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Topological disorder parameter: A many-body invariant to characterize gapped quantum phases
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We introduce a many-body topological invariant, called the topological disorder parameter (TDP), to charac-
terize gapped quantum phases with global internal symmetry in 2 + 1 dimensions. TDP is defined as the constant
correction that appears in the ground-state expectation value of a partial symmetry transformation applied to a
connected spatial region M, the absolute value of which scales generically as exp(−αl + γ ) where l is the
perimeter of M and γ is the TDP. Motivated by a topological quantum field theory interpretation of the operator,
we show that eγ can be related to the quantum dimension of the symmetry defect, and provide a general formula
for γ when the entanglement Hamiltonian of the topological phase can be described by a (1 + 1)-dimensional
conformal field theory (CFT). A special case of TDP is equivalent to the topological Rényi entanglement entropy
when the symmetry is the cyclic permutation of the replica of the gapped phase. We then investigate several
examples of lattice models of topological phases, both analytically and numerically, in particular when the
assumption of having a CFT edge theory is not satisfied. We also consider an example of partial translation
symmetry in Wen’s plaquette model and show that the result can be understood using the edge CFT. Our results
establish an alternative tool to detect quantum topological order.
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I. INTRODUCTION

Spontaneous symmetry breaking in many-body systems
is characterized by long-range correlation of a local order
parameter. On the other hand, in symmetric phases, order
parameters usually have only short-range or algebraic cor-
relations. In order to characterize the symmetric phases, it
has been proven fruitful to instead consider a family of non-
local observables called the disorder operator [1–4], which
is the symmetry transformation applied only to a certain re-
gion M of the system. The ground-state expectation value
of the disorder operator, which will be called the disorder
parameter, decays exponentially with the volume of ∂M, the
boundary of M. Such a scaling behavior is characteristic of
a symmetry-preserving ground state and the scaling coeffi-
cient is controlled by nonuniversal, short-distance details of
the ground state. The subleading corrections are, however,
often more interesting and can give rise to new universal
quantities [5]. For instance, recently it was observed that at
(2 + 1)-dimensional [(2 + 1)D] quantum critical points, the
disorder parameter can exhibit a logarithmic subleading cor-
rection [6–11], whose coefficient is a universal function of
opening angles of corners on the boundary of the region,
generalizing similar results for entanglement entropy [12–14].
Thus, the disorder parameter can provide new ways to probe
the nature of a many-body wave function. Moreover, along
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with the entanglement entropy, the subleading corrections of
disorder operator also provide new insights in exotic decon-
fined quantum critical points beyond unitary conformal field
theory (CFT) [9,15].

In contrast, when the ground state is gapped and only
contains short-range correlations, there are no subleading
logarithmic corrections. In this case, the expectation is that
the remaining subleading correction is a universal constant,
analogous to the topological correction to the entanglement
area law [16–21]. The major question we will address in this
work is the physical meaning of this universal constant. More
concretely, for an element g of the symmetry group G, denote
the corresponding disorder operator in the region M byUM (g).
Then we expect

ln |〈UM (g)〉| = −α|∂M| + γg + · · · . (1)

Here, 〈·〉 is the ground-state expectation value. α is a nonuni-
versal constant, and γg � 0 is the universal term that we are
interested in, which will be called as the topological disor-
der parameter (TDP). Similar observables have been studied
for point-group symmetry in fermionic topological insulators
and superconductors [22]. Our main result in this paper is
that the subleading correction γg is related to the quantum
dimension of the symmetry defects. As will be demonstrated
below for a large class of topological phases with CFT en-
tanglement Hamiltonian (e.g., chiral topological phase) we
have γg = ln dg where dg is the quantum dimension of defects.
Intuitively, the appearance of quantum dimension can be un-
derstood as follows: one can think of the disorder operator
UM (g) as the process of creating a pair of g and g−1 symmetry
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defects, moving the g defect along the boundary ∂M and then
annihilating the pair. In a pure topological theory, the ampli-
tude of such a process is given by the quantum dimension of
the defect [23]. Here, we show that this intuition is basically
correct in the more generic situation, with an important sub-
tlety that there are in general multiple distinct types of defects,
which can all contribute to the disorder parameter. We further
demonstrate through examples that similar relations hold even
when the entanglement Hamiltonian can not be approximated
by CFTs.

The form (1) is clearly reminiscent of the area law for
quantum entanglement. This is not a coincidence. The nth
Rényi entropy of a quantum many-body system can be re-
garded as basically the disorder parameter for the cyclic
permutation symmetry in the replicated system [10,13,24]. In
(2+1)D gapped phases, we will show below that γg in this case
is equal to the well-known topological Rényi entanglement
entropy [16,17,25].

The paper is organized in the following structure. To set
the stage, we first provide a short review of symmetry defects
in topological phases in Sec. II. Then in Sec. III, derivations
of Eq. (1) for topological phases with CFT entanglement
spectra are given. In Sec. IV, both analytical and numeri-
cal results for chiral and nonchiral topological phases are
presented. Using large-scale density matrix renormalization
group (DMRG) [26] we compute TDPs in lattice models
including the ZN toric code and Wen’s plaquette models
both with transverse and longitudinal fields so the model is
away from the exactly solvable limit. The obtained finite-size
scaling results of TDP are consistent with the prediction of
quantum dimension of the symmetry defect. Finally, Sec. V
presents the discussion of few immediate directions.

II. SYMMETRY DEFECTS IN TOPOLOGICAL PHASES

First we briefly review the general theory of anyons and
defects in (2+1)D gapped phases, following Ref. [23] (see
also [27,28] for related discussions).

In a gapped phase, quasiparticle excitations can be classi-
fied into different superselection sectors, called anyon types
and labeled by a, b, c, . . . . We will sometimes denote the full
set of labels by C. The anyons have nontrivial exchange and
braiding statistics, which completely characterize the topo-
logical order in the bulk. In particular, for each anyon type
a we denote by θa the topological twist factor, or the self-
exchange statistics. For a pair of anyons a and b, the S-matrix
element Sab characterizes the mutual braiding statistics. Note
that a local excitation (i.e., which can be created by a local
operator) corresponds to the trivial anyon type 0, with θ0 = 1
and S0a = Sa0 = da

D . Here da � 1 is the quantum dimension
of the anyon type a. If there are well-separated n anyons all
of type a in the system, then there are asymptotically ∼dn

a

number of degenerate states. D = √∑a∈C d2
a is called the

total quantum dimension. The data Sab and θa satisfy a number
of compatibility conditions, and can be considered as a set of
topological invariants that characterize the topological order.

Now, suppose that the underlying system has a global
symmetry g. The symmetry can act on anyons, transforming
an excitation of type a into one of type ϕ(a), which may be
different from a. It has proven to be extremely useful in the

FIG. 1. Left: The disorder operator for g transformation on the
region M. Right: The boundary of the disorder operator can be “cut”
to create a pair of g defects, denoted by ag and ag.

theory of symmetry-enriched topological phase to introduce
symmetry defects that carry g fluxes. To explain this concept,
first we define a disorder operator for g: as shown in the left
panel in Fig. 1, for a given region M, UM (g) is the g trans-
formation applied only to the region M. In a lattice model,
suppose that U (g) is an onsite symmetry of the form

U (g) =
∏
r

Ur(g), (2)

where Ur(g) is a unitary transformation acting on the degrees
of freedom at site r. Then UM (g) is given by

UM (g) =
∏
r∈M

Ur(g). (3)

Under the partial symmetry transformation the Hamiltonian
becomes H ′ = UM (g)HU †

M (g). Hamiltonian terms that are en-
tirely supported on M or the complement of M do not change
under the UM (g) action. Thus, H ′ only differ from H along
the boundary ∂M, where UM (g) can modify the Hamiltonian
terms near the boundary nontrivially. We say that H ′ has a
g defect line along ∂M. Equivalently, we can say that the
disorder operator UM (g) creates a defect loop in the system.

Now imagine that the defect loop is cut open, i.e., there are
two end points joint by a defect line. We call the end points
symmetry defects labeled by g and g−1. Such a configuration
can not be created by applications of disorder operators, but
one can still modify the Hamiltonian along the defect line in
the same way that a disorder operator would do to create open
defect lines. The defining feature of a symmetry defect is that
when a particle is transported around the defect, a g-symmetry
transformation is enacted on the particle, a generalization of
the Aharonov-Bohm effect. An important remark is in order:
fixing the symmetry transformation g, there is a well-defined
prescription for creating the defect line as explained in the
previous paragraph. However, the prescription becomes am-
biguous near the end points. As a result, there are actually
distinct “superselection sectors” of g defects, which only dif-
fer in the local profile at the defect point but with the same
defect line and g action. We denote these different types of
g defects by ag, as shown in the right panel in Fig. 1. The
collection of all the types of g defects will be denoted by Cg.
These different types of defects correspond to different ways
to modify the disorder operator along the boundary.

It turns out that the symmetry defects, while being extrin-
sic objects, behave in many ways like anyons. In particular,
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one can fuse defects to create new defects. Each type of g
defect ag is associated with a quantum dimension dag , which
characterizes the possible exponential growth of the ground-
state degeneracy when multiple ag defects are present in the
system. We refer the interested readers to Ref. [23] for a more
comprehensive treatment of the algebraic theory of symmetry
defects.

As shown in Ref. [23], if the symmetry g does not change
anyon types, i.e., ϕ(a) = a for all a ∈ C, then there is at least
one defect, which will be called 0g, with quantum dimension
d0g = 1. In other words, it is an Abelian defect. In this case, all
other defects can be obtained by fusing 0g with anyons: ag =
0g × a with a ∈ C, and dag = da. If, however, the symmetry
permutes anyon types, then all defects must be non-Abelian,
i.e., dag > 1 for all ag. In this case, sometimes it is said that the
symmetry defects carry non-Abelian zero modes (even when
the topological order itself is Abelian).

Without proofs we list three useful properties for quantum
dimensions of symmetry defects:

(i) First, define the total dimension of g defects as

Dg =
√∑

ag∈Cg

d2
ag. (4)

Then, one can prove that Dg = D.
(ii) Second, the number of g-defect types is the same as

the number of g-invariant anyons, i.e., those a’s that obey a =
ϕ(a).

(iii) Lastly, if all anyons are Abelian, then all g defects
must have the same quantum dimensions.

Intuitively, a defect loop can be thought of as the trajectory
of a symmetry defect. That is, if one first creates a pair of
defects g and g−1, then moves the g defect along the defect
loop, all the way until it is annihilated together with the g−1

defect. An important subtlety is that in general we do not
know what is the type of the defect loop created by UM (g).
Most generally, the type of the defect can be represented
as a “superposition” (direct sum to be more precise) of the
“irreducible” types: ⊕

ag∈Cg

nagag. (5)

Here nag are non-negative integers, called the multiplicity of
the ag type. These integers, while quantized, are not com-
pletely universal. Namely, they are not uniquely fixed by
the underlying symmetry-enriched phase of matter. We will
determine them for a large class of systems from microscopic
considerations in Sec. III.

In the diagrammatic formalism for anyons (see
Refs. [23,29] for an introduction), the process of creating
a g-defect loop of the type Eq. (5) is associated with an
amplitude

dg ≡
∑
ag∈Cg

nagdag, (6)

which is also the quantum dimension of this defect.
It is then natural to postulate that the expectation value of

UM (g), which also creates the same defect loop with the given
defect type, is given by dag up to nonuniversal scaling factors.

More precisely,

|〈UM (g)〉| ≈ dge
−α|∂M| (7)

for a large, simply connected region M, which naturally leads
to Eq. (1). Here α is a nonuniversal constant. We will show
below that this is indeed the case in a broad class of examples.

We illustrate the general theory outlined in this section with
an example, which also makes connection with Rényi entropy.
More examples will be given in Sec. IV.

Suppose the topological phase consists of n identical lay-
ers, each of which is described by an anyon theory C. The
anyon theory of the n layers is denoted by C�n. Anyons are
labeled by n-tuples (a1, a2, . . . , an) where ai ∈ C. Since all
the layers are identical, the system is invariant under any
permutation of the layers, hence, the symmetry group is the
group of permutations Sn. Denote by R the cyclic permutation:

R : (a1, a2, . . . , an) → (a2, a3, . . . , a1). (8)

The theory of R defects has been well understood, which we
briefly review.

Among all R defects, there exists a“bare” defect, 0R, that
satisfies the following fusion rule [30,31]:

0R × 0R =
∑

a1,...,an∈C
N0
a1a2,...,an (a1, a2, . . . , an). (9)

Here N0
a1a2,...,an is the multiplicity of the vacuum 0 in the

tensor product a1 × a2 × · · · × an. This fusion rule can be
understood intuitively as follows: in the presence of a 0R − 0R

defect line, an anyon (a1, a2, . . . , an) can be transformed into
(a1 × a2 × · · · × an, 0, . . . , 0) by moving the anyons around
the 0R defect and permute all of them to the same layer. If
N0
a1a2,...,an > 0, then it means (a1, a2, . . . , an) can be created

out of the vacuum in the presence of a 0R defect, which then
implies the fusion rule.

Other defects can be obtained by

aR = (a, 0, . . . , 0) × 0R, (10)

whose quantum dimension is daR = d0Rda. Then we find

D2
R =

∑
a∈C

d2
aR = d2

0R

∑
a∈C

d2
a = d2

0RD
2. (11)

Since DR = Dn, we must have d0R = Dn−1. One can also
directly evaluate d0R from the fusion rule, the details of which
can be found in Appendix B. Defects of such layer permuta-
tion symmetry have been studied in the context of quantum
Hall systems, known as “genons” [32,33].

Theoretically, the significance of cyclic permutation de-
fects lies in the connection with Rényi entanglement entropy.
It is well known that the Rényi entanglement entropy can be
computed using a replica trick [10,13,15,21,24,34]. That is,
for a quantum state |ψ〉, to compute the nth Rényi entropy
of a region M, one creates n identical copies of the system,
and define RM to be the cyclic permutation operator within M
among the n copies. Then

S(n)(M ) = 1

1 − n
ln〈RM〉, (12)

where the expectation value is taken over the state |ψ〉⊗n. We
recognize that the Rényi entropy is essentially the logarithm
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of the disorder parameter of the replica symmetry [10,13,34].
According to our general formula, for a topological phase we
expect that

S(n)(M ) = α

n − 1
|∂M| − 1

n − 1
ln dR, (13)

where dR is the quantum dimension of a certain R defect.
Now suppose that the disorder operator RM indeed cor-

responds to the bare defect, which is supported by the CFT
calculations below, according to the proposed formula (7) the
topological Rényi entropy is given by

γ = 1

n − 1
ln d0R = lnD, (14)

a well-known result [25].
We will now proceed to calculate the disorder parameter.

We will first consider topological phases with gapless CFT
boundary (more precisely, entanglement spectrum), and es-
tablish Eq. (7) (with important corrections). Then we analyze
several microscopic models to demonstrate the validity of the
result even when the assumption of having CFT boundary
does not hold.

III. TOPOLOGICAL PHASE WITH CFT
ENTANGLEMENT SPECTRUM

We now present a derivation of Eq. (1) for topological
phases whose entanglement spectrum can be described by
a (1 + 1)-dimensional [(1 + 1)D] CFT. More precisely, the
reduced density matrix of the ground state on a disklike region
D is given by

ρD = e−HE

Tre−HE
, (15)

where HE is the entanglement (modular) Hamiltonian. It has
been conjectured and widely believed that HE belongs to
the same universality class as the boundary theory of the
topological phase [16,35]. In many cases, the lower part
of the entanglement spectra can be exactly matched with
the low-energy spectrum of a physical edge up to overall
rescaling [35]. Reference [36] established the validity of the
correspondence for general chiral phases under certain as-
sumptions. We will thus assume for the remaining of this
section that the entanglement Hamiltonian describes a CFT
at low energy, which takes the same form as the edge one up
to an overall scale.

For our derivation, the bulk-boundary correspondence
plays a crucial role. Thus, we first review how it works for
chiral topological phase. We assume that the boundary theory
is a rational CFT, with the following Hamiltonian:

Hedge = 2πv

l

(
L0 − c

24

)
. (16)

Here c is the chiral central charge and l is the perimeter of the
boundary. The Hilbert space of the boundary theory decom-
poses into a direct sum of superselection sectors Ha, labeled
by chiral primaries a. They are in one-to-one correspondence
with anyon types in the bulk. When the system is a disk with
no excitations in the bulk, the boundary CFT must be in the
vacuum sector H0. To allow other superselection sectors, e.g.,

Ha, on the boundary, there must be anyonic excitations whose
total charge has type a in the bulk.

For each chiral primary a, we define the character [37]

χa(τ ) = TrHae
2π iτ (L0− c

24 ). (17)

χa is essentially the Euclidean partition function over the
superselection sector Ha. Notably, there is not a single
modular-invariant partition function of the theory. The char-
acters χa transform under the modular transformations as

χa(τ ) =
∑
b

Sabχb(−1/τ ),

χa(τ ) =
∑
b

Tabχb(τ + 1),
(18)

where S and T are the S and T matrices of the bulk anyon
theory.

We now generalize this discussion to boundary theories
that are not necessarily fully chiral [38,39]. Again we assume
that the boundary is described by a CFT, which could be
chiral or nonchiral. The Hamiltonian of the boundary theory
is Hedge = 2πv

l H , where

H = L0 + L0 − c + c

24
(19)

is the dimensionless Hamiltonian of the CFT. Note that here
we do not need to assume the left- and right-moving fields
have the same chiral algebra. For example, the fully chi-
ral case corresponds to L0 = 0, c = 0. We also define the
momentum P = L0 − L0. The Hilbert space of the boundary
theory splits into multiple superselection sectors, labeled by
anyon types in the bulk [38]. For a superselection sector
labeled by a, we can define the Euclidean partition function
Za(τ ):

Za(τ ) = TrHae
2π (iτ1P−τ2H ), (20)

where τ = τ1 + iτ2. We remark that, in general, there is no
direct correspondence between the superselection sectors and
the primary fields in the CFT. The partition functions Za also
satisfy the relations (18) under modular transformations.

Based on the assumptions laid out in the beginning of the
section, we postulate that the entanglement Hamiltonian is
given by

HE = ξ

l
H, (21)

where ξ is the correlation length of the bulk, and l is the length
of the disk. H is again the dimensionless Hamiltonian of the
CFT. Note that if the disk D does not contain any nontrivial
excitations, then we must keep only the states in the vacuum
superselection sector in the CFT. We will also assume that the
system is bosonic, so we do not have to worry about subtleties
related to spin structure.

Now consider a symmetry transformation g of the bulk. In
the reduced density operator, suppose the symmetry transfor-
mation is represented by a unitary Ug. The disorder parameter
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can be evaluated as

〈Ug〉 = TrUgρD = TrH0Uge− ξ

l H

TrH0e
− ξ

l H
. (22)

Roughly speaking, the numerator is the CFT partition func-
tion with symmetry defect line inserted in the time direction.
By a modular transformation, it can be related to the parti-
tion function over the g-twisted Hilbert space. It is therefore
necessary to study the CFT in the defect sector. We denote
by Hg the CFT Hilbert space on a spatial circle twisted by
the g symmetry. In general, Hg may also split into multiple
superselection sectors, denoted by Hag , where ag are precisely
the defect types. We then define partition function with both
spatial and temporal symmetry twists:

Z (g,h)
ag (τ ) = TrHag

Uhe
2π (iτ1P−τ2H ). (23)

Namely, the partition function is the trace over the Hag defect
sector and with Uh inserted. Note that Z (1,1)

a is nothing but
Za defined in Eq. (20). Here and in the following we use 1

for the identity element of the group. In terms of these twisted
partition functions, the disorder parameter is given by

〈Ug〉 = Z (1,g)
0

( iξ
l

)
Z (1,1)

0

( iξ
l

) . (24)

Similar to the Za’s, the transformation properties of Z (g,h)
ag

under modular group are entirely determined by the bulk.
For our purpose, we need the following special case of S
transformation:

Z (1,g)
0 (τ ) =

∑
ag∈Cg

S (1,g)
1,ag

Z (g,1)
ag (−1/τ ). (25)

Here S (g,h)
ag,bh

is the extended S transformation between (g, h)

and (h, g−1) defect sectors of the (2 + 1)D topological phase
on a torus [23]. Notice that S (1,1) reduces to the S matrix of
the bulk anyons: S (1,1)

ab = Sab. According to [23], we have

S (1,g)
1ag

= dag
D . (26)

Since τ = iξ
l and we are interested in Eq. (24) in the

limit ξ � l (i.e., the high-temperature limit for the reduced
density operator), then −1/τ = il

ξ
is effectively in the low-

temperature limit. Therefore, we can expand Z (g,1)
ag ( il

ξ
) as a

series of e2π iτ = e− 2π l
ξ :

Z (g,1)
ag

(
il

ξ

)
=

∞∑
m=0

∑
h

ph(m)e− 2π l
ξ

(h+m− c+c̄
24 )

≈
∑
h

ph(0)e− 2π l
ξ

(h− c+c̄
24 )

≈ phag (0)e− 2π l
ξ

(hag− c+c̄
24 )

. (27)

Here
∑

h means summing over primary fields in the defect
sector Hag with conformal dimension h,1 and ph(m) is the de-
generacy of the level h + m. The degeneracy may come from

1h is the eigenvalue of L0 + L0.

different primaries having the same h, or a certain primary h
being a multiplet. In the last step we only keep the one with
the lowest conformal dimension, i.e., the highest weight state,
which is denoted by hag . We have thus found

Z (1,g)
0

(
iξ

l

)
≈
∑
ag∈Cg

dag
D page

− 2π l
ξ

(hag− c+c̄
24 )

. (28)

Define 
g as the set of defect sectors ag with the minimal hag ,
among the entire Cg, the corresponding value of the conformal
dimension will be denoted by hg. Define

dg =
∑
ag∈
g

dag pag. (29)

Compared to Eq. (6), we find that the multiplicity

nag =
{
pag, ag ∈ 
g

0, otherwise.
(30)

We can similarly evaluate the denominator:

Z0

(
iξ

l

)
=
∑
a∈C

da
DZa

(
il

ξ

)
≈
∑
a∈C

da
D pa(0)e− 2π l

ξ
(ha− c+c̄

24 )
.

(31)

In the untwisted sector, the unique vacuum state with h = 0
dominates the sum, so we obtain Z0( iξl ) ≈ 1

D . Putting the
results together, the disorder parameter is given by

〈Ug〉 = Z (1,g)
0

( iξ
l

)
Z (1,1)

0

( iξ
l

) ≈ dge
− 2πhg

ξ
l
, (32)

plus exponentially small corrections. We thus find the topo-
logical disorder parameter is γg = ln dg. Compared with the
proposed formula (7), dg accounts for the possibility that
multiple defects could be “degenerate.”

So far we have focused on the case of a disklike region
in the ground state. Practically it is often necessary to study
systems on a cylinder or a torus, and the region may not be
simply connected. We generalize the result to these situations
in Appendix A.

We conclude this section with the example of topological
Rényi entropy discussed near the end of Sec. II. Suppose that
the topological phase C is fully chiral, thus having a chiral
CFT boundary. The cyclic permutation orbifold of a chiral
CFT has been studied in mathematical literature (e.g., [30]),
and the conformal dimension of the highest weight state in
the R-twisted sector HaR is given by haR = ha

n + (n − 1
n ) c

24 .
Therefore, the bare defect h0R indeed has the lowest conformal
dimension, without any additional degeneracy.

IV. EXAMPLES

In this section we present detailed analysis of several ex-
amples. The motivation is twofold: to demonstrate the result
in concrete examples, and perhaps more importantly, to study
TDP when the boundary theory (or the entanglement spec-
trum) is not a CFT. This is particularly relevant for nonchiral
topological phases, as the low-energy dynamics can be signif-
icantly different from a gapless CFT.

We will first investigate TDP in ZN toric code models
(Sec. IV A) and quantum double models (Sec. IV B), which
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FIG. 2. The ZN toric code model with the plaquette terms A� =
X1X2X3X4, B� = Z1Z

†
2Z3Z

†
4 , and the edge terms he = X2 j−1X2 j , hm =

Z†
2 jZ2 j+1. Here, every site is labeled by its column index x and row

index y with periodic condition y + Ly ∼ y.

represent important examples of nonchiral topological phases.
In the exactly solvable limit, we compute analytically the TDP
and show that the results agree with the general formula (1).
We then employed DMRG simulations on finite cylinders to
numerically study the models under external magnetic fields,
which are no longer exactly solvable, and still find consistent
results. Lastly, we study interesting examples of the TDP in
Spin(ν)1 topological phases with microscopic O(ν) symmetry
(Sec. IV C) and the TDP for translation symmetry in Wen’s
plaquette model (Sec. IV D) both analytically and numeri-
cally, where translation acts as electromagnetic duality.

A. Charge-conjugation symmetry in ZN toric code

In this section we compute TDP for charge-conjugation
symmetry in a ZN toric code model. The model is defined
on a checkerboard lattice in Fig. 2, where each site has a
ZN spin. For one site, given an orthonormal basis |n〉, n =
0, 1, . . . ,N − 1, we define the clock and shift operators:

Z|n〉 = ωn|n〉, X |n〉 = |[n + 1]N 〉, (33)

where ω = e
2π i
N and [·]N means · mod N . They obey the

algebra

ZN
r = XN

r = 1, ZrXr = ωXrZr, (34)

and commute on different sites. The Hamiltonian in the bulk
takes the following form:

H = −
∑
�

(A� + H.c.) −
∑
�

(B� + H.c.)

−
∑
r

(hxXr + hzZr + H.c.), (35)

where A� = X1X2X3X4 and B� = Z1Z
†
2Z3Z

†
4 as shown in

Fig. 2. Notice that when hx = hz = 0, the Hamiltonian con-
sists of commuting terms and thus can be exactly solved.
The ground state has all A� = B� = 1 for all squares. There
are two types of elementary excitations: an e excitation cor-
responds to A� = ω for a certain �, and a m excitation
corresponds to B� = ω. All other excitations can be gener-
ated by forming bound states of multiple e’s and m’s. Since
AN = BN = 1, both e and m obey ZN fusion rules. So there
are altogether N2 topologically distinct types of excitations,
of the form eamb, where a, b ∈ {0, 1, . . . ,N − 1}.

The Hamiltonian defined in Eq. (35) enjoys a charge-
conjugation symmetry U =∏rUr, which acts on the ZN

spin as

C|n〉 = |N − n〉. (36)

Notice thatU is the identity for N = 2, so we will assume N >

2 in the following. It is easy to see that C2 = 1, CXrC† =
X †
r , CZrC† = Z†

r , so CA�C† = A†
� = AN−1

� , and similar for
B�’s. Thus, under the action of U , the excitations transform
as

C : eamb → eN−amN−b. (37)

In other words, U acts as charge conjugation.
Let us study the symmetry defects ofC for N > 2. For odd

N , there are no anyons that are invariant underC. Thus, by the
general results in Sec. II, there is only one type of symmetry
defect, denoted by σC . Since the total quantum dimensions
of the defects must be equal to that of the anyons, we find
dσC = N . One can show that σC satisfies the following fusion
rule:

σC × σC =
N−1∑
a,b=0

eamb. (38)

For even N , there are four C-invariant anyons:
1, eN/2, mN/2, eN/2mN/2, so there should be four distinct
types of defects. Since the total dimension of defects must be
N , one finds all defects have quantum dimension N

2 .
To summarize, we find that the C-symmetry defects have

quantum dimension

daC =
{
N, N odd
N
2 , N even.

(39)

We now compute the TDP in the model. First we will present
analytical calculations in the exactly solvable limit hx = hz =
0, and then use DMRG to study the model with the fields on.

1. Exactly solvable limit

We place the system on a finite cylinder of circumference
Ly. Lattice sites are labeled by x, y where x = 1, 2, . . . ,Lx
and y = 1, 2, . . . ,Ly, with periodic boundary condition y ∼
y + Ly. As will be shown below, the Hamiltonian actually
has degenerate edge states, which complicates the calculation.
We can add additional terms on the boundary to lift the de-
generacy, and there are actually two distinct choices for the
boundary Hamiltonian

He = −
∑
y odd

(XyXy+1 + H.c.),

Hm = −
∑
y even

(Z†
y Zy+1 + H.c.). (40)

Here we suppress the x coordinates. See Fig. 2 for illustra-
tions of the boundary terms. Physically, He/m condenses e/m
anyons on the boundary. In the following we turn on He on
the left boundary and Hm on the right boundary, which has the
additional effect of leaving only a unique ground state with a
trivial anyon flux threading the cylinder.

First we determine the reduced density matrix correspond-
ing to an entanglement cut along the y direction. While the
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result is fairly well known, we provide a derivation to be
self-contained. Following Ref. [40], the Hamiltonian can be
written as

H = Hl + Hr + Hlr, (41)

where Hl/r are the Hamiltonian terms restricted entirely to the
left and right halves of the cylinder, and Hlr contains those
defined on the plaquettes along the cut. Here we define l to
be all sites with x � Lx/2, and r to be the half with x > Lx/2.
We then characterize the ground-state subspace Vl/r of Hl/r ,
which can be defined from the algebra of observables com-
muting with Hl/r . In the following we consider the right half
only. Such low-energy observables are necessarily localized
on the two boundaries of the half-cylinder. For the boundary
at x = Lx/2 + 1, we find the algebra is generated by

XyXy+1 for all odd y′s,

ZyZ
†
y+1 for all even y′s. (42)

However, since we have fixed the cylinder ground state to be
in the vacuum sector, the following two constraints must be
imposed:

X1X2 . . .XL = Z2Z
†
3Z4Z

†
5 . . . ZLZ

†
1 = 1. (43)

Physically, these two operators are the Wilson loops of m and
e excitations wrapping around the cylinder, respectively. We
can think of the relations (43) as constraints that define the
low-energy Hilbert space, which forbids operators like Xy or
Zy, but the products defined in Eq. (42) commute with the
constraints and are thus allowed operators in the theory.

Now we define new ZN spin operators X̃ j and Z̃ j for j =
1, 2, . . . ,Ly/2:

X̃ j ≡ X2 j−1X2 j, Z̃ j Z̃
†
j+1 ≡ Z2 jZ

†
2 j+1. (44)

These new spin operators satisfy

X̃ N
j = Z̃N

j = 1, [X̃i, X̃ j] = [Z̃i, Z̃ j] = 0,

i 
= j X̃ j Z̃ j = ωZ̃ j X̃ j, [X̃i, Z̃ j] = 0, i 
= j (45)

so they describe a chain of ZN spins. It is straightforward to
verify that the constraint Z2Z

†
3Z4Z

†
5 . . . ZLyZ

†
1 = 1 is automat-

ically satisfied, and the other constraint becomes

Ly/2∏
j=1

X̃ j = 1. (46)

We thus conclude that the boundary Hilbert space is given by
a ZN spin chain subject to the global constraint (46). The di-
mension of the Hilbert space is NLy/2−1. A similar analysis can
be carried out for the left half of the cylinder. In the following
we will denote by X̃η j and Z̃η j, η = l/r, for the observables
corresponding to the left and right halves of the cylinder.

Now we couple the left and right halves by Hlr , which after
projection to the ground-state subspace of Hl and Hr become

Hlr = −
Ly/2∑
j=1

(X̃l j X̃r j + Z̃l j Z̃
†
l, j+1Z̃

†
r j Z̃r, j+1 + H.c.). (47)

Thus, the ground state must have X̃l j = X̃ †
r j, Z̃l j Z̃

†
l, j+1 =

Z̃r j Z̃
†
r, j+1. In the eigenbasis of X̃l j and X̃r j , one can show that

the (normalized) wave function is given by

1

N
Ly−2

4

∑
{τ j}

|{τ j}〉l ⊗ |{τ ∗
j }〉r, (48)

where τ j is the eigenvalue of X̃ j and the sum is restricted to

those configurations with
∏Ly/2

j=1 τ j = 1.
Tracing out half of the cylinder, say the left half, one finds

that

ρl = 1

NLy/2−1
1. (49)

Thus, we reproduce a well-known result that the reduced
density operator in a stabilizer model describes a maximally
mixed state with a completely flat entanglement spectrum.

Now we turn to the disorder operator Cl , which is C re-
stricted to the left cylinder. It is clear thatCl is projected to the
charge conjugation on the boundary Hilbert space:

ClX̃l jC
†
l = X̃ †

l j,Cl Z̃l jC
†
l = Z̃†

l j . (50)

In the X̃l j eigenbasis, we have Cl |{τ j}〉 = |{τ ∗
j }〉. The average

of Cl is given by

Tr(Clρl ) = 1

NLy/2−1
TrCl . (51)

At this point we need to distinguish odd and even N . For N
odd, only the state with τ j = 1 is invariant underCl , so TrCl =
1. Thus, we find

Tr(Clρl ) = 1

NLy/2−1
. (52)

In other words,

− ln〈Cl〉 = lnN

2
Ly − lnN, (53)

which gives γ = lnN .
For even N , there are 2Ly/2−1 basis invariant underCl where

τ j = ±1, again subject to the constraint
∏

j τ j = 1. Therefore,

Tr(Clρl ) = 1

(N/2)Ly/2−1
. (54)

And the TDP is γ = ln N
2 . We find that in both cases, eγ agrees

with the quantum dimension of a single charge-conjugation
defect.

So far we have considered the exactly solvable limit. Once
the external fields are turned on, the model is no longer exactly
solvable. However, by adiabatic continuity, we expect that
the boundary Hilbert space, defined by the algebra of “low-
energy” observables, should remain the same. On the other
hand, the density operator in general becomes a Gibbs state of
a local entanglement Hamiltonian:

ρl ∝ e−HE , (55)

subject to the global constraint (46). In other words, HE

is a local Hamiltonian that commutes with the global con-
straint (46). Below we consider two examples.

First, we assume HE = β
∑

j (X̃ j + H.c.), which may be
a reasonable approximation for the model with a small hx
and hz = 0. First, we compute the partition function Zl =
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TrP0e−HE , where P0 is the projector to the space with
∏

j X̃ j =
1. We write the projector as

P0 = 1

N

N−1∑
k=0

∏
j

X̃ k
j . (56)

The partition function is

Zl = 1

N

N−1∑
k=0

∏
j

Tr
(
X̃ k
j e

−β(X̃ j+H.c.)
)

= 1

N

N−1∑
k=0

[
N−1∑
p=0

e
2π ipk
N e−2β cos 2π p

N

]Ly
. (57)

Then we can evaluate

Tr(P0Ce
−HE ) = e−2βLy . (58)

We numerically evaluate 〈C〉 for various values of β, and in
all cases obtain the same TDP as the β = 0.

As a second example, we consider what happens when
both hx and hz magnetic fields are turned on. In this case,
the dynamics becomes more complicated. One possibility is
that the entanglement Hamiltonian is tuned to a critical point
described by a Z3 parafermion CFT. More concretely, suppose
that the entanglement Hamiltonian can take the following
form:

HE = −β
∑
j

(Z̃†
j Z̃ j+1 + X̃ j + H.c.), β > 0 (59)

which is the critical point of the Z3 Potts model. Suppose
that we restrict ourselves to the CFT Hilbert space. We will
write the partition functions in terms of the characters χh of
the minimal model M(6, 5), where h labels the conformal
dimension of the primary. In fact, M(6, 5) can be obtained
from the Z3 parafermion CFT by orbifolding the Z2 charge-
conjugation symmetry. The partition function of the boundary
CFT in the vacuum sector is given by [39]

Z0 = |χ0 + χ3|2 + |χ 2
5
+ χ 7

5
|2. (60)

Note that it is different from the modular-invariant partition
function of a genuine (1 + 1)D Z3 parafermion CFT. χ3 can
be understood as the Z2 charge sector. Then the partition func-
tion with Z2 symmetry operator inserted in the time direction
can be easily written

Z (1,C)
0 = |χ0 − χ3|2 + |χ 2

5
− χ 7

5
|2. (61)

Reference [39] showed that there is a single defect sector with
the following partition function:

Z (C,1)
σC

= |χ 1
8
+ χ 13

8
|2 + |χ 1

40
+ χ 21

40
|2. (62)

So the field with smallest conformal dimension is nonde-
generate, with h = ( 1

40 , 1
40 ). In other words, pσC = 1. Using

Eq. (29), we conclude that dC = 3 in this case.

2. DMRG results

For systems away from exactly solvable limit and perturba-
tive regime, we employ the DMRG algorithm to compute the
TDP of the Z3 toric code with both transverse and longitudinal
fields for the Hamiltonian in Eq. (35). The cylinder geometry

FIG. 3. DMRG results for the Z3 toric code model with cylinder
geometry, (a) ground-state energy eg, (b) entanglement entropy (EE)
SvN, and (c) the negative logarithmic value of disorder operator
− ln |〈UA〉| of subsystem A are shown versus the fields hx = hz = h.
The black dots denote the Ly → 0 extrapolated values showing finite
value − ln 3 in Z3 topological ordered phase.

for the DMRG computations is illustrated in the left panel
in Fig. 2, and we have studied cylinders with Lx = 16 and
Ly = 4, 6, 8. Boundary terms are introduced to lift the degen-
eracy as discussed in Sec. IV A 1, shown in Fig. 2 right panels.
We have retained up to D = 512 bond states in the simulations
which ensure the discarded weight is at most O(10−5).

In Fig. 3(a), we show the ground-state energy density eg =
1

LxLy
〈ψgs|H |ψgs〉 versus the fields hx = hz = h, where |ψgs〉 is

the DMRG ground state. The derivative of eg with respect
to h changes abruptly around hx = hz = hc � 0.4, indicating
a first-order phase transition from the topologically ordered
phase to the trivial phase around hc, in good agreement with
the previous study [41].

To verify the topological features of both phases, we cal-
culate the bipartite (von Neumann) entanglement entropy
(EE), SvN = −tr(ρA ln ρA), where ρA = trĀ(|ψgs〉〈ψgs|) is the
reduced density matrix of subsystem A and the bipartition is
taken such that the cylinder is cut vertically into two shorter
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cylinders A (the left half) and Ā (the right half) with length
Lx/2 each. As shown in Fig. 3(b), the EE data show clear area-
law behavior with a constant correction, i.e., SvN = αLy − γ ,
with topological EE γ being ln 3 in small-h topological phase
and 0 in large-h trivial phase.

We now calculate the TDP for the charge-conjugation sym-
metry. The disorder parameter is the ground-state expectation
value of the corresponding disorder operator UA = �r∈ACr
[cf. Eq. (36)], which should scale as − ln |〈UA〉| = α′Ly − ln 3
[cf. Eq. (53)] in the topologically ordered phase and approach
zero in the trivial phase. In Fig. 3(c), we explicitly show such
behavior in the small-h phase. As h increases, the nonuni-
versal coefficient α′ deviates away from the h = 0 value ln 3

2 ,
the constant correction remains robustly − ln 3 throughout the
topological phase. In the topologically trivial large-h phase,
DP indeed extrapolates to zero.

B. Quantum double model

In this section we study the quantum double model of a
finite group G, which can be regarded as a G lattice gauge
theory. The model has a G spin on each edge of the lattice,
which can be thought of as a regular representation of G.
We will not give details of the Hamiltonian, which can be
found in, e.g., Ref. [42]. It is essentially a microscopic re-
alization of a G gauge theory, where the G spins play the
role of G gauge fields. When G = ZN , the model reduces to
the ZN toric code as discussed in the previous section. For a
non-Abelian group G, the quantum double model describes a
non-Abelian topological phase. The topological order of the
quantum double model is denoted as D(G), mathematically
described by the Drinfeld center of the fusion category VecG
[or the Morita equivalent one Rep(G)] [43]. Physically, D(G)
describes anyons carrying electric and magnetic charges of the
gauge group G.

We shall consider the following symmetry transformation:

U |g〉 = |ϕ(g)〉, (63)

where ϕ is an automorphism of the group G. It can be shown
that U is a symmetry of the quantum double model. The
symmetry action ofU on the anyons is naturally induced from
the group automorphism ϕ. For later use we define

Gϕ = {g ∈ G|ϕ(g) = g}, (64)

and nϕ = |Gϕ|.
We now proceed to calculate the disorder parameter for the

U symmetry. Following a procedure similar to the derivation
in the ZN case, one can show that the boundary Hilbert space
is a one-dimensional G spin chain, restricted to the G-invariant
subspace [44]. More specifically, each site of the spin chain
forms a regular representation of G, with basis {|{gj}〉}g j∈G.
For each g ∈ G, define a g global symmetry in the spin chain
as

Lg|{g j}〉 = |{gg j}〉. (65)

We then demand that Lg ≡ 1 in the Hilbert space. It is useful
to define a G-invariant basis as follows:

|g1, g2, . . . , gL−1〉′ ≡ 1

|G|
∑
h∈G

|{hg1, . . . , hgL−1, h}〉. (66)

Here we only keep g1 to gL−1, as gL is redundant once sum-
ming over the entire G orbit. Put it in another way, we pick
a representative in the orbit with gL = 1. We will refer to
|{g1, g2, . . . , gL−1}〉 as the G-invariant basis.

In the fixed-point ground-state wave function, the reduced
density matrix is the maximally mixed state ρ = 1

|G|L−1 1. The
symmetry transformation U naturally restricts to essentially
the same transformation on the spin chain:

UM |{g j}〉 = |{ϕ(g j )}〉. (67)

On the G-invariant basis we find

UM |{g j}〉′ = 1

|G|
∑
g∈G

|{ϕ(g)ϕ(g j )}〉

= 1

|G|
∑
g∈G

|{gϕ(g j )}〉

= |{ϕ(gj )}〉′. (68)

Tracing over ρ, only states invariant under ϕ can contribute,
which adds up to nL−1

ϕ . Thus,

〈UM〉 =
(
nϕ

|G|
)L−1

, (69)

and we find

γ = ln
|G|
nϕ

. (70)

Note that |G|/nϕ is always an integer.
Now let us compute the quantum dimensions of the U

symmetry defects. To this end, suppose that ϕ is an order r
element in Aut(G). Then, we view U as the generator of a
Zr group, and consider gauging the Zr symmetry. Because of
the nontrivial action of U on the gauge group G, we end up
with a new gauge theory with a larger gauge group G �ϕ Zr .
In other words, the gauged topological order is identified as
D(G �ϕ Zr ). TheU defects are promoted to gauge fluxes once
the global symmetry is gauged. Since an Abelian symmetry is
gauged, the quantum dimension of the gauge flux is the same
as that of the defect.

We now need to analyze the anyon content of D(G �ϕ Zr ).
Recall that for a general finite group H , anyon types in D(H )
are labeled by a pair ([h], πh), where [h] is a conjugacy class
with h being a representative element, and πh is an irreducible
representation of the centralizer group Ch. Physically, [h] la-
bels the gauge flux and πh is the gauge charge attached to the
flux. The quantum dimension of this anyon is |[h]| · dim πh,
where |[h]| is the size of the conjugacy class.

Label the group elements of G �ϕ Zr by (g, a) where g ∈
G, a ∈ Z/rZ. Then the multiplication in g�ϕ Zr becomes

(g, a)(h, b) = (gϕa(h), [a + b]r ). (71)

We have (g, a)−1 = (ϕa(g−1), [−a]r ). Thus

(g, a)(1, 1)(g, a)−1 = (gϕ(g)−1, 1). (72)

The conjugacy class of (1,1) is then the quotient of G by the
subgroup Gϕ . We also need to attach representations to the
conjugacy class [(1,1)]. Choose (1,1) as the representative, the
stabilizer group is isomorphic to Gϕ × Zr , whose representa-
tions can be obtained from those of Gϕ and of Zr . The Zr
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representations are just the Zr gauge charges. We thus con-
clude that U defects are in one-to-one correspondence with
irreducible representations of Gϕ . For an irreducible repre-
sentation π , the corresponding symmetry defect has quantum
dimension |G|

nϕ
dim π . In particular, if we choose π = 1 the

identity representation, the quantum dimension is |G|
nϕ

, which
is the minimum among all defects. The total dimension of the
defects is

|G|2
n2

ϕ

∑
π∈Rep(Gϕ )

(dim π )2 = |G|2, (73)

as expected. Therefore, we find that eγ is equal to the minimal
quantum dimension of the U defects in D(G).

C. Spin(2n)1

In this section we study TDP of a Z2 anyon-permuting
symmetry in Spin(2n)1 topological phase. There are four
types of Abelian anyons, denoted by 1, ψ, v+, and v− with
topological twist factors θψ = −1, θv± = ei

πn
4 . The theory

can be obtained from coupling fermionic topological super-
conductors with Chern number 2n to a Z2 gauge field, where
v± correspond to fermion parity fluxes [29]. Here we will
take the n = 0 theory to be the Z2 toric code. It is easy to
see that there is a Z2 symmetry that swaps the v± anyons.
Physically, the symmetry can be realized as follows for n > 0:
a topological superconductor with C = 2n is equivalent to
2n identical copies of p+ ip superconductors, which has a
SO(2n) symmetry that rotates the layers. A fermion parity flux
through this system binds 2n Majorana zero modes ηk, k =
1, 2, . . . , 2n. Fixing the local fermion parity inη1η2 . . . η2n,
there is a 2n−1-dimensional zero-energy subspace, that forms
a spinor representation of SO(2n) group. The total fermion
parity of the Majorana zero modes can be even or odd, cor-
responding to the two types of fluxes v±. Thus, swapping the
two types of fluxes is equivalent to flipping the fermion parity
of the flux, which can be achieved with the symmetry trans-
formation (−1)N1 where N1 is the fermion number in the first
layer. Under this transformation, η1 → −η1 while the other
Majoranas do not transform, so the fermion parity changes
sign. This additional Z2 symmetry generated by (−1)N1 com-
bines with SO(2n) to form O(2n) group. Recently, a family
of exactly solvable generalizations of Kitaev’s Z2 spin liquid
was introduced [45,46], that realizes all Spin(ν)1 topological
phases for any integer ν � 1, and notably the O(ν) symmetry
is realized exactly in the lattice model.

For n = 0, it is customary to rename v± as e and m, which
can be thought of as the (bosonic) electric charge and mag-
netic charge of a Z2 gauge theory. The symmetry e ↔ m is
often called the electromagnetic duality (EDM). Analogous
to the construction for Spin(2n)1 with n > 0, the EDM can be
realized as follows: consider two layers, one forms a p+ ip
superconductor and the other p− ip. Together the total Chern
number is 0, so coupling to a Z2 gauge field results in a Z2

toric code. Through an almost identical analysis, one can see
that the symmetry (−1)N1 permutes the two types e and m
of fermion parity fluxes. This construction also suggests the
Ising CFT as a possible symmetry-preserving edge theory.
In fact, the construction still works if we replace the p+ ip

superconductor with one that has an odd Chern number 2r + 1
(and the other layer in the mirror image). In that case, the edge
theory is the nonchiral Spin(2r + 1)1 CFT.

In all these cases, both 1 and ψ anyons are invariant un-
der the permutation. Thus, there are two types of symmetry
defects σ±, which satisfy the Ising-type fusion rules:

σ± × σ± = 1 + ψ, σ+ × v± = σ−. (74)

Their quantum dimensions are dσ± = √
2.

We proceed to compute the disorder parameter for the
v+ ↔ v− symmetry. For n > 0, the boundary theory models
are chiral Spin(ν)1 Wess-Zumino-Witten CFTs, which can be
equivalently described as ν chiral Majorana fermions coupled
to a Z2 gauge field [29,47]. We calculate the disorder param-
eter directly using the chiral CFT and find

γ =
{

ln 2
√

2, n = 1

ln
√

2, n > 1.
(75)

Details of the calculation can be found in Appendix D. To
understand why n = 1 is special, notice that the CFT Spin(2)1

is equivalent to U(1)4, whose Z2 orbifold is two copies of
Ising CFT. Thus, there are two defect primaries with the same
conformal dimension 1

16 , contributing the extra factor of 2 ac-
cording to the general formula. For n > 1 no such degeneracy
of operator spectrum is present.

We can perform a similar calculation for the Z2 toric code.
When the edge theory is the (nonchiral) Spin(2r + 1)1, we
show in Appendix D that the TDP

γ = ln 2r+1
√

2. (76)

Note that the value of γ is different for different edge theories.
The factor 2r arises because the defect carries a spinor rep-
resentation of SO(2r + 1), which begs for the question that
whether the result is robust against perturbations that break
the exact SO(2r + 1) symmetry of the CFT. In Appendix D
we introduce velocity anisotropy to the Spin(2r + 1)1 CFT
(i.e., different modes have different velocities), and show that
such anisotropy does not affect the value of γ . In fact, even
with such anisotropy, the spinor degeneracy of the defect still
remains, which explains the robustness of γ .

For illustration, let us consider the r = 0 case, where the
edge theory is the Ising CFT. The character in the vacuum
sector reads as

Z0 = |χ1|2 + |χψ |2. (77)

For the definitions of the Ising characters, see Appendix D.
The defect sector partition functions have been obtained in
Ref. [39]. There are two defect types, which will be denoted
as σ±, with the following partition functions:

Z (1,0)
σ+ = χσ (χ1 + χψ ),

Z (1,0)
σ− = (χ1 + χψ )χσ . (78)

So, the lowest conformal dimension 1
16 is twofold degenerate,

contributing an additional factor of 2. More details can be
found in Appendix D.
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FIG. 4. (a) Wen’s plaquette model with the plaquette term O� =
X †

1 Z2X3Z
†
4 + H.c., and the edge term S = XZ . The blue-shaded line

denotes the DMRG snakelike path in computation. (b) Illustration of
the partial translation operation

⊗Lx/2
i=1 T [i]

y as a disorder operator.

D. Partial translation in Wen’s plaquette model

So far we have only considered onsite symmetries in our
examples. We now demonstrate that the same idea can be
applied to spatial symmetry.

The example we will consider is Wen’s plaquette
model [48,49], which is a slight variation of the ZN toric code
model discussed in Sec. IV A. Consider ZN spins on a square
lattice with the following Hamiltonian:

H = −
∑
�

(O� + H.c.) − h
∑
i

(Xi + Zi + H.c.), (79)

where O� = X †
1 Z2X3 Z

†
4 as denoted in Fig. 4(a). We can see

that the model is in fact unitarily equivalent to the one defined
in Eq. (35), but now is completely invariant under translations
on the square lattice. The e and m excitations are supported on
the two types of plaquettes, thus transformed into each other
by unit translations of the lattice. Since e and m can be viewed
as electric and magnetic charges of an emergent ZN gauge
theory, such a symmetry is called the electromagnetic duality
(EMD).

A lattice dislocation can be thought of as a defect for trans-
lation symmetry [50]. It was shown in Ref. [50] for N = 2 and
further in Ref. [49] that dislocations in the plaquette model
have quantum dimensions

√
N . There are N topologically

distinct types of dislocations, labeled by σp, which satisfy the
fusion rule

σ0 × σ0 =
N−1∑
n=0

e−nmn, σ0 × ep = σ0 × mp = σp. (80)

In a planar geometry it is not clear how to apply transla-
tion to a finite region since no finite region can be invariant
under translation. Instead, we consider the cylindrical ge-
ometry, where one can naturally apply translation along the
periodic direction to only half of the cylinder. Below we will
investigate the TDP associated with such partial translations
in Wen’s plaquette model. We first consider the N = 2 case

where the algebra is relatively simple and then generalize to
other N .

1. Exactly solvable limit

We start from the exactly solvable point without any exter-
nal fields. We use the same method as Sec. IV A 1 to calculate
the disorder parameter. In fact, the derivation of the boundary
Hilbert space and the reduced density operator can be rather
straightforwardly adopted here. We find that the boundary
Hilbert space is determined by the following observables:

S j = XjZ j+1, j = 1, 2, . . . ,Ly (81)

with the following constraint imposed:

Ly/2∏
j=1

S2 j =
Ly/2∏
j=1

S2 j−1 = 1. (82)

Again, we suppress the x coordinate.
The Sj’s satisfy the algebra S2

j = 1, SjS j+1 = −S j+1S j

(and otherwise commute). The translation symmetry acts in
the obvious way:

TyS jT
−1
y = S j+1. (83)

This boundary Hilbert space can be mapped to the Z2 sym-
metric sector of an Ising spin chain:

S2 j ≡ τ x
j , S2 j+1 ≡ τ z

j τ
z
j+1, (84)

with the global constraint
∏Ly/2

j=1 τ x
j = 1. However, now the

translation symmetry acts as the Kramers-Wannier duality,
which is difficult to handle in the spin representation.

To proceed, it is most convenient to “fermionize” this
Hilbert space as a chain of Majorana operators. In the follow-
ing we define L ≡ Ly. The fermionization map is basically the
Jordan-Wigner transformation:

S j ≡ iψ jψ j+1, 1 � j < L SL ≡ −iψLψ1. (85)

Here the Majorana operators satisfy {ψi, ψ j} = 2δi j . The
global constraints after fermionization become

iL/2ψ1ψ2 . . . ψLy = 1. (86)

The minus sign in SL is necessary in order to satisfy both
constraints. The dimension of the Hilbert space is D = 2L/2−1.
Following essentially the same steps as those in Sec. IV A 1,
one can show that the reduced density matrix is the maximally
mixed state.

The translation symmetry Ty acts on the Majoranas as

ψ j → ψ j+1, 1 � j < L, ψL → −ψ1. (87)

This transformation can be implemented by the following
unitary operator:

Ty = B1,2 . . .BL−1,L, (88)

where Bi j is the exchange operator [51]:

Bi j = 1 − ψiψ j√
2

= e− π
4 ψiψ j , (89)

which acts as Bi jψiB
†
i j = ψ j, Bi jψ jB

†
i j = −ψi. Notice that

the overall phase of Ty is ambiguous.
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We now evaluate the trace of Ty in the maximally mixed
state. Expanding the product of B’s, only two terms con-
tribute: the identity, and the total fermion parity, which is from
B23,B45, . . . ,BL1:

(−1)L/2−1ψ2ψ3 . . . ψLψ1 = (−1)L/2ψ1ψ2 . . . ψL = iL/2.

(90)

Therefore,

|〈Ty〉| = 1

D
|TrTy|

= 1

D

1
√

2
L−1 |Tr(1 + iL/2)|

= 1
√

2
L−1 |1 + iL/2|

= 1
√

2
L−1 2

∣∣∣∣ cos
πL

8

∣∣∣∣

= 1
√

2
L−1

⎧⎪⎨
⎪⎩

0, L = 4(2k + 1)

2, L = 8k√
2, L = 2(2k + 1).

(91)

Next, we consider adding nontrivial dynamics to the
boundary theory. The simplest choice is just turning on
−∑ j S j on the boundary, which after fermionization be-
comes the free Majorana chain:

H = −
L−1∑
j=1

iψ jψ j+1 + iψLψ1. (92)

Note that the translation action automatically puts the Ma-
jorana chain in the sector with an antiperiodic boundary
condition. Equivalently, the boundary is described by an Ising
CFT projected to the Z2 symmetric sector. We can directly
evaluate the disorder parameter of the translation operator in
the continuum limit (see Appendix D for details), which re-
markably gives the same L dependence |2 cos πL

8 | in Eq. (91)
from the maximally mixed state. However, we notice that
the continuum calculation does not capture the additional

√
2

[from
√

2
L−1

in the denominator in Eq. (91)].
Notice that if the region M is a half of a cylinder, we also

need to take into account the physical edge of the cylinder. To
lift degeneracy we can turn on a Hamiltonian −∑ j S j on the
edge. Assuming Ty is not spontaneously broken, it does not
have any nontrivial contribution to the disorder parameter.

2. ZN plaquette model

Let us now generalize the result from Z2 plaquette to ZN

plaquette model. We will focus on the case with N an odd
integer. As already shown earlier, the boundary Hilbert space
is a ZN spin chain of length L/2, projected to the ZN -invariant
subspace. We will denote the (effective) ZN spin operators on
the boundary by Xj and Zj , and the ZN symmetry is gener-
ated by P =∏L

j=1 Xj . The translation symmetry becomes the
Kramers-Wannier duality of the ZN spin chain.

Generalizing the derivation in the N = 2 case, it will be
convenient to represent the ZN chain in terms of parafermion

operators [52]:

α2 j−1 = Zj

j−1∏
k=1

Xk, α2 j = Zj

j∏
k=1

Xk . (93)

It is easy to show that αN
j = 1. More importantly, they obey

nonlocal commutation relations:

αiα j = ωα jαi, 1 � i < j � L. (94)

We also have

α
†
2 j−1α2 j = Xj . (95)

Thus, the total ZN charge is given by

P =
L/2∏
j=1

α
†
2 j−1α2 j . (96)

The Kramers-Wannier duality of the spin chain becomes the
translation symmetry of the parafermions:

Ty : α j → α j+1. (97)

To write an explicit form for T , we define the exchange
operator for a pair of parafermion operators. For i < j, define
a unitary Bi j such that [53,54]

Bi j : αi → α j, α j → ωα
†
i α

2
j . (98)

An explicit expression for Bi j is given by

Bi j = 1√
N

N−1∑
n=0

ω−m(n2−n)Pn
i j . (99)

Here m = N+1
2 . One can check that Bi j preserves the total ZN

charge P. We provide a derivation of Bi j in Appendix C.
With the exchange operator, we can represent the transla-

tion Ty as follows:

Ty = B12 . . .BL−2,L−1BL−1,L, (100)

under which

α j → α j+1, 1 � j < L αL → ω2α1P
2. (101)

So with a fixed P, the unitary Eq. (100) indeed acts as transla-
tion.

Now we are ready to calculate the disorder operator:

|〈Ty〉| = 1
√
N

L−1

1

D

∣∣∣∣∣Tr
N−1∑
n=0

Pnω−m(n2−n)L/2

∣∣∣∣∣
= 1

√
N

L−1

∣∣∣∣∣
N−1∑
n=0

ω−m(n2−n)L/2

∣∣∣∣∣
= 1

√
N

L−1

∣∣∣∣∣
N−1∑
n=0

ω−mn2L/2

∣∣∣∣∣
= 1

√
N

L−1

√
N gcd

(mL
2

,N
)
. (102)

For N an odd prime, we find

|〈Ty〉| = 1
√
N

L−1

{N, L ≡ 0 (mod N )√
N, otherwise.

(103)
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FIG. 5. For Wen’s plaquette model on cylinder of various cir-
cumference Ly, (a) ground-state energy eg, (b) von Neumann
entanglement entropy (EE) SvN, and (c) negative logarithmic partial
translation expectation value − ln |〈TA〉|, are shown versus the mag-
netic field h. (d) Shows the topological entanglement entropy (TEE),
and the topological disorder parameter extrapolated from − ln |〈TA〉|
for Ly = 6, 10, 14 (denoted as TDP1) and the one for Ly = 8, 16
(denoted as TDP2), in units of ln 2.

3. DMRG results

Similar as in Sec. IV A 2, for the system away from exactly
solvable limit and perturbative regime, we perform DMRG
simulations to compute the TDP of Wen’s plaquette model
with both transverse and longitudinal fields in the Hamiltonian
in Eq. (79). In the DMRG calculations, we fix the length of the
cylinder to Lx = 16, and vary the circumference from Ly = 4
to 16, with maximal D = 2048 bond states kept which ensures
sufficiently small truncation errors ε ∼ 10−5.

The numerical results are shown in Figs. 5 and 6. The
ground-state energy eg, entanglement entropy (EE) SvN, the
disorder operator 〈TA〉 for partial translation, and their ex-
trapolated values are shown in Figs. 5(a)–5(d), respectively.
To examine the topological order in the small-h cases, we

FIG. 6. For Wen’s plaquette model on cylinder with three differ-
ent fields h = 0, 0.1, 0.5, (a) entanglement entropy (EE) is shown
versus circumferences Ly. For the unperturbed case h = 0, EE’s are
well extrapolated to − ln 2 (− ln

√
2) for even (odd) circumferences,

as Ly → 0. For h = 0.1 and 0.5, only even Ly is considered and the
corresponding EE’s are extrapolated to − ln 2 and 0. (b) The negative
logarithmic value of DP, − ln |〈TA〉|, is shown versus circumferences
Ly. For h = 0, it is extrapolated to − ln 2 for Ly = 6, 10, 14, and to
− 3

2 ln 2 for Ly = 8, 16. For h = 0.5, DP extrapolates to 0.

consider the finite-size scaling of entanglement entropy (EE)
data in Figs. 5(b) and 6. In Fig. 6(a), EE’s versus Ly are shown
for h = 0 and 0.1, and the data are well extrapolated to − ln 2
(− ln

√
2) for even (odd) circumference as Ly → 0. That is,

the system possesses a finite topological entanglement en-
tropy (TEE) for those h’s, confirming their topological ordered
nature. On the other hand, the EE data for h = 0.5 are extrap-
olated to 0, as expected for the topologically trivial phase. In
Fig. 5(d), we have performed such extrapolation for all the
h’s concerned and for the even circumference cases. It shows
that at around h � hc TEE undergoes a change from − ln 2
to 0. We also note that, when performing the EE calculations
on odd-circumference cylinders for small h, the EE data are
extrapolated to − ln

√
2 instead of − ln 2. Physically, this is

because an odd-circumference cylinder is in the EMD defect
sector, so the TEE increases by ln

√
2.

The results of DP and TDP for partial translation are
more intricate. For TDP, we find that it clearly vanishes in
the trivial phase [cf. Fig. 6(b)]. However, inside the topo-
logical phase, one needs to classify {Ly} into three classes,
Ly = 4(2k + 1), 8k, 2(2k + 1) with k ∈ Z. For the first class
of Ly = 4(2k + 1), i.e., circumference being odd multiples
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of 4, we always get zero values for TDP in the vicinity of
h = 0. For the second (third) cases, TDPs have finite values,
which are extrapolated to 3

2 ln 2 (ln 2) as Ly → 0 as shown in
Fig. 6(b). These results are fully consistent with the discus-
sion in Sec. IV D 1, in particular, Eq. (91), as well as that in
Appendix D. In Fig. 5(d), we show the extrapolated values of
TDP [TDP1 for Ly = 2(2k + 1) and TDP2 for Ly = 8k] as a
function of h. It is clearly seen that γ � ln 2 for the TDP1
cases and γ � 3

2 ln 2 for the TDP2 cases in the vicinity of
h = 0. In Fig. 5(c), we also note that as a function of h the
(logarithmic) disorder parameters always show peaks around
the transition point hc.

V. CONCLUSION AND DISCUSSION

In this work we introduce a topological invariant for (2 +
1)D gapped phases with global symmetry. We show that the
ground-state expectation value of the disorder operator for a
connected region M exhibits the following scaling form:

|〈UM (g)〉| ≈ dge
−α|∂M|, (104)

where dg is a quantized invariant determined by both the
quantum dimensions of U (g) symmetry defects as well as
their local degeneracy. When the entanglement Hamiltonian
can be approximated by a (1 + 1)D CFT, we derive a precise
formula for dg. We also study a wide range of examples, in
particular in lattice models such as ZN toric code and Wen’s
plaquette models, with both CFT and non-CFT entanglement
Hamiltonian, to demonstrate the validity of Eq. (104) and the
relation between dg with quantum dimensions of Ug defects.

In all our calculations we have reduced the disorder pa-
rameter to the thermal expectation value of a global symmetry
transformation in a (1 + 1)D system in the high-temperature
limit. Therefore, our result can also be interpreted as a univer-
sal invariant of the (1 + 1)D system with global symmetry. It
is an interesting question to establish the result directly in a
(1 + 1)D theory, especially beyond CFT.

In this work we focus on (2 + 1)D gapped phases as the
symmetry defects are well understood. It will be interesting to
understand what happens in higher dimensions. For instance,
the quantum double model studied can be easily generalized
to arbitrary dimensions and in fact the result does not really
depend on spatial dimension. There are also generalizations
of electromagnetic duality symmetry in higher dimensions,
such as the duality group of U(1) gauge theory in (3 + 1)D
or ZN 2-form gauge theory in (4 + 1)D [55]. Disorder pa-
rameters in these examples should also reveal topological
corrections related to quantum dimensions of defects. Like the
(2 + 1)D case, the disorder parameter can be expressed as a
thermal average of the global symmetry transformation in the
entanglement Hamiltonian. Assuming that the entanglement
Hamiltonian is qualitatively similar to the boundary Hamilto-
nian, similar questions can be raised for “duality” symmetry
in the boundary theory, when there is self-duality.
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APPENDIX A: TDP ON A CYLINDER

In this Appendix we calculate TDP when the region is
a half of the cylinder, with boundary along the periodic di-
rection. We will also assume that there is an anyon flux a
through the cylinder. Apparently, a has to be invariant under
the symmetry, otherwise the disorder parameter vanishes. The
reduced density operator is given by

ρ = 1

Za
e− ξl

l Hl e− ξr
l Hr . (A1)

Here ξl and ξr are the effective correlation lengths on the left
and right edges. Importantly, the left (physical) edge has ξl =
∞, while the right edge, which is the entanglement cut, is at a
finite but high temperature ξr [56]. We note a similar geometry
has been used in the computation of entanglement spectrum
in (2 + 1)D quantum many-body systems [57]. The disorder
parameter is then given by

〈Ug(M )〉 = TrHāUge− ξl
l Hl TrHaUge− ξr

l Hr

TrHā e
− ξl

l Hl TrHae
− ξr

l Hr

. (A2)

The left edge, being at the zero temperature, is dominated by
the ground-state contribution in the sector ā. Since the sector
Hā is invariant under the transformation, we may assume that
the symmetry acts on the highest weight states as a unitary
matrix, whose trace is χā(g):

TrHāUge− βl
l Hl

TrHā e
− ξl

l Hl

≈ χā(g)

pā(0)
. (A3)

Here, pa(0) is the degeneracy of the highest weight space.
For the right entanglement edge, we again use modular

transformation to evaluate the partition function:

Z (1,g)
a

(
iξr
l

)
= TrHaUge

− ξr
l Hr

=
∑
bg

S (1,g)
a,bg

Z (g,1)
bg

(
il

ξr

)

≈
⎛
⎝∑

bg∈
g

S (1,g)
a,bg

pbg

⎞
⎠e− 2πhg

ξr
l
, (A4)
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and the denominator

TrHae
− ξr

l Hr =
∑
b

SabZb

(
il

βr

)
≈ Sa0. (A5)

We thus find

〈Ug(M )〉 = χā(g)

pā(0)

⎛
⎝∑

bg∈
g

S (1,g)
a,bg

Sa0
pbg

⎞
⎠e− 2πhg

ξr
l
. (A6)

APPENDIX B: QUANTUM DIMENSION OF GENONS

We compute the dimension of 0R directly from the fusion
rule using Verlinde formula

d2
0R =

∑
a1,...,an

N0
a1a2...anda1da2 . . . dan

=
∑

a1,...,an

∑
x

Sa1xSa2x . . . Sanx
Sn−2

0x

da1da2 . . . dan

=
∑
x

S2−n
0x

(∑
a

daSax

)n

=
∑
x

S2−n
0x Dn

(∑
a

S0aSax

)n

= S2−n
00 Dn

= D2n−2. (B1)

APPENDIX C: EXCHANGE OPERATOR
FOR PARAFERMIONS

For two ZN parafermions α1 and α2, suppose they sat-
isfy α1α2 = ωα2α1. Assume N is an odd integer. Define the
ZN charge P12 = α

†
1α2, and consider unitary operators of the

form [54]

B12 = 1√
N

N−1∑
n=0

ω−mn2+qnPn
12. (C1)

First we prove B12 is a unitary. We can work in the eigenbasis
of P12, setting P12 = ωk:

B12 = 1√
N

N−1∑
n=0

ω−mn2+(k+q)n

= 1√
N

N−1∑
n=0

ω−m[n2−m−1(k+q)n]

= 1√
N

N−1∑
n=0

ω−m[n−2−1m−1(k+q)]2

= ωa(k+q)2 1√
N

N−1∑
n=0

ω−mn2
. (C2)

Since a = (4m)−1, i.e., 4ma ≡ 1 (modN ). The remaining
Gauss sum can be evaluated in closed form:

gm ≡ 1√
N

N−1∑
n=0

ω−mn2 = εN

(m
N

)
, (C3)

where

εN =
{

1, N ≡ 1 mod 4

i, N ≡ 3 mod 4.
(C4)

It is sufficient for our purpose to know that the Gauss sum
evaluates to a phase factor. Thus, we have shown that B12 is a
unitary.

Now we compute B12α1B
†
12. First we notice

P12α1 = α
†
1α2α1 = ω−1α1P12. (C5)

Therefore, we have

B12α1B
†
12 = 1√

N

N−1∑
n=0

ω−mn2+qnPn
12α1B

†
12

= α1
1√
N

N−1∑
n=0

ω−mn2+qnω−nPn
12B

†
12

= α1
1√
N

N−1∑
n=0

ω−mn2+qnω(k−1)nB†
12

= α1|gm|2ωa(k+q−1)2
ω−a(k+q)2

= α1ω
a[2(k+q)−1] = ωa(2q−1)α1P

2a
12 . (C6)

Setting q = m = 2−1 = N+1
2 , we obtain

B12α1B
†
12 = α1P12 = α2. (C7)

APPENDIX D: CFT ANALYSIS

1. Ising and Spin(ν)1 CFTs

In the following τ denotes the complex parameter of a 2D
torus, and q = e2π iτ . First, define the partition functions for a
free Majorana fermion

ZAA(τ ) = TrNSq
L0− 1

48 = q−1/48
∞∏
n=0

(1 + qn+1/2),

ZAP(τ ) = TrNS(−1)Nf qL0− 1
48 = q−1/48

∞∏
n=0

(1 − qn+1/2),

ZPA(τ ) = 1√
2

TrRq
L0− 1

48 = q1/24

√
2

∞∏
n=0

(1 + qn). (D1)

Here, P (A) means periodic (antiperiodic) boundary condition
in the spatial or temporal direction.

The chiral Majorana theory is closely related to the Ising
CFT. In fact, the latter can be obtained from coupling the
Majorana fermion to a Z2 gauge field.2 More generally, by
coupling ν copies of chiral Majorana fermions one obtains the
Spin(ν)1 CFT.

When ν is odd, Spin(ν)1 has three primaries, which will be
labeled as 1, ψ , and σ . The corresponding characters are

χ
(ν )
1 = 1

2

(
Zν

AA + Zν
AP

)
, χ

(ν )
ψ = 1

2

(
Zν

AA − Zν
AP

)
,

χ (ν )
σ = 1√

2
Zν

PA. (D2)

2Technically, applying the Gliozzi-Scherk-Olive (GSO) projection.

094415-15



CHEN, TU, MENG, AND CHENG PHYSICAL REVIEW B 106, 094415 (2022)

Note that the ν = 1 case is actually the Ising CFT. We will
suppress the superscript in this case, i.e., χ (1)

a ≡ χa for a =
1, ψ, σ .

The corresponding conformal dimensions are h1 =
0, hψ = 1

2 , hσ = ν
16 . The modular S and T matrices of the

theory read as

S = 1

2

⎛
⎜⎜⎝

1 1
√

2

1 1 −√
2√

2 −√
2 0

⎞
⎟⎟⎠, Tab = δabe

2π i(ha− c
24 ). (D3)

For ν even, Spin(ν)1 has four primaries, labeled as
1, ψ, v+, v−, with conformal dimensions h1 = 0, hψ =
1
2 , hv± = ν

8 . The characters are

χ
(ν )
1 = 1

2

(
Zν

AA + Zν
AP

)
, χ

(ν )
ψ = 1

2

(
Zν

AA − Zν
AP

)
,

χ (ν )
v± = 1

2Z
ν
PA. (D4)

2. EDM disorder parameter

At the level of bulk topological order, Spin(ν)1 can be
viewed as a Z2 gauge theory coupled to fermionic matter.
For even ν, the two fermion parity vortices v± are completely
symmetric and there is a Z2 symmetry that swaps the two. In
the chiral CFT, such a symmetry can be realized as the fermion
parity of one of the chiral Majorana fermions. Without loss of
generality, let us choose it to be (−1)N1 . We now calculate the
disorder parameter for this symmetry:

〈(−1)N1〉 = 1

Z
TrNS

1 + (−1)Nf

2
(−1)N1qL0− c

24

=
1
2 [ZAA(τ )ZAP(τ )ν−1 + ZAP(τ )ZAA(τ )ν−1]

χ1(τ )

= χ1(τ )χ (ν−1)
1 (τ ) − χψ (τ )χ (ν−1)

ψ (τ )

χ
(ν )
1 (τ )

. (D5)

Now for a purely imaginary τ = iβ
l , we use modular trans-

formations to find the asymptotic forms of the characters for
small β � l:

χa

(
iβ

l

)
=
∑
b

Sabχb

(
il

β

)
. (D6)

Then, we can expand the character

χb

(
il

β

)
=

∞∑
m=0

pb(m)e− 2π l
β

(hb+m− c
24 ) ≈ pb(0)e− 2π l

β
(hb− c

24 )
.

(D7)

Applying the approximation to Eq. (D5) and keeping only the
most relevant terms, we find

〈(−1)N1〉 ≈
√

2
χσ

(
il
β

)
χ

(ν−1)
1

(
il
β

)+ χ (ν−1)
σ

(
il
β

)
χ1
(
il
β

)
χ

(ν )
1

(
il
β

)

≈
{

2
√

2e− π l
8β , ν = 2

√
2e− π l

8β , ν > 2.
(D8)

We now turn to a different but closely related example, that
is, an internal EDM symmetry in a Z2 toric code. When the
symmetry is present, the boundary of the Z2 toric code must
be gapless. One family of possible boundary theories is the
Spin(2n + 1)1 CFTs, and the n = 0 case is the Ising CFT.
These CFTs can all be represented as (nonchiral) Majorana
fermions coupled to a Z2 gauge field. The EDM is realized as
“chiral” fermion parity, say (−1)NR .

First let us write the vacuum character for the CFT, from
GSO projection of the Majorana fermions:

Z1 = TrNS
1 + (−1)NL+NR

2
qL0− 1

48 qL0− 1
48

= 1

2

[∣∣χ (ν )
1 (τ )

∣∣2 + ∣∣χ (ν )
ψ (τ )

∣∣2]. (D9)

To calculate the disorder parameter for (−1)NR , we need

TrNS
1 + (−1)NL+NR

2
(−1)NRqL0− 1

48 qL0− 1
48

= 1

2

[∣∣χ (ν )
1 (τ )

∣∣2 − ∣∣χ (ν )
ψ (τ )

∣∣2]. (D10)

Putting together we have

〈(−1)NR〉 =
∣∣χ (ν )

1

( iβ
l

)∣∣2 − ∣∣χ (ν )
ψ

( iβ
l

)∣∣2∣∣χ (ν )
1

( iβ
l

)∣∣2 + ∣∣χ (ν )
ψ

( iβ
l

)∣∣2
≈

√
2

χ
(ν )
1

(
il
β

)
χ

(ν )
σ

(
il
β

)+ c.c.∣∣χ (ν )
1

(
il
β

)∣∣2 ≈ 2n+1
√

2e− π l
8β .

(D11)

Here we used the fact that pσ (0) = 2n (i.e., the dimension of
the spinor representation) for Spin(2n + 1)1 CFT.

Next we consider what happens if velocity anisotropy be-
tween the 2n + 1 Majorana fermions is introduced, so the
boundary theory is no longer a CFT. In the following denote
ν = 2n + 1. The entanglement Hamiltonian is now assumed
to be

HE =
ν∑

i=1

βi

(
L(i)

0 + L
(i)
0 − 1

24

)
, (D12)

where L(i)
0 is the Hamiltonian for the ith chiral Majorana

fermion:

〈(−1)N1〉 =
∏ν

i=1 ZAA(τi )
∏ν

i=1 ZAP(τi ) +∏ν
i=1 ZAP(τi )

∏ν
i=1 ZAA(τi )∏ν

i=1 |ZAP(τi )|2 +∏ν
i=1 |ZAA(τi )|2 . (D13)

Under modular S transformation,

ZAA(τ ) = ZAA(−1/τ ), ZAP(τ ) = ZPA(−1/τ ). (D14)

094415-16



TOPOLOGICAL DISORDER PARAMETER: A MANY-BODY … PHYSICAL REVIEW B 106, 094415 (2022)

Plugging in τi = iβi

l , we have

〈(−1)NR〉 =
∏ν

i=1 ZAA
(
il
βi

)∏ν
i=1 ZPA

(
il
βi

)+∏ν
i=1 ZPA

(
il
βi

)∏ν
i=1 ZAA

(
il
βi

)
∏ν

i=1 |ZPA
(
il
βi

)|2 +∏ν
i=1 |ZAA

(
il
βi

)|2 . (D15)

Using ZAA = χ0 + χψ, ZPA = √
2χσ , and the expan-

sion (D7), we find

〈(−1)NR〉 ≈ 2n+1
√

2e− π l
8

∑ν
i=1

1
βi . (D16)

So, the TDP is not affected.

3. Partial translation

We now calculate the disorder parameter for partial transla-
tion in Z2 toric code, assuming that the boundary theory is an
Ising CFT. First, we need to understand how the lattice trans-
lation is represented in the field theory. After fermionization,
the Hamiltonian of a critical Majorana chain of length L reads
as

H =
∑
k

sin kψ†
k ψk − E0, (D17)

where k = 2n+1
L π for n = 0, 1, . . . , L

2 − 1 for NS boundary
condition, and E0 = 1

2 sin π
L

. We now define ψLk � ψk, ψRk �
ψπ−k for small k, then at low energy the Majorana fermion
theory can be approximated by

H =
∑
k

k(ψ†
LkψLk + ψ

†
RkψRk ) − E0, (D18)

where the constant E0 = L
2π

+ π
12L + O( 1

L3 ).
The translation operator T acts on the lattice Majorana

operators as T : ψ j → ψ j+1. In the momentum space, T be-
comes

ψLk → eikψLk, ψRk → −e−ikψRk, (D19)

which can be more compactly written as

T = (−1)NRei
P
L . (D20)

Here P = L0 − L0 is the CFT momentum.

Thus, we have

〈T 〉 = 1

Z
TrNS

1 + (−1)NL+NR

2
Te2π (iτ1P−τ2H )

= |χ1
(
τ + 1

L

)|2 − |χψ

(
τ + 1

L

)|2
|χ1(τ )|2 + |χψ (τ )|2 . (D21)

Now, for a purely imaginary τ with Im τ > 0, we use modular
transformations to find the asymptotic forms of the characters
for small β [22]:

χa

(
τ + 1

L

)
=
∑
b

Sabχb

(
− 1

τ + 1
L

)

=
∑
b

(ST L )abχb

(
τL

τ + 1
L

)

=
∑
b

(ST LS)abχb

(
− 1

L
− 1

L2τ

)
. (D22)

Therefore,

χa

(
iβ

L
+ 1

L

)
=
∑
b

(ST LS)abχb

(
− 1

L
+ i

βL

)
, (D23)

and then after expanding the character we have

χb

(
i

βL
− 1

L

)
� e

2π i
L (hb− c

24 )e− 2π
βL (hb− c

24 )
. (D24)

Note that the expansion is only valid for βL � 1.
We have a similar estimate for the denominator:

χa

(
iβ

L

)
=
∑
b

Sabχb

(
iL

β

)
≈
∑
b

Sabe
− 2πL

β
(hb− c

24 )
, (D25)

for L/β � 1, which is obviously satisfied if βL � 1.
In each case, the leading term is b = 1 with h1 = 0, so we

finally obtain

〈T 〉 = |(ST LS)11|2 − |(ST LS)ψ1|2
|S11|2 + |Sψ1|2 e− π

12β
(L− 1

L )
. (D26)

The modular transformation ST nS takes the following form:

ST nS = e− π in
24

1

4

⎛
⎜⎜⎝

1 + (−1)n + 2e
π in
8 1 + (−1)n − 2e

π in
8

√
2[1 − (−1)n]

1 + (−1)n − 2e
π in
8 1 + (−1)n + 2e

π in
8

√
2[1 − (−1)n]√

2[1 − (−1)n]
√

2[1 − (−1)n] 2[1 + (−1)n]

⎞
⎟⎟⎠. (D27)

The prefactor then evaluates to |2 cos πL
8 |, showing the same L dependence as the lattice model calculation.
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