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Designer non-Abelian fractons from topological layers
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We formulate a construction of type-I fracton models based on gauging planar subsystem symmetries of
topologically ordered two-dimensional layers that have been stacked in three ambient spatial dimensions. Via
our construction, any defect of an Abelian symmetry group in a two-dimensional symmetry-enriched topological
order can be promoted to a fracton. This allows us to construct fracton models supporting chiral boundaries and
fractons of noninteger quantum dimension. We also find a lineon model supporting non-Abelian surface fractons
on its boundary.
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I. INTRODUCTION

Low-energy phenomena of a stable gapped quantum phase
of matter can be understood in terms of localized excita-
tions, such as quasiparticles, and extended objects such as
loops in three dimensions. Due to the energy gap, these
excitations only interact topologically, manifesting in exotic
exchange and braiding statistics. Recently, a new topological
aspect of gapped excitations has been revealed, namely, their
reduced mobility even in completely translation-invariant sys-
tems, which has become the focus of intense research [1,2].
A rich variety of solvable models featuring excitations with
reduced mobility in three dimensions (3D) have been discov-
ered [3–16].

One mechanism to produce excitations with reduced
mobility is to exploit symmetries that are defined on
lower-dimensional submanifolds, now known as subsystem
symmetries [16–21]. It was shown that gauging planar sub-
system symmetries in an Ising paramagnet yields the X-cube
model [16], as well as other foliated type-I fracton mod-
els [22–24]. Similarly, gauging a symmetry defined on a
fractal submanifold in an Ising paramagnet was shown to
result in type-II models such as Haah’s cubic code [16,17].

In this work, we explore the subsystem symmetry gauging
construction further, in topologically ordered systems with
higher-form symmetries [25]. For our purposes here we define
a k-form symmetry in d spatial dimensions to be a group gen-
erated by unitary operators, supported on (d − k)-dimensional
(codimension-k) submanifolds which commute termwise with
the Hamiltonian.1 In this language, a conventional global

1We remark that our definition of higher-form symmetry differs
somewhat from the common definition in the high-energy literature.
In particular, we allow higher-form symmetries to be spontaneously
broken, meaning they may create topologically nontrivial excitations
at their boundaries when terminated in a finite region, and as a
consequence they may act nontrivially within the ground space.

symmetry is a 0-form symmetry. Topological quantum field
theories are naturally equipped with emergent higher-form
symmetries. An Abelian (k − 1)-dimensional excitation can
be created on the boundary of a k-dimensional operator. Such
operators defined on closed submanifolds can be regarded as
generators of a (d − k)-form symmetry. In fact, the (d − k)-
form symmetry is spontaneously broken in the topological
quantum field theory (TQFT) (when the energy scale is much
lower than the gap to the corresponding excitation). In this
work, we are primarily concerned with 1-form symmetries in
3D. A planar subsystem symmetry can often be obtained as a
special subgroup of a higher-form symmetry that is generated
by elements supported on certain rigid planes.

Generally, gauging a k-form symmetry in a topological
quantum field theory2 results in the condensation of (d − k −
1)-dimensional excitations that appear on the boundaries of
truncated symmetry operators. This confines any excitations
that have nontrivial braiding statistics with the condensate,
thereby reducing the topological order to a “smaller” one.
However, in 3D if only a rigid planar subsystem symmetry
subgroup of a 1-form symmetry is gauged, certain excita-
tions in the original system can become fractonic rather than
completely confined. This can be understood in terms of loop-
like domain-wall excitations condensing along the subsystem
symmetry planes. This approach points us towards a construc-
tion of fractons with exotic topological properties.

In this work, we apply this idea to explicitly construct a
family of exactly solvable lattice models with non-Abelian
fractons. These models are obtained by gauging subsystem
symmetries in stacks of two-dimensional (2D) non-Abelian
topological phases. The 2D models exhibit 1-form symme-
tries, generated by Wilson loops of Abelian bosons. They can,
in fact, be viewed as 2D 0-form (global) symmetry-enriched
topological phases that have been gauged. The 0-form sym-
metry fluxes, or gauged symmetry defects, of the 2D layers

2The k-form symmetry must be nonanomalous.
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become fractons in our construction. In particular, we present
examples with non-Abelian fractons based on layers of Ising
string-net models, non-Abelian gauge theories (including S3,
and twistedZ3

2, gauge theory), SU(2)4k theories, swap-gauged
bilayer anyons, and Kitaev’s honeycomb models. In the last
case, the parent 1-form symmetry is actually “anomalous,” as
the corresponding excitation is a fermion, but we show that the
gauging construction still works. We furthermore construct a
2D non-Abelian fracton model on the surface of a 3D Abelian
lineon model, by applying the gauged layer construction to the
Walker-Wang model.

In Sec. II we present the single-stack gauged layer con-
struction, specialized to Z2 subsystem symmetries for clarity.
In Sec. III we apply the construction to a wide range of ex-
amples including Abelian, non-Abelian, and chiral layers. In
Sec. IV we describe a topological defect network construction
for our models, and in Sec. V we compare our models to other
non-Abelian fracton models in the literature. In Appendix A
we review the Levin-Wen string-net models. In Appendix B
we introduce our notation for graded string-net models. In
Appendix C we describe the gauging procedure applied to
subsystem symmetries. In Appendix D we present the general
single-stack gauged layer construction, and in Appendix E we
explicitly write the Hamiltonian for the gauged honeycomb
layers model.

II. GAUGED LAYER CONSTRUCTION

In this section we first outline the general construction, be-
fore delving into required background on 1-form symmetries
and finally returning to the details of the construction.

Consider a stack of 2D layers along the ẑ direction. For
simplicity we assume that each 2D layer lies in a gapped quan-
tum phase of matter. Suppose that each layer respects certain
1D linear subsystem symmetries along both x̂ and ŷ directions.
We further assume that these 1D symmetries are “onsite,”
namely, they can be written as tensor products of unitary
operators that act on individual lattice sites. Furthermore, let
us assume that these 1D symmetries form an Abelian group;
for example, they may correspond to the string operators of
Abelian bosons or fermions. The whole 3D system has a large
symmetry group given by the product of the 1D subsystem
symmetry group from each layer. This large symmetry group
contains a subgroup that corresponds to 2D subsystem sym-
metries in the xz (yz) planes generated by the tensor product
of symmetry lines along the x̂ (ŷ) direction in all layers. See
Fig. 1 for an illustration.

A 2D subsystem symmetry can be gauged within the defin-
ing 2D plane following the same procedure for gauging a
2D global symmetry on the lattice [26–28]. This can be car-
ried out straightforwardly for symmetries on nonintersecting
planes and when the intersecting subsystem symmetries along
different directions have disjoint support. More generally
when the subsystem symmetries on intersecting planes com-
mute, they can be gauged simultaneously without any issue
(see Appendix C). Gauging the planar subsystem symmetry
effectively couples the 2D layers together and produces a 3D
phase.

FIG. 1. Illustration of a planar subsystem symmetry in the
gauged layer construction. Topologically ordered 2D layers are
stacked along the ẑ direction. Each layer supports a linear subsystem
symmetry, depicted in red.

A. 1-form symmetries in 2D topological phases

The key building blocks in our construction are topologi-
cally ordered layers that host nontrivial anyonic excitations.
In a 2D topological phase, an Abelian anyon a generates a
1-form symmetry, i.e., the closed string operator Wa for the
anyon commutes with the Hamiltonian at low energy. Gen-
erally, these 1-form symmetries are not “onsite” [29]. This
is reflected in the possible ’t Hooft anomaly obstruction to
gauging the 1-form symmetries [25]. The ’t Hooft anomaly is
nontrivial as long as the generating anyon is not bosonic, i.e.,
the topological twist factor θa �= 1. In the condensed matter
literature, gauging a 1-form symmetry is better known as
anyon condensation [30,31], which can only be performed
for bosonic anyons (if θa = −1, i.e., a is a fermion, one
can still condense a by adding trivial physical fermions to
the theory [32]). It is believed that a nonanomalous 1-form
symmetry can always be realized in a purely onsite manner.3

That is, the string operator is expressed as a tensor product of
onsite unitaries. This is true for the fermionic case as well,
where the subtle anomaly is related to the onsite operators
depending on the direction of the string.

We now discuss an alternative perspective on nonanoma-
lous 1-form symmetries. Since the generating anyon is an
Abelian boson, the underlying topological order can always
be obtained by gauging a global symmetry of a symmet-
ric phase [33]. In fact, this symmetric phase is nothing but
what remains after condensing the Abelian boson (or fully
gauging the 1-form symmetry). In general it is a symmetry-
enriched topological (SET) phase, and in the special case
that the condensation leaves no nontrivial deconfined anyons
behind it is a symmetry-protected topological (SPT) phase.
It was further shown that if the underlying topological order
is nonchiral (more precisely if it has a gappable edge), the
SET phase can be realized in a symmetry-enriched string-net
model [28,34,35]. Consequently, the gauged SET phase can

3This belief is based on the observation that any nonanomalous
1-form symmetry has an onsite representation. Hence, it is expected
that any model with a nononsite representation of such a 1-form
symmetry can be deformed via a phase equivalence to bring the
representation into this onsite form.
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be realized in a string-net model with an Abelian grading on
the string types.

From now on we choose a mutually commuting set of
1-form symmetry generators, corresponding to some Abelian
anyons A = {x, y, . . . }. They must satisfy Mxy = 1 for any
x, y ∈ A, where Mxy is the braiding phase between x and y,
given byMxy = Sxy/Sx1 [36]. We denote the 1-form symmetry
group thus generated by A(1).

Given a 1-form symmetry group, excitations can be clas-
sified according to the 1-form symmetry charges of their
string operators. For any anyon a in the 2D gapped phases,
the charge of its string operator under a 1-form symmetry
generated by x is given by the mutual braidingMax between a
and x. In light of the connection to SET phases, if Max �= 1, it
can be viewed as a symmetry flux in the SET phase, which is
an extrinsic defect.

In our construction, we only exploit a subset of the full
1-form symmetry group, i.e., its restriction to a set of rigid
lines. Typically, we take these lines to form a 2D grid in the
plane, that effectively defines a lattice structure. We associate
to the x̂ (ŷ) direction a 1-form symmetry group A(1)

x̂ (A(1)
ŷ ).

A(1)
x̂ andA(1)

ŷ are not necessarily the same, but we assume that
their generators commute to guarantee that both symmetries
can be gauged simultaneously.

An important distinction between gauging a “rigid” sub-
system symmetry and a full 1-form symmetry is that the
anomaly-vanishing condition can be relaxed, as long as the
string can be made “onsite” it can be gauged along one di-
rection. In particular, the generating anyon may be fermionic
with θa = −1. However, being able to gauge the subsystem
symmetries along two orthogonal directions requires them to
commute, which means the corresponding anyons have trivial
braiding statistics.

Consider an anyon a withMax �= 1, i.e., the string operator
Wa is charged under Wx. To move a across a line, one must
apply a string operator that straddles the line which must be
charged underWx applied to the line. In other words, moving
the anyon a across the line requires an operator that breaks the
Wx subsystem symmetries.

B. Single-stack 3D model

We now explain our construction of a 3D fracton model
from a single stack of 2D topological phases that admit an
Abelian 1-form symmetry A(1). Suppose the 2D topological
phases are stacked along ẑ, the full system respects a large
symmetry group given by the product of the 1-form symmetry
A(1) on each layer which is known as a foliated 1-form symme-
try [37]. This contains a subgroup corresponding to a 1-form
symmetry in 3D generated by surface operators that are prod-
ucts of line operators where a given surface intersects each
layer. This 3D 1-form subgroup in turn contains a subgroup of
planar subsystem symmetries parallel to xz and yz. A fracton
model is obtained by gauging these subsystem symmetries,
which removes all asymmetric string operators within the
layers, thus immobilizing any anyons that are moved by those
operators and turning them into fractons.

To make this construction explicit, we consider 2D layers
given by Levin-Wen string-net models (or suitable general-
izations thereof) [38,39]. In these models, degrees of freedom

live on the edges of a trivalent lattice. Here we consider a
lattice obtained by resolving the vertices of the square lattice
to be trivalent. Each edge degree of freedom has a basis
labeled by a finite set of string types {1, a, a′, . . . }. The set C
of string types, together with additional F -symbol data needed
to consistently define the Hamiltonian, form a mathematical
structure known as a unitary fusion category (UFC). The
Levin-Wen string-net Hamiltonian

HLW = −
∑

v

Av −
∑
p

Bp (1)

consists of local commuting projector terms and is thus ex-
actly solvable. The first type of term Av , defined on vertices,
enforces “branching” or “fusion” rules for the string types,
i.e., only certain strings are allowed to meet at a vertex. The
other type of term

Bp =
∑
a∈C

da
D2

Ba
p (2)

acts on plaquettes to fluctuate the string degrees of freedom
on the lattice. Here da is the quantum dimension of an a string
and D2 = ∑

a d
2
a is the total quantum dimension of C. The

topological order obtained from the string-net construction is
called the quantum double, or Drinfeld center, Z (C) of the
UFC C. We defer a more detailed review of the string-net
models to Appendix A.

Importantly, as mentioned in the previous subsection, we
assume that the string types are faithfully graded by a fi-
nite Abelian group Â. Namely, the set of string types C =⊕

g∈Â Cg. For simplicity, let us suppose Â = Z2 = {0, 1}. The
generalization to other Abelian groups is straightforward and
is presented in Appendix D. We associate to each edge a
generalized clock operator Z̃e that measures the grading:

Z̃e |ae〉 =
{

|ae〉 , ae ∈ C0
− |ae〉 , ae ∈ C1.

(3)

In particular, given the grading on string types, the branching
rule must preserve the grading. In the case of a Z2 grading,
it means that there can not be an allowed vertex configuration
with only one string in C1. Strings in C1 must form “loops.”
This has an important consequence: the model obeys a 1-form
symmetry generated by operators

W (γ ) =
∏
e∩γ

Z̃e. (4)

Here γ is a closed path in the dual 2D lattice. If the path is
open, W creates two plaquette violations on the end points,
which are Z2 bosons b in the topological phase. Throughout
this work we reserve the letter b to refer to suchZ2 bosons. We
notice that this is a special case of a general result, that is the
emergent anyon theory of a string-net model Z (C) contains a
subcategory of G charges (i.e., irreducible representations of
G) when C is G-graded [34,35,40].

To construct a 3D fracton model we consider a stack of
graded string nets, along the ẑ direction of a cubic lattice, and
gauge the 2D subsystem symmetries on dual xz and yz planes
that are generated by products of appropriateW operators on
each layer as depicted in Fig. 1. As the subsystem symmetries

035103-3



DOMINIC J. WILLIAMSON AND MENG CHENG PHYSICAL REVIEW B 107, 035103 (2023)

are defined on dual planes, we introduce Z2 gauge fields on
the plaquettes of the cubic lattice. The gauge fields for the
subsystem symmetries on the dual yz (xz) planes are described
by X/Zpx̂ (X/Zpŷ) operators, respectively. Here X/Z denotes a
Pauli X or Z operator. The gauge field X/Zpx̂ can be visualized
as living on an edge within p that is perpendicular to x̂, and
similarly for ŷ. Notice that if a plaquette p lies in an xy plane,
we need to introduce both X/Zpx̂ and X/Zpŷ as the yz and xz
symmetries intersect there. On the other hand, plaquettes par-
allel to ẑ support one gauge field each X/Zp. More specifically,
xz plaquettes support X/Zpx̂ fields and yz plaquettes support
X/Zpŷ fields.

To describe the gauged model we first write the Gauss law.
For an edge e along ŷ, the string can be charged under the xz
gauge field, so the Gauss law is given by

Ae = Z̃e
∏
p�e

Zpŷ. (5)

For the yz-planar subsystem symmetry there is a similar
Gauss’s law for each edge along x̂.

We then modify the string-net Hamiltonian HLW for the
2D layers following the standard minimal coupling scheme.
Within each layer, Hamiltonian terms are coupled to the gauge
fields Xpx̂ and Xpŷ in that plane. In fact, one only has to modify
the plaquette term:

B′
p = 1

D2

⎛⎝ ∑
a0∈C0

da0B
a0
p +

∑
a1∈C1

da1B
a1
p Xpx̂Xpŷ

⎞⎠. (6)

It is readily verified that B′
p is still a projector and [B

′
p,B

′
q] = 0

for any two plaquettes p, q.
Lastly, we add “plaquette” terms for the gauge fields that

enforce zero flux through each plaquette on a dual xz or yz
plane. There are two such terms on each cube:

Bx̂
c =

∏
p∈∂c,p‖x̂

Xpx̂, Bŷ
c =

∏
p∈∂c,p‖ŷ

Xpŷ. (7)

It is useful to note that in the subspace where −Bx̂
c and −Bŷ

c

are minimized for each cube c we can write∏
p∈∂c,p⊥ẑ

Xpx̂Xpŷ =
∏

q∈∂c,q⊥x̂

Xqx̂

∏
q∈∂c,q⊥ŷ

Xqŷ. (8)

So the full Hamiltonian of the 3D fracton model consists
of the following terms:

H =
∑
z

H ′
LW −

∑
e⊥ẑ

Ae −
∑
c

(
Bx̂
c + Bŷ

c

)
= −

∑
v

Av −
∑
p⊥ẑ

B′
p −

∑
e⊥ẑ

Ae −
∑
c

(
Bx̂
c + Bŷ

c

)
, (9)

where the vertex and plaquette operators come directly from
the gauged string-net Hamiltonians

∑
z H

′
LW. It is straightfor-

ward to verify that all terms in the full Hamiltonian commute.
See Fig. 2 for an illustration of the Hamiltonian terms.

Allowed configurations are those that minimize the −Av

and −Ae terms. They consist of string nets on lattice edges in
the 2D topological layers and Z2 field lines on edges formed
by the intersection of the dual xz and yz planes with the lattice
plaquettes. The string nets must satisfy the fusion rules of the

FIG. 2. Illustration of xz subsystem gauge fields and the Hamil-
tonian terms. Green dots represent the gauge fields for the xz
subsystem symmetry. (a) A flux constraint term. (b) The generalized
Gauss’s law. (c) Illustration of the gauged B′

p term.

model within each 2D topological layer. While the field lines
on dual xz planes must be closed, except where they end on
x̂ edges supporting C1 strings, which act as sources. Similarly,
strings in C1 on edges along ŷ act as sources for field lines
on dual yz planes, which are closed otherwise. The ground
state is given by an appropriately weighted superposition of
all allowed configurations, where the weights satisfy linear
relations due to the local moves induced by the B′

P and Bc

terms. More precisely, the ground state is

|ψ0〉 =
∑
S,F

φ(S,F ) |S,F 〉 , (10)

where S,F is an allowed configuration of strings S within the
topological layers, and field lines F on the plaquettes. The
weights are given by a product of string-net weights [39] in
the layers

φ(S,F ) =
∏
z

φLW
z (S|z ), (11)

where φLW
z is the weight function for the string net in layer z,

and S|z is the string configuration restricted to that layer.
Next, we analyze excitations in the 3D gauged layer model

described by the Hamiltonian in Eq. (9). This model supports
topological charges with a hierarchy of mobilities, similar to
the X-cube model. Since Eq. (9) is a commuting projector
Hamiltonian, we can build excitations from elementary vio-
lations of the local projector terms. A part of the excitation
spectrum can be constructed from the excitations of the 2D
layers, which are considered below. We first study excitations
of the last two terms in Eq. (9), whose properties are shared
by the whole family of lattice models, regardless of the details
of the layers.

Violations of cube terms Bx̂/ŷ
c are flux excitations of the

subsystem gauge fields. Naively, one would expect these flux
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excitations to be mobile within their corresponding 2D planes.
The string operator for a flux in the xz plane is given by∏

p∈γ ,p‖ŷ
Zpŷ, (12)

where γ is a path on the dual lattice in the xz plane. However,
generally the string operator fails to commute with B′

p when
the path γ passes through a plaquette p perpendicular to ẑ.
Therefore, γ must be a straight line along x̂ and the corre-
sponding excitation is an x̂-lineon. Similarly, flux excitations
of the gauge fields in the yz plane are ŷ-lineons.

We may also form a bound state of an x̂- and a ŷ-lineon. We
remark that the minimal coupling in each layer requires the
subsystem gauge fields to enter the Hamiltonian via products
Xpx̂Xpŷ. Hence, the bound state is a ẑ-lineon, whose string
operator is given by ∏

p∈γ ,p⊥ẑ

Zpx̂Zpŷ, (13)

where γ is a straight line along ẑ that passes through xy planes.
We next point out that a pair of x̂ or ŷ lineons, adjacent to

either side of an xy plane, can fuse into theZ2 boson b defined
in Eq. (4) in that xy plane. To see this consider multiplying
adjacent Ae operators, with e ‖ ŷ, along the x̂ direction, or vice
versa. Hence, such a pair of lineons is an xy planon.

Now we consider violations of the Gauss law term Ae, with
e ‖ x̂ (or e ‖ ŷ). There are two ways to create such violations:
either by applying a string of Xpx̂ (or Xpŷ) on a dual yz (or xz)
plane, or by applying an operator to the edge that changes its
grading (i.e., does not commute with Z̃e). These excitations
are yz (or xz) planons that are equivalent to a pair, or collec-
tion, of anyons adjacent to e in the 2D layer.

Lastly, we turn to excitations of the 2D topological lay-
ers. Generally, the emergent topological order in a string-net
model is the Drinfeld center Z (C) of the input UFC C. Quasi-
particles can be created and moved by (deformable) string
operators. For a Z2-graded C, we have written an explicit
string operator for a Z2 boson b. In this case, Z (C) can be
viewed as a generalized Z2 gauge theory where b is the gauge
charge. As we have discussed earlier, quasiparticles can be
classified according to their braiding with b, or equivalently
whether their string operators are charged under the 1-form
symmetry generated by b.

If a quasiparticle a braids trivially with the Z2 boson b,
the string operator for a clearly commutes with all the other
terms in Eq. (9), particularly the Gauss law term. Therefore, a
remains a planon.

If Mab = −1, the string operator for a necessarily flips the
grading on each individual edge along its path, creating viola-
tions of the Gauss law term (thus creating subsystem gauge
charges). In other words, this string operator is eliminated
from the gauge-invariant low-energy space. The only way to
remedy this is to form a string-membrane operator, e.g., a
closed string operator transporting the anyon in an xy layer
attached to a membrane of Xpx̂Xpŷ in the same layer, or a pair
of such string operators in vertically separated layers attached
by a membrane of Xp on the plaquettes in the xz or yz layers
between them (notice that the two string operators involved
do not have to be the same). Therefore, such anyons can only

be created in quadruples. In addition, a particle-antiparticle
pair of such anyons can move in the plane perpendicular
to the vector connecting the two excitations. These fea-
tures make them very similar to fractons in the X-cube
model.

We remark that more complicated string-membrane oper-
ators can also be constructed. For example, consider three
anyons u, v, and w such that Nw

uv = 1, i.e., u × v = w + · · · ,
andMub = Mvb = −1, Mwb = 1. In the 2D layer before gaug-
ing, there exists an operator to split a w anyon into u and
v, or a three-way junction for u, v, and w. After gauging,
the segments of the junction operator connected to u and v

must be attached by a membrane to another string or junction
operator, or they would incur an extensive energy penalty.
From this perspective, two fractons separated along ẑ form
a planon, whose fusion rules and braiding statistics with other
planons are inherited from the “parent” anyons of the 2D
layers.

In summary, the gauged single-stack model supports topo-
logical charges with a hierarchy of mobilities, similar to the
X-cube model:

(i) The anyons in the 2D layers that are charged under the
1-form symmetry generated by the Z2 boson b are promoted
to fractons.

(ii) Anyons in the 2D layers that are neutral under the 1-
form symmetry remain xy planons.

(iii) Gauge fluxes of the xz (yz) planar symmetries become
x̂-lineons (ŷ-lineons), and the bound state of an xz and yz
gauge flux becomes a ẑ-lineon.

(iv) Gauge charges of the xz (yz) planar symmetries
become xz planons (yz planons), that are equivalent to a
particle-antiparticle pair of fractons separated along ŷ (x̂).
Similarly, pairs of fractons separated along ẑ become xy
planons.

(v) The bosonic xy planon b that generates the 1-form
symmetry is equivalent to a pair of adjacent x̂- or ŷ-lineons
separated along ẑ. Similarly, a pair of x̂- or ẑ- (ŷ- or ẑ-) lineons
separated along ŷ (x̂) is an xz (yz) planon.

See Appendix D for a derivation of these mobility con-
straints from emergent particle-number parity conservation
laws on subsystems.

A final remark: Although we have worked with 2D layers
described by Levin-Wen models above, the construction and
our derivation of the resulting 3D fracton topological order
apply to more general layers (and beyond) as long as there is
an “onsite” 1-form symmetry (see the subsections below and
Appendix C).

C. General version of the construction

We can carry out a similar construction with layers in
two or three directions on the cubic lattice. More generally,
intersecting layers whose 1-form symmetries combine to give
planar subsystem symmetries. The layered structure suggests
such models can be defined given a foliation [22], although a
foliation structure is not necessary.

In fact, we can carry out the construction whenever there
is a planar subsystem symmetry. In particular, any 1-form
symmetry in 3D will contain such a subgroup. Hence, the
construction also applies to 3D gauge theory with Abelian flux
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loops and graded Walker-Wang models [41]. In particular, it
was shown in Ref. [42] that gauging planar subsystem symme-
tries of the 3D toric code results in the X-cube model. We have
similarly verified that gauging planar subsystem symmetries
of the 3D toric code with fermionic charge (the Walker-Wang
model [43] based on sVec) also leads to the X-cube model, up
to local unitary equivalence.

III. EXAMPLES

In this section we present a series of examples demon-
strating the versatility of the gauged layer construction. We
first consider layers of Abelian gauge theory, allowing for
3-cocycle twists, including toric code and double-semion
models. We find models that are not foliated equivalent4 to
X cube but share the same gauge structure. Next, we consider
several non-Abelian examples, including layers of Ising and
Tambara-Yamagami string nets, S3 and non-Abelian twisted
Z3

2 gauge theory, SU(2)4k , and swap-gauged bilayer theories.
Finally, we consider the example of Ising anyons in Kitaev’s
honeycomb model, where the 1-form symmetry is anomalous,
and on the surface of a Walker-Wang model. Interestingly,
these examples lead to fracton models with gapless chiral
boundaries, exotic non-Abelian fractons that do not have
square-root integer quantum dimensions, and non-Abelian
fractons on the 2D surface of a lineon model.

A. Abelian models

First we present several Abelian examples.

1. Z2 toric code

In this section we carry out the gauged layer construction
for layers of 2D Z2 toric code [38] along the ẑ direction, with
1-form symmetry generated by m (or equivalently e). We find
a model that is equivalent to the X-cube model.

Consider a 2D toric code Hamiltonian on the square lattice,
where each edge has a qubit:

H2DTC = −
∑

v

∏
e�v

Z̃e −
∑
p

∏
e∈∂ p

X̃e, (14)

with a 1-form symmetry given by Z̃e’s acting along closed
loops in the dual lattice. As usual, we refer to the vertex
violations as e and plaquette violations as m. The 1-form
symmetry is generated by closed m strings.

Following our procedure we stack the 2D toric codes along
the ẑ direction and gauge the Z2 planar subsystem symmetry
subgroup within the product of the 1-form symmetry groups
from each layer. This results in a model

H = −
∑
z

⎛⎝∑
v∈�z

∏
e�v,e⊥ẑ

Z̃e +
∑
p∈�z

Xpx̂Xpŷ

∏
e∈∂ p

X̃e +
∑
e∈�z

Z̃e
∏

p�e,p⊥ẑ

Zpê

∏
p�e,p�⊥ẑ

Zp

⎞⎠
−

∑
c

⎛⎝ ∏
p∈∂c, p⊥ẑ

Xpx̂

∏
p∈∂c, p⊥ŷ

Xp +
∏

p∈∂c, p⊥ẑ

Xpŷ

∏
p∈∂c, p⊥x̂

Xp

⎞⎠. (15)

Here z is the layer index and �z denotes the zth layer. We have also used a slightly modified convention for subsystem gauge
fields: for plaquettes p perpendicular to the layers, we suppress the x̂/ŷ index as it is uniquely determined by the plaquette. For
xy plaquettes we make the subsystem index explicit.

From now on we write X̃e as Xe for notational clarity. To simplify the model, we apply a circuit consisting of controlled-X
gates given by

U =
∏
p⊥ẑ

∏
e∈∂ p

CXpê,e

∏
p�⊥ẑ

∏
e∈∂ p, e⊥ẑ

CXp,e. (16)

The resulting Hamiltonian is given by

UHU † = −
∑
z

⎛⎝∑
v∈�z

∏
e�v

Ze
∏

p∈�z, v∈∂ p

Zpx̂Zpŷ

∏
p�∈�z, v∈∂ p

Zp +
∑
p∈�z

Xpx̂Xpŷ +
∑
e∈�z

Ze

⎞⎠
−

∑
c

⎛⎝ ∏
p∈∂c, p⊥ẑ

Xpx̂

∏
p∈∂c, p⊥ŷ

Xp +
∏

p∈∂c, p⊥ẑ

Xpŷ

∏
p∈∂c, p⊥x̂

Xp

⎞⎠. (17)

Now we consider the subspace where Ze = 1 and XpxXpy = 1. Physically, this means the generalized Gauss law is strictly
enforced, and there are no plaquette excitations in each layer (so the 1-form symmetry is topological, i.e., it can be freely
deformed). We define the remaining qubit on plaquettes in the xy plane by Xpx̂ ∼ Xpŷ �→ Zp and Zpx̂Zpŷ �→ Xp. The Hamiltonian

4Foliated equivalence is defined as standard topological phase equivalence, which includes the application of local unitary circuits, up to
stacking with lower-dimensional topological orders according to a foliation structure [44].
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in this subspace is phase equivalent to the unrestricted model and is given by

UHU † �→ −
∑

v

∏
p�v

Xp −
∑
c

⎛⎝ ∏
p∈∂c, p�⊥x

Zp +
∏

p∈∂c, p�⊥y

Zp

⎞⎠, (18)

which is in fact the X-cube Hamiltonian on the dual lattice.
We note that this is a topological phase equivalence and hence
the circuit U was not required to respect any particular sym-
metries.

We have also applied the gauged layer construction to Z2

planar subsystem symmetries of 2D toric code layers stacked
along all three axial directions, forming a cubic lattice with
two spins per edge. There we found a gauged model that is
equivalent to two copies of the X-cube model. To provide
some intuition for this result we note that gauging the planar
subsystem symmetry of three stacks of 2D toric code intro-
duces an additional three stacks of 2D toric code which are
coupled to the original stacks via the gauging procedure. This
creates sufficiently many distinct topological excitations in
the layers to produce two X-cube models after condensation
induced by the gauging procedure.

2. Other Abelian examples

We now briefly discuss gauged layer constructions of sev-
eral more complicated Abelian fracton phases.

Z4 and twisted Z2 × Z2 gauge theories. The example in
the preceding section can be generalized straightforwardly to
ZN toric code layers. Furthermore, when N contains a prime
raised to a power greater than 1 there may be inequivalent
choices of anomaly-free 1-form symmetries that lead to dif-
ferent models via the gauged layer construction. In particular,
for Z4 toric code layers one may instead gauge Z2 × Z2

planar subsystem symmetries generated by e2 and m2 string
operators, where e and m are the generators of the Z4 electric
and magnetic charges, respectively.

To find a simple lattice realization we take the layers to be
twisted Z2 × Z2 gauge theories with string types labeled by
group elements A = a0a1, where a0, a1 ∈ Z/2Z = {0, 1}, and
fusion rules (group multiplication) are denoted additively. The
F symbols are given by the so-called type-II 3-cocycle [45]

FABC
A+B+C = α(A,B,C) = (−1)a0b1c1 . (19)

This UFC is denoted as Vecα
Z2×Z2

. We make use of the well-
known fact [45] that Z2 × Z2 gauge theory, twisted by a
type-II 3-cocycle, is equivalent to Z4 gauge theory, or more
precisely Z (Vecα

Z2×Z2
) ∼= Z (VecZ4 ). The obvious Z2 × Z2

grading on the string types corresponds to the 1-form sym-
metry group generated by e2 and m2 in the emergent Z4

gauge theory [28]. The gauged layer construction then re-
sults in Abelian fractons generated by e and m. In particular,
fermionic and semionic anyons such as em2 and em, respec-
tively, are promoted to fractons. This model is not foliated
equivalent to Z2 × Z2 X cube as the fusion of two stacks
of e fractons along z yields a pair of irreducible lineons at
its end points. This follows from the fact that fusing two e
fractons results in an e2 planon, which is equivalent to a pair
of irreducible lineons.

We remark that this is a different twisted generalization
of the X-cube model than that in Ref. [46], although both
are based upon the 1-form symmetry, or Lagrangian algebra
object, generated by e2 and m2 in Z4 toric code.

The anomaly-free Z2 × Z2 1-form symmetry in this ex-
ample can also be used to construct an anisotropic gauged
layer model where Z2 subsystem symmetries on xz planes
generated by e2 string operators and on yz planes generated by
m2 string operators are gauged. This results in an anisotropic
lineon model where e is promoted to an x̂-lineon and m is
promoted to a ŷ-lineon. We remark that this is distinct from
the anisotropic lineon models in Ref. [47].

Doubled-semion model. Similar to the twisted layers in the
above example, the double semion is a twisted Z2 gauge the-
ory with Z2 string types and F symbols given by the so-called
type-I 3-cocycle

Fabc
a+b+c = (−1)abc. (20)

The emergent topological order in each layer decouples into
a chiral and antichiral semion theory, each of which supports
a single nontrivial anyon type corresponding to a semion s,
with θs = i, and an antisemion s, with θs̄ = −i, respectively.
The Z2 grading on the string types corresponds to the 1-form
symmetry group generated by ss in the layers. Gauging the
planar subsystem symmetries of these layers results in a frac-
ton model with similar fusion structure to X cube, but where
the semion s is promoted to a fracton. This is distinct from
the previous semionic generalization of the X-cube model
in Ref. [48], which was shown to be foliated equivalent to
the standard X-cube model [23]. It would be interesting to
evaluate whether our model is foliated equivalent to X cube or
not.

Twisted ZN gauge theory. The previous example gen-
eralizes straightforwardly to layers of twisted ZN gauge
theory [45,49]. There are N different choices for the 3-
cocycle twist, labeled by an integer p = 0, 1, . . . ,N − 1, as
H3[ZN ,U(1)] = ZN . These twisted gauge theories can be
realized in generalized Levin-Wen models [50]. The input
UFC is denoted Vecα

ZN
. This category has N string types

a = 0, 1, . . . ,N − 1, with ZN fusion rules a × b = [a + b],
and F symbols given by the 3-cocycle [45,51]:

Fabc
a+b+c = α(a, b, c) = e

2π p
N2 a(b+c−[b+c])

, (21)

where square brackets denote mod N .
The emergent anyons are labeled by tuples (a,m) of gauge

charge a and gauge flux m. Their fusion rules are

(a,m) × (b, n)

=
(
[a + b+ 2p

N
(m + n − [m + n])], [m + n]

)
. (22)
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In particular,

(0, 1)×N = ([2p], 0). (23)

Physically, this means each unit gauge flux carries a fractional
ZN charge when [2p] �= 0. Hence, the anyons have the fol-
lowing topological twist factors:

θ(a,m) = e
2π i
N amei

2π p
N2 m2

. (24)

We remark, for odd N and (p,N ) = 1, the fusion rules imply
that the fusion ring of the anyon theory is ZN2 .

The input UFC admits an obvious ZN grading, and the
corresponding ZN boson is the gauge charge (1,0). Applying
the gauged layer construction yields an Abelian fracton model
where all the (0,m) fluxes become fractons. This model can
be viewed as a twisted variant of the X-cube model, distinct
from other twisted generalizations that have previously ap-
peared in the literature [12,46,48,52,53], to the best of our
knowledge. For [2p] �= 0, this gauged layer model is not foli-
ated equivalent to the ZN X-cube model. To demonstrate this,
we point out that fusing N fractons results in a ([2p], 0) gauge
charge, which is equivalent to a pair of x or y lineons, denoted
�. Formally, we write

(0, 1)×N
j = �

2p
j− 1

2

�
N−2p
j+ 1

2

. (25)

Here j is the layer index. Hence, fusing N stacks of such
fractons results in a pair of isolated irreducible lineons

ju∏
j= jd

(0, 1)×N
j = �

2p
jd− 1

2

�
N−2p
ju+ 1

2

, (26)

which is not possible in a model that is foliated equivalent to
the ZN X-cube model.

B. Non-Abelian fractons

Here we consider several non-Abelian UFCs which can
be directly fed into the gauged layer construction to produce
models with non-Abelian fractons.

1. Doubled Ising model

A simple non-Abelian UFC is the Ising category, with three
types of strings, 1, σ , and ψ . Their fusion rules are given by

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (27)

The Z2 grading is given by C0 = {1, ψ}, C1 = {σ }. The 2D
string-net construction produces a doubled Ising topological
phase Ising×Ising, with nine quasiparticles ab where a, b ∈
{1, σ, ψ} (1 is suppressed below). This is because the input
category admits modular braidings. In particular, the ψψ par-
ticle is a Z2 boson, associated with the Z2 grading of the Ising
category. The remaining seven nontrivial anyons can be di-
vided into two groups: ψ,ψ , σσ are neutral under the 1-form
symmetryWψψ so they remain planons, while σ, σ , σψ,ψσ

are charged, and so become fractons in the 3D gauged model.
The general discussion above implies that a “dipole” of σ ’s
separated along ẑ is a planon that can move freely in the xy
plane.

Now let us clarify what it means to have “non-Abelian”
fractons. In two dimensions, an anyon a has a quantum di-

FIG. 3. String and membrane operators that created non-Abelian
Ising σ particles. (a) String operators that create the two orthogonal
basis states in the fusion space of four σ anyons. (b) A string-
membrane operator that creates four σ fractons in the Ising gauged
layer model.

mension da � 1. If da > 1, the anyon is non-Abelian. When
n identical, well-separated anyons a are created on a sphere
(such that the total topological charge is trivial), the dimension
of the degenerate excited state subspace grows asymptotically
as dn

a as n → ∞. The different excited states are locally indis-
tinguishable, and can be labeled by the corresponding fusion
trees. As an example, in the doubled Ising model the ground-
state dimension for n Ising anyons σ is 2n/2−1, and therefore
dσ = √

2. In the minimal case n = 4, the string operators that
create the two states are shown schematically in Fig. 3(a). A
pair of σ ’s either fuse into the vacuum or ψ and with four
σ ’s there is a choice of the intermediate fusion channel being
1 or ψ . When the fusion channel is 1, one simply applies
two string operators of σ to create the four anyons. When
the fusion channel is ψ , the more complicated operator as
depicted in Fig. 3(a) is needed, where a ψ string connects the
two σ strings.

Now we come back to the 3D gauged model. It can easily
be seen that both operators, after attaching a membrane in
the xy plane, can still create the same configurations of σ ’s.
Therefore, the twofold topological degeneracy of four Ising
anyons in the same xy plane remains intact. We can also
make sense of non-Abelian braiding: suppose the four σ are
in the jth layer. Even though a single σ is immobile, as we
have mentioned in Sec. II B a σ dipole σ jσ j+1 can move in
the xy plane. Braiding such a dipole around the other anyons
induces non-Abelian transformation in the two-dimensional
space. The exact form of the transformations can be directly
read off from that of the non-Abelian braiding of Ising anyons
in 2D.

More generally, if n Ising anyons are in the same xy plane,
then there is still a 2n/2−1-fold topological degeneracy. On
the other hand, if the membrane is perpendicular to the xy
plane, the four anyons as shown in Fig. 3(b) have a unique
state associated with them. Therefore, the degeneracy for the
non-Abelian fractons depends on the precise configuration of
them. The same is true for the other fractons σ , σψ,ψσ .

We can also show that what we construct is an intrinsically
3D fracton phase. In particular, it can not be transformed to a
simpler, “Abelian” fracton phase (e.g., X-cube model) stacked
with decoupled 2D layers of non-Abelian topological phases.
If that were the case, there must be at least one irreducible
Abelian fracton excitation, which is absent in our model.
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2. Other non-Abelian models

Here we briefly discuss a few more examples of non-
Abelian fracton phases obtained via the gauged layer con-
struction.

ZN parafermions. A generalization of the Ising category is
the so-called ZN Tambara-Yamagani category where N is an
odd integer. There are N + 1 labels, the first N of which are
basically elements of ZN , denoted by [ j], j = 0, 1, . . . ,N −
1. The last one σ satisfies

σ × σ = [0] + [1] + · · · + [N − 1]. (28)

The Z2 grading is given by C0 = {[0], [1], . . . , [N − 1]} and
C1 = {σ }. For a certain choice of the F symbol, the Drin-
feld center has the same topological order as the theory
Spin(N )2 × SU(N )1 [28,33]. We thus find that gauging ZN

Tambara-Yamagani string-net layers yields “parafermionic”
fractons with quantum dimension

√
N .

S3 gauge theory. With this example we point out that the
gauged layer construction allows one to simply produce a
non-Abelian fracton model from layers of S3 gauge theory
(see Ref. [54] for a review). Here the group is generated by
{s, r|s2 = r3 = 1, srs = r−1}. In the construction we gauge
the subsystem symmetry generated by copies of the nontrivial
Z2 boson corresponding to the sign representation of the S3

group. This forces the two inequivalent fluxes labeled by the
conjugacy class of size three to become non-Abelian fractons
of quantum dimension 3. For the lattice model we take strings
labeled by elements of S3, with Z2 grading given by C0 =
{1, r, r2}, C1 = {s, sr, sr2}, where the fusion rules are given by
group multiplication and the F symbols are trivial. The same
construction can be easily generalized to all dihedral groups.

Non-Abelian twisted Z3
2 gauge theory. A twisted Z3

2
checkerboard model with non-Abelian fractons was previ-
ously presented in Ref. [12]: here we explain an analogous
construction via gauging layers. The layers are taken to be
twisted Z3

2 gauge theories with string types labeled by group
elements A = a0a1a2, where a0, a1, a2 ∈ Z2, and F symbols
given by the nontrivial so-called type-III 3-cocycle

FABC
A+B+C = α(A,B,C) = (−1)a0b1c2 . (29)

It is well known that the emergent topological order in the 2D
layers is equivalent to D4 gauge theory or, more technically,
Z (Vecα

Z3
2
) ∼= Z (VecD4 ) (see Ref. [45]). The string types triv-

ially admit a Z3
2 grading, which corresponds to the Z3

2 group
of Abelian bosons in the emergent D4 gauge theory. Gauging
the subsystem symmetries generated by these bosons results
in the remaining 14 inequivalent non-Abelian anyons in each
layer, which all have quantum dimension 2, being promoted
to fractons.

SU(2)4k anyons. Another family of examples are given
by the SU(2)4k categories. The 4k + 1 anyon types are la-
beled by an SU(2) spin j = 0, 1

2 , . . . , 2k. In particular, the
j = 1

2 anyon is always non-Abelian, with quantum dimension
d1/2 = 2 cos π

4k+2 , and the highest-spin anyon j = 2k is a Z2

boson, which braids nontrivially with all anyons of half-odd-
integer spin. The complete set of algebraic data can be found
in [55]. Applying the gauged layer construction to the planar
symmetries generated by the 2k boson, all anyons of half-odd-
integer SU(2) spin anyons are promoted to fractons. It is worth

pointing out that in this way one obtains non-Abelian fractons
whose squared quantum dimensions are not integers for all
k > 1. For example, for k = 2, it is known that the SU(2)8 the-
ory is actually equivalent to bilayer Fibonacci anyons where
theZ2 layer exchange symmetry has been gauged [33]. In that

case the spin- 12 anyon, which has quantum dimension
√

5+√
5

2 ,
is promoted to a fracton.

We remark that SU(2)4k anyon theories have chiral edge
states, with chiral central charge c− = 6k

2k+1 . The gauging does
not change the chiral central charge, so the 3D model also
has chiral edge modes on side surfaces. Technically, the bulk
anyon theory only determines the chiral central charge of the
edge theory modulo 8. However, it turns out that the edge of a
stack with an arbitrary number of SU(2)4k theories with k > 4
cannot be gapped5 [56]. Hence, any model supporting the bulk
fracton theory given by gauged SU(2)4k layers must have a
gapless edge for k > 4.

To construct an explicit commuting projector lattice model
that supports a fracton whose squared quantum dimension
is not an integer, one could instead apply the gauged layer
construction to SU(2)k string-net Hamiltonians. This results
in a similar, though nonchiral, model to the one described in
this section.

Swap-gauged bilayer anyons. For any bilayer topological
phase of the form B × B where B is an anyon theory, there is
a Z2 symmetry that swaps the two layers. A Z2 defect of the
symmetry X0 satisfies

X0 × X0 =
∑
a∈B

(a, a). (30)

Therefore, the quantum dimension of X0 is equal to the total
quantum dimension D of B. Other defects can be obtained
from X0 by attaching anyons in either layer: Xa = X0 × (a, 1).

After gauging the Z2 swap symmetry, the defects become
symmetry fluxes X±

a where ± denotes Z2 charge. We can
then apply the gauged layer construction to the planar sym-
metries generated by Z2 gauge charges in the swap-gauged
bilayer theory. This promotes X±

a to fractons. For example,
the Fibonacci anyon theory has only one nontrivial topological
excitation τ , in addition to the vacuum 1. They satisfy fusion
rules

τ × τ = 1 + τ, (31)

which implies the quantum dimension of τ is dτ = φ, and
the total quantum dimension is D2 = φ

√
5, where φ = (1 +√

5)/2 is the golden ratio. Hence, as mentioned above, apply-
ing the gauged layer construction to the swap-gauged bilayer
Fibonacci theory produces a fracton with quantum dimension√

5+√
5

2 . This may have interesting implications for braiding
universality using fractons [57].

C. Fermionic symmetries in the honeycomb model

We now discuss a concrete lattice example where the sub-
sytem symmetry being gauged corresponds to string operators

5More precisely, the Witt class of SU(2)k is infinite order as long
as k �= 1, 2, 4.
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that create fermions. As we will see, as far as straight line
operators are concerned, they still take the form of a tensor
product of an onsite unitary operator, and can be gauged
following the same procedure.

The model we consider in each layer is Kitaev’s honey-
comb lattice model [36]:

H = −
∑

α=x,y,z

Jα

∑
α links

σα
i σα

j . (32)

It can be mapped to fermions coupled to staticZ2 gauge fields.
This is achieved by the following Majorana representation of
a spin 1

2 :

σα = ibαc, α = x, y, z (33)

with the gauge constraint bxbybzc = 1. The Hamiltonian then
becomes

H = i

2

∑
〈i j〉

Jαi j ui jcic j . (34)

Here ui j = ib
αi j

i b
αi j

j represent staticZ2 gauge fields. The phase
diagram is worked out in Ref. [36]. When any one of the cou-
plings dominates, e.g., Jx � Jy, Jz, the model is in a gapped
toric code phase. For isotropic couplings Jx = Jy = Jz, the
fermions are gapless while the Z2 fluxes remain gapped (this
is called the B phase). If a suitable time-reversal breaking
Zeeman field is then turned on, a mass gap opens for the
fermions, taking the model into a non-Abelian topological
phase with Ising topological order [36].

The Z2 gauge fluxes are measured by Wilson loop opera-
tors. Following the notation in [36], define

Ki j = σα
i σα

j , if i j is a α link. (35)

Then for a path γ connecting sites j0, j1, . . . , jn,

Wf (γ ) = Kjn jn−1 . . .Kj1 j0 =
n∏

s=1

(−iu js js−1 )cnc0. (36)

Thus, Wf (γ ) creates a fermion at each end point of γ . For a
closed path γ , jn ≡ j0, it can be shown thatWf (γ ) commutes
with the Hamiltonian throughout the whole phase diagram,
and thus generates a 1-form symmetry. The minimal symme-
try generators areWp on each plaquette, measuring Z2 flux in
the hexagon. In the ground state allWp = 1.Wf (γ ) restricted
to a straight line γ generates a 1D subsystem symmetry of the
model. In Fig. 4 two such subsystem symmetries are shown.

The gapped Bν phase can be reached while preserving the
fermionic 1-form symmetry via the perturbation

V =
∑

〈i j〉〈ik〉
Ki jKik +

∑
〈i j〉〈ik〉〈i�〉

Ki jKikKi�, (37)

where 〈i j〉 denotes a pair of adjacent vertices and i, j, k, �
are all distinct. Perturbing the honeycomb Hamiltonian in
Eq. (32), to H − 
V , leads to the gapped Ising phase with
chirality ν = sgn
.

By utilizing the X⊗L and Z⊗L linear subsystem symme-
tries of the 2D perturbed Kitaev honeycomb model, shown
in Fig. 4(c), we can apply the gauged layer construction to
obtain a 3D Hamiltonian. Details of the lattice Hamiltonian
are presented in Appendix E.

FIG. 4. Fermionic subsystem symmetries in Kitaev’s honeycomb
lattice model.

Most interestingly, if the layers are in the gapped non-
Abelian chiral Ising Bν phase, the 3D model supports Ising
fractons. This is somewhat similar to the model described
in Sec. III B, except the gauged honeycomb layers model
also exhibits chiral Majorana surface modes. Alternatively, the
layers can be tuned to the gapless B phase, in which case the
gapped Z2 fluxes remain fractons, but the (planon) fermions
become gapless. Finally, for layers tuned to one of the toric
code phases, we expect a model equivalent to the X-cube
model. This presents a family of models exhibiting nontrivial
phase transitions, chirality, and non-Abelian fractons, which
deserve further exploration. We remark that these features
differentiate our construction from the previous models built
from honeycomb layers in Refs. [47,58].

D. Surface fractons from the Ising Walker-Wang model

The Walker-Wang model is a generalization of the Levin-
Wen model to 3D, based upon braided fusion categories [43]
(which are algebraic theories of anyons). For a modular ten-
sor category (MTC) M the topological order in the bulk
is trivial, while there is a canonical gapped boundary to
vacuum that supports potentially chiral M anyons, despite
the fact that the Hamiltonian is a sum of local commuting
projector terms. A (necessarily Abelian) grading on the string
types of a Walker-Wang model induces a 1-form symmetry
analogously to our discussion of graded Levin-Wen models.
Such 1-form symmetries act via products of onsite operators,
that are diagonal in the string label basis, and hence can
always be gauged [59]. For MTCs there is a universal Abelian
grading induced by braiding with the Abelian anyons in the
MTC. In this case, where the 1-form symmetry corresponding
to an Abelian anyon a ends on a boundary it implements the
string operatorWa. This can be used to effectively implement
even anomalous 1-form symmetries on the boundary.

Consider a semi-infinite Walker-Wang model based on the
Ising MTC, Z2 graded by the Abelian anyon group generated
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by ψ , with the canonical smooth boundary at z = 0. We gauge
the subsystem symmetries generated by ψ on xz and yz planes
(see Sec. III B). In the bulk this results in a lineon topological
order equivalent to the twice foliated X-cube model [23]. On
the boundary surface there is a nontrivial 2D fracton model,
where the Ising σ anyons are promoted to fractons. Similar
to the gauged layer construction, a pair of σ anyons on the
surface separated by x̂ (ŷ) is an xz (yz) planon gauge charge.
Gauge fluxes of the xz (yz) planar symmetries are xz (yz)
planons, as expected in this case. However, the naive string
operator for these planons must be dressed by a ψ string,
making them fermions. At the boundary surface all the gauge
fluxes are equivalent to the ψ anyon, which remains a planon
there. This surface is quite remarkable as it has recently been
argued that there are no purely 2D gapped fracton topological
orders [60], and it is distinct to the surfaces found in Ref. [61]
as there are no fractons in the bulk in this case. It remains to
be seen whether it is possible to have a nontrivial 2D fracton
order on the surface of an invertible 3D bulk.

This model has a straightforward construction via a topo-
logical defect network; this also holds for our more general
models (see below). The model where only the xz planar
symmetries are gauged is equivalent to coupling layers of 2D
toric code on the xz planes to the Ising surface theory via
domain walls that are formed, after folding the Ising surface,
by condensing the ψψ boson in Ising×Ising. Similarly, the
full gauged layer model is equivalent to coupling layers of
2D toric code on xz and yz planes, with a certain choice
of gapped boundary where they intersect, to an Ising anyon
theory surface in a similar fashion. Hence, the same fracton
surface order could be achieved by gauging a layer of the
honeycomb model, in the gapped Ising phase, stacked on the
surface of trivial symmetric bulk degrees of freedom, although
the Hamiltonian would not be commuting projector with this
alternate construction.

IV. TOPOLOGICAL DEFECT NETWORK
INTERPRETATION

Recently, it has been proposed that any fracton model ad-
mits a description by a network of topological defects within a
conventional topological order [60] (see also Refs. [62,63] for
related constructions). This includes 2D layers with topolog-
ical order, coupled along gapped boundaries, within a trivial
ambient 3D topological order as a special case [62]. Here we
demonstrate that the wide range of models obtained via the
gauged layer construction are indeed described by topological
defect networks, supporting the conjecture in Ref. [60]. We
remark that the construction of topological defect networks
via gauging subsystem symmetries on stacked topological
orders was recently generalized in Ref. [64].

The topological defect network construction of a gauged
layer model is obtained by introducing a 2D Abelian A
gauge theory onto each A subsystem symmetry plane of the
ungauged layers, along with appropriate gapped boundary
conditions where these Abelian gauge theories intersect the
layers. Where different planes of Abelian gauge theory inter-
sect they simply pass through one another.

Let us describe the nontrivial gapped boundary where the
A gauge theory intersects a topological layer. Recall that, by

FIG. 5. Illustration of the defect network construction. (a) The
intersection of C and D layers, which can be cut into four semi-
infinite layers and folded as the boundary of the 2D topological
phase C � C �D �D. (b) The Lagrangian algebra for the gapped
boundary.

assumption, the anyon theory for the layer C contains a set of
bosons that form an Abelian group A. Therefore, C admits an
Â grading induced by braiding phases with A bosons

C =
⊕
χ∈Â

Cχ , (38)

where Â denotes the character group. The gapped boundary
is specified by the following rules: anyons in C0 can pass
through, while anyons in Cχ can only pass through by cre-
ating a χ gauge charge in the intersecting A gauge theory.
Similarly, gauge charges in the A gauge theory are allowed
to pass through the boundary, while g gauge fluxes can only
pass through by creating a g A boson in C. The gapped corner
terms, where two planes of A gauge theory and a C layer all in-
tersect, are specified by the gauged string-net plaquette terms
which couple to both intersecting gauge fields [see Eq. (6)].

We remark that the gapped boundary where an A gauge the-
oryD = Z (VecA) intersects a C layer is equivalent to a gapped
boundary to vacuum of C � C �D �D via folding. Here C
denotes orientation reversal of C, as illustrated in Fig. 5(a),
and� denotes stacking topological orders. Hence, the gapped
boundary is specified by a Lagrangian algebra object [31,65]
in C � C �D �D. Before presenting the appropriate object,
we first point out that D trivially admits a grading into flux
sectors

D =
⊕
g∈A

Dg, (39)

which can also be thought of as induced by braiding phases
with the Â gauge charges. The Lagrangian algebra object for
a trivial intersection of C and D layers is given by

L =
∑
a∈C

∑
b∈D

(a, a, b, b), (40)

while for the nontrivial gapped boundary in the gauged layer
topological defect network it is given by

L =
∑
a∈C

∑
b∈D

∑
χ∈Â

∑
g∈A

(aχ , g⊗ aχ , χ ⊗ bg, bg). (41)
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Figure 5(b) shows the anyon condensation in the unfolded
intersection.

This point of view reveals a further generalization of the
gauged layer construction by replacing the A gauge theory
with an arbitrary A-graded anyon theory D. In fact, the La-
grangian algebra object in Eq. (41) remains the same for this
general case. The lattice model can also be generalized to
this case by replacing the A spins on dual xz and yz planes
with A-graded string-net models. Moreover, any model ob-
tained by gauging an Abelian planar subsystem symmetry can
equivalently be obtained by introducing Abelian gauge theory
layers coupled to the original system via a topological defect
network. All such models then admit a further generalization
where the gauge theory layers are replaced by graded string-
net models.

V. DISCUSSION AND CONCLUSION

In this work we introduced a new class of type-I fracton
models, constructed by gauging planar subsystem symme-
tries inherited from Abelian 1-form symmetries of layered
2D topological orders. Our models are capable of hosting
vastly more general types of non-Abelian fractons as well
as chiral boundaries, as demonstrated through examples in-
cluding gauged layers of Ising string net, S3 and twisted Z3

2
gauge theory, SU(2)4k anyons, swap-gauged bilayer anyons,
and Kitaev’s honeycomb model. We also demonstrated that
applying our construction to the Ising Walker-Wang model
leads to non-Abelian surface fractons on the boundary of a
3D lineon model.

Our models highlight the potential existence of fracton
models with even more exotic behaviors than those dis-
covered to date. In particular, the existence of non-Abelian
fractons with noninteger squared quantum dimension, which
may have important applications for topological quantum
computation. A notable interesting open question is whether
such non-Abelian fractons can be realized in a type-II frac-
ton model, and whether a model of this type can serve as a
self-correcting quantum memory. This could be addressed by
searching for fractal subsystem symmetries of some conven-
tion non-Abelian topological order, or more generally within
the topological defect network formalism [60].

We close by comparing and contrasting our construc-
tion with other non-Abelian fracton models in literature.
We remark that all previous constructions only produced
fractons with integer-squared quantum dimensions. This is
because these constructions all took topological orders with
integer-squared quantum dimensions, including twisted gauge
theories and Ising anyons, and then gauged an Abelian sym-
metry which is known to only produce further excitations with
integer quantum dimensions [33].

In Ref. [10], Vijay and Fu constructed a non-Abelian frac-
ton model by coupling px + ipy superconducting layers to
the Majorana checkerboard model. This is similar in spirit to
our construction (in particular the gauged honeycomb layers
model in the gapped Bν phase), in the sense that a Z2-
symmetry flux (i.e., vortices in the px + ipy superconductors)
is promoted into a fracton by coupling layers to subsystem
gauge fields. However, the construction in [10] relies heavily
on the specific geometry of theMajorana checkerboard model.

Our construction can be regarded as a certain generalization of
this model.

In Ref. [12], Song et al. took a different approach by “twist-
ing” spin checkerboard models by 3-cocycles. The resulting
model for Z3

2 with a type-III cocycle twisting, on xy planes
only, supports non-Abelian fractons with integer quantum
dimension 2. The non-Abelian fractons in our twisted Z3

2 ex-
ample are very similar to those in [12]; it would be interesting
to establish a local unitary equivalence between the models,
possibly up to stacking with X cube and 2D toric code layers.
Our models are more general in the sense that they allow for
layers beyond twisted gauge theory, and non-Abelian fractons
with noninteger quantum dimension.

Another general construction of 3D fracton models from
intersecting 2D layers is through the mechanism of “p-loop
condensation” [48,66]. Reference [11] applied this construc-
tion to layers of doubled SU(2)k theories, generating 3D
models that feature Abelian fractons and non-Abelian lineons,
which is fundamentally different from our construction. It is
an interesting open question whether a certain generalized
string-membrane-net model [24], which combines the two
constructions, allows for the most general foliated type-I frac-
ton models with non-Abelian excitations.

Our construction is analogous to independent p-loop con-
densations within the gauged planes rather than the whole 3D
bulk. To demonstrate this we point out that gauging a symme-
try condenses its domain walls. Hence, p-loop condensation is
equivalent to gauging a 3D 1-form symmetry inherited from
the foliated 1-form symmetries in each 2D layer that are gen-
erated by the string operators for the particles attached to the
p loops. Our construction instead gauges a planar subsystem
symmetry that is a subgroup of both the aforementioned 3D
1-form symmetry, and a linear subsystem symmetry subgroup
of the foliated 1-form symmetry in each layer. This inclusion
of subgroups can be written out as follows:

Gplanar subsys. � G3D 1-form � Gfoliated 1-form,

Gplanar subsys. � Glinear subsys. � Gfoliated 1-form,

where subsys. stands for subsystem.
Recently, another route leading to non-Abelian fractons

was presented in Refs. [13,14]. One starts from multiple
copies of a fracton model, such as the X-cube model, and
gauges a global layer-permutation symmetry. The result-
ing models exhibit “panoptic” topological order, including
non-Abelian fractons that always have integer quantum di-
mensions. In addition, there are completely mobile particles
(gauge charges) and loop excitations, which were absent in
the constructions discussed above. We expect that the swap-
gauged bilayer X-cube model can be obtained by gauging a
Z2 × Z2 planar subsystem symmetry of the 3D toric code
(see [15] for a proposed construction of this kind). It remains
an open problem to generalize our gauged layer construction
to capture panoptic models such as the swap-gauged bilayer
cubic code from Refs. [13,14], which contain non-Abelian
fractons that are created at the corners of fractal operators.

Even more recently, a model with non-Abelian fractons of
quantum dimension 2 was constructed in [60] using a topo-
logical defect network based on 3D D4 gauge theory. Like
the gauged bilayer fracton models, this model also supports
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mobile Abelian gauge charges and non-Abelian loop exci-
tations. This model can be obtained by gauging subsystem
symmetries of a 3D D4 gauge theory, which is a special case
of the generalized string-membrane-net models that will be
present in a future work.
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APPENDIX A: LEVIN-WEN MODELS

The string-net model takes as input a unitary fusion cate-
gory, which describes a finite set of string types that fuse in a
nonassociative way, captured by the so-called F symbols [39].
The Hamiltonian is a sum of two types of terms:

H = −
∑

v

Av −
∑
p

Bp. (A1)

For clarity of presentation, we consider the Hamiltonian on
a honeycomb lattice with undirected edges and no fusion
multiplicity, although these restrictions can be dropped via a
suitable generalization. The vertex terms Av ensure that fusion
rules are obeyed at each vertex:

(A2)

Here Nc
ab = 1 when c appears as a fusion channel of a and b,

otherwise 0. The plaquette terms take the following form:

Bp = 1

D2

∑
s

dsB
s
p, (A3)

where ds is the quantum dimension of string type s, and D
is the total quantum dimension. The Bs

p operators have the
following graphical representation: imagine adding a loop of
type s onto the plaquette, and fusing it into the edges

(A4)

The matrix elements obtained via this fusion process are ex-
plicitly given in terms of F symbols in Ref. [39]. We remark
that this construction can easily be applied to other lattices, by
simply splitting each vertex into a connected set of trivalent
ones.

The string-net model with input UFC C falls into the topo-
logical phase with emergent Z (C) anyons, where Z denotes
the quantum double, or Drinfeld center. For the special case
where C is itself an anyon theory (MTC), we have Z (C) ∼=
C � C, where the bar denotes orientation reversal. In this case
the string operators can be found easily on the lattice, by

simply laying a string from C over the lattice, for a C anyon,
and another under the lattice, for a C anyon. Then the string
diagram is resolved using the R moves of the MTC C, and
finally reduced to lattice string configurations via F moves.
Strings purely over the lattice create the emergent C anyons,
while those purely under the lattice create the C anyons [67].
More generally, for any braided UFC, a subset of the string
operators can be found by following this procedure. In total
generality, when there is no braiding on the UFC C, there is
an analogous construction to find all string operators, using a
set of “half-braidings” in place of the R moves. This approach
was described in terms of � matrices in Ref. [39].

APPENDIX B: NOTATION

In this work, when considering finite Abelian groups

G ∼=
∏

pprime

∏
n=1

Zd p
n
pn , (B1)∑

p, n

d p
n = k < ∞, (B2)

we assume a choice of basis has been made for each Zd p
n
pn , with

d p
n > 0. Concatenating these bases in order of increasing p,

then n for cyclic groups with the same p defines a basis for G
which decomposes it as follows:

G ∼= Zp
n1
1

× · · · × Zp
nk
k
. (B3)

An arbitrary group element can then be expressed as

g = (g1, . . . , gk ), (B4)

where gi = 0, . . . , pnii − 1. We denote the inverse group ele-
ment by

g = (−g1, . . . ,−gk ). (B5)

With the above notation we now define generalized clock
and shift matrices. On any finiteG-graded vector space, with a
basis of homogeneous elements |ag〉 we define the generalized
clock matrix via

Z̃g |ah〉 =
k∏

i=1

ω
gihi
i |ah〉 , (B6)

where ωi is a primitive pnii th root of unity. For the special case
of the vector space C[G], we have

Zg |h〉 =
k∏

i=1

ω
gihi
i |h〉 , (B7)

and we can also define a generalized shift matrix via

Xg |h〉 = |g+ h〉 , (B8)

where the group operation is addition of the associated column
vectors, modulo pnii for the ith entry. These operators have the
following commutation relations:

ZgXh =
k∏

i=1

ω
gihi
i X hZg. (B9)
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Graded string-net constructions

We consider a family of 2D topological phases that can be
represented by string-net models. Physically, this is possible if
and only if a topological phase admits a fully gapped bound-
ary, and mathematically they can be described as Drinfeld
centers of unitary fusion categories. We further assume that
there is a 1-form symmetry group G generated by Abelian
bosons (G must be a finite Abelian group). According to
Ref. [33], such MTCs can be obtained by gauging a G sym-
metry of another MTC. For string-net models, the G gauge
structure can be realized by an underlying UFC that is G
graded [34,35]:

CG =
⊕
g∈G

Cg. (B10)

Without loss of generality we consider the string-net
Hamiltonian on a square lattice, with string variables defined
on edges, and where each vertex is resolved to be trivalent.
The string-net Hamiltonian for CG is given by

HSN
CG

= −
∑

v

Av −
∑
p

1

|G|
∑
g

Bg
p, (B11)

where Av projects onto string configurations that satisfy the
fusion rules at vertex v, and Bg

p fuses loops from the g sector
into the boundary of plaquette p (see below). Since G is
Abelian, we introduce generalized “clock” operators Z̃g

e as
defined above.

We remark ∏
e�v

Z̃σ e
v

e Av = Av, (B12)

where σ e
v = 1 if e points to v and −1 otherwise. The plaquette

terms form a representation of G, as Bg
pBh

p = Bgh
p , they are

given by

Bg
p =

∑
sg

dsg
D2

1

B
sg
p , (B13)

where B
sg
p fuses a loop of sg string into the edges along the

boundary of plaquette p.
Using the notation defined above, we have the commuta-

tion relation

Z̃g
eB

h
p =

k∏
i=1

ω
σ

p
e gihi

i Bh
pZ̃

g
e , (B14)

for e ∈ ∂ p, where σ
p
e = 1 if the orientation of e matches that

of p, and −1 otherwise. Hence, the string operator

Z̃g
γ :=

∏
e∩γ

(
Z̃g
e

)σ
γ
e (B15)

is a symmetry when γ is a closed loop on the dual lattice,
where σ

γ
e = 1 if γ crosses e in a right-handed fashion and

and−1 otherwise. These loop operators generate theG 1-form
symmetry of the string-net model.

Furthermore, when γ is an open string on the dual lattice,
running from plaquette γ− to γ+, the string operator above
creates a g boson at γ+ and a g boson at γ−.

APPENDIX C: GAUGING PLANAR SUBSYSTEM
SYMMETRY

In this Appendix we describe the generalized lattice
gauging procedure [16,17] for commuting planar subsystem
symmetries that have no relations, i.e., no nontrivial products
of symmetry operators giving the identity.

We consider planar subsystem symmetries on the cubic
lattice with generators∏

x,y

Ux,y,z(g),
∏
y,z

Vx,y,z(g),
∏
x,z

Wx,y,z(g), (C1)

forming representations of finite groupsGxy,Gyz,Gxz, on each
xy, yz, xz, plane, respectively, and where the onsite symmetry
actions commute

[U,V ] = [V,W ] = [U,W ] = 0. (C2)

We furthermore focus on the case relevant to our constructions
where the subsystem symmetries have no relations, meaning
any nontrivial product of symmetry generators cannot give the
identity. In this case, each plane of the subsystem symmetry
can be gauged following the procedure for gauging a global,
0-form symmetry in 2D [26]. Since the onsite symmetry ac-
tions commute, and there are no relations, the symmetries in
orthogonal planes can be gauged sequentially to achieve the
same result as simultaneously gauging all at once. Hence, it
suffices to describe the gauging of one set of planar symme-
tries and this procedure can then be repeated for the others.

We proceed to describe gauging the symmetries on xy
planes. The first step is to introduce C[G] “gauge” spins on
the x̂ and ŷ edges of the cubic lattice. We label these spins
by eẑ, for e ⊥ ẑ, to distinguish them from gauge spins for the
xz and yz subsystem symmetries. Projectors implementing the
planar Gauss’s laws are

Pxy
v = 1

|Gxy|
∑
g∈Gxy

Pxy
v (g), (C3)

Pxy
v (g) = Uv (g)

∏
e→v,e⊥ẑ

Leẑ(g)
∏

e←v,e⊥ẑ

Reẑ(g), (C4)

where e → v (e ← v) denotes adjacent edges that are ori-
ented towards (away from) v. Projectors onto zero-flux
configurations around plaquettes p ⊥ ẑ are given by

Fxy
p =

∑
g1,g2,g3,g4

δ
(
g
σ

p
e1
1 g

σ
p
e2
2 g

σ
p
e3
3 g

σ
p
e4
4 = 1

)
× πe1 ẑ(g1)πe2 ẑ(g2)πe3 ẑ(g3)πe4 ẑ(g4), (C5)

where πeẑ(g) = |g〉eẑ 〈g|. The edges e1, e2, e3, e4 ∈ ∂ p appear
in order starting from an arbitrary vertex in ∂ p and following
the orientation induced by p along its boundary, with σ

p
ei = 1

if the orientation of ei matches and −1 otherwise.
To gauge a local Hamiltonian H = ∑

v hv we first in-
troduce a superoperator that projects operators onto the
gauge-invariant subspace

P[O] =
∑
{gv}

∏
v∈SO

Pxy
v (gv )|SO O

∏
v∈SO

Pxy
v (gv )|†SO , (C6)

where SO is the set of sites in the support of O. We use this to
define a gauging superoperator for operators on the “matter”
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qudits

G[Om] = P

⎡⎣Om

∏
e∈TOm

πeẑ(1)

⎤⎦, (C7)

where TOm is a tree, within an xy plane, that contains the
vertices in SOm . The gauged Hamiltonian is then

Hgauged =
∑

v

G[hv] − ε
∑
p

Fxy
p − λ

∑
v

Pxy
v . (C8)

The Gauss’s law gauge constraints become strict in the limit
λ → ∞.

For the special case that the onsite action of the subsystem
symmetry is the regular representation Uv (g) = Lvẑ(g) ⊗ 1,
we introduce the following local unitary circuit:

LU =
∏
v

∏
e→v,e⊥ẑ

CLvẑ,eẑ

∏
e←v,e⊥ẑ

CRvẑ,eẑ, (C9)

where CL1,2 (CR1,2) is a left (right) multiplication on qubit
2, controlled by qubit 1. Applying this circuit to the gauged
Hamiltonian results in a model where the original matter
qudits that transform under the regular representation are pro-
jected out by the gauge constraints, which become

LUPxy
v LU † = πvẑ(1) ⊗ 1. (C10)

For the relevant case of Abelian groups Gxy the Gauss’s
laws simplify to

Pxy
v (g) = Uv (g)

∏
e→v,e⊥ẑ

X g
eẑ

∏
e←v,e⊥ẑ

X g
eẑ, (C11)

and the flux constraint can be written as

Fxy
p =

∏
e∈∂ p

(
Zg
eẑ

)σ
p
e
. (C12)

Throughout this work we have changed the basis of the gauge
spins via an onsite Hadamard transformation resulting in
Gauss’s law terms

H⊗|E |Pxy
v (g)(H†)⊗|E | = Uv (g)

∏
e→v,e⊥ẑ

Zg
eẑ

∏
e←v,e⊥ẑ

Zg
eẑ, (C13)

which are analogous to the Bc terms appearing in our gauged
layer Hamiltonians, and

H⊗|E |Fxy
p (H†)⊗|E | =

∏
e∈∂ p

(
Xg
eẑ

)σ
p
e
, (C14)

which are analogous to the Ae terms appearing in our gauged
layer Hamiltonians.

APPENDIX D: GENERAL GAUGED LAYER MODEL

Here we present the general 3D model constructed from
a stack of Abelian G-graded string nets Z (CG) in xy planes
along the ẑ direction. Such a stack obeys a large symme-
try group given by the product of 1-form G symmetries in
each layer. This group contains a GLx × GLy subgroup of
planar subsystem symmetries generated by elements that are
products of the 1-form symmetry in each layer where it is

intersected by a dual xz or yz plane. Applying the gauged layer
construction leads to the model

HFrac
CG

= −
∑

v

Av −
∑
e⊥ẑ

Ae −
∑
p⊥ẑ

B′
p −

∑
c

(
Bx̂
c + Bŷ

c

)
,

(D1)

where Av are string-net fusion-vertex terms,

B′
p = 1

|G|
∑
g

Bg
pX

g
px̂X

g
pŷ (D2)

are gauged string-net plaquette terms,

Ae = Z̃†
e

∏
p∈�z, e∈∂ p

Zσ
p
e

pê

∏
p�∈�z, e∈∂ p

Zσ
p
e

p (D3)

are generalized Gauss’s law terms, and

Bx̂
c =

∏
p∈∂c, p⊥ẑ

X
σ c
p

px̂

∏
p∈∂c, p⊥ŷ

X
σ c
p

p , (D4)

Bŷ
c =

∏
p∈∂c, p⊥ẑ

X
σ c
p

pŷ

∏
p∈∂c, p⊥x̂

X
σ c
p

p (D5)

are zero-flux terms. In the above equations we have utilized
various notation defined in Sec. II and Appendix B. The
symbol σ c

p denotes the relative orientation of a plaquette on
the boundary of a cube. We remark that by Poincare duality
it is given by σ c

p = σ
p̄
c̄ and similarly σ

p
e = σ ē

p̄ , where v̄, ē, p̄, c̄
denote a dual cube, plaquette, edge, and vertex, respectively.

The ground state consists of a weighted sum of allowed
G-graded string-net configurations in the 2D xy layers, and
Abelian G gauge configurations in the yz and xz layers that
may not be closed. With the constraint that an open g-labeled
string in a yz layer has to end on a string from the g sector in
an xy layer, and similar for the gauge fields in the xz layers.
The unnormalized weights for the string-net configurations
are given by the product of the string-net weights in each xy
layer.

Wilson operators, materialized symmetries, and excitations

There are many generalized Wilson operators that com-
mute with the Hamiltonian, which we proceed to describe.

First, anyons in the trivial sector of the 2D layers are
not affected by the gauging, and hence remain planons. As
we have briefly covered above, anyons in a nontrivial g �= 1
sector become immobile due to the subsystem gauging. In
fact, the original string operators no longer commute with the
gauged Hamiltonian. The only way to remedy this is to form a
loop-membrane operator, i.e., a Wilson loop transporting the
anyon from sector g in an xy layer, attached to a membrane
of Xg

px̂X
g
pŷ in the same layer, or a pair of such loop operators

in vertically separated layers, attached by a membrane of Xg
p

on the plaquettes in the yz and xz layers between them, the
smallest example being∏

p∈∂c, p⊥ẑ

(
Bg
p

)σ c
p

∏
p∈∂c, p�⊥ẑ

(
Xg
p

)σ c
p . (D6)

Therefore, such anyons can only be created in quadruples,
similar to fractons in the X-cube model.

The plaquette operators are not truly membrane operators
as we also have Wilson loops given by products of cube terms
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Bx̂/ŷ
c over regions in the dual yz/xz planes. There are also dual-

cage operators on the dual lattice; to see this note
∏

e�v, e⊥ẑ Z̃
σ e

v
e

commutes with the Hamiltonian [see Eq. (B12)], and a prod-
uct of Hamiltonian edge terms on the edges adjacent to a
vertex v together with

∏
e�v, e⊥ẑ Z̃

σ e
v

e leaves a dual-cage term
on the dual lattice consisting of Z̃’s on the plaquettes adjacent
to v. The smallest such dual cage is given by∏

e�v, e⊥ẑ

∏
p�e, p⊥ẑ

Zσ
p
e

pê

∏
p�e, p�⊥ẑ

Zσ
p
e

p . (D7)

There are also materialized symmetries [36,68] corre-
sponding to particle-number parity conservation on certain
subsystems due to relations among the Hamiltonian terms,
i.e., nontrivial products that give identity. These are generated
by products of

∏
e�v, e⊥ẑ Z̃

σ e
v

e terms over a layer of constant
z, products of the dual-cage terms defined above over an xz
or yz plane (the relation from an xy plane is dependent on
the previous relation), and products of cube terms Bx̂/ŷ

c over
a dual yz/xz plane. These emergent symmetries imply that a
vertex excitation which violates

∏
e�v, e⊥ẑ Z̃

σ e
v

e is a fracton as it
is involved in three orthogonal constraints. There are further
emergent symmetries implied by letting Wilson loops of the
type in Eq. (D6) diverge in size over a dual xy plane. This,
together with the other relations derived from the cube terms
Bx̂/ŷ
c , implies that excitations of the cube terms are lineons.

Similarly, there is an emergent symmetry implied by letting a
Wilson loop of any anyon in the trivial sector diverge in size
over an xy plane that implies these excitations are planons.

To summarize, excitations of the vertex terms with g �= 1
are fractons. Appropriate pairs of these fractons are planons.
In particular, excitations of the edge terms are planons that are
equivalent to two vertex fractons. Excitations of the plaquette
terms (and vertex terms with g = 1) are planons. Excitations
of the cube terms are lineons. Appropriate pairs of these
lineons are planons. We remark that the movement of a fracton
in the xy plane is confined as it creates an edge excitation
on each edge it traverses. The x̂- and ŷ-lineons can move in
the ẑ direction by creating or absorbing an xy planon. Hence,
the plaquette planon excitations that are G charges, related to
the grading, are equivalent to a pair of lineons.

APPENDIX E: GAUGED HONEYCOMB LAYERS
HAMILTONIAN

In this Appendix we describe the gauged layer construction
for layers of Kitaev’s honeycomb model [36]. Our starting
point is the perturbed honeycomb model

H − 
V = −
∑
〈i j〉

Jαi j Ki j −
∑

〈i j〉〈ik〉

Ki jKik

−
∑

〈i j〉〈ik〉〈i�〉

Ki jKikKi� (E1)

(see Sec. III for our notational conventions). We first coarse
grain the honeycomb model onto a square lattice, with one
y link and two qubits per site. The Hamiltonian is a sum of

translates of the following terms and their products:

Kx = IX − XI, Ky = YY, Kz =
IZ
|
ZI

, (E2)

where, by abuse of notation, x, y, z denotes an x, y, z link.
The vertical and horizontalZ2 subsystem symmetries are then
generated by∏

i

(ZZ )i j,
∏
j

(XX )i j, (E3)

respectively. We next apply a product of Hadamard and
controlled-Z gates, (HH )CZ (HI ), to every lattice site, bring-
ing the symmetry into a simpler form∏

i

(ZI )i j,
∏
j

(IZ )i j . (E4)

This takes the terms generating the Hamiltonian to

K ′
x = XZ − XI, K ′

y = −ZZ, K ′
z =

IX
|

ZX
. (E5)

Next, we gauge the Z2 planar subsystem symmetries
formed by products of the linear subsystem symmetries in a
stack of the transformed honeycomb model layers. To do so,
we first introduce one gauge qubit onto every x̂ and ŷ edge,
and two onto every ẑ edge. The gauged Hamiltonian is given
by

H̃ − 
Ṽ − εF − λG, (E6)

where the first two terms come from coupling the honeycomb
model to the gauge fields, the third term energetically enforces
a zero gauge flux constraint, and the fourth term energetically
enforces a generalized Gauss’s law, which becomes a strict
constraint in the limit ε → ∞. The first two terms in Eq. (E6)
are generated by translates of products of the gauged generat-
ing terms

K̃x = XZ − X − XI, K̃y = −ZZ, K̃z =

IX
|
X
|

ZX

. (E7)

While the gauge flux constraints are given by translates of

IX X

X IX

,

X

XI XI

X

, (E8)

and the generalized Gauss’s laws are

Z IZ

IZ

IZ Z

,

ZI

Z ZI Z

ZI

. (E9)
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The gauged Hamiltonian is equivalent to a model on the
edge qubits alone via a local unitary circuit

U =
∏
v

∏
e�v,e‖x̂

CXe,v1

∏
e�v,e‖ŷ

CXe,v2

∏
e�v,e‖ẑ

CXe1,v1CXe2,v2 ,

(E10)

where e1,2, v1,2, denote the left and right qubits on vertices
and ẑ edges, respectively. The final Hamiltonian is given
by

H̃ ′ − 
Ṽ ′ − εF, (E11)

where the first two terms are generated by translates of prod-
ucts of

˜K ′
x =

Z IZ

X

IZ Z

, ˜K ′
y = −

Z ZZ

Z Z

ZZ Z

,

˜K ′
z =

X ZI

Z Z

ZI

,

(E12)

and the third term is the same as in Eq. (E6). The vertex qubits
can be ignored as they are projected onto |00〉 by the Gauss’s
law operators after the local unitary transformation maps them
to IZ,ZI .
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