on the direct product
group. Picking appropriate generators { f1 + f3, 2 f1 − 3 f3},
we can put q2 into a standard form

q2 =
(
0 1

8
1
8 0

)
.

To summarize,

q ∼=
(
5

8

)
⊕

(
0 1

8
1
8 0

)
⊕

( 1
4

1
8

1
8

1
4

)
∼= C8 × E8 × F8 (C3)

with respect to the generators

{e1, f1 + f3, 2 f1 − 3 f3,−3 f1 + f2, 4 f1 + 4 f3 + f4}.
However, this decomposition is not unique; with respect to
some other generators, we also have

q ∼=
(
5

8

)
⊕

(
− 1

8

)
⊕

(
− 1

8

)
⊕

(
− 1

8

)
⊕

(
− 5

8

)
.

Next, we enlarge each summand in Eq. (C3). To enlarge the
C8, we apply the Euclidean algorithm:

1 = 5 × 13 − 8 × 8,

13 = 2 × 8 − 3,

8 = 2 × 3 − (−2),

3 = (−2) × (−2) − 1,

−2 = (−2) × 1,

which gives

(
5

8

)
�→

⎛⎜⎜⎜⎜⎜⎝
5
8 1
1 2 1

1 2 1
1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎠.

The E8 does not need enlargement, and the F8 can be enlarged
to Eq. (C2).

This completes our example. The total inverse K matrix is

K−1 =

⎛⎜⎜⎜⎜⎜⎝
5
8 1
1 2 1

1 2 1
1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎠ ⊕
(
0 1

8
1
8 0

)

⊕

⎛⎜⎜⎜⎝
1
4

1
8

1
8

1
4 1
1 6 1

1 2

⎞⎟⎟⎟⎠,

and the total K matrix is

K =

⎛⎜⎜⎜⎜⎜⎝
104 −64 24 16 8
−64 40 −15 −10 5
24 −15 6 4 2
16 −10 4 2 1
8 −5 2 1 0

⎞⎟⎟⎟⎟⎟⎠ ⊕
(
0 8
8 0

)
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⊕

⎛⎜⎜⎝
48 −88 16 −8

−88 176 −32 16
16 −32 6 −3
−8 16 −3 2

⎞⎟⎟⎠.

4. Fermionic case

Finally, we consider fermionic topological orders. Now a
local fermion excitation is a superselection sector that braids
trivially with everything, i.e., a transparent fermion, so we
need to modify our nondegeneracy assumption. We assume
that (G, q) is weakly nondegenerate in the sense that if
b(x, y) = 0 for all y and q(x) = 0, then x = 0.

Suppose that ψ is a transparent fermion. Since 2ψ = 0,
in the decomposition (C1) we must have ψ ∈ G2. Suppose
ψ = mx for some m ∈ Z and x ∈ G2. Then

0 = b(x, 2ψ ) = 2mb(x, x) mod 2,

1 = q(ψ ) = m2b(x, x) mod 2,

so m must be odd. But 2ψ = 2mx = 0 ∈ G2, so 2x = 0 and
hence ψ = x. Thus, we have proved that ψ is not a nontrivial
multiple of any x, soG2 can be decomposed into an orthogonal
direct product of 〈ψ〉 = {0, ψ} and 〈ψ〉◦. Continuing this pro-
cess, we end up withG = Zr

2 × G′ where eachZ2 is generated
by a transparent fermion and (G′, q|G′ ) is nondegenerate. The
bosonic result can then be applied to (G′, q|G′ ).

As an example, consider the ν = 1
3 fractional quantum

Hall effect. Treated as a bosonic theory, the fusion group is
G = Z6, whose generator we call x, and q = ( 13 ). This theory
is only weakly nondegenerate, with 3x a transparent fermion.
Following the above recipe, we decompose G = Z2 × Z3 =
〈3x〉 × 〈2x〉. Now (〈2x〉, q|〈2x〉) is nondegenerate, where

q|〈2x〉 =
(
4

3

)
=

(
− 2

3

)
.

We can then use the Euclidean algorithm to enlarge it to

q̃ =
(− 2

3 1
1 −2

)
⇒ K = q̃−1 =

(−6 −3
−3 −2

)
.

Putting the transparent fermion back, we get a 3 × 3 matrix
which can be mapped through a general linear transformation
as follows:

W

⎛⎝−6 −3
−3 −2

1

⎞⎠, WT =
⎛⎝3

−1
−1

⎞⎠,

where

W =
⎛⎝ 1 0 3

0 1 1
−1 1 −1

⎞⎠.

This shows the equivalence of our result with the standard K
matrix (3) for the ν = 1

3 fractional quantum Hall state.
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