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Abstract

We study scaling behavior of the disorder parameter, defined as the expectation value of
a symmetry transformation applied to a finite region, at the deconfined quantum critical
point in (2+1)d in the J-Q3 model via large-scale quantum Monte Carlo simulations. We
show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter
scaling with a logarithmic correction associated with sharp corners of the region, as
generally expected for a conformally-invariant critical point. However, for large rotation
angle the universal coefficient of the logarithmic corner correction becomes negative,
which is not allowed in any unitary conformal field theory. We also extract the current
central charge from the small rotation angle scaling, whose value is much smaller than
that of the free theory.
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1 Introduction

Deconfined quantum criticality (DQC) [1-3], a continuous quantum phase transition between
two seemingly unrelated symmetry-breaking states, is arguably the complex behavior of novel
quantum critical point beyond the paradigm of Landau-Ginzburg-Wilson. Such a transition,
if exists, is believed to host a number of unusual phenomena, such as an emergent symme-
try unifying order parameters of completely different microscopic origins and the presence of
fractionalized spinons, among others [3-5]. Theoretically the proposed low-energy theory is
a gauge theory in the strong coupling regime, posing significant challenges to analytical treat-
ment [2,6]. Numerical investigations of lattice models realizing such transitions have been
indispensable in pushing forward our understanding of DQC from many different angles: the
two-length-scale scaling as an attempt to reconcile the anomalous finite-size scaling behavior
of the J-Q model [7], conserved current exploited to exhibit the emergent continuous symme-
try [8], fractionalization revealed from dynamic spin spectra [3], to name a few. There has
also been exiciting progress in possible experimental realization of the DQC from the pressure-
driven phase transition in the Shastry-Sutherland quantum magnet SrCu,(BO3), [9-11] and
its theoretical implications [12-14]. The communities of quantum phase transitions, quantum
magnetism and even high-energy physics, have benefited a lot from these pursuits over the
years. However, the very nature of the transition itself, and basic questions such as whether
the transition is continuous or not, whether the transition follows conformal invariance and
accquires a proper conformal field theory (CFT) description [6,15-25], etc, are actually still
open despite the active investigations mentioned above.

In recent years, the importance of using extended operators, such as symmetry domain
walls or field lines of emergent gauge field, to probe and characterize phases and phase transi-
tions has become increasingly clear [26-30]. In particular, many exotic gapped phases can be
understood in terms of the condensation of certain extended objects, spontaneously breaking
the so-called higher-form symmetry. These new insights bring intriguing connections between
the Landau-Ginzburg-Wilson paradigm of spontaneous symmetry breaking and more exotic
phenomena of topological order [31]. Inspired by such progress, recent works have started
to explore more quantitative aspects of disorder operators, which are defined as a symme-
try transformation restricted to a finite region of the system, especially at quantum criticality.
Ref. [32] computed the Ising disorder operator, which serves as the order parameter of a Z,
1-form symmetry, by quantum Monte Carlo (QMC) simulation at the (24+1)d Ising transition.
The U(1) disorder operator at the (2+1)d XY transition is measured in QMC simulation as
well [33]. New universal scaling behavior for such disorder operators at these conformally-
invariant quantum critical points (QCP) are identified [32-36]. Building upon the methodol-
ogy for the computation and analysis of disorder operator established by studying conventional
symmetry-breaking transitions, in this work we take this new set of tools to study the decon-
fined quantum criticality.

An important difference between the DQC and other QCPs studied so far in this context is
that one side of the DQC exhibits valence bond solid (VBS) order, spontaneously breaking the
lattice symmetry. To understand how the behavior of the disorder operator is affected by lattice
symmetry breaking, we first study two different microscopic realizations of the (2+1) O(3)
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QCB the bilayer and J;-J, Heisenberg antiferromagnets on the square lattice, using ubiased
Stochastic series expansion (SSE) [37] QMC simulations. We find the disorder operators for
U(1)s, symmetry obey the expected perimeter law scaling with a multiplicative logarithmic
correction at the QCPs, in agreement with the prediction of the O(3) CFT. However for the
J1-J, model with explicit translation symmetry breaking, it is crucial to construct disorder
operators only on regions whose boundary avoids the “strong” singlet bonds, in order to obtain
converged results in the finite-size analysis.

With this knowledge, we proceed with the similar measurement of the U(1) s, disorder
operator in the J-Q5 model of DQC, at the critical point between the Néel and VBS phases [4].
To mitigate finite-size error due to the VBS fluctuations, in our QMC measurement of the
disorder operator we adjust the region according to the profile of the instantaneous VBS order.
Our data reveal that although the disorder operator still obeys the scaling behavior expected
for a general CFT, the universal coefficient in the logarithmic correction term becomes negative
for U(1) rotation angle close to 7, which we argue is incompatible with any unitary CFT and
in fact suggests a large violation of unitarity. We also extract the current central charge from
the small angle scaling, whose value is significantly smaller than conventional O(n) CFT.

> J,,/Ji
Singlet
- > J,/J,
Singlet
—“o—o—0o—o0—0_ 0—
‘ 0
| | | | =T
> Q/(J+0)

Néel Dac VBS

Figure 1: The three lattice models: (a) the bilayer square lattice antiferromagnetic
Heisenberg model, (b) the square lattice J;-J, antiferromagnetic Heisenberg model
and (c) the J-Q5 model. (a), (b) exhibits (2+1)d O(3) QCP as J,/J; is tuned [38-40]
and (c) gives rise to DQC [4].
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2 Three lattice models

We simulate the following three lattice models hosting the target QCPs. The first is the bilayer
square lattice antiferromagnet with Hamiltonian

Hpilayer = J1 Z(Sl,i “S1j 482 82;)+J> Z 182> 1)
(ij) L

where S, ; is a spin-1/2 at site i of layer a(= 1,2), (ij) denotes the neareast-neighbor antifer-
romagnetic coupling on the square lattice. J, is the interlayer antiferromagnetic interaction.
The model is illustrated in Fig. 1(a). The critical point (J,/J;), = 2.5220(1) [38, 39] sepa-
rating the Néel state and the symmetric product state of inter-layer singlets, belongs to the
(24 1)d O(3) universality class.

The next model is the square lattice J;-J, Heisenberg, shown in Fig. 1(b). The Hamiltonian

reads
HJl_JzlezSi'Sj'i‘Jzzsi'Sj, (2)
(ij) (ij)’

where (ij) denotes the thin J; bond and (ij) denotes the thick J, bond, and the QCP
(J5/J1), = 1.90951(1) [40] is also known to fall within the (2 + 1)d O(3) universality class.
The reason that we study both Egs. (1) and (2) is that although the QCPs are in the same
universality class, the presence of strong J, and weak J; bonds in Eq. (2) breaks the lattice
translation symmetry while Eq. (1) is fully translation-invariant. As we show below, because of
the translation symmetry breaking, the domain M must be chosen so that its boundary avoids
strong singlet bonds to correctly extract the scaling behavior of the disorder operator.

The last model is the J-Q5 model as illustrated in Fig. 1(c) with the following Hamiltonian,

Hy q,=—J » P;j—Q Z Py PP - (3)
(ij) (ijklmn)

Here P;; = %—Si -S; is the two-spin singlet projector. The quantum critical point separating the
Néel and VBS states is at [Q/(J +Q)]. = 0.59864(5) [4,41] (see Appendix B for details [42]).
While the VBS order vanishes at the QCP after extrapolating to the thermodynamic limit, in
a finite system there is always a small but non-zero VBS order. Therefore the computation
of the disorder parameter may suffer from similar kinds of lattice effect that occurs in the
J1-J, model. To eliminate such effect as much as possible, in our QMC measurement of the
disorder operator we adjust the region according to the profile of the instantaneous VBS order
to achieve robustly converged results from finite-size analysis (see Appendix B for details).

3 Disorder operator

All three lattice models have SU(2) spin rotational symmetry. For any U(1) subgroup we will
define a disorder operator that depends on the U(1) rotation angle. Without loss of general-
ity, we will consider spin rotations around the z and the U(1) symmetry transformations are
implemented by U(6) =[], eie(SfJ’%), where S7 is the U(1) charge on site i. For a region
M, we define the disorder operator X;(6) = [ [;c), el0(i+3) The ground state expectation
value (X,,(0)) will be referred to as the disorder parameter. The scaling behavior of (X,,(6))
in various phases, especially the dependence on the geometry of M, has been studied thor-
oughly in [33]. In a U(1)-symmetric phase, such as the singlet ground state in Hy;j,yer and

—a1(0)1

H, _,;, models, (X)/(0)) is expected to obey a perimeter law [(X,(6))| ~ e , Where [ is
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the perimeter of the region M. In the ordered (U(1) symmetry breaking) phases, such as the
Néel phase of the three models, it was found that |(X;;(60))| ~ e 21"l [33 4371 Our focus in
this work, however, is the disorder operator at QCPs in Fig. 1, in particular that of the DQC.
Previous studies of the (2 + 1)d Ising and O(2) transitions, as well as other gapless critical
theories [32-34,36] suggest that for large 1, In|(X,,(6))| takes the following general form for
a rectangle region:

In[(Xy(0))| =—a;l +slnl +ay. 4)

Here all the coefficients are functions of 8. We note that as an expansion in large [, Eq. (4)
contains all terms compatible with scale invariance (dropping those that decay with ). The
universal logarithmic correction, which translates into a power law [I* in |[(X,,)|, originates
from sharp corners of the region. In general s is a universal function of both 6 and the open-
ing angle(s) of the corners (all 7t/2 in this case) [33,35]. Similar corner contributions were
known to arise for Rényi entropy in a CFT [44, 45], which can be understood as the disorder
operator of the replica symmetry. In Ref. [33], analytical arguments were presented to sup-
port the universal corner correction for the disorder operator and the universal coefficient s is
found to be given by s(6) ~ (fTJ)ZGZ as 0 — 0 (see also [36]). Here C; is the current central
charge of the CFT, which is proportional to the universal DC conductivity o = 7¢C; [46]. This
is the consequence of conformal symmetry and current conservation. Our previous QMC at
0(2) QCP reveals s/6% = 0.011(1), consistent with the exact value (fTJ)Z = 0.01145 [47-50].
Another feature common to all known examples of disorder operators is that s is always posi-
tive. The positivity of s is proven for the Rényi entropy, i.e. disorder parameter of the replica
symmetry in unitary CFTs [51,52]. In the present case, we generalize the argument in [51]
to show that s(7t) must be positive in a unitary CFT (see Appendix D for details [42]). As we
will see below, s(0) for DQC follows the same scaling behavior at small 8, but the large 6
behavior is dramatically different. Moreover, we note that the system sizes accessed here with
the disorder operator is much larger than those of the entanglement entropy, simply because
the |(X;,)| is a equal-time measurement without invoking the replicas.

4 Numerical results

We choose the region M to be a R x R square region in the lattice, with perimeter [ = 4R —4.
Firstly, we compute the disorder parameter X,,(6) as a function of perimeter [ at the 3D O(3)
QCP ((J2/J71). = 2.5220) [38,39] of the Hy;jsyer model with system size L = 32,64, 96,128.
Plots of [(X,;(0))| v.s. [ for representative values of 6’s are shown in Fig. 2(a). Fitting the data
with Eq. (4), we obtain the coefficient s(0) of the corner correction term, as shown in Fig. 2
(b).! The behavior of s is qualitatively similar to that of the O(2) transition studied in [33].
We will mainly use the results from Hy,jj,pe, as a reference for the O(3) CFT.

Next, we perform the same QMC simulations for the H Ji—Jy model at its QCP
(Jg/J71). = 1.90951(1) [40]. Although the critical theory is the same 3D O(3) CFT, because
of the doubling of the unit cell due to alternating J; and J, bonds, the disorder parameter
(X1(6)) exhibits even-odd oscillation as a function of R, see Appendix C for details [42]. This
is because the boundary of the region M cuts different types of bonds for even and odd R: for
odd R, one of the boundary segments along y always cuts strong J, bonds, while for even R
depending on the exact position of M the boundary may or may not cut strong bonds. Such
singlet cutting increases the leading perimeter contribution in the disorder parameter, intro-
ducing significant finite-size error when extracting the subleading corner term s. For the J;-J,

1We note that although a simple exponential function might also be able to fit the data, but we find in generial
for the 6 we have investigated, the goodness of the fit, y2, is usually two magnitude larger than those obtained
from the fitting form in Eq. (4). We show more details in Appendix A.
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Figure 2: Disorder parameter |(X,;(6))| as a function of the perimeter | = 4R — 4
with system size L = 96 at the QCPs for Hyjjayer model (a), Hy,_;, model (¢) and
the H;_q, model (e). (b), (d) and (f) show the obtained s(6) with system size
L =32,64,96,128 for the three models in (a), (c) and (e), respectively. The conver-
gence of the data with increasing L is clear from the figures.

model, we find that the correct results for s(6) (compared to s(8) extracted from the bilayer
Heisenberg model, free of such complications) can only be obtained from the scaling analysis
when disorder operators are constructed on regions whose boundary does not cut any strong
bonds. We note the quantification of the error bar in s(8) is certainly a nontrivial issue. Here
we use the errorbar of the fitting protocol which yields the correct values of s(0) in the J;-J,
case (the other two fail to give the correct values there), but at the same time we should again
note that the comparison of errorbar between different schemes is not straightforward. More
details of the analysis can be found in Appendix C. We believe this is a general phenomenon
and to mitigate finite-size error similar selection of regions must be applied whenever there
exists bond order breaking the translation symmetry either explicitly or spontaneously. This is
the most important lesson learnt from the study of the J;-J, model.

Now we turn to the J-Q5; model. Because of the VBS order, we would like to design the
boundary of M in such a way that it cuts least strong singlet bonds. However, since the VBS or-
der in the J-Q5 model forms spontaneously, the pattern of stronger singlet bonds is not known
a priori. To overcome this issue, we follow the following procedure: for each measurement,
first we calculate the value of the VBS order parameter (D,, D, ) for the spin configuration and
then adjust the region M according to the profile of the instantaneous VBS order to avoid cut-
ting the stronger bonds, as illustrated in Fig. 8. More details can be found in Appendix C [42].
All results below are obtained with this method.

Let us start from small 8. In Fig. 3, we show the fit of the corner correction s(9) for small
0(< 0.25) with s(8) = (fTJ)Zez. For the Hyjjayer and Hy,_;, Heisenberg models, we obtain
C;/(4m)? = 0.0120(2) and C;/(4m)? = 0.0116(2), respectively. These values are consistent
with C;/(4m)? = 0.01147 of the O(3) CFT from numerical bootstrap [53] within errorbars.
However, as shown in Fig. 3 (e) and (f), the same analysis for the DQC yields a smaller value
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Figure 3: The coefficient of the corner correction s(6) for small values of 8 with
system size L = 32,64,96,128 at the QCPs for Hyjjyer model (a), Hy,_;, model (c)

and H J—Qs model (e). The lines are the data fitting with s(9) = 0 4%2 02. (b), (d) and

(f) show the extrapolation of the obtained C;/(47)? as the system size L increases.
In case of (b) and (d), the extrapolated C;/(4m)? approach the theoretical value
0.011 for the O(3) CFT denoted by the green dots and dashe lines. In (f), C;/(4m)?
for DQC apparently extrapolates to a much smaller number (red square and dashed
line) compared with the O(3) value (the green dot and dashed line).

C;/(4m)? = 0.0088(2). A small C;, or equivalently a small DC conductivity o, suggests that
the theory is more strongly coupled (so the value deviates significantly from that of a free
boson).

Most interestingly, we find that the s(0) for DQC becomes negative for large 6 as shown in
Fig. 2 (f). We also note that s(6) become negative for large 0 as the system size increases up
to L = 128. Such negative values of s(6) in DQC are drastically different from the behavior
of s observed in all other QCPs investigated so far, including Ising [32], O(2) [33] and also
the two different realizations of the O(3) CFT in Fig. 2 (b) and (d). This list can be expanded
to include Rényi entanglement entropy as a disorder parameter of the replica symmetry, and
it is known that the corner correction s for Rényi entropies must be positive for all unitary
CFTs [51,52]. In fact, we can generalize the argument in [51] to show that s(6 = ) > 0
(essentially for any Z, symmetry disorder parameter, see Appendix D for details). Therefore
a negative s implies strong deviation of the model from unitary CFTs. This is intriguing as
measurements of local observables at DQC in the H;_,, model appear to exhibit conformal
invariance, at least for system sizes accessible to current numerical simulations. Thus our
observation of a negative s(7r) provides direct and unambiguous evidence for the breakdown
of a unitary CFT description.
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5 Discussions

Through large-scale QMC simulations and finite-size analyses, we determine the scaling be-
havior of the disorder operator for U(1)g symmetry at the DQCP in the J-Q3 model. Most
noticeably, the universal corner correction s of the DQC becomes negative, in sharp contradic-
tion to the positivity of s(7t) in any unitary relativistic conformal field theory. We also observe
that the obtained current central charge of DQC is smaller than the typical value of O(n) CFTs.

Our findings, in particularly the negative s, raise a number of significant questions about
the theory of DQC. One possible explanation for the negative s is that the observed regime of
the DQC is actually controlled by a non-unitary CFT, with a (complex) fixed point very close
to the physical parameter space. So within a large length scale conformal invariance can still
manifest. This possibility has been proposed theoretically in several recent works [6,15-18,
20], to explain unusual finite-size scaling behavior from previous numerical simulations [6,
7,15] and the tension between the numerically observed critical exponents with conformal
bootstrap bounds [16]. Our result points to a distinct aspect of this putative non-unitary fixed
point, that the universal correction s must be negative.

However, the scenario of complex fixed point implies that the fixed point should be located
close to the physical parameter space, in order to explain the large conformal window observed
numerically. As a result, it is reasonable to expect that the violation of unitarity in various
universal quantities should appear as small complex corrections, which manifest in scaling
violation. This is indeed the case in known solvable examples of weakly first-order transition
controlled by a complex CFT, such as the Q = 5 Potts model in (141)d where critical exponents
and central charge [54,55] acquire complex corrections at the actual fixed point. The critical
point is the self-dual point of the lattice model, so the disorder operator for the Z, symmetry is
related to the Z, Potts spin operators via Kramers-Wannier-type duality. Thus the expectation
value of the disorder operator decays as a power law with the length of the interval on which
the disorder operator is defined, analogous to the logarithmic corner correction in (2+1)d. For
Q = 5, the scaling dimension of the spin operator becomes complex: A, ~ 0.067+0.01i [55].
If one measures the disorder operator in the Q = 5 model, we expect that within the conformal
window, the decay is still mainly controlled by the real part of A, but with small drifts of
exponents . Therefore, within the conformal window the result is well-approximated by a
power law with positive exponent. Generalizing to (24+1)d, one would expect that s measured
from numerical simulations inside the conformal window should still be positive at a weakly
first-order transition controlled by a nearby complex CFT, which is not what we have seen.

In light of the situation, it is important to gain more systematic understanding of how
the complex fixed point affects the disorder operator and the corner correction s, especially
their scaling behavior. It is also worthwhile to consider alternative scenarios other than that
of a complex fixed point. One proposal is that a dangerously irrelevant operator changes the
scaling behavior [7,15]. How the behavior of the disorder operator is affected remains to
be studied. More recently, there emerges new evidence that shows the DQC is a multicritical
point [19]. More thorough investigations of scaling in such modified models are needed to
verify the theoretical [23] and numerical predictions [19] and to find better scenarios for the
strongly violaition of unitarity we have observed. It will be interesting for future studies to
explore other non-local observables, such as Rényi entropies, and consider other microscopic
realizations of DQC where dangerously irrelevant operators are absent [24,56]. From here,
more comprehensive studies of DQC are called for.
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A Fitting analysis
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Figure 4: (a) Disorder parameter |(X,,(6))| as a function of the perimeter [ = 4R—4
with system size L = 96 at the QCPs for Hyjj,ye model at 6 = 7. The difference in the
quality of the fit in terms of the reduced chi-square y2/DOF and (b) the normalized
fitting deviations A;(9)(1) = (X;n(1) — f1(2)(1))/ 8x,, 1) with 6, ;) being the error bar
of the X,,(1), reveal that Eq. (6) is the better choice.

In this appendix, we perform a fitting analysis and compare a purely exponential fit:
f1() = byexp(—a;1), (5)
and a fit with a power-law [* correction:
fo(l) = b exp (—a; I (6)

As shown in Fig. 4(a), we fit the data (from [,;, = 12) with two different functions
for system size L = 96 and 6 = m: the first one is a purely exponential fit, i.e., Eq. (5),
which gives b, = 0.815(2), a; = 0.0834(2), with the reduced chi-square y2/DOF ~ 96;
the second one is Eq. (6), which gives by = 0.750(1), a; = 0.0847(1), s = 0.0364(8), with

9
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22/DOF ~ 1.4. Although both functions can go through the data points, the different fitting
quality indicated by almost two order of magnitudes difference in the y2?/DOF clearly shows,
that our choice of the form in Eq. (6) is the right fitting form. In order to show more visibly
the difference in fitting quality, we also present in Fig. 4(b) the fitting deviations defined by
Aqy(D) = X (D) — f12)(D)/ 0%,y with 6, () being the error bar of the Xy, (1).

B Determination of the deconfined quantum
critical point

In this appendix we determine the location of the DQC of the J-Q; model using finite-size
scaling. From the scaling hypothesis we know that any dimensionless quantity O measured in
a finite-size system fulfills

0(q,L) = gl(g—g)L"", 171, 7)

with ¢, = [Q/(J + Q)]. the phase transition point in the thermodynamic limit, v the critical
exponent of correlation length and « the correction exponent which generally differs in dif-
ferent microscopic models. It is obvious that if «w = 0 the dimensionless quantity O obtained
from systems of different sizes are the same at q,., therefore all curves of O(q, L) as functions of
q for different sizes cross at one point, which is the critical point. However, the correction term
is not always absent and in general the curves do not actually cross at one point. Thus, we
can make use of all the crossings obtained from different curves and find g, at thermodynamic
limit with the following relation,

q*(L) = g.(00) +aL™>7 /7, (8)

where g*(L) stands for the crossing point of two curves from size L and L’. In our study of
the J-Q5; model ¢ = Q/(Q +J) and we measure spin stiffness p, and Binder ratios of the order
parameters for Néel (R,) and VBS (Ry) orders. The spin stiffness p, is calculated from the
winding number,

_ 1 2 2
Ps = ﬂ(wx +Wy), 9
which has the following scaling form:
ps =L f(qL'™). (10)

In J-Q5 model the dynamical exponent z = 1 and p,L is therefore dimensionless. As for the
Binder ratio,
(mg,) (D%

Timr T e (n

where mg, = LLZ Zx’y(—l)xﬂ’ Si’y is the staggered magnetization m, along the z (quantization)
axis, and D* = D? + D?, is the VBS order parameter with D, = %Zx,y(—l)xsx’y “Syt1,y
and D, defined analogously [57]. Both of those two ratios are dimensionless. We perform
QMC simulations on the J-Q3; model and determine the q dependence of the dimensionless
quantities p,L, R, and R, as shown in Fig. 5(a), (b) and (c). After that, we calculate all the
g*(L) as the crossing point of (L,2L) from three different quantities using system sizes from
L =8to L =128. All the crossings are depicted in Fig. 5(d), fitted by Eq. (8). From the fitting
results in these three different observables we can get the q.(o0) = 0.59864(5) which is the
value used in the main text.
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Figure 5: The ¢ = [Q/(J + Q)] dependence of JQ3; model for p,L (a), R, (b) and R,
(c) with L = 8,16,32,64,128 and 256. All the crossings of two sizes L and 2L for
psL, R, and R, are presented in (d). The curves are fitting function in Eq. (8) with
q. = 0.59862(5) for p,L, q. = 0.59863(5) for R, and q. = 0.59865(5) for R;.

C The choice of region M

In this appendix, we discuss how to choose the region M to obtain the correct scaling behavior
of {Xy;). As shown in the main text, for Hyjyer, Since there is no translation symmetry breaking
(explicit or spontaneous), the choice of the region is immaterial. However, the J; —J, case
is different because the alternating strenghs of Heisenberg couplings doubles the unit cell, as
shown in Fig. 6. If the region M is a R x R square (green shaded region in Fig. 6), M with even
or odd R cut very different types of bonds on the boundary.

(b) even-A (c) even-B
s TR RS =
s O Tkl L Wl
T - 0o — 050 - 00—
=R - _‘ o R ‘_ K - :_‘ ‘_
T T ; \--- \--R--\----\-‘ T E-\----\-;{-\----\ i T T
T B e S e S e A - =

Figure 6: Three types of region M: (a) region M with odd R(= 3), whose boundary
cuts one column of strong singlet bonds; (b) region M with even R(= 4) and cutting
two columns of strong singlet bonds; (c) region M with even R(= 4) and cutting no
strong singlet bonds.

More concretely, when R is odd (e.g. R = 3 in Fig. 6 (a)), the boundary of M inevitably
cuts one column of J, bonds. When R is even, as shown in Fig. 6 (b) and (c), depending on the
exact location of M, the boundary can cut two columns of J, bonds (as in (b)) or avoid cutting
J, bonds at all (as in (c)). Numerically, we find that the three choices of M yield distinct
values and scaling behavior of the disorder parameter (X,,;). Only for those regions cutting
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Figure 7: |(X);(6))| for the H; _; model, all obtained with L = 96: (a) the disorder
parameter and (b) its subleading term |(X,,(0))|s,» as functions of [ at 8 = 7/2,
for the three types of the region M. (c) s(6) for the three types of the region M,
respectively.

no J, bonds, finite-size scaling analysis converges to the expected result for the (24+1)d O(3)
CFT. The issue can be clearly seen from the representative data in Fig. 7. Fig. 7 (a) shows the
|{Xm(0))| at 6 = 7t/2 for L = 96 at the QCP of H, _; . Disorder parameters corresponding to
three different boundaries as illustrated in Fig. 6 (a), (b) and (c), denoted as odd, even-A and
even-B in the figure all show different perimeter dependence. Even-A type boundaries show
the largest linear coefficient in the perimeter contribution, which makes sense as this type of
boundary cuts the most J, bonds. While the perimeter law is non-universal, the dependence
on the details of the boundary also manifests in the corner correction, at least in our finite-
size analysis. In order to show obviously the subleading term from corner correction, we also
extract the subleading term of the disorder parameter |X;;|.,, = |1 Xu|/[boexp(—a;1)] =%, as
shown in Fig. 7 (b). The problem is clearly illustrated in Fig. 7 (c), where s(8) extracted from
the disorder parameters computed using the three types of boundaries are shown for system
size L = 96. Here one sees that s for even-A boundary becomes negative, which violates the
positivity constraint at & = 1t and is obviously unphysical. We believe that the relatively large
perimeter contribution for even-A boundary data strongly affects the precision of the fitting,
since the corner contribution is subleading to the perimeter term. For the other two types of
boundaries (odd and even-B), now both give positive s(8), but the 6 dependence is still quite
different. We find it is the even-B type regions that give the correct value of the current central
charge of the O(3) CFT, from fitting s(0) ~ (4CTJ)2 62. This analysis suggests that to mitigate the
finite-size error in the data fitting, one should construct disorder operators on regions which
minimize the perimeter contribution. In particular, when there is lattice symmetry breaking
induced by bond or plaquette order, the strong bonds should be avoided.

In case of the DQC, although H;_g, is translation-invariant, it is already well-known that
finite-size analysis of correlations can be tricky due to the domains of VBS formed sponta-
nenously when Q > Q.. For the disorder operator, boundary dependence similar to those
observed in the J; —J, model also shows up in the naive measurements of (X,;) at DQC. To
minimize the effect of cutting strong bonds due to residual VBS order, we take a choice of
region M with “ even-B ” type bounary: firstly, we calculate the two components of the VBS
order (D, D)) with D, = % Zx’y(—l)x S,y *Sx+1,y and D, defined analogously for each given
spin configuration (one microstate or one sample in the SSE QMC) at the S, basis, and then
adjust the region M according to the profile of the instantaneous VBS order, as illustrated in
Fig. 8. For example, if D, > 0, and D, >0,ie, the first quadrant, we will choose the region
M as shown in Fig. 8(b)-I. The similar choice works for the case of the other three quadrants.
With such a setup, we then measure the (X,;) with “ even-B ” type boundary. A comparison
of measurements with three different boundaries is given in Fig. 9. We find that this method
achieves the most robust convergence of (X;,) at DQC, as shown in the main text.

In order to show how our results are sensitive to the parameter ¢ = Q/(Q + J), we also
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Figure 8: The choice of region M with “ even-B ” type bounary: (a) The four special
patterns of VBS order in the plane of order parameter (D, D, ). (b) Porper region
M with even R(= 4) in each quadrant, whose boundary cuts least column of singlet

bonds.
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Figure 9: [(X),(0))| for the H;_q, model at DQGC, all with L = 96: (a) (b) the disorder
parameter and (c) its subleading term |(X,;(0))|s,p as functions of [ for 8 = 7/2 for
the three types of the region M, respectively. (d) s(6) for the three types of the region
M, respectively. It is interesting to note here that all three different types of M lead
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calculate the disorder operator for different g in the vicinity of DQC and get the coefficient of
the logarithmic corner correction, as shown in Fig. 10. We can find different scaling behavior
in both symmetry-breaking phases and at the DQC manifest, and therefore, our results at
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q. = 0.59864 indeed reflect the critical properties of the system.
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Figure 10: (a) The s(60) as functions of 6 with system size L = 96 and (b) the obtained
C;/(4m)? as a function of 1/L for different q in the vicinity of DQC. The different
scaling behaviors in the two symmetry-breaking phases and at the DQC manifest.
(c) The s(7) as functions of 1/L for q. = 0.59864.

D Positivity constraint on Z, disorder parameter

In [51] it was shown that in a general unitary quantum field theory (QFT), Rényi entropies
satisfy the following inequality:
det({e_("_l)S“(M"UMf)}. , ) >0. (12)
i,j=1,....m
Here M;,i = 1,...,m is a collection of (codimension-1) regions in the half space of positive
Euclidean time, and M ; is the Euclidean time-reflected regions corresponding to M;.

We now prove a similar inequality for Z, disorder operator. Suppose that U, is a Z, sym-
metry in the QFT (i.e. ng = 1 and therefore U, is hermitian), which is represented by a
topological surface operator in the Euclidean spacetime. The disorder parameter for a region
M is then given by the (suitably normalized) path integral with an insertion of an open surface
operator X, which is just U, restricted on M. Following [51], we split the path integral for
positive and negative Euclidean time. Consider a family of M; in the positive Euclidean time
half-space, and write ¢* for fields restricted to positive and negative Euclidean time. We have

M;UM;
D A X ym) =N inxjf D¢ e~ SI#]
i,j i,j

M;
=N"1 f Depo(x) (Z Aif

i ¢ (0,x)=¢o(x)

M;
X (Z Aj‘J D¢_e_$[¢_]) .
j ¢~ (0,x)=¢o(x)

Here the subscript M indicates insertions of the corresponding open surface operators in the
path integral. Equivalently, one may view the insertion as changing the boundary condition of
the fields along the surface M. The normalization factor ' = f D¢ eS®] is just the path in-
tegral without any open surface inserted. ¢ is the common value of ¢* and ¢~ at Euclidean
time T = 0. If the action has the time-reflection symmetry S[¢(7,x)] = S[¢(—7,%x)]*, to-
gether with the hermiticity of the inserted operator, a change of variables ¢ (7,x) — ¢ (—7,x)

D¢+ e‘SW]) (13)
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Figure 11: (a) Regions A and A. A is the Euclidean time-reflected image of A with
respect to T = 0. The two regions touch each other at the T = 0 plane, and we take
the limit of no separation. Together AU A has two sharp corners. (b) Regions B and
B. (0 Regions A and B. AU B has no corners.

in the path integral proves that the two terms in the brackets are complex conjugate of each
other, and the result is positive. Since A;’s are arbitrary complex numbers, the condition is
equivalent to

det({(XMI_U,\—@_)}I_J:1 m) >0. (14)

.....

In the following we will write (X;;) = e=5™) (S not to be confused with the entropy or the
action S in the path integral). In a CFT in (2+1)d, S(M) should take the following form:

S(M)=a1|aM|—s1nlﬁ+a0+o(£). (15)
1) Ly
Here d M denotes the boundary of M, and |0 M| is the perimeter of the region. 1, is the linear
size of M and 6 is a short-distance cut-off. s is the sum of universal constants for each sharp
corner of the region.

When m = 2, denote the two regions by A and B, the inequality reduces to

2S(AUB) > S(AUA) +S(BUB). (16)

Now we choose the two regions A and B as shown in Fig. 11. The region AUA has two sharp
corners with the same opening angles a, while B U B has two corners with opening angles
21 — a. It can be easily checked that

|0(AUA| +|8(BUB)| =2|8(AUB)|, 17

where |d(V)| is the perimeter of the region V. Thus the perimeter terms in S all cancel out.
We then note that AU B has a smooth boundary with no corners. Notice that A and B can be
considered to have the same linear size [. So in order for the inequality to hold for arbitrary
linear size of the region, generally we must have

[ [
—2s(a) lng —23(2n—a)1n§ + const. < 0. (18)
It is not difficult to show that s(a) = s(2w — a), therefore in order to satisfy Eq. (18) for

arbitrarily large [, s(a) must be positive.
A slight generalization of the argument, with B having opening angle f3 instead of 27— «,

2 )

s(a) +s(B) = 25( (19
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Together with s(a = m) = 0 we can see that s(a) is a non-negative, decreasing and convex
function of a for 0 < a < 7. Similar conclusions for Rényi entropies were obtained in [52].
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