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Abstract

We study the gauging of a global U(1) symmetry in a gapped system in (2+1)d. The
gauging procedure has been well-understood for a finite global symmetry group, which
leads to a new gapped phase with emergent gauge structure and can be described al-
gebraically using the mathematical framework of modular tensor category (MTC). We
develop a categorical description of U(1) gauging in a MTC, taking into account the dy-
namics of U(1) gauge field absent in the finite group case. When the ungauged system
has a non-zero Hall conductance, the gauged theory remains gapped and we determine
the complete set of anyon data for the gauged theory. On the other hand, when the
Hall conductance vanishes, we argue that gauging has the same effect of condensing a
special Abelian anyon nucleated by inserting 2π U(1) flux. We apply our procedure to
the SU(2)k MTCs and derive the full MTC data for the Zk parafermion MTCs. We also
discuss a dual U(1) symmetry that emerges after the original U(1) symmetry of an MTC
is gauged.
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1 Introduction

For a quantum many-body system with a global symmetry G, coupling to a background G
gauge field is often a particularly effective way to probe the symmetry property of the ground
state. When the gauge field becomes dynamical, a new quantum phase with G gauge structure
emerges. This gauging construction/approach has played a key role in the recent advances
in the classifications of symmetry-protected topological (SPT) phases and symmetry-enriched
topological (SET) phases [1–5], and more generally has illuminated many new relations be-
tween seemingly different quantum field theories [6].

Roughly speaking, gauging a G symmetry modifies the theory in two ways: first, new
excitations carrying G fluxes are introduced. Second, the Gauss’s law is imposed and only
G-invariant states are kept in the Hilbert space. For a finite G, at low energy the G gauge field
stays completely flat, and as a result the local dynamics is essentially unaffected by gauging.
Equivalently, G fluxes in this case are gapped, localized objects. If the ungauged system is
gapped, gauging a finite group symmetry again leads to a gapped phase.

When the system before gauging is gapped and thus a G symmetry-enriched topological
phase, the gauging procedure can be systematically described within the mathematical frame-
work of G-crossed braided tensor category [1]. Mathematically, a (2+1)d gapped phase in a
bosonic system is described by a modular tensor category (MTC) C, also known as the alge-
braic theory of anyons [7]. All universal aspects of a gapped phase with G symmetry can be
captured algebraically by G action on the MTC C 1. Then from this information, there is a
well-defined procedure to produce a new MTC representing the gauged system, as described
in Ref. [1].

Gauging a continuous symmetry is however fundamentally different from the finite group
case, due to dynamical considerations. In this note we will be focusing on U(1) symmetry. It is
well-known that in general a compact U(1) Maxwell gauge theory is completely confined at low
energy due to the proliferation of instantons [8]. Here by instanton we mean an insertion of
2π magnetic flux, which is a local operator. In other words, the theory describes a completely
trivial phase. This is already dramatically different from the finite group case, where the
“garden variety" gauge theory is always deconfined, with intrinsic topological order. On the
other hand, if the U(1) gauge theory comes with a Chern-Simons (CS) term, then the theory
is also gapped but with nontrivial topological order.

1Modulo some ambiguity corresponding to stacking G SPT phases

2

https://scipost.org
https://scipost.org/SciPostPhys.12.6.202


SciPost Phys. 12, 202 (2022)

The purpose of this note is to provide a purely algebraic formulation for gauging U(1) sym-
metry in a (2+1)d gapped phase. U(1) symmetry in an MTC C can be captured by two pieces
of data: an Abelian anyon v, the vison, encoding fractional charges carried by the anyons,
and the Hall conductance σH . With this triplet C, v and σH , when σH 6= 0 we construct a
new MTC D (i.e. with all F - and R-symbols explicitly determined) which corresponds to the
gauged theory, by formalizing the notion of flux attachment. Mathematically, to obtain the
categorical data of the new MTC D, we first introduce an infinite category whose anyons are
labeled by all combinations of the anyon labels of the original MTC C and the compatible U(1)
charges. Fusion rules of anyons in the infinite category are derived from those of the original
MTC C and the addition of U(1) charges. Braiding-related data in the infinite category can be
obtained from the those of C plus extra contributions from Aharonov-Bohm phases caused by
flux attachment. The MTC D, namely the gauged theory, can be obtained by condensing the a
transparent anyon, which is directly associated with the vison v ∈ C, in this infinite category.
We show that the new gauged MTC D is also mathematically equivalent to C�U(1)−s2σH

�

�

(v,sσH )
which is derived from an anyon condensation in C�U(1)−s2σH

. Here, s is the minimal integer
such that s copies of the vison v fuse into a trivial anyon. More detailed explanation of this
notation will be given later. WhenσH = 0, we argue that gauging U(1) amounts to condensing
the vison v, which can be understood as the consequence of Polyakov’s mechanism for con-
finement. We also discuss in this note an emergent U(1)dual symmetry of the gauged theory D
in both the case with σH 6= 0 and the case with σH = 0.

2 Gauging U(1) in an Abelian topological phase

Let us first study gauging of an Abelian topological phase. It is known that any Abelian topo-
logical order in (2+1)d can be represented by a U(1)N CS theory [9, 10]. When the (2+1)d
Abelian topological order has a global U(1) symmetry, we can couple the U(1)N CS theory to
the background U(1) gauge field associated with the global U(1) symmetry:

L= −
KI J

4π
aI daJ +

t I

2π
AdaI , (1)

where aI=1,2,...,N denote the dynamical U(1) gauge fields in the U(1)N CS theory, and A is the
background U(1) gauge field. Here, K is an N × N non-degenerate symmetric integer matrix.
In this paper, we only focus on topological orders in bosonic systems. Hence, the diagonal
entries of K are all required to be even. The coupling between aI and A is determined by
the charge vector t = (t1, t2, . . . , tN )T. We will assume that the charge vector is primitive, i.e.
gcd(t1, t2, . . . , tN ) = 1. Formally integrating out aI ’s one readily sees that the system has a
Hall conductance σH = tTK−1t.

A quasiparticle or an anyon in the Abelian topological order described by Eq. (1) can be
labeled by a N -component integer vector l ∈ ZN that specifies the gauge charge of this anyon
under the U(1)N gauge group. Two anyons l and l′ are topologically equivalent if l− l′ = Km
for some m ∈ ZN . It implies that quasiparticles that are labeled by Km for any m ∈ ZN are
trivial, namely they are local excitations and are topologically equivalent to the vacuum. The
fusion rule of the anyons in theory Eq. (1) is simply given by the addition of the gauge charges
under the U(1)N gauge group. All anyons in this theory are Abelian. The topological twist
factor of the anyon l is given by θl = eiπlTK−1l. The braiding statistics between the Abelian
anyons l and l′ is given by Mll′ = ei2πlTK−1l′ . In addition, one can show that the chiral central
charge c− of the system is given by the signature of the matrix K , i.e. c− = sig K = r+ − r−,
where r± is the number of positive/negative eigenvalues of K .

The coupling to the U(1) background gauge field A in Eq. (1) specifies how the global U(1)
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symmetry acts on this Abelian topological order. In particular, it implies, via the equation of
motion, that the anyon l carries charge Ql = tTK−1l under the global U(1) symmetry. Also, we
observe that the insertion of a 2π flux of A induces a specific anyon, the vison, which is given
by v = t. Notice that identity that

Mvl = ei2πQl , (2)

for any anyon l ∈ ZN . Physically, it means that we can reinterpret the braiding statistics
between the vison v and the anyon l as the Aharonov-Bohm phase between the 2π-flux of A
(that is the vison) and the U(1) symmetry charge Ql carried by the anyon l. Notice that the
charge Ql is fractional if and only if the braiding statistics Mvl is non-trivial.

When we gauge the U(1) global symmetry in the theory Eq. (1), we promote A to a dy-
namical U(1) gauge field. The resulting theory is a U(1)N+1 CS theory with a new K-matrix:

K̃ =

�

K −t
−tT 0

�

, (3)

whose determinant is
det K̃ = tTK−1tdet K = σH det K . (4)

Clearly, the physics of the gauged theory crucially depends on whether σH vanishes or not.
We will discuss the two cases separately.

2.1 σH 6= 0

Let us first consider σH 6= 0 which implies that det K̃ 6= 0. Therefore, the gauged system is
a gapped system whose Abelian topological order is described by the new K-matrix K̃ in Eq.
(3).

First, we observe that with σH 6= 0, the signature of K̃ is

sig(K̃) = sig(K)− sgnσH . (5)

This follows from the following identity:

WTK̃W =

�

K 0
0 −σH

�

, W =

�

1 K−1t
0 1

�

, (6)

and the fact that the signature is invariant under invertible similarity transformation. Since
the signature of the K-matrix is the chiral central charge of the topological phase, we find that

c′− = c− − sgnσH , (7)

where c− = sig(K) is the chiral central charge before gauging the U(1) symmetry and
c′− = sig(K̃) is that of the gauged system.

While the gauged theory is basically given by the K̃ matrix in Eq. (3), in the following
we analyze the anyon content of theory, in particular how they are related to anyons in the
theory before gauging, in a manner that does not rely on the explicit U(1)N CS field theory con-
struction. As will be shown later, the result can be easily adopted to more general topological
phases.

Anyons in the gauged theory can be represented by (N + 1)-component integer vectors
�

l
q

�

, where l ∈ ZN labels the anyons in the original ungauged theory (i.e. gauge charges
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under the gauge fields aI=1,2,...,N ) and q ∈ Z can be understood as an additional charge under
A attached to the anyon l. We can represent all local excitations in the following form

K̃

�

m
n

�

=

�

Km− nt
−QKm

�

, (8)

where m ∈ ZN and n ∈ Z. After gauging the U(1) symmetry, there are two kinds of local

excitations. The first kind is of the form

�

Km
−QKm

�

. In particular, we note that the additional

charge under A attached is −QKm, exactly canceling the the original A-charge QKm carried by
Km to form a charge-neutral object under A. The other type of local excitations is generated

by

�

t
0

�

, which is the vison of the original theory, with no additional A-charge attached.

A useful result is the inverse of the new K-matrix:

K̃−1 =

�

K−1 −σ−1
H K−1ttTK−1 −σ−1

H K−1t
−σ−1

H tTK−1 −σ−1
H

�

. (9)

Therefore, in the theory after we gauged the U(1) symmetry, the topological twist factor for

the anyon p=

�

l
q

�

is then given by

θp = exp
�

iπlTK−1l− iπσ−1
H (q+Ql)

2
�

= θle
− iπ
σH
(q+Ql)2 . (10)

Here, θl = eiπlTK−1l is the topological twist factor of the anyon l in the ungauged theory. Also,

we recognize q +Ql as the total charge under A carried by the excitation p =

�

l
q

�

, and the

additional phase factor e−
iπ
σH
(q+Ql)2 in can be understood as Aharonov-Bohm-like phase from

flux attachment for the gauge field A. The braiding statistics Mpp′ of the gauged theory between

the anyons p=

�

l
q

�

and p′ =

�

l′

q′

�

has a similar structure:

Mpp′ = ei2πpTK̃−1p′
= Mll′e

− i2π
σH
(q+Ql)(q′+Q′

l) , (11)

which is the product of the braiding statistics Mll′ between anyons l and l′ in the ungauged

theory and an extra phase factor e−
i2π
σH
(q+Ql)(q′+Q′

l) due to flux attachment of A.

2.2 σH = 0

When the Hall conductance is zero, the new K-matrix has a vanishing determinant, namely
det K̃ = 0. In this case, the corresponding U(1)N+1 CS theory by itself is not a valid description
of a topological phase. To see why this is the case, when det K̃ = 0, there exist null vectors v
such that K̃v = 0. It is easy to show that the null space (over real numbers) is generated by
the following vector:

�

K−1t
1

�

. (12)

One can multiply a certain integer to make it integral, and we call the minimal such integral
vector v0. It is then always possible to find an invertible transformation W such that by a
change of variable a =Wa′,

WTK̃W =

�

0 0
0 K̃ ′

�

, (13)
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where K̃ ′ is non-degenerate. Denote the gauge field corresponding to the 0 corner by a′
1, and

the corresponding vector e′1 = (1, 0,0, . . . ). Because there is no Chern-Simons term for a′
1, on

general grounds we should include a Maxwell term for a′
1. Then due to Polyakov mechanism

a′
1 becomes confined, and because a′

1 has no (topological) coupling to the remaining gauge
fields we can safely ignore a′

1. The “remaining" non-degenerate K-matrix K̃ ′ should describe
the resulting topological order after the gauging of U(1).

While such invertible transformation W always exists, the explicit expression and the re-
sulting K̃ ′ are often quite cumbersome and not particularly enlightening. In the following we
use an alternative formulation of Abelian CS theory to sidestep the need to find K̃ ′ explic-
itly. In this formulation, we think of the theory described by a non-degenerate K-matrix K
as an integral lattice LK = ZdimK where each vector represents an excitation. The lattice is
equipped with a symmetric bilinear form given by K−1. Then we form the quotient LK/LK

loc
where LK

loc = {Kl|l ∈ LK}, which is a finite Abelian group with a non-degenerate quadratic
form. First, we observe that finding the resulting topological order K̃ ′ is the same as determin-
ing the sub-lattice orthogonal to the vector v0. More explicitly, a vector l in the original basis
becomes W−1l after basis transformation, which is orthogonal to e′1 = W−1v0 if and only if

lTv0 = 0. Therefore, a general vector

�

x
n

�

is orthogonal to v0 if and only if xTK−1t = −n. In

other words, under the gauge field A, the charge of the anyon corresponding to x in the un-
gauged theory has to be an integer, which can be made zero by attaching −n local A-charges
and then survives the confinement of a′

1. Physically, this is what one expects from “condensing”
the vison (i.e. 2π flux) in the original ungauged theory, as the condensation should confine
all anyons which braid non-trivially with t, i.e. carrying fractional charge under A. It is useful
to notice that the orthogonality condition uniquely determines the (N + 1)-th component n
in terms of the first N components x. In other words, the sublattice of LK̃ orthogonal to v0 is
actually isomorphic to a subspace of the original lattice LK in which all vectors have integer
charge: LK

0 = {l|l ∈ LK ,Ql ∈ Z}.
Now that we have determined the space orthogonal to v0, it is still necessary to quotient

out the local excitations. It is easy to see that the two kinds of local excitations, one in the

form of

�

Km
−QKm

�

and the other generated by

�

t
0

�

, are both in the orthogonal space LK
0 . In

fact, they only differ from LK
loc by the inclusion of t. So in the end we find that the topological

order after the gauge the U(1) symmetry corresponds to the quotient

LK
0 /(L

K
loc ⊕Zt) , (14)

where Zt is the sublattice consist of any integer multiple of t. LK
loc ⊕ Zt denotes the lattice

generated by all the basis vectors of LK
loc and the vector t. We readily observe that this is exactly

the result of condensing the vison t in the original ungauged theory: LK
0 /L

K
loc corresponds to all

Abelian anyon types which braid trivially with t. Further modding out Zt identifies different
anyon types that are related to each other by fusing with (multiples of) t.

3 Gauging U(1) symmetry in a general MTC

We now proceed to describe U(1) gauging in a general gapped phase in (2+1)d. It is widely
believed that bosonic gapped phases without any global symmetry in (2+1)d are completely
classified by (C, c−), where C is an MTC which encodes all universal properties of anyonic
quasiparticles in the bulk, and c− is the chiral central charge of the edge. For a review of MTC
in the context of (2+1)d topological phase, we refer the readers to Ref. [7]. In the following,
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we will use the terms “quasiparticles" and “anyons" interchangeably. We will denote anyon
types by a, b, c, . . . , and the trivial anyon type (i.e. all local excitations) by 1.

To perform gauging, we need to first review how the global U(1) symmetry acts on the topo-
logical phase [11]. We will follow the general theoretical framework established in Ref. [1].
Without loss of generality, we can assume that the fundamental physical charge of the U(1)
symmetry is 1. In a U(1)-symmetric topological phase, each quasiparticle x carries a U(1)
charge Q x . Note that only Q x mod 1 is determined by the topological anyon type of x , since
we may attach local U(1)-charged excitations to change Q x by any integer. By definition, the
trivial anyon type 1, representing all local bosonic excitations, have Q1 = 0. Here, notice the
fact that U(1) being a continuous connected group cannot permute the anyon labels which are
intrinsically discrete. The U(1) symmetry action on the topological phase is fully characterized
by the fractional charge of each anyon. The charges Qa of the anyons must satisfy

Qa +Qb ≡ Qc mod 1, if N c
ab > 0 . (15)

Here N c
ab is the fusion coefficient, i.e. the multiplicity of anyon type c in the fusion a × b. As

shown in Ref. [1], there exists a unique Abelian anyon v such that

e2πiQa = Mav , (16)

for all anyon types a, where Mav is the braiding phase between a and v. Physically, v is
the excitation created by 2π flux insertion in this topological phase. By a straightforward
generalization of the celebrated Laughlin argument, the charge Qv is given by Qv = σH mod
1, where σH is the dimensionless Hall conductance. Formally, the Hall response is captured
by the effective action

S =
σH

4π

∫

AdA , (17)

where A is the background U(1) gauge field. In addition, one can show that σH and v are
related by eiπσH = θv [12, 13], so v determines σH up to an even integer. The ambiguity is
exactly the Hall conductance of bosonic integer quantum Hall states [13–15]. To summarize,
the U(1) symmetry enrichment is fully determined by the vison v and the Hall conductance
σH .

We define s to be the minimal positive integer such that vs = 1, namely a minimal of s
copies of the anyon v can fuse into the trivial anyon 1. It immediately follows that all fractional
charges of the anyons are integer multiples of 1/s. We further prove that there must exist a
anyon carrying charge 1/s, i.e. the minimal charge among the anyons is e∗ = 1/s. Since vs is
trivial, it also implies that s2σH must be an even integer because the topological twist factor
θvs = eiπs2σH must be 1 for a trivial anyon. Also, note that sσH , being the U(1) charge carried
by vs, must be an integer.

Just like in the Abelian case, we need to treat σH 6= 0 and σH = 0 separately. First we
assume σH 6= 0. Gauging the U(1) symmetry means that the background U(1) gauge field A is
promoted to a dynamical field. The Hall conductance implies that flux of A must be attached
to A charge. In other words, the gauged theory only allow states that satisfy the constraint
σHΦ + Q = 0, which can be obtained from the equation of motion of Eq. (17). Here, Φ is
the flux of the gauge field A. Thus a quasiparticle with charge Q is attached a flux −2πQ

σH
.

This flux attachment changes the topological twist factor by a factor of exp
�

−iπ Q2

σH

�

via the
Aharonov-Bohm effect between the flux and the charge of A. Based on these observations, we
now describe the anyon content of the gauged system.

First of all, due to flux attachment it is sufficient to keep track of the charge of an excitation.
In the ungauged theory, the anyon type a ∈ C only determines the charge Qa mod 1, and
excitations belonging to the same anyon type a can have any value of charge Qa + n where

7

https://scipost.org
https://scipost.org/SciPostPhys.12.6.202


SciPost Phys. 12, 202 (2022)

n ∈ Z. After gauging, naively all these different charges become distinct superselection sectors.
Therefore, it will prove to be convenient to first enlarge our set of anyons by including explicitly
the charge quantum number. Namely, we now consider all possible excitations (a,Qa), subject
to the constraint e2πiQa = Mav . Formally we are working with a much larger theory with
(countably) infinite many types of particles 2 We will denote this intermediate category by C′.

One reason to take this detour is that the topological data of this enlarged category C′ can
be explicitly written down, which we present now. First of all, the identity object is (1, 0), so
the anti-particle of (a,Qa) is (ā,−Qa), where ā denotes the anti-particle of the anyon a within
the MTC C. The fusion rules are given by

(a,Qa)× (b,Qb) =
∑

c

N c
ab(c,Qa +Qb) . (18)

The flux attachment also modifies braiding and exchange statistics between anyons, by ad-
ditional phase factors from Aharonov-Bohm effect between charge and flux. They can be
computed solely from the effective CS response. The S-matrix of the intermediate category C′

is hence given by

S(a,Qa),(b,Qb) = Sabe2πi
QaQb
σH , (19)

with Sab the topological S-matrix of the ungauged theory C. The topological twist factors in
the category C′ become

θ(a,Qa) = θae−πi
Q2

a
σH , (20)

where θa is the topological twist factor of the anyon a in the ungauged theory. It is straightfor-
ward to check that the S-matrix, topological twist factors and fusion rules satisfy compatibility
conditions expected from axioms of braided fusion categories, even though the number of
anyon types is now infinity.

We argue that the flux attachment induced by the dynamics of A does not lead to non-trivial
contributions to the F -symbols of C′, since the exact charges are fused. Therefore, we expect
the following F - and R-symbols for this enlarged infinite category C′:

[F (a,Qa),(b,Qb),(c,Qc)
(d,Qd )

](e,Qe),( f ,Q f ) = [F
abc
d ]e f ,

R(a,Qa),(b,Qb)
(c,Qc)

= Rab
c e−

πi
σH

QaQb .
(21)

One can readily show that pentagon and hexagon equations are satisfied, and the data correctly
reproduce the topological S-matrix given in Eq. (19) and the topological twist factors given in
Eq. (20).

Next, we truncate the infinite category C′ to obtain a more physical description of the
gauged theory. We expect that after gauging, the system remains gapped (because of a non-
zero Hall conductance), so should be described by a new MTC D. This gauged theory D will
have different F - and R-symbols compared to those of C′ given in Eq. (21) because of the
truncation. We begin with a formal approach: first identify the transparent anyons of the
enlarged infinite category C′. Here, transparent anyons are those anyons that have trivial
braiding with every other anyon, so they should be understood as local excitations (of the
gauged system). Suppose (a,Qa) braids trivially with all anyons in C′. The anyon a should be
Abelian. Then

M(a,Q),(b,Qb) = Mabe−2πi
QaQb
σH = 1. (22)

So we must have Mab = e2πi Qa
σH

Qb for all b and Qb, and apparently the relation is invariant

under Qb → Qb + 1. Thus we find e2πi Qa
σH = 1, or Qa = nσH . Because Mab = e2πinQb = Mvn,b

2Technically speaking, this enlarged category should satisfy all axioms of ribbon fusion category except the
finiteness condition.
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for all b, by modularity of C we must have a = vn. Thus the group of transparent anyons in C′

is generated via fusion by the anyon (v,σH)whose self-statistics is bosonic, namely θ(v,σH ) = 1.
Denote Tk = (vk, kσH) for k ∈ Z and note that Tk = Tk′ if and only if k = k′ (because of a non-
zero Hall conductance σH). We thus condense the group of transparent anyons, generated by
T1, and obtain a new MTC D, which describes the topological order resulting from gauging
the U(1) symmetry of the original theory C. It is easy to see that after the condensation the
theory contains finitely many anyons. Observe that Ts = (1, sσH) is condensed. Therefore the
charges in the category can be restricted to the range 0 ≤ Qa < sσH . Thus for each a, there
are only a finite number of choices for Qa that need to be considered. In fact, with proper
conventions, one can even restrict Qa to range 0 ≤ Qa < σH in the gauged theory D as we can
see in the examples later.

Physically, it is quite evident that the transparent particle (v,σH) should be interpreted as
the vison v but with −2π flux of A attached. Since v is created by the 2π flux insertion, the
composite (v,σH) becomes a local excitation and therefore must be condensed.

Mathematically, the advantage of going through the intermediate steps (i.e. enlarging the
category and then condensing transparent anyons) is that the approach allows us to write down
the full topological data, especially the F - and R-symbols, of the resulting MTC D explicitly, in
terms of those of the original MTC, and the U(1) symmetry enrichment data v and σH . The
details of the procedure are given in App. B.

While the general expressions of the F - and R-symbols of the MTC D that describes the
gauged theory are rather complicated, the topological S-matrix and the topological twist fac-
tors of D can be simply written down in terms of those of the original MTC C. As discussed
above, the MTC D can be obtained from condensing (v,σH) in the infinite category C′. When
(v,σH) is condensed, the anyons (a,Qa) ∈ C′ that are only different from each other by the
fusion with an integer copies of (v,σH) are identified as a single type of anyon in D. In other
words, the anyons in C′ form orbits under the fusion with (vk, kσH) for k ∈ Z. Each different
orbit corresponds to a different type of anyon in D. The topological twist factor of an anyon in
D is the same as that of any representative anyon within the corresponding orbit in C′, which
can be calculated using Eq. (20). Since one can easily show that an orbit of anyons in C′

shares the same topological twist factor θ(a,Qa), the choice of representative does not affect
the result. The topological S-matrix of the MTC D can be obtained in a similar fashion. The
S-matrix element between two anyons of D is the same as the S-matrix element between their
respective representatives in C′ which is given in Eq. (19). An immediate consequence is that
an anyon in D has the same quantum dimension as its representative in C′.

So far we have treated the category C′ as a pure mathematical device. One may also wonder
whether C′ has any physical meaning. In App. F, we provide a “holographic" viewpoint on
gauging, where C′ appears as a particular boundary theory for a (3+1)d Maxwell U(1) gauge
theory. Going from C′ to D then corresponds to the confinement transition in the (3+1)d bulk.

At this point, the only missing information about the gauged system is the chiral central
charge c′−. Since we have determined the bulk anyon data of the gauged system, we can
evaluate c′− mod 8, by using the generalized Gauss-Milgram sum. As shown in App. D, we find

c′− = c− − sgnσH mod 8 . (23)

In fact, we believe that c′− = c− − sgnσH holds exactly. In the Abelian case, the relation was
proven by the field theory construction. Now that we’ve obtained all the data of the gauged
theory, our gauging procedure is completed. Note that gauging a finite group leaves the chiral
central charge unchanged [1], which is fundamentally different from the case when a U(1)
symmetry is gauged.

Moreover, it is interesting to observe that the gauged theoryD is mathematically equivalent
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to the following MTC
C �U(1)−s2σH

�

�

(v,sσH )
, (24)

where we stack the MTC C with an additional layer of MTC described by the U(1)−s2σH

CS theory, and condense the composite anyon (v, sσH) ∈ C � U(1)−s2σH
with v ∈ C and

sσH ∈ U(1)−s2σH
. Such a MTC C�U(1)−s2σH

�

�

(v,sσH )
can also be viewed as a “hierarchy construc-

tion" proposed in Ref. [16] which is a categorical formulation of the hierarchy construction of
the fractional quantum Hall states [17–19]. In the hierarchy construction, the additional layer
U(1)−s2σH

is also a U(1) SET, with sσH being the vison. Then after condensing the bound state
of visons from both layers, the remaining anyons must be the composite of an anyon a ∈ C and
an anyon with a gauge charge q in the U(1) CS theory satisfying the condition Mav = e2πi q

s .
Note that in the Abelian layer the anyon q carries U(1) charge Qq = −q/s, so by pairing up a
in C with q in U(1)−s2σH

, after condensation all remaining anyons are charge-neutral. Another
useful observation is that the subcategory of C � U(1)−s2σH

that braids trivially with (v, sσH)
can already be identified with the premodular category Dint which is obtained in App. B.2 as
an intermediate step towards the full U(1) gauging of C. With this observation, it is straight-
forward to check this hierarchy construction indeed gives the MTC D which is the outcome of
gauging the U(1) symmetry of C. This result Eq. 24 can be also understood using a gauging
procedure based symmetry group extensions [20].

Below we provide an example of gauging a U(1) symmetry in SU(2)k MTC, and as a result
obtaining all categorical data for Zk parafermion MTCs. In the next section, we will discuss
the gauging of the U(1) symmetry when the Hall conductance vanishes, i.e. σH = 0.

3.1 Example: Gauging U(1) SPT phase

Consider the simplest case C = Vec, i.e. a U(1) bosonic SPT phase, with Hall conductance
σH = n ∈ 2Z. The only “anyon" in the MTC C = Vec is the trivial one, denoted as “1" in the
following. In this case, the vison v has to be the trivial anyon, namely v = 1. Let us assume a
positive Hall conductance, i.e. σH = n> 0 in the following. The intermediate infinite category
C′ consists of all charges {(1, q)} for q ∈ Z (where the first entry “1" denote the trivial anyon
in C = Vec). Condensing (v,σH) = (1, n) in C′, we are left with n different anyons (1, a) for
0 ≤ a < n and a ∈ Z whose the fusion rule is given by

(1, a)× (1, b) = (1, da+ bcn) , (25)

where da+ bcn is the residue of a+ b modulo n. Using Eq. (36) we find that the F -symbol of
the gauged theory D is given by

F abc = e−
πi
n a(b+c−db+ccn) , (26)

and R- symbol is given by
Rab = e−

πi
n ab . (27)

The resulting MTC D describes an Abelian topological order. In the F - and R-symbols given
above, the suppressed indices are completely determined via the fusion rule by the indices
that are explicitly written. The resulting MTC data agrees with what is known as the U(1)−n,
or Z(−1/2)

n MTC. One can easily confirm this result using a field-theoretic approach. Before
gauging the U(1) symmetry, the U(1) bosonic SPT phase simply produces a non-trivial response
theory with an action S = n

4π

∫

AdA for the background A gauge field. The constituent matter
fields of the U(1) bosonic SPT phase have already been safely integrated out here because the
U(1) bosonic SPT state only carries invertible topological order. When the U(1) symmetry is
gauged, A becomes a dynamical U(1) gauge field. The same action n

4π

∫

AdA now describes
the (2+1)d topological order of U(1)−n.
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3.2 Example: Zk parafermion

Consider a (2+1)d topological phase described by the SU(2)k MTC, namely C = SU(2)k. There
are k + 1 different types of anyons, labeled by j = 0,1/2, · · · , k/2. Note that there is a single
nontrivial Abelian anyon k/2.

This system naturally admits a SO(3) global symmetry: Anyons of type j carry spin- j rep-
resentation of SO(3). We now consider gauging a U(1) subgroup of SO(3), with the vison
associated with the 2π flux given by v = k/2. Since θk/2 = eπik/2, the Hall conductance is
σH =

k
2 mod 2Z. While the formalism is general, the even k case is of most interest. When

k is odd, the anyon k/2 is a semion and the whole MTC factorizes into a “SO(3)k" MTC and
the semion theory. The U(1) symmetry only acts non-trivially on the semion part. So in the
following we assume k is even.

In App. B.3, we carry out the gauging procedure in full detail and derive the complete set
of topological data for the gauged theory D. When σH =

k
2 , we show that the resulting MTC

the Zk parafermion MTC. The parafermion MTC, initially derived from the Zk parafermion
conformal field theory introduced by Ref. [21], is closely related to the topological order of
the Read-Rezayi fractional quantum Hall states [22]. In the following, we will study how the
Zk parafermion MTC arises from U(1) gauging in SU(2)k using a field-theoretic formalism, to
corroborate the algebraic approach.

Before gauging, we can describe the U(1) symmetric SU(2)k MTC using a dynamical
SU(2)k Chern-Simons theory. We denote the gauge connection of the SU(2) gauge field as
a = 1

2σ
1a1+ 1

2σ
2a2+ 1

2σ
3a3 where the Pauli matrices 1

2σ
1,2,3 are the generators of the SU(2)

gauge group and the 1-forms a1,2,3 are the three associated components of the SU(2) gauge
field. Let the 1-form A denote the background gauge field associated with the U(1) symmetry.

The anyon j in the SU(2)k MTC corresponds to the spin- j representation of the SU(2)
gauge group. A natural way to assign j/2 charge to the anyon j for all j = 0, 1,2, ..., k/2 is to
consider embedding the U(1) and SU(2) gauge connections together into a single U(2) gauge
field b:

b =
1
2
1A+

1
2
σ1a1 +

1
2
σ2a2 +

1
2
σ3a3 , (28)

where 1 is the 2 × 2 identity matrix. The j = 1/2 anyon which carries the two-dimensional
representation under the U(2) gauge group naturally carries U(1) charge 1/2. More generally,
an anyon j should carry a representation under the gauge group U(2) that is given by the
symmetric combination of 2 j copies of the representation carried by the anyon labeled by
j = 1/2. Therefore, the anyon j carries U(1) charge j/2. Now, we consider the following
Lagrangian that decribes a SU(2)k topological order under a background U(1) gauge field:

L= −
k

4π
Tr

�

bd b −
2i
3

b3
�

+
k

4π
(Tr b)d(Tr b) , (29)

which is also known as the U(2)k,−k Chern-Simons term [23,24]. Our convention for the La-
grangian of the U(2)k,−k Chern-Simons term contains an extra overall minus sign compared
to Ref. [24]. This extra minus sign is due to our convention of the sign of the chirality of
the corresponding MTC with respect to the sign of the Hall conductance. When we turn off
the background U(1) gauge field by setting A = 0, the Lagrangian L above is reduced to
− k

4π Tr
�

ada − 2i
3 a3

�

which describes the SU(2)k topological order. With a finite background
U(1) gauge field A, this Lagrangian L effectively contains an extra term “ k

8πAdA” almost de-
coupled from the SU(2)k part, which indicates a Hall conductance of σH = k/2. Here, strictly
speaking, “ k

8πAdA” is not truly well-defined on its own and the U(1) background gauge field
can not be fully decoupled from the dynamical SU(2) gauge field a: the embedding of U(1)
and SU(2) gauge fields into a single U(2) gauge field requires an identification between the
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Z2 subgroup of U(1) with the center Z2 of SU(2). Upon gauging the U(1) symmetry of the
SU(2)k topological order, the theory simply becomes a fully dynamical U(2)k,−k Chern-Simons
gauge theory. Following Ref. [24], the TQFT can be identified as

U(2)k,−k ≡
SU(2)k ×U(1)−2k

Z2
, (30)

where the quotient Z2 means that the anyon (k/2, k) ∈ SU(2)k ×U(1)−2k in SU(2)k ×U(1)−2k.
(The notation for the anyons in SU(2)k ×U(1)−2k will be explained in detail in the following).
We recognize that the right-hand side of Eq. (30) is exactly the hierarchy construction for D in
Eq. (24). Below we will explicitly check the equivalence between the hierarchy construction
and the gauging procedure as described in Sec. 3 (and App. B).

Let’s first unpack the algebraic definition of U(2)k,−k. One can start with the MTC given by
B0 = SU(2)k × U(1)−2k whose anyons are labeled by the pair ( j, n). Here, j = 0, 1, ..., k/2
labels the anyon type within the SU(2)k sector and n = 0,1, ..., 2k labels the anyon type
within the U(1)−2k sector. The fusion rule of the Abelian topological order U(1)−2k is given by
n1 × n2 = dn1 + n2c2k, where d·c2k denotes the residue of · modulo 2k.

To obtain the Zk parafermion MTC, one needs to condense the anyon ( j = k/2, n = k)
in SU(2)k × U(1)−2k. Note that the anyon (k/2, k) has a bosonic self-statistics but is not a
transparent anyon in B0. One can define a sub-category B1 ⊂ B0 consists of only anyons in B0
that braid trivially with the anyon (k/2, k). The anyons in the sub-category B1 are the anyons
( j, n) such that 2 j + n ∈ 2Z. The F - and R-symbols of category B1 are given by

�

F ( j1,n1),( j2,n2),( j3,n3)
( j,n)

�

( j12,n12),( j23,n23)
=

�

F j1, j2, j3
j

�

j12, j23
e−i π2k n1(n2+n3−dn2+n3c2k) ,

R( j1,n1),( j2,n2)
( j,n=dn1+n2c2k)

= R j1, j2
j e−i 2π

4k n1n2 . (31)

Each of the F - and R-symbols of the category B1 in Eq. (31) is a product of two fac-
tors.

�

F j1, j2, j3
j

�

j12, j23
and R j1, j2

j are the F - and R-symbols of SU(2)k while the factors

e−i π2k n1(n2+n3−dn2+n3c2k) and e−i 2π
4k n1n2 are the contributions from the U(1)−2k sector. By defini-

tion, the category B1 is a premodular category with the anyon (k/2, k) the transparent Abelian
anyon. By condensing (k/2, k) in B1, we can obtain the Zk parafermion MTC.

Interestingly, before we condense the anyon (k/2, k) ∈ B1, the premodular category B1
can already be identified as a category Dint obtained as an intermediate step of gauging the
U(1) symmetry of SU(2)k. The procedure of gauging the U(1) symmetry of SU(2)k starts
with considering the category C′ with infinitely many anyons ( j,Q) defined by the data in
Eq. (18) and in Eq. (21). Gauging the U(1) symmetry amounts to condensing the anyon
(v,σH = k/2) = ( j = k/2,Q = k/2) ∈ C′. As explained in App. B.2, we can first condense the
anyon (1, sσH) in C′ to obtain an intermediate finite category, denoted as Dint, with s = 2 due
to the Z2 fusion rule of the anyon j = k/2 in SU(2)k. The F - and R-symbols of the category
Dint can be calculated using Eq. (40) and Eq. (41). One can see that the so-obtained F -
and R-symbols of the category Dint are the same as the those of the category B1 shown in Eq.
(31) upon identifying the anyon ( j,Q) of Dint as the anyon ( j, n = 2Q) of B1. Therefore, the
categories Dint and B1 are completely identical. By further condensing the transparent anyon
(v,σH = k/2) = ( j = k/2,Q = k/2) in Dint (or equivalently the transparent anyon ( j = k/2, k)
in B1), we can complete the procedures for gauging the U(1) symmetry of the SU(2)k MTC
and, as the result, obtain the Zk parafermion MTC.

The simplest example is the case of k = 2, namely the SU(2)2 MTC. When the Hall conduc-
tance is σH = k/2= 1, gauging the U(1) symmetry results in the Z2 parafermion MTC which
is more commonly referred to as the Ising MTC. Interestingly, when we change Hall conduc-
tance to σH = −1, the resulting MTC becomes Spin(5)1 instead, which is a close relative to
the Ising MTC.
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It is not difficult to generalize the discussion to gauging a U(1) symmetry in SU(N)k, which
results in a U(N)k,k+Nk′ MTC (when k+ Nk′ 6= 0 and k+ k′ even). More details can be found
in App. E.

4 Gauging U(1) symmetry when σH = 0

We now discuss what happens whenσH vanishes. In this case, the vison v must have a bosonic
self-statistics, i.e. θv = eiπσH = 1. We have shown in the Abelian case in Sec. 2 that gauging
the U(1) symmetry has the same effect as condensing v in the original theory C, and results in a
gauged theory with U(1)-charge-neutral excitations. In App. E, we show, using a combination
of field-theoretic and algebraic approaches, that the same is also true when we gauge the U(1)
symmetry of the SU(N)k MTC with a vanishing Hall conductance. Physically, a vanishing Hall
conductance σH = 0 leads to the absence of a CS term for the U(1) gauge field A. When the
gauge field A becomes dynamical in the absence of any CS term, the instantons of the gauge
field A are expected to proliferate resulting in the condensation of 2π flux which is tied to the
vison v ∈ C. Therefore, we expect that, for a general U(1)-symmetric (2+1)d topological order
described by the MTC C, gauging the U(1) symmetry of C has the same effect as the condensing
the vison v in MTC C. Such condensation is permissible because of θv = 1 (a consequence of
the vanishing Hall conductance) and yields a new MTC D as the result of gauging the U(1)
symmetry of original theory C.

Since condensing an Abelian anyon with a bosonic self-statistics does not change the chiral
central charge of the MTC, gauging the U(1) symmetry of (2+1)d topological order with a
vanishing Hall conductance leaves the chiral central charge invariant.

5 Dual U(1)dual symmetry after U(1) gauging

When gauging a finite group G, the gauged theory always has a subcategory isomorphic to
Rep(G) (i.e. the symmetric tensor category of irreducible linear representations of G). Con-
densing Rep(G) performs “ungauging" and returns to the original theory [1–5]. When G is a
finite Abelian group, this phenomenon can be equivalently formulated as the gauged theory
having a (non-anomalous) 1-form symmetry group isomorphic to G, and gauging the 1-form
symmetry produces the ungauged theory [25, 26]. In other words, gauging a finite Abelian
(0-form) symmetry leads to a dual 1-form symmetry. Notice that this statement holds inde-
pendent of the actual low-energy dynamics of the theory.

We now describe the analogy of dual symmetry in the case of U(1) gauging. Let’s consider
a U(1)-symmetric (2+1)d topological order described by the MTC C. We start by assuming
a non-vanishing Hall conductance, i.e. σH 6= 0. After gauging the U(1) symmetry of C, we
obtain a new topological order whose corresponding MTC is D. The procedure in obtaining
the categorical data of the MTC D is discussed in Sec. 3. In fact, the topological order D
can admit a dual 0-form U(1) symmetry, which we denote as U(1)dual. From the field theory
perspective, the current of this U(1)dual symmetry is given by ?dA/(2π) with A the gauge
field associated with the original U(1) symmetry (before it is gauged) and ? the Hodge star
operator. Physically, the U(1)dual symmetry is the conservation of magnetic flux of the original
U(1) symmetry. When the original U(1) symmetry is gauged, dA/(2π) becomes a dynamical
object which can be minimally coupled to the (non-dynamical) background U(1)dual gauge
field Adual via

∫

1
2π

AdualdA . (32)
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Since the dynamics of A is effectively governed by the action Eq. (17), the Hall conductance
of the gauged theory D with respect to the U(1)dual symmetry is given by

σ′
H = −1/σH . (33)

There is a new vison v′ ∈D in the gauged theory D that is associated with the 2π flux insertion
of the Adual. Eq. (32) implies that the vison v′ should be identified just as the unit charge of A,
which further corresponds to the anyon (1,1) in the infinite category C′ introduced in Sec. 3.
As discussed above, the gauged theory D can be obtained from the infinite category C′ via the
condensation of the transparent anyon (v,σH) ∈ C′. Since this condensation does not change
the topological twist factors, we can obtain the topological twist factor of the vison v′ ∈ D
using Eq. (20):

θv′ = θ(1,1) = e−iπ/σH . (34)

Notice that the consistency condition θv′ = eiπσ′
H is satisfied in the gauged theory D with the

U(1)dual symmetry. If one consider further gauging the U(1)dual symmetry of the theory D,
it is obvious from the field theory perspective that resulting theory should be identical to the
original theory C with the same U(1) symmetry enrichment, namely the same Hall conductance
σH and same vison v ∈ C, as before.

It can happen that in going from C′ to D, (1,1) is also condensed when it is generated by
(v,σH) ≡ T1. In other words, if this happens we must have (1,1) = (vs, sσH), which implies
σH =

1
s . In this case, since θv = eiπ/s, the subcategory generated by v is identified with U(1)s,

which is an MTC on its own. By the factorization property of MTCs, it implies that the original
MTC C takes the form C =D�U(1)s, and it is not difficult to see that D is indeed the gauged
theory (hence the notation). In this case the dual vison is v′ = 1.

When σH = 0, the most relevant term of the gauge field A generated by the “matter fields"
in the original theory C is a (2+1)d Maxwell term. When the original U(1) symmetry is gauged,
the gauge field A is governed by a Maxwell theory, whose flux is now conserved because of
the U(1)dual symmetry. The Polyakov’s instanton proliferation mechanism is forbidden by the
U(1)dual symmetry. In this case, assuming that the matter fields of the original theory C re-
mains gapped, the resulting phase is a gapless phase whose low-energy modes are given by
the deconfined and gapless photons of the gauge field A. In fact, in this phase, the U(1)dual
symmetry is spontaneously broken and the corresponding Goldstone modes are dual to the
gapless photons of the gauge field A. In this gapless phase, it is no longer appropriate to
characterize the resulting phase of matter using just MTCs. Note that if there is no U(1)dual
symmetry presence, the confinement of the gauge field A through the instanton proliferation
mechanism should always happen resulting in a gapped phase as the gauged theory. And the
resulting topological order follows from the discussion of Sec. 4.

In principle, one can also consider the scenario when the gauge field A becomes higgsed.
In this scenario, U(1)dual symmetry is no longer spontaneously broken and the resulting phase
should be gapped. The topological order of this U(1)dual-symmetric gapped phase will depend
on the choice of the Higgs field. The most trivial situation is when the Higgs field is topologi-
cally equivalent to the trivial anyon in the original theory C before the original U(1) symmetry
is gauged. The resulting topological order is still given by an MTC C. But its enrichment under
the U(1)dual symmetry is trivial.

6 Discussion

MTCs from Chern-Simons theory of compact Lie groups are closely related to Wess-Zumino-
Witten (WZW) chiral conformal field theories in (1+1)d. It is known that gauging a subgroup
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in a WZW theory is equivalent to the coset construction of the WZW CFT [27–29]. For exam-
ple, Zk parafermion CFT can be viewed as the coset SU(2)k/U(1) theory. Thus the gauging
prescription we gave is basically the categorical version of coset by U(1). Since coset construc-
tion works for any Lie group symmetry, it is an important question to develop a categorical
description of gauging for general compact Lie groups. We address this question in a follow-up
publication [20]

In the finite group case, Ref. [1] describes the gauging in two steps: first symmetry defects
are introduced and together with anyons they form a mathematical structure called G-crossed
braided tensor category. Then an “equivariantization" procedure is applied to obtained an
MTC corresponding to the gauged system, which is physically the projection to G-invariant
subspace. Formally one can also define “U(1)-crossed" braided category, as shown in Ref. [1]
and Ref. [11, 30, 31], where symmetry defects are labeled by elements of U(1). It will be
interesting to understand how this approach to gauging is related to ours.

Another direction for future work is to generalize the construction to fermionic systems
with U(1) f symmetry, where U(1) f is the conservation of fermion number. In other words,
local excitations with odd/even charge are fermions/bosons. We expect that the basic strategy
in this work can be generalized, but there may be additional sign factors in the F - and R-
symbols for the category C′ coming from Fermi statistics.

Moreover, a recent work Ref. [32] provides a general analysis on the coupling between
(2+1)d topological orders and general curved U(1) background gauge fields. Establishing
the relation between the analysis in Ref. [32] and our general framework for U(1) symmetry
gauging (where the U(1) gauge field becomes dynamical) will be left for future work.
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A Minimal charge

The excitation v induced by a 2π flux must be an Abelian anyon. Suppose v has Zs fusion rule
in the bosonic MTC (before gauging U(1)), let’s show that the minimal charge e∗ has to be 1

s .
For any anyon a, since e2πiQa = Mav , the Zs fusion rule of v requires sQa ∈ Z. All possible
charges that can by any anyonic or local excitation in this MTC is given by (⊕aQaZ)⊕Z. Our
goal is to show that 1

s ∈ (⊕aQaZ)⊕Z.
Let’s prove it by contraction. Let’s assume 1

s /∈ (⊕aQaZ) ⊕ Z. It implies that greatest
common divisor n of the set of integers {sQa}a ∪{s} is greater than 1, i.e. n> 1. Then, we can
consider an non-trivial anyon x which is the fusion product of s

n anyons v. x is an non-trivial
anyon because v has Zs fusion rules. Notice that Mxa = (Mva)

s
n = e2πiQas/n = 1 for all anyon

a. However, in an MTC, the only “anyon" with this property is the trivial anyon. Hence, we
arrive at a contradiction. And therefore, we prove that 1

s ∈ (⊕aQaZ)⊕Z, namely e∗ = 1
s . This

statement further implies that (0,σH/e
∗) is always generated by (v,Qv).

15

https://scipost.org
https://scipost.org/SciPostPhys.12.6.202


SciPost Phys. 12, 202 (2022)

B Condensing transparent anyons

B.1 General Formalism

As an intermediate step in gauging the U(1) symmetry of the MTC C, we have introduced in
Sec. 3 the infinite category C′ are contains all possible excitations (a,Qa). The fusion rule of
this infinite category C′ is given by Eq. (18) and the F - an R-symbols are given by Eq. (21).
For simplicity, we will only focus on the situation where all of the fusion multiplicity N c

ab of the
original MTC C before gauging U(1) is less than or equal to 1, i.e. N c

ab ≤ 1. In this appendix,
we use a a single greek letter to denote the pair (a,Qa), for example α = (a,Qa), to simplify
the notation. The assumption that N c

ab ≤ 1 in the original theory before gauging U(1) implies
that fusion multiplicity Nγ

αβ
of the infinite category C′ is also less than or equal to 1.

We are interested in the category D̃ obtained from condensing a group of transparent
Abelian anyons T in the infinite category C′. In particular, we focus on the group T = {τk}k∈Z
generated by a single transparent Abelian anyon τ. As discussed in the main text, for the
purpose of U(1) gauging, we should condense the group of transparent Abelian anyons T
generated by τ = (v,σH). In this case, the resulting category D̃ is the category D that is the
final result of gauging the U(1) symmetry in the MTC C. As we will see later, it is also helpful
to consider condensing the group generated by τ= (1, sσH) (which is the fusion product of s
copies of (v,σH)). In this case, the category D̃ is another intermediate premodular category
(with finitely many anyons) towards the final gauged theoryD. The following discussion of the
condensation of transparent Abelian anyons will be applicable to both cases unless specified
otherwise .

The anyons in C′ form orbits under the fusion with T . Let’s label these orbits by [α].
For each orbit [α], we pick a representative α ∈ [α]. The orbit can be then expressed as
[α] = {ατk}k∈Z. Since τk for different k’s carry different U(1) charges, ατk ∈ [α] with dif-
ferent k are different anyons. This property has an important consequence that, when we
condense the transparent Abelian anyons T ⊂ C′ to obtain the category D̃, the orbits [α] are
in one-to-one correspondence to the anyons types in D̃. Therefore, we will directly use the
orbit labels [α] to denote the anyons in D̃. The fusion rule in D̃ can be directly obtained from
that of the parent category C′:

N [γ][α][β] =







1 , if there exists ∆[γ][α][β] ∈ T such that N
γ
�

∆
[γ]
[α][β]

�−1

αβ
= 1 in C′ ,

0 , otherwise .
(35)

Remember the fusion multiplicity in C′ is assumed to be equal to or less than 1. Physically, this
fusion rule of D̃ means that [α] and [β] can fuse into [γ] so long as their representatives α
and β can fuse into the representative γ up to some condensed transparent anyon∆[γ][α][β] ∈ T .

∆
[γ]
[α][β] depends on the choice of representatives of each orbit [α], [β] and [γ]. ∆[γ][α][β] is

symmetric under the exchange of its two lower indices, i.e. ∆[γ][α][β] =∆
[γ]
[β][α].

Now, we calculate the F - and R-symbols of the category D̃. As a first step, it is convenient
to choose a gauge of the F - and R-symbols of C′ such that they all take value 1 when restricted
to the group of transparent anyons T . Following the discussion of App. C, such a gauge always
exists for T which forms the group Z under fusion. Let’s denote the F - and R-symbols of C′

in the desired gauge as F ′ and R′. Note that when τ = (1, sσH), the F - and R-symbols in
Eq. (21) are already in the desired gauge. However, this is generically not the case when
τ = (v,σH). Hence, additional gauge transformation to Eq. (21) is needed to obtain F ′ and
R′ in the desired gauge in the case of τ= (v,σH).
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Fusion in Fusion in 

=

(a) (b)

lift

Figure 1: (a) The fusion vertex of the category D̃ can be lifted into the parent theory
C′ as a fusion diagram shown here. (b) For any k1,2 ∈ Z, a single line of condensed
transparent anyon τk1+k2 can be split without extra phase given the proper gauge
choice of the F - and R-symbols in C′ as explained in the main text.

The anyon diagrams of the category D̃ can be lifted back to the anyon diagrams of the
parent infinite category C′. In particular, the fusion vertex involving anyons [α], [β] and [γ]
in D̃ can be expressed as the fusion diagram of C′ shown in Fig. 1 (a). We use thick black line
for the anyons in D̃, thin black lines for anyons in C′ and blue lines for condensed transparent
Abelian anyon in T ⊂ C′ with the blue dots denoting where the condensation occur. When a
generic diagram of D̃ is lifted to C′, we always adopt the conventions that the all blue lines for
the condensed transparent Abelian anyons stay underneath all the black anyon lines and they
all condense at the left most part of the diagram. In principle, we should also consider fusing
all of the condensed transparent Abelian anyon before their condensation. Due to the gauge
choice of F ′ and R′ which are trivial when restricted to the group T of condensed transparent
Abelian anyons, these transparent Abelian anyons can separately condense without extra phase
factor associated with the locations of their condensation. Also, this gauge choice allows us to
split, without introducing extra phase factor, a condensed anyon line of τk1+k2 ∈ T in the way
shown in Fig. 1 (b) for any k1,2 ∈ Z.

The F -symbol of the category D̃ can be calculated using the parent category C′. As is shown
in Fig. 2, a single F -move in the category D̃ when lifted to the parent category C′ consists of a
sequence of F - and R-moves in C′. Hence, the F -symbol

�

F [α],[β],[γ][δ]

�

[ε],[ϕ]
of the category D̃

can be written in terms of F ′ and R′ of the category C′

�

F [α],[β],[γ][δ]

�

[ε],[ϕ]
=

�

F ′∆
[ε]
[α][β],ε

′,γ

δ′

�

ε,δ′′

�

F ′α,β ,γ
δ′′

�

ε′,ϕ′

�

F ′∆
[δ]
[ε][γ],∆

[ε]
[α][β],δ

′′

δ

�−1 �

F ′∆
[δ]
[α][ϕ],∆

[ϕ]
[β][γ],δ

′′

δ

�

×
�

F ′∆
[ϕ]
[β][γ],α,ϕ′

δ′′′

�−1 �

R′∆
[ϕ]
[β][γ],α

�−1
�

F ′α,∆[ϕ][β][γ],ϕ
′

δ′′′

�

, (36)

where α,β ,γ,ε and ϕ are the representatives of their corresponding orbits [α], [β], [γ], [ε]
and [ϕ]. Also, we’ve defined the following anyon variables

α′ =∆[ϕ][β][γ]α , ε′ =
�

∆
[ε]
[α][β]

�−1
ε , ϕ′ =

�

∆
[ϕ]
[β][γ]

�−1
ϕ ,

δ′ =
�

∆
[δ]
[ε][γ]

�−1
δ , δ′′ =

�

∆
[ε]
[α][β]

�−1
δ′ , δ′′′ =

�

∆
[δ]
[α][ϕ]

�−1
δ .

(37)

On the second row of Fig. 2, we’ve used the fact that ∆[ε][α][β]∆
[δ]
[ε][γ] = ∆

[δ]
[α][ϕ]∆

[ϕ]
[β][γ] are the

same transparent Abelian anyon. We’ve suppressed certain indices of the F - and R-symbol to
avoid cluttering in Eq. 36. All the suppressed indices are fully determined via the fusion rule
by the explicitly written indices in the same F - or R-symbols.
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lift to 

=

written in

-1

-1 -1

Figure 2: A single F -move in the cateory D̃, when lifted to the parent category C′,
consists of a sequence of F - and R-moves in C′

The R-symbol of the category D̃ can also be obtained by lifting the associated anyon dia-
gram to the parent category C′, as shown in Fig. 3:

R[α],[β][γ] = R′α,β
γ′ , (38)

where γ′ =
�

∆
[γ]
[α][β]

�−1
γ.

We note that similar diagrammatics has been used to compute F - and R-symbols of sym-
metry defects in a G-crossed braided tensor category [33,34].

B.2 Condensation of τ= (1, sσH)

Now, we consider the case in which the group T of transparent Abelian anyons is generated
by τ= (1, sσH). The category obtained from condensing this group T in C′ will be denoted by
Dint. As mentioned earlier, the category Dint is an intermediate premodular category towards
the final theory D where the U(1) symmetry of the original theory C is fully gauged.
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lift to written in

Figure 3: A R-move in the category D̃ can be lifted to a R-move in the parent category
C′

As commented above, the F - and R-symbols of C′ given in Eq. (21) is already in the desired
gauge, namely their restrictions to the group T are completely trivial. Under the fusion with
transparent anyons in T , each of the orbits in C′ take the form [(a,Qa)] = {(a,Qa+ksσH)}k∈Z.
Hence, for each orbit [(a,Qa)], we can choose (a, dQac|sσH |) ∈ [(a,Qa)] as its representative
where dQac|sσH | denotes the residue of any Qa that appears in [(a,Qa)]modulo |sσH |. dQac|sσH |

takes value within the interval [0, |sσH |). When N [(c,Qc)]
[(a,Qa)][(b,Qb)]

6= 0, U(1) charge conservation
together with the fact that dQac|sσH |, dQbc|sσH |, dQcc|sσH | ∈ [0, sσH) leads to the consequence
that

∆
[(c,Qc)]
[(a,Qa)][(b,Qb)]

= (1, dQa +Qbc|sσH | − dQac|sσH | − dQbc|sσH |). (39)

Now, following App. B.1, we can calculate the F - and R-symbols of the category Dint obtained
from condensing the group of transparent Abelian anyons T in the parent category C′. Notice
that, the F -symbol

�

F (a,Qa),(b,Qb),(c,Qc)
(d,Qd )

�

(e,Qe),( f ,Q f )
of the category C′ shown in Eq. (21) is 1

when any one of (a,Qa), (b,Qb), and (c,Qc) belongs to T . This observation greatly simplifies
the expression Eq. (36) and results

�

F [(a,Qa)],[(b,Qb)],[(c,Qc)]
[(d,Qd )]

�

[(e,Qe)],[( f ,Q f )]
=

�

F a,b,c
d

�

e, f
e
πi
σH

dQac|sσH |(dQb+Qcc|sσH |−dQbc|sσH |−dQcc|sσH |) .

(40)

The R-symbol of Dint can be obtained via Eq. (38):

R[(a,Qa)],[(b,Qb)]
[(c,Qc)]

= Rab
c e−

πi
σH

dQac|sσH |dQbc|sσH | . (41)

Here, as a reminder, the F -symbol
�

F a,b,c
d

�

e, f
and the R-symbol Rab

c are those of the original

category C.
It is easy to see that the category Dint is still a premodular category where the anyon repre-

sented by [(v,σH)] is a transparent Abelian anyon. After we further condense the transparent
Abelian anyon [(v,σH)] (and the ones generated by it) in Dint, the resulting category is the
category D that is the final outcome of gauging the U(1) symmetry of the original category C.

B.3 Application to SU(2)k

Consider a 2+1d U(1)-symmetric topological phase whose topological order is given by the
MTC C = SU(2)k. There are k + 1 different types of anyons, labeled by j = 0,1/2, · · · , k/2.
There is a single nontrivial Abelian anyon with j = k/2. The fusion rules are given by

j1 × j2 = | j1 − j2|+ · · ·+min( j1 + j2, k − j1 − j2) . (42)
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In particular, k
2 × j = k

2 − j. The Abelian anyon k/2 forms a Z2 group under fusion. The fusion
multiplicities of SU(2)k are given by

N j
j1 j2
=

¨

1 , j ∈ {| j1 − j2|, | j1 − j2|+ 1, ..., min( j1 + j2, k − j1 − j2)} ,

0 , otherwise .
(43)

The F -symbols of SU(2)k are given by [35]

�

F j1, j2, j3
j

�

j12, j23
= (−1) j1+ j2+ j3+ j

q

{2 j12 + 1}q{2 j23 + 1}q

�

j1 j2 j12
j3 j j23

�

q
, (44)

where q = ei 2π
k+2 , {n}q ≡

qn/2−q−n/2

q1/2−q−1/2 and

�

j1 j2 j12
j3 j j23

�

q
=Υ ( j1, j2, j12)Υ ( j12, j3, j)Υ ( j2, j3, j23)Υ ( j1, j23, j) (45)

×
∑

z

�

(−1)z{z + 1}q!

{z − j1 − j2 − j12}q!{z − j12 − j3 − j}q!{z − j2 − j3 − j23}q!{z − j1 − j23 − j}q!

×
1

{ j1 + j2 + j3 + j − z}q!{ j1 + j12 + j3 + j23 − z}q!{ j2 + j12 + j + j23 − z}q!

�

.

We’ve used the following definition in Eq. (45),

{n}q! ≡
n

∏

m=1

{m}q,

Υ ( j1, j2, j12)≡

√

√

√

{− j1 + j2 + j3}q!{ j1 − j2 + j3}q!{ j1 + j2 − j3}q!

{ j1 + j2 + j3 + 1}q!
. (46)

The summation
∑

z in Eq. (45) runs over all the integer values of z such that the arguments
of all {·}q! functions that appear are non-negative.

The R-symbol of SU(2)k is given by

R j1, j2
j = (−1) j− j1− j2q

1
2 ( j( j+1)− j1( j1+1)− j2( j2+1)) . (47)

Since the anyon j = k/2 is the only Abelian anyon in SU(2)k, it should also be identified
as the anyon v associated with the 2π flux (or the vison), i.e. v = k/2. Since θk/2 = eπik/2,
the Hall conductance satisfies σH =

k
2 mod 2Z.

When k is odd, the k/2 anyon is a semion (or anti-semion) and the whole MTC factor-
izes into a “SO(3)k" MTC and the semion (or anti-semion) theory. The U(1) symmetry only
acts non-trivially on the semion (or anti-semion) sector. Therefore, the gauging of the U(1)
symmetry only alters the semion (or anti-semion) sector without changing the “SO(3)k" sector.

The case with even k is more interesting. We will focus on this case in the following.
Following the general prescription, we need to introduce the infinite category C′ whose anyons
are labeled by ( j,Q)where j labels the anyon in SU(2)k and Q labels the U(1) charge. Since the
anyon that corresponds to the 2π flux is given by v = k/2, the U(1) charge of ( j,Q) satisfies
the constraint that e2πi j = e2πiQ. The F - and R-symbols of the category C′ can be obtained
using Eq. (21), 44 and 47:

�

F ′( j1,Q1),( j2,Q2),( j3,Q3)
( j,Q)

�

( j12,Q12),( j23,Q23)
=

�

F j1, j2, j3
j

�

j12, j23
,

R′( j1,Q1),( j2,Q2)
( j,Q) = R j1, j2

j e−
πi
σH

Q1Q2 . (48)
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To obtain the MTC D, i.e. the final result of gauging the U(1) symmetry of C, the group
T of transparent Abelian anyon to be condensed is generated by τ = ( k

2 ,σH). Note that,
( k

2 ,−σH) ∈ T since the anyon k/2 has a Z2-fusion rule. The anyons in C′ form orbit un-
der fusion with T . One can show that the orbits are completely labeled by [( j,Q)] for
j = 0, 1,2, ..., k/2 and 0 ≤ Q < |σH |. We will use ( j,Q) within the same range of j and Q
as the representative of its corresponding orbit [( j,Q)]. As discussed above, each orbit [( j,Q)]
also labels an anyon in the category D obtained from condensing the group of transparent
anyons T .

In the following, we will obtain the data that defines the category D. It is convenient to
introduce the function

Λ(Q1,Q2) =
1
σH
(Q1 +Q2 − dQ1 +Q2c|σH |) , (49)

where dQc|σH | is the residue of Q modulo |σH | and it satisfies 0 ≤ dQc|σH | < |σH |. For any
0 ≤ Q1,Q2 < |σH |, the functionΛ(Q1,Q2) only takes value 0 or ±1. The fusion rule of category
D is given by

[( j1,Q1)]× [( j2,Q2)] =











∑

j N j3
j1 j2
( j, dQ1 +Q2c|σH |) , for Λ(Q1,Q2) = 0 ,

∑

j3
N j

j1 j2
( k

2 − j, dQ1 +Q2c|σH |) , for |Λ(Q1,Q2)|= 1 .

(50)

This fusion rule and our choice of orbit representatives lead to the function

∆
[( j,Q)]
[( j1,Q1)][( j2,Q2)]

=
�

k
2

,σH

�−Λ(Q1,Q2)
, (51)

when the fusion channel [( j1,Q1)]× [( j2,Q2)]→ [( j,Q)] exists.
To obtain the F -symbol of D, as explained in App. B.1, it is better to start with the preferred

gauge choice for the F - and R-symbols of C′ such that the F - and R-symbols restricted to T ∈ C′

are trivial. Remember that we are currently focusing on the case with even k. It turns out that
the F - and R-symbols of C ’ obtained in Eq. (48) are already in the preferred gauge choice when
k is even. This is due to the fact that

�

F k/2,k/2,k/2
k/2

�

0,0
= 1 for even k according to Eq. (44).

Hence, we can proceed to calculate the F -symbol of the category D using Eq. (36) without
any extra gauge transformation to Eq. (48) needed. Additional simplification can be achieved
by noticing that the F -symbol of SU(2)k given in Eq. (44) has the properties

�

F
j1=

k
2 , j2, j3

j

�

k
2− j2, k

2− j
= (−1)

k
2− j2− j3− j ,

�

F
j1, j2=

k
2 , j3

j

�

k
2− j1, k

2− j3
= (−1)

k
2− j1− j3− j , (52)

�

F
j1, j2, j3=

k
2

j

�

k
2− j, k

2− j2
= (−1)

k
2− j1− j2− j .

With these simplifications taken into account, the F -symbol of the MTC D is given by
�

F [( j1,Q1)],[( j2,Q2)],[( j3,Q3)]
[( j,Q)]

�

[( j12,Q12)],[( j23,Q23)]

= (−1)( j12− j3− j′)Λ(Q1,Q2)(−1)2 j(Λ(Q1,Q2)Λ(Q12,Q3)+Λ(Q1,Q23)Λ(Q2,Q3)) (53)

× (−1)( j1 sgnσH+Q1)Λ(Q2,Q3)
�

F j1, j2, j3
j′′

�

j′12, j′23

,
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with

j′ = (1− |Λ(Q12,Q3)|) j + |Λ(Q12,Q3)|
�

k
2
− j

�

,

j′′ = (1− |Λ(Q1,Q2)|) j′ + |Λ(Q1,Q2)|
�

k
2
− j′

�

,

j′12 = (1− |Λ(Q1,Q2)|) j12 + |Λ(Q1,Q2)|
�

k
2
− j12

�

,

j′23 = (1− |Λ(Q2,Q3)|) j23 + |Λ(Q2,Q3)|
�

k
2
− j23

�

. (54)

The R-symbol of the MTC D is given by

R[( j1,Q1)],[( j2,Q2)]
[( j,Q)] = R j1, j2

j′ e−
πi
σH

Q1Q2 , (55)

where j′ = (1− |Λ(Q1,Q2)|) j + |Λ(Q1,Q2)|
� k

2 − j
�

.
As an example, we can consider the case of C = SU(2)2 with Hall conductance σH = 1,

namely k = 2 and σH = 1. After gauging the U(1) symmetry, the resulting MTC D has three
anyons [(0, 0)], [(1

2 , 1
2)] and [(1, 0)]. The fusion rule given in Eq. (50) matches that of the

Ising MTC. One can further check that the F - and R-symbols of D obtained from Eq. (54) and
Eq. (55) match those of the Ising MTC (up to a gauge transformation).

If we instead consider the case of SU(2)2 with the Hall conductance σH = −1, namely
k = 2 and σH = −1. The resulting MTC obtained from gauging the U(1) symmetry becomes
the Spin(5)1 MTC.

C Gauge fixing for the group of transparent Abelian anyons

Here, we focus on the F - and R-symbols of C′ restricted to the group of transparent Abelian
anyons T = {τk}k∈Z. Notice that, in the cases we are interested in, T has a fusion rule
isomorphic to the Abelian group Z. The F -symbol restricted to T depends only on the three
superscripts and, hence, can be written as Fτ

k ,τl ,τm
. The remaining (and suppressed) indices

can be inferred from the three superscripts. With the anyon fusion in T viewed as the group
multiplication in Z, we can identify the F -symbol restricted to T as an element in the group
cohomology H3[Z,U(1)], which turns out to be trivial. i.e. H3[Z, U(1)] = Z1. Therefore, it is
always possible to choose a gauge such that the F -symbol restricted to T is completely trivial.

The F - and R-symbols restricted to T must satisfy the hexagon equations. When the F -
symbols restricted to T are completely trivial, the hexagon equations read

Rτ
k+l ,τm

= Rτ
k ,τm

Rτ
l ,τm

, Rτ
m,τk+l

= Rτ
m,τk

Rτ
m,τl

. (56)

In particular, they imply that Rτ
k ,τl
= (Rτ,τ)kl = 1 because the transparent Abelian anyon τ

under our consideration has a bosonic self-statistics, namely Rτ,τ = θτ = 1.

D Chiral central charge after gauging the U(1) symmetry

Denote by c′− the chiral central charge of the gauged system. We focus on the case where the
Hall conductance σH is non-zero, i.e. σH 6= 0. We prove below that c′− ≡ c− − sgnσH mod 8,
where c− is the chiral central charge of the original ungauged system.
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In a general MTC C, we have the generalized Gauss-Milgram sum:

1
DC

∑

a

d2
aθa = e

2πic−
8 , (57)

where da is the quantum dimension of the anyon a ∈ C, DC ≡
q

∑

a∈C d2
a is the total quantum

dimension of the MTC C and c− is the chiral central charge of C.
Note that a similar identity holds for a general premodular category K whose subcategory

of transparent anyons A consists of only Abelian anyons with bosonic self-statistics [36]:

1
p

|A|DK

∑

a∈K
d2

aθa = e
2πic−

8 , (58)

where da is the quantum dimension of the anyon a ∈K, DK ≡
q

∑

a∈K d2
a is the total quantum

dimension of the premodular category K and c− is the chiral central charge of the MTC ob-
tained from condensing A in the premodular category K. Here, |A| is the number of Abelian
anyons in the transparent subcategory A and is assumed to be finite.

In this work, we start with an U(1)-symmetric MTC C with a chiral central charge c− and a
Hall conductance σH . Assuming σH 6= 0, we want to calculate the chiral central charge c′− of
the MTCD obtained from gauging the U(1) symmetry of C. According to the general procedure
of gauging presented in App. B, the MTC D can be viewed as a result of condensing a group of
transparent Abelian bosons in the intermediate premodular category Dint introduced in App.
B.2. The intermediate category Dint is obtained from the infinite category C′ by condensing
(1, sσH), as discussed in App. B.2. In the following, we calculate chiral central charge c′− of
the MTC D using the intermediate premodular category Dint.

Recall that the simple objects in this premodular category Dint are labeled by [(a,Qa)]
where a ∈ C and the value of Qa is restricted to the range 0 ≤ Qa < |sσH |. Also, we recall the
F -and R- symbols of this category Dint are given by

�

F [(a,Qa)],[(b,Qb)],[(c,Qc)]
[(d,Qd )]

�

[(e,Qe)],[( f ,Q f )]
=

�

F a,b,c
d

�

e, f
e
πi
σH

dQac|sσH |(dQb+Qcc|sσH |−dQbc|sσH |−dQcc|sσH |) ,

R[(a,Qa)],[(b,Qb)]
[(c,Qc)]

= Rab
c e−

πi
σH

dQac|sσH |dQbc|sσH | ,

(59)

where
�

F a,b,c
d

�

e, f
and Rab

c are the F - and R-symbols of the original MTC C before gauging the

U(1) symmetry. The total quantum dimension DDint
of this premodular category Dint is given

by DDint
=

p

|sσH |DC . In Dint, The quantum dimension d[(a,Qa)] and the topological twist factor
θ[(a,Qa)] are given by

d[(a,Qa)] = da , θ[(a,Qa)] = θae−
πi
σH

dQac2
|sσH | , (60)

where da and θa are the quantum dimension and the topological twist factor of the anyon a
in the original MTC C. To obtain the MTC D from premodular category Dint, one needs to
condense the group of transparent Abelian bosons A ⊂ Dint generated by [(v,σH)]. Notice
that |A|= s.

Before performing the generalized Gauss-Milgram sum, it is useful to notice that, for a
given a ∈ C, the allowed anyons [(a,Qa)] ∈ Dint have Qa ∈ {qa, qa + 1, ...,qa + |sσH | − 1},
where qa is defined via Mav = e2πiqa (using the braiding Mav of the original MTC C) and
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0 ≤ qa < 1. Therefore, we can write the following generalized Gauss-Milgram sum

e
2πic′−

8 =
1

p

|A|DDint

∑

[(a,Qa)]∈DDint

d2
[(a,Qa)]

θ[(a,Qa)]

=
1

s
p

|σH |DC

∑

a∈C

sσH−1
∑

k=0

d2
aθae−

πi
σH
(qa+k)2 .

(61)

First we perform the summation over k:

sσH−1
∑

k=0

e−
iπ
σH
(qa+k)2 =

1
s

e−
πi
σH

q2
a

s2σH−1
∑

k=0

e
− πi

s2σH
(s2k2+2qas2k)

=
1
s

Æ

|σH |e−
πi
4 sgnσH

s2−1
∑

k=0

e
πi
s2
(s2σH k2+2qas2k)

=
1
s

Æ

|σH |e−
πi
4 sgnσH

s2−1
∑

k=0

eπi(σH k2+2qak)

=
Æ

|σH |e−
πi
4 sgnσH

s−1
∑

k=0

eπi(σH k2+2qak)

=
Æ

|σH |e
−πi

4 sgnσH

s−1
∑

k=0

θvk Mvk ,a .

(62)

For the second equality we apply the quadratic reciprocal law for Gauss sums. Now, the full
generalized Gauss-Milgram sum of Dint can be evaluated:

e
2πic′−

8 =
1

sDC
e−

πi
4 sgnσH

∑

a∈C

s−1
∑

k=0

d2
aθaθvk Mvk ,a

=
1

sDC
e−

πi
4 sgnσH

s−1
∑

k=0

∑

a∈C
d2

a×vkθa×vk

= e
πi
4 (c−−sgnσH ) .

(63)

Hence, we find c′− = c− − sgnσH mod 8.

E General U(N)k,k+Nk′ MTC from gauging the U(1) symmetry in
SU(N)k

The U(N)k,k+Nk′ MTC with k, k′ ∈ Z and with k + k′ an even integer describes the bosonic
topological order associated with the 2+1d Chern-Simons theory

L= −
k

4π
Tr

�

bd b −
2i
3

b3
�

−
k′

4π
(Tr b)d(Tr b) , (64)

where b is the U(N) gauge connection which is a N×N -matrix-valued 1-form. Let’s denote the
traceless part of the gauge connection b as the 1-form gauge field a and the trace as a gauge
field A, i.e. Tr b = A. The gauge field a can be interpreted as an SU(N) gauge connection and
the gauge field A as a U(1) gauge connection. When we treat the gauge field a as a dynamical
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field while the gauge field A only as a static background gauge field, the Lagrangian in Eq. (64)
describes a C = SU(N)k topological order with a U(1) 0-form global symmetry. The associated
Hall conductance is given by σH = − k

N − k′. The 2π flux of the U(1) symmetry is naturally
associated with the Abelian anyon v ∈ SU(N)k whose Wilson line generates the ZN 1-form
symmetry of the SU(N)k topological order. This Abelian anyon v has a ZN fusion rule (in the

SU(N)k MTC) and a topological spin θv = ei2π (N−1)k
2N . The aforementioned requirement that

k + k′ is even ensures the consistency condition eiπσH = θv . Obviously, when we gauge this
U(1) 0-form global symmetry, we restore the dynamics of the gauge field A = Tr b. Hence,
the so-obtained topological order after gauging is the U(N)k,k+Nk′ topological order that is
described by the Lagrangian Eq. (64) with a fully dynamical the U(N) gauge field b.

The U(N)k,k+Nk′ topological order can also be written as U(N)k,k+Nk′ =
SU(N)k×U(1)N(k+Nk′)

ZN
[24]. Hence, it can be constructed from an anyon condensation in B0 = SU(N)k×U(1)N(k+Nk′).
The anyon to be condensed here is the composite of v ∈ SU(N)k and the Abelian
anyon x−(k+Nk′) ∈ U(1)N(k+Nk′) where x ∈ U(1)N(k+Nk′) here denotes the anyon
that generates the entire ZN(k+Nk′) fusion algebra of the U(1)N(k+Nk′) sector. The
Abelian anyon x−(k+Nk′) ∈ U(1)N(k+Nk′) also has a ZN fusion rule (in the U(1)N(k+Nk′)

MTC) and a topological spin θx−(k+Nk′) = e
i2π(k+Nk′)

2N . The composite Abelian anyon
(v, x−(k+Nk′)) ∈ B0 = SU(N)k ×U(1)N(k+Nk′) has a bosonic self-statistics and, hence, is allowed
to condense.

Similar to the discussion in Sec. 3.2, we first consider the premodular sub-category
B1 ⊂ B0 = SU(N)k × U(1)N(k+Nk′) that braids trivially with (v, x−(k+Nk′)). One can show
that this sub-category is completely identical to the intermediate premodular category Dint
obtained from applying the general procedures for gauging the U(1) symmetry described in
App. B.2 to the SU(N)k MTC with a Hall conductance of σH = − k

N − k′. Here, s = N because
the vison v ∈ SU(N)k associated with the 2π flux has a ZN fusion rule. Further condensation
of (v,σH) ∈ Dint (which is needed for completing the full U(1) gauging procedure described
in App. B) in the intermediate category Dint is equivalent to the condensation of the Abelian
anyon (v, x−(k+Nk′)) in B1. This condensation yields the U(N)k,k+Nk′ MTC as the final result.
The discussion of the Zk parafermion in Sec. 3.2 is a special case of the general discussion
here.

Also, we notice that when the Hall conductance vanishes, i.e. when σH = − k
N −k′ = 0, the

field theory Eq. (64) indicates that, after the U(1) symmetry is gauged, the resulting theory is
given by U(N)k,0 =

SU(N)k
ZN

. The theory SU(N)k
ZN

is exactly given by condensing the vison v, which
generates the ZN 1-form symmetry of SU(N)k, in the ungauged theory SU(N)k. Remember
that k and k′ are both integers and k+k′ is required to be even. A vanishing Hall conductance
only occurs when (1) k is an even-integer multiple of N for even N or (2) k is an integer
multiple of N for odd N . In these scenarios, the vision v has a bosonic self-statistics θv = 1
and is allowed to condense.

F Holographic viewpoint of gauging the U(1) symmetry

For a (2+1)d topological order C with a global (0-form) symmetry G, one way to think about
the coupling between the (2+1)d topological order to either the background G gauge field
or a dynamical G-gauge field (after gauging the global symmetry G) is via a “holographic"
viewpoint in which the (2+1)d spacetime where the (2+1)d topological order resides is the
boundary of a (3+1)d spacetime manifold where the G gauge field extends. This viewpoint
provides a useful tool in characterizing the possible ’t Hooft anomalies of (2+1)d topological
order under the a global symmetry G (see Ref. [37–39] for early examples) in which context
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the G gauge field is often treated as a static background gauge field. In this appendix, we
will discuss such a similar holographic viewpoint for gauging a 0-form global G symmetry of
a (2+1)d topological order. In particular, we are interested in the case where G = U(1).

As a start, let’s first discus the case when the 0-form global symmetry group G is a finite
group. For simplicity, let’s consider the 2+ 1d topological order C living on the 2-dimensional
spatial x-y plane at z = 0 while the 3-dimensional bulk is the entire “half-space" with z ≤ 0.
The 1-form G gauge field, background or dynamical, lives in the the entire bulk at z ≤ 0
and couples to the 2+1d topological order C on the boundary at z = 0. Assuming the global
symmetry G of the (2+1)d topological order C is free of anomaly, we can take (3+1)d bulk to be
in a trivial G-SPT phase before gauging the global symmetry G. After we gauge the symmetry
G, the bulk hosts a un-twisted dynamical (and deconfined) 1-form G gauge theory, which itself
is a (3+1)d topological order with a finite energy gap. What is the (2+1)d topological order
D that is the outcome of gauging the G symmetry of C purely within (2+1)d? To answer this
question in the holographic viewpoint, we can consider the bulk to resides on a “slab of finite
width", say the 3d space with −W ≤ z ≤ 0. Here, the x-y plane at the boundary at z = 0 is
still where the original topological order C resides. On the boundary at z = −W , we impose
the gapped boundary condition for the (3+1)d dynamical 1-form G gauge theory such that
any G-flux is allowed to terminate (without energy cost) at the boundary at z = −W . Since
the entire bulk has a finite width W , the total system, including the bulk and the boundaries
at z = 0 and at z = −W , can be viewed as an effective (2+1)d system. This slab construction
maintain a finite energy gap at all times and, therefore, yields a (2+1)d topological order that
should be identified as D.

Now, let’s consider the case of a (2+1)d topological order C with a global 0-form symmetry
G = U(1). We can still consider the (3+1)d bulk defined on the 3D space with z ≤ 0 and
the (2+1)d topological order C living on the boundary at z = 0. Before we gauge the U(1)
symmetry, we still require the background ground U(1) 1-form gauge field to be defined in
the entire bulk at z ≤ 0. This background U(1) gauge field couples to the (2+1)d topological
order C at the boundary at z = 0. Since the U(1) symmetry of the topological order C is free of
any ’t Hooft anomaly, the (3+1)d bulk is in the trivial (3+1)d U(1)-SPT phase. In fact, there
is no non-trivial SPT phase with a single 0-form global U(1) symmetry in (3+1)d. Now, let’s
gauge the U(1) symmetry and, thereby, promoting the background U(1) 1-form gauge field
to a dynamical one. We can start by first letting the dynamics of the bulk U(1) gauge field
to be governed by the Maxwell theory. Such a bulk theory is obviously gapless. In the bulk,
any integer U(1) charge is allowed, while on the boundary at z = 0 the infinite set of allowed
combinations of anyons in C and U(1) charges are captured by the infinite category C′ defined
via Eq. (18) and 21 assuming σH 6= 0. Directly applying the slab construction to such a bulk
theory does not lead any regular (2+1)d topological order (that should have an energy gap
and finitely many anyons). We can nevertheless continue to analyze this system.

There is a special excitation on the boundary given by the anyon (v,σH) ∈ C′ where v ∈ C,
the vison, is associated with the 2π flux of the U(1) gauge field. The U(1) charge σH carried
by this anyon (v,σH) ∈ C′ is equal to the Hall conductance of the topological order C on the
boundary. When a monopole of the U(1) gauge field, which carries a total of 2π flux, tunnels
through boundary at z = 0 into the bulk, it leaves behind on the boundary the composite of
the anyon v ∈ C and the U(1) charge σH due to the Hall effect generated by the topological
order C on the boundary. Therefore, the anyon (v,σH) ∈ C′ is created when a U(1) monopole
tunnels into the bulk. This analysis also suggests that the bulk Maxwell theory has a non-trivial
θ -term

∫ σH
4π dAdA (where A is the 1-form U(1) gauge field).

Now, we condense the U(1) monopoles in the bulk to drive the bulk into a confined phase
of the U(1) gauge field. The confined phase is gapped and free of any (3+1)d topological
order. The condensation of the U(1) monopoles in the bulk leads to the condensation of the
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anyon (v,σH) ∈ C′ on the boundary. Therefore, the condensation of the anyon (v,σH) ∈ C′ on
the boundary yields the topological order D that is the outcome of gauging the U(1) symmetry
of the original topological order C. Here, it may seem that, in the holographic viewpoint, the
confinement of the bulk U(1) gauge field via monopole condensation is an extra step beyond
simply gauging the U(1) symmetry. We argue that this is natural and necessary because a
simple U(1) Maxwell gauge theory in purely (2+1)d does confine automatically. Technically
speaking, one should again consider monopole condensation in the bulk that is a slab of finite
width, say the 3d space with −W ≤ z ≤ 0. In this case, we can choose the boundary condition
at z = −W such that the monopole condensation simply leads to the confinement of the U(1)
gauge field both in the bulk and at the boundary z = −W . The non-trivial degrees of freedom
left all resides on the boundary at z = 0 and are captured by the (2+1)d topological order D
(which is obtained from condensing (v,σH) in the infinite category C′).

So far, we have assumed that σH 6= 0. In fact, one can consider the exact same setup when
σH = 0. In this case, when the bulk is governed by the gapless 3+1d Maxwell theory, there
are still an infinite set of excitations given by the allowed combinations of anyons in C and
U(1) charges. When the monopoles of A condense driving the 3+1d bulk into the confined
phase, the vison v, which now carries a vanishing U(1) charge, also condenses on the 2+1d
boundary. The condensation of the vison v drives the original MTC C into a new MTC D that
is equivalent to the result of gauging the U(1) symmetry of the original MTC C.
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