
VAE based Domain Adaptation for Cloud Property Retrieval from
Multi-satellite Data

Xin Huang
Department of Information Systems, University of

Maryland, Baltimore County
Baltimore, MD, USA
xinh1@umbc.edu

Chenxi Wang
Goddard Space Flight Center, National Aeronautics and

Space Administration
Greenbelt, MD, USA

chenxi.wang@nasa.gov

Sanjay Purushotham
Department of Information Systems, University of

Maryland, Baltimore County
Baltimore, MD, USA
psanjay@umbc.edu

Jianwu Wang
Department of Information Systems, University of

Maryland, Baltimore County
Baltimore, MD, USA
jianwu@umbc.edu

ABSTRACT
Domain adaptation techniques using deep neural networks have
beenmainly used to solve the distribution drifting problem in homo-
geneous domains. The data in the homogeneous domains usually
share similar feature spaces and have the same dimensionalities.
Nevertheless, real world applications often deal with heterogeneous
domains that come from completely different feature spaces with
different dimensionalities. In our remote sensing application, two
remote sensor datasets collected by active and passive sensors re-
spectively are heterogeneous. In particular, CALIOP actively detects
hundreds of features within an atmospheric column. In this study,
only 25 features that are sensitive to cloud phase are used and fully
labeled. VIIRS is an imaging radiometer, which collects radiometric
measurements of the surface and atmosphere in the visible and in-
frared bands. Recent study has been shown that passive sensors may
have difficulties in prediction cloud/aerosol types in complicated
atmospheres (e.g., overlapping cloud and aerosol layers, cloud over
snow/ice surface, etc.). To overcome the challenging of the cloud
property retrieval in passive sensor, We develop a novel VAE based
approach to learn domain invariant representation that capture
the spatial pattern from multiple satellite remote sensing data, and
further build a domain invariant cloud property retrieval method to
accurately classify different cloud types (labels) in the passive sens-
ing dataset. We further exploit the weight based alignment method
on the label space to learn a powerful domain adaptation technique
that is pertinent to the remote sensing application. Experiments
demonstrate our method outperforms other state-of-the-art ML
methods and achieves higher accuracy in cloud property retrieval
in the passive satellite dataset.
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1 INTRODUCTION
Clouds are a critical component of the Earth’s climate, having sig-
nificant impacts on Earth’s energy, hydrological and biological
cycles [5]. In particular, clouds constantly cover about two-thirds
of Earth’s surface and they have a key role in modulating global ra-
diative energy distribution. Yet, how clouds will respond to climate
change is still uncertain and debated. To understand the radiative
effects of clouds in the climate system and how they interact and
evolve with the environments, we need to know a variety of cloud
properties. Some can be classified as bulk cloud properties, includ-
ing cloud mask (e.g., a satellite pixel is cloudy or clear), cloud verti-
cal distribution (e.g., cloud top height), and cloud thermodynamic
phase (e.g., liquid or ice). Others are often classified as microphysi-
cal and optical properties, such as cloud droplet (or cloud ice crystal
for ice cloud) effective radius (CER), and cloud optical thickness
(COT). Our work focuses on the retrieval of cloud mask and cloud
thermodynamic phases from the satellite remote sensing data.

Satellite-based remote sensing is the only means to monitor the
abovementioned cloud properties on a regional to global scale. Thus,
improvements in cloud observations are a major focus of NASA’s
Earth science endeavor. Numerous satellite sensors have been devel-
oped to observe and retrieve cloud properties. They can be largely
divided into two groups according to the origin of the signal: 1)
active sensors such as spaceborne lidar (e.g., CALIOP) and radar
(e.g., CloudSat) that measure signals transmitted by the sensor that
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were reflected, refracted or scattered by the Earth’s surface or the at-
mospheric components; and 2) passive radiometers such as MODIS,
VIIRS and ABI that measure reflected solar radiation and/or ther-
mal emission from the Earth-atmosphere system. For cloud remote
sensing, the advantages of active sensors include their capability
of resolving the vertical distribution of cloud layer and better per-
formance during nighttime and polar region in comparison with
passive sensors. On the other hand, passive sensors generally have
order-of-magnitude wider swaths and thereby substantially better
spatial coverage.

Over the past few decades, a variety of cloud remote sensing
algorithms have been developed based on the physical principles
and the radiative transfer of light scattering and absorption within
cloud fields (see review by Ackerman et al. [2]). Although the under-
lying physics is largely known, developing a flexible and efficient
physics-based cloud property retrieval algorithm is still highly chal-
lenging for a number of reasons. First, the algorithms must account
for the dramatic variability of the clouds (i.e., low vs. high clouds,
liquid- vs. ice-clouds, overcast vs. broken clouds). Secondly, they
must take into account the vast different environments, from trop-
ical ocean to Sahara Desert to Arctic sea ice, in which the clouds
are observed. Finally, an operational algorithm must be computa-
tionally efficient to satisfy users’ needs (e.g., hurricane tracking).
Traditionally, many physically-based algorithms relied heavily on
complex decision trees to deal with the variability of clouds and
their enjoinments, and greatly simplify the radiative transfer (RT)
process (e.g., assuming RT is only 1-D instead of 3-D) to reduce com-
putation cost. Thus, such algorithms suffer from various retrieval
artifacts. For example, threshold-based, complex decision trees are
hard to control and often lead to unphysical abrupt changes of
cloud properties within small-scale. Similarly, the simplification of
RT process in the retrieval can lead to the so-called 3-D effects and
thereby large retrieval errors.

Machine learning algorithms such as Random Forests (RF) have
shown an improvement over physically-based algorithms, however,
they are ill-suited to learn from multiple active and passive sensors.
For example, RF can be either developed for CALIPSO or VIIRS data,
but it cannot jointly learn from both these sensors since there is a
mismatch of features (variables) among the sensors. RF and other
ML algorithms do not generalize to new combinations of the learned
features beyond those seen during the training process. Moreover,
many ML algorithms generally cannot do joint label predictions
if the labels are missing for one of these sensors during training
time. To address these issues, we will develop deep learning (DL)
models which can automatically learn feature representations from
multiple sensors with different features/variables in an end-to-end
fashion. Our DL models will be able to predict labels for all sensors
even when the labels are absent for some sensors at training time
by transferring knowledge from one set of sensors (e.g. CALIPSO)
to other sensors (e.g. VIIRS).

Active and passive satellite sensors generally measure different
variables due to different instruments or applications they were
designed for. We can use all these variables frommultiple sensors to
learn a common representation and can capture any existing com-
mon predictive patterns that might aid in inferring knowledge from
multiple sensors or transferring knowledge from one sensor to an-
other sensor. The transfer of knowledge or patterns across sensors

(here, sensors correspond to domains) is known as domain adapta-
tion. Domain adaptation has been thoroughly studied in computer
vision [6, 8] and natural language processing (NLP) applications
[3, 7]. Recently, the deep learning paradigm has become popular in
domain adaptation [17], [18] due to its ability to learn rich, flexible,
non-linear domain-invariant representations. However, very few
of these approaches have been adapted for remote sensing appli-
cations. Our previous study [12] proposed an domain adaptation
based cloud type Detection using Active and Passive Satellite Data
(DAMA), which assumes the input satellite pixels are independent
and identically distributed (IID). It lacks of the capacity to capture
the spatial correlation among the pixels that are generated by the
orbiting satellites and have strong spatial relationship.

In this work, we further advance the domain adaptation tech-
niques in multi-satellite remote sensing data by proposing a new
Variational Autoencoder (VAE) based domain adaptation method
which can capture the spatial correlation in the convolutional neu-
ral network (CNN) based encoder network. In particular, VAE is
generative deep learning model that utilizes neural layers and de-
veloped for generating a low-dimension latent space that captures
a good representation of the input data. VAE is able to work with
highly complex data with perhaps and has a better chance of learn-
ing the internal structure and storing it in the hidden nodes by
finding hidden features. In our remote sensing data, the collocated
data generated from the multiple satellites are sparser compared
to the original data that has full coverage in the target domain
(e.g, VIIRS), therefore, using a generative model such as VAE can
learn the distribution in the latent space that can capture hidden
structures and can be used to generate more representative samples
of the original data. Moreover, the CNN based encoder network
learns the spatial correlations since the collocated satellite data
inherently contains the spatial information of the orbiting track,
that is, neighboring pixels share more similar data distributions or
patterns if they are closer than pixels that is further away on the
collocated orbiting track.

Our contributions can be summarized as follows. 1) We develop a
novel VAE based domain adaptation method to learn domain invari-
ant representation that capture the spatial pattern from multiple
satellite remote sensing data, and further build a domain invari-
ant cloud property retrieval method to accurately classify different
cloud types (labels) in the passive sensing dataset. 2) We exploit
the domain alignment methods on the feature domain and label do-
main respectively to learn a powerful domain adaptation technique
that is pertinent to the remote sensing application. 3) Experiments
demonstrate our method outperforms other state-of-the-art ML
methods and achieves higher accuracy in cloud property retrieval
in the passive satellite dataset.

2 RELATEDWORK
Machine Learning (ML) and Deep Learning (DL) techniques may
overcome the challenges facing physically-based algorithms. Since
ML algorithms are written to autonomously find information (e.g.,
patterns of spectral, spatial, and/or time series), they can learn
hidden signatures of different types of objects. ML algorithms are
portable and can be easily applied to active and/or passive sensor
measurements. Among all the ML algorithms, deep learning (DL)
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[15] is a promising technique, already having revolutionized many
fields such as computer vision [9], natural language processing
[16], and is increasingly being used in remote sensing applications
[21]. DL models can be automatically trained “end-to-end” and are
conducive to learning representations frommultiple input variables
coming from different sensors.

Deep Learning models (DL) (also called Deep Neural Networks
or Deep models) have become a successful approach for automated
extraction of complex data representations for end- to-end train-
ing. DL models consist of a layered, hierarchical architectures of
neurons for learning and representing data. The main advantage of
DL approach is its ability to automatically learn good feature repre-
sentations from raw data, and thus significantly reducing the effort
of hand- crafted feature engineering. In addition, DL models learn
distributed representations of data which enables generalization to
new combinations of the values of learned features beyond those
seen during the training process. Empirical studies have demon-
strated that DL models often yield better machine learning results,
e.g., improved classification modeling, and the invariant property of
data representations [15]. Deep Learning models have yielded out-
standing results in several applications, including computer vision
[9], and natural language processing [16]. Recently, machine learn-
ing researchers [17] have shown that deep learning approaches can
achieve state-of-art performance in analyzing time-series datasets.

Autoencoders are a specific type of feedforward neural network
used to learn efficient representation for a set of data in an unsuper-
vised manner [14]. It consists of three components: encoder, code
and decoder, and the input to the neural network is the same as the
output. Autoencoders compress the input into a lower-dimensional
code through an encoder, and then reconstruct the output from this
representation through a decoder. The code is a compact summary
of the input, also called the latent-space representation. Variational
Autoencoder (VAE) is a variant of Autoencoders as generative mod-
els. VAE learns the parameters of the probability distribution mod-
eling the input data, instead of learning an arbitrary function in
the case of vanilla autoencoders [13]. By sampling points from this
distribution we can also use the VAE as a generative model.

In this proposal, we will develop deep domain adaptation models
based on variational auto encoder (VAE) and Deep Convolutional
Neural Networks (CNN) [15], to address the challenges of jointly
modeling multi-sensor data. In particular, we propose to generate
highly accurate labels for passive satellite remote sensing of cloud
properties by combining the following advances/opportunities: 1)
complementary retrievals collected from collocated active and pas-
sive sensors, 2) advances in deep learning to enable knowledge
transferring among multiple domains/sensors with domain adapta-
tion approach. Our end to end domain adaptation framework will
be trained with multi-satellite sensor data (input variables) and
with pixel Generated sensors (e.g., CALIOP), and it can predict the
labels for the other sensor (e.g., VIIRS).

3 SPATIAL DATA COLLOCATION FOR
PASSIVE AND ACTIVE SENSORS

Collocation of measurements from two satellite sensors involves
pairing measurements from two sensors that observe the same
location quasi-simultaneously but with different spatial resolutions

and at different angles. Most of the current collocation schemes are
carried out on the Earth surface and thus face three challenges. First,
it is hard to deal with off-nadir field of view distortion. Second, the
collocation involves time consuming search process. Third, parallax
cloud displacement causes large errors for off-nadir pixels.

3.1 Data collocation based on spatial
coordinates

In this paper, we adapted the proposed method [10] into our remote
sensing dataset to generate the collocation data for the passive and
active sensor data. The method is developed to rapidly collocate
data from passive radiometers (e.g., MODIS and VIIRS) and/or ac-
tive sensors at moderate or fine spatial resolutions (< 5km). This
algorithm has three notable features. First, by selecting a master
pixel from a passive radiometer and subordinate pixels from an
active sensor (or another passive sensor), the algorithm derives how
the master pixel is transected by subordinate pixels. This algorithm
then automatically provides the indices of the subordinate pixels
that are located within the master pixel. Second, for collocations of
two instruments that have different orbits (e.g., VIIRS and CALIOP),
the observation time intervals and pixel distances will be reported
for all collocated pixels. Users can easily define a threshold in terms
of time interval and/or pixel distance to balance the number of
samples and data quality. Third, although active sensors have quasi-
nadir viewing geometries, passive radiometers have a wider range
of view angles. To deal with the well-known parallax effect, in this
algorithm, a parallax effect removal module is designed to mitigate
this effect by using lidar detected cloud-top height.

3.2 Active and Passive Satellite Data
The Visible Infrared Imaging Radiometer Suite (VIIRS) [1] is a pas-
sive instrument onboard polar orbiting satellites Suomi-NPP and
JPSS-1, and will be JPSS-2 after 2022. VIIRS collects visible and
infrared imagery and provides less than 1-km spatial resolution
observations (native 750m for VIIRS moderate spatial resolutions
bands) and wide spatial coverage. Passive sensors observe column-
integrated radiation. Accuracy of cloud and/or other atmospheric
particles detections could significantly decrease if the whole column
is highly heterogeneous (e.g., multi-layered clouds with different
thermodynamic phases). In contrast to passive satellite sensors
that observe column-integrated, active sensors are more reliable in
recognizing objects in different layers because of the high vertical
resolutions. For example, the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) onboard CALIPSO satellite [20] operates
at wavelengths of 532nm and 1064nm, measuring lidar backscat-
tering profiles at a 30m vertical and 333 m along-track resolution.
CALIOP also measures the perpendicular and parallel signals at
532nm, along with the depolarization ratio at 532nm that is fre-
quently used in cloud phase discrimination algorithms because of
its strong particle shape dependence [20]. Although active sensors
are very sensitive to cloud and aerosol layers, they have limited
spatial coverage. By taking into account these strengths and weak-
nesses of both CALIOP and VIIRS, we intend to generate reliable
label datasets based on CALIOP Level-2 (version 4) product. The
VIIRS Level-1B observations and solar/satellite geometries, and
the CALIOP and VIIRS Level-2 cloud mask and thermodynamic
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phase products will be used for training, validation, testing, and
comparison.

Figure 1 shows a coverage difference using a full day data collec-
tion using NASA Earth Data World View website. VIIRS has nearly
full coverage of the Earth while CALIOP only covers yellow line
area which is much smaller than the coverage of VIIRS.

Figure 1: An example plot of the one-day daytime VIIRS
(global coverage) and CALIPSO (Red lines) orbit tracks
(March 16 2010). Credits: NASA

4 VAE BASED DOMAIN ADAPTATION FOR
CLOUD PROPERTY RETRIEVAL

In heterogeneous domain adaptation, the feature spaces between
the source and target domains are nonequivalent and the dimen-
sions may also generally differs [4]. In our satellite remote sensing
application, the source (active) domain data, contains sensing data
with 25 attributes collected by the CALIOP active spaceborne Lidar
sensor while the target (passive) domain data contains another
group of sensing data with 20 attributes collected by the VIIRS
passive spectroradiometer sensor. The two remote sensing datasets
have completely different feature spaces due to the nature of the
data they collect, CALIOP data has better separations for the cloud
types as the data are more evenly distributed compared to VIIRS in
which the majority data are mixed together in the distribution.

In this paper, we propose a VAE based deep domain adaptation
technique that captures the spatial patterns and performs hetero-
geneous domain alignment, and successfully apply it to the cloud
property retrieval in our multi-satellite remote sensing data. The
passive sensor and active remote sensing raises more challenges as
the two datasets are high dimensional, globally covered and hetero-
geneous. In training phase, there are two branches of inputs that
are source domain data features (CALIOP) and target domain data
features (VIIRS) that have different dimensionalities and heteroge-
neous feature spaces. As shown in Figure 2, our model introduces
a heterogeneous domain mapping to transform the feature space
of target domain into the feature space of source domain, and uses
feature extraction layer to train the shared representative features
between the source and target domain. After the domain maping
stage, 1d-CNN is applied to the pixel of interest and its neighboring

pixels (1X5) to extract the features with spatial information from its
neighbors. It then go through a VAE encoder-decoder on the source
branch and target branch, respectively, to generate the latent space
that captures hidden structure. Then, a maximum mean discrep-
ancy (MMD) based domain alignment is also added to the samples
generated from the latent spaces from the source and target domain.
By incorporating the domain alignment loss and classification loss
in training the domain adaptation network, we find the network
can maximize the classification accuracy on the target domain by
training this end to end deep domain adaptation neural network.
In the testing phase, only VIIRS (target domain) data is fed into the
deep neural network by going through the deep domain mapping
layer and VAE based feature extraction layer. The trained classifier
can then be applied to classify the output of the feature extraction
layer as the domain invariant feature representation has been gen-
erated from the flow. Figure 2 demonstrates our VAE based deep
domain adaptation which will be further explained in detail in the
rest of the section.

4.1 Deep Domain Mapping (DDM)
To adapt to the completely different feature spaces, i.e., the het-
erogeneity of the source and target domain, we introduce a deep
learning based approach to learn a transformation to map the target
feature space into the source feature space. It equalizes the number
of features in source and target domains, and also transforms both
domains into the same feature space.

In our remote sensing dataset, the target domain (VIIRS) has
wider spatial coverage but with no label information. The source
domain (CALIOP) has better representation for cloud types and is
fully labeled, so mapping the target domain to source domain can
preserve the discriminating power of the source domain and can
also transfer it into the down-streaming learner.

We design a deep neural network to perform the deep domain
mapping (DDM) between the source and target domain. The input
of the DDM network is the target domain data and the output of the
network is the transformed target domain data in the source domain
feature space. Because the source domain data and target domain
data are collocated remote sensing data with the same longitude
and latitude coordinates, mean squared error (MSE) loss function is
used to measure the error of the DDM network. Specifically, given
source domain training examples 𝐷𝑠 = {𝑥𝑖 }, 𝑥 ∈ 𝑅

𝑑𝑠
𝑠 , 𝑖 = 1, ..., 𝑛𝑠

and unlabeled target data set 𝐷𝑡 = {𝑢𝑖 }, 𝑢 ∈ 𝑅
𝑑𝑡
𝑡 , 𝑖 = 1, ..., 𝑛𝑡 , with

𝑑𝑠 ≠ 𝑑𝑡 and 𝑅
𝑑𝑠
𝑠 ≠ 𝑅

𝑑𝑡
𝑡 . Because the source domain and target

domain are collocated data so we have 𝑛𝑠 = 𝑛𝑡 . The DDM is learnt
to transform the target domain into source domain feature space
by minimizing 𝑙2 loss function:

𝑙2 =
1
𝑛𝑡

𝑛𝑡∑︁
(𝑖=1)

(𝐷𝐷𝑀 (𝑢𝑖 ) − 𝑥𝑖 )2 (1)

By minimizing the 𝑙2 error we aim to map the features of the
target domain into the feature space of the source domain that
has better feature representation. The 𝑙2 loss is co-trained with the
correlation alignment and classifier losses in an end to end fashion
by retaining the computation graph while training the deep domain
mapping.
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Figure 2: Network architecture of the proposed VAE based domain adaptation. For each domain, we construct a customized
VAE model, which contains an encoder to extract latent features, a decoder for input data reconstruction, and a classifier for
cloud property retrieval. The domain discrepancy between the source domain and target domain is minimized by a domain
alignment technique (MMD).

Our multiple domain experiments in Table 1 show DDM can
significantly improve the classification accuracy, demonstrate that
domain adaptation and correlation alignment (to be introduced in
next section) work well on the multiple domain data from the same
feature space. The proposed heterogeneous deep domain mapping
network is also generic and flexible. It can be plugged into other
domain adaptation methods and used in areas other than climate
data analytic.

4.2 Spatial feature representation learning
The active and passive datasets (CALIOP and VIIRS) used in our
application are collocated on the CALIOP orbiting track as shown
in Figure 1, which implies the spatial dependency among the pixels
that are collected in the dataset. To learn the feature representation
with spatial correlation, we use 1D-CNNs on the source branch
and target branch after the data mapping subnetwork. CNN is a
variant of artificial neural network (ANN) that has been successfully
applied to visual imagery analysis and computer vision. By using
smaller and simpler patterns embossed in the filters, CNN exploits
the hierarchical pattern in data and assemble patterns of increasing
complexity. In particular, the input to the 1d-CNN is a tensor with
a shape (𝑁,𝐶𝑖𝑛, 𝐿𝑖𝑛). After passing through a convolutional layer,
the input sequence becomes abstracted to a feature map, also called
an activation map, with shape: (𝑁,𝐶𝑜𝑢𝑡 , 𝐿𝑜𝑢𝑡 ), 𝑁 is a batch size,
𝐶 denotes a number of channels, 𝐿 is a length of data sequence.
Convolution layer extracts the significant features from the image
with a spatial kernel with a smaller size 𝑘 . Pooling layer is also

supplied to extracts the dominant features from the convoluted
feature map. In this study, 𝐿𝑖𝑛 is set to 5 with a small filer size 𝑘 = 3,
and max pooling is used to return the maximum value from the
data sequence covered by the filter.

4.3 VAE based domain adaptation
Figure 2 shows the main modules of the proposed VAE based do-
main adaptation, which consists of three components, i.e., (1) the
customized VAE for source domain, (2) the customized VAE for tar-
get domain, and (3) the module for domain alignment. The source
domain VAE and target domain VAE are composed of an encoder for
feature extraction, a decoder for data reconstruction, and a classifier
for cloud property retrieval, respectively.

4.3.1 Latent space learning . The encoder maps the input data
into a latent feature space, and approximates the posterior prob-
ability by a parameterized model. In VAE, the sample 𝑃𝜃 (𝑧) can
be generated from the latent space 𝑧. Then it can get the recon-
struction given 𝑧 as 𝑃𝜽 (x|z), 𝜽 is the learned parameter. The goal
is to maximize the log-likelihood of the data, which is composed
of a sum over the marginal likelihoods of individual datapoints,
log 𝑝𝜽 (x(𝑖) , ..., x(𝑁 ) ) = ∑𝑁

𝑖=1 log𝑝𝜽 (x(𝑖) ), which can be rewritten
as

log𝑝𝜽 (x(𝑖) ) = 𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) ) | |𝑝𝜽 (z|x(𝑖) )) + L(𝜽 , 𝝓; x(𝑖) ).
The first RHS term is the KL divergence of the approximate

from the true posterior. KL-divergence is non-negative, and the
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second RHS term L(𝜽 , 𝝓; x(𝑖) ) is the (variational) lower bound on
the marginal likelihood of datapoint 𝑖 that can be written as:

log 𝑝𝜃 (x(𝑖) ) ≥ L(𝜽 , 𝝓; x(𝑖) ) = E𝑞𝜙 (z |x) [− log𝑞𝜙 (z|x)+log 𝑝𝜽 (x, z)]

And it can also be written as:

L(𝜽 , 𝝓; x(𝑖) ) = −𝐷𝐾𝐿 (𝑞𝜙 (z|x(𝑖) ) | |𝑝𝜽 (z))+E𝑞𝜙 (z |x(𝑖 ) ) [log𝑝𝜽 (x
(𝑖) |z)]

The goal is to maximize the variational lower bound by optimiz-
ing the parameters 𝜃 and 𝜙 of the neural network. In particular, we
need to minimize the KL divergence between the estimated latent
vector and the true latent vector, which can be simplified as 𝑙𝐾𝐿
; and maximize the expectation of the reconstructed data points
sampled from the latent vector, which can be represented as 𝐿𝑅 . We
can rewrite the final VAE loss we need to optimize as:

𝑙𝑉𝐴𝐸 = 𝑙𝐾𝐿 + 𝑙𝑅
At the training stage, we sample the latent features from the

posterior distribution, and feed them into the subsequent networks
of the classifier and decoder. The classifier is composed of several
fully connected layers that outputs the probability of cloud property
category (clear, liquid cloud, ice cloud, mixed cloud) for each pixel,
and the decoder is used to reconstructs the input data. Our VAE
based domain adaptation model consists of two networks, one is
the VAE network for the source domain (CALIOP) and the other
is also a VAE network but for target domain (VIIRS). So our VAE
losses that our model optimizes is:

𝑙𝑠
𝑉𝐴𝐸

= 𝑙𝑠
𝐾𝐿

+ 𝑙𝑠
𝑅
and 𝑙𝑡

𝑉𝐴𝐸
= 𝑙𝑡
𝐾𝐿

+ 𝑙𝑡
𝑅

4.3.2 MMD based feature alignment. Although using VAE can dis-
cover hidden features of the given input data, there is significant
distribution discrepancy between the source and the target domain
that makes it difficult to extract domain-invariant features. We
introduce an domain alignment module to minimize the discrep-
ancy between the source and target domains and help develop a
domain invariant classifier that can be robust in the target domain.
In particular, we add a feature adaptation layer to the auto encoder
pairs of the source and target domain to measure the domain dis-
crepancy loss. We used the maximum mean discrepancy (MMD)
[4], an effective non-parametric empirical estimation method, as
the domain distance metric between the source domain and target
domain adaptation layer. The idea is to convert two sets of source
and target domain features to a common reproducing kernel Hilbert
space (RKHS), so that representing distances between distributions
as distances between kernel embedding of distributions.

Specifically, let 𝑋 = {𝑥1, · · · , 𝑥𝑛1 } and 𝑌 = {𝑦1, · · · , 𝑦𝑛2 } be
random variable sets from two distributions P andQ. The empirical
estimate of the distance MMD between P and Q is

MMD(X,Y) = | | 1
𝑛1

𝑛1∑︁
𝑖=1

𝜙 (𝑥𝑖 ) −
1
𝑛2

𝑛2∑︁
𝑖=1

𝜙 (𝑦𝑖 ) | |H,

where H is a universal RKHS, | | ∗ | |H is RKHS norm, and 𝜙 : 𝑋 →
H . Then the distance between distributions of two samples can
be estimated by the distances between the means of the samples
mapped into a RKHS.

Source domain data and target domain data go through the
encoder layers 𝐸𝑠 and 𝐸𝑠 of VAE and generate the hidden features

represented as 𝐸 (𝑋𝑠 ) and 𝐸 (𝑋𝑡 ). The domain alignment loss to be
optimized can be defined as:

𝑙𝑚𝑚𝑑 = 𝑀𝑀𝐷 (𝐸𝑠 (𝑋𝑠 ), 𝐸𝑡 (𝑋𝑡 ))

4.3.3 Label space alignment. With learned latent feature vectors
from the VAEs, we also add two sets of fully connected feature
layers after the source domain and target domain encoders to build
a source classifier 𝐶𝑠 (with cross entropy loss 𝑙𝑠

𝐶
for source labels)

and a target classifier𝐶𝑡 (with cross entropy loss 𝑙𝑡𝐶 for target labels),
respectively. The fully connected feature layers from the source
domain share the weights with the fully connected feature layers
of the target domain, so that the learnt classifier can be domain
invariant.

In our remote sensing data, the cloud properties the classifier
is predicting are Clear Sky, Liquid Cloud, Ice Cloud and Mixed
Cloud. The labels of source domain (CALIOP) data are accurate and
considered as ground truth of the cloud labels, while the labels of
the target domain (VIIRS) is noisy/inaccurate. The VIIRS satellite
product contains only three cloud types (Clear Sky, Liquid Cloud,
Ice Cloud), which is also only 80% accurate when compared to the
ground truth labels. So we consider the labels of target domain
(VIIRS) as weak labels.

To incorporate the interplay between weak label and accurate
label, we introduce a label alignment approach to help learn the
classifier. That is, we assign a weight 𝑤𝑖 to each collocated data
pair used in calculating the target classifier loss 𝑙𝐶𝑡 . The idea is
to assign a lower weight to a data pair when the weak label from
target domain equals to that of source domain, while assigning a
higher weight when weak label from target domain differs to that
of source domain. This can facilitate the model to focus on learning
toward the more challenging area that the classifier is uncertain
about. The weights we used for different label values alignment
are:

𝑤𝑠𝑖 ,𝑡𝑖 =


1.5 if label of 𝑠𝑖 differs to label of 𝑡𝑖
1.25 if label of 𝑠𝑖 is mixed cloud
1 if label of 𝑠𝑖 equals to label of 𝑡𝑖

(2)

, in which 𝑠𝑖 , 𝑡𝑖 are collocated data pair with 𝑠𝑖 represents the source
domain (CALIOP) data point and 𝑡𝑖 represents the target domain
(VIIRS) data point, respectively.

4.4 End to end joint training
The domain mapping and VAE based feature extraction and clas-
sification modules are trained jointly in an end-to-end fashion in
order to align the heterogeneous source and target domains and
build the domain invariant classifier. In each training epoch, the
parameters of the VAE with domain alignment and the domain
mapping module are updated using back-propagation algorithm.
The joint loss is composed of the loss of deep domain mapping, the
losses of VAE losses for source domain and target domain, the loss
of source classifier, the loss of MMD based domain alignment and
the loss of target classifier with weak label:

𝑙 = 𝑙2 + 𝑙𝑠𝑣𝑎𝑒 + 𝑙𝑡𝑣𝑎𝑒 + 𝑙𝑚𝑚𝑑 + 𝑙𝑠𝐶 + 𝑙𝑡𝐶 (3)
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5 EXPERIMENTS
We evaluate our method with several experiments on real world re-
mote sensing datasets to compare the performance of the proposed
model with the state-of-the-art ML models. In this section, we first
give a description of our datasets, then we summarize experiment
results and analysis.

5.1 Datasets
We conduct experiments on CALIPSO active sensor (source) and
VIIRS passive sensor (target) remote satellite sensing datasets. The
source domain CALIOP data, contains sensing data with 25 at-
tributes (features) collected by the CALIOP active spaceborne Lidar
sensor. The detail description of the attributes can be found at the
previous study [11]. The target domain VIIRS data contains another
group of sensing data with 20 attributes collected by the VIIRS
passive spectroradiometer sensor. Four auxiliary attributes shared
in both CALIOP and VIIRS datasets are surface temperatures, sur-
face emissivity, surface type and snow ice index. The latitude and
longitude of the pixel are also provided in both CALIOP and VIIRS
datasets. In total, there are 6 auxiliary features supplemented to
both the source and target domains to train the domain adaptation
model. Following our previous work at [19], we filter nighttime
data records and choose the daytime records with 0 < Solar Zenith
angle (SZA) < 80.

We consider the aerosol-free pixels from CALIOP as ground
truth labels for source domain, with the following four categories:
1) Clear Sky (no cloud), 2) Pure Liquid Cloud, and 3) Pure Ice Cloud.
4) Mixed Liquid and Ice Cloud; we also consider aerosol-free pixels
from VIIRS Cloud Top and Optical Properties Product[1] as weak
labels in the target domain. The weak labels correspond to the
following three categories: 1) Clear Sky (no cloud), 2) Pure Liquid
Cloud, and 3) Pure Ice Cloud. As mentioned earlier, 80% of the VIIRS
datapoints match the labels of the collocated CALIOP datapoints.

Our training dataset is collocated for January 2013 of CALIOP
and VIIRS datasets with 1,270,583 data points. Each built model
is evaluated by predicting the labels for one month of a year, i.e.,
January 2014, January 2015, January 2016 and January 2017. Figure 3
shows the class distribution against each cloud type (class) for
the CALIOP labels (4 cloud types). Similarly, Figure 4 shows class
distribution against each cloud type (class) for the training and test
VIIRS datasets with weak VIIRS labels (3 cloud types). Analyzing the
class distribution in the training dataset for CALIOP, as illustrated
in Figure 3, we can see some class imbalance with highest class
label data available for “Pure Liquid" and lowest class label data
available for “Mixed Cloud". Similarly, for VIIRS weak label of the
second label setting, we can see highest class label data available
for “Pure Liquid" and lowest class label data available for “Clear
Sky", as illustrated in Figure 4.

We evaluate our model with accuracy metric to compare all the
models:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Total number of correct predictions

Total number of data points
(4)
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Figure 3: Data distribution (data point count for each of 4
cloud types) for training and testing.
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Figure 4: Data distribution (data point count for each of 3
cloud types) for training and testing.

5.2 Performance Comparison using Data from
Single Domain

For non-domain adaptation model comparison, we conducted ex-
periments on three baseline models which were trained on data
from a single domain. These baseline models include 1) RF model:
Random Forest trained on VIIRS data, 2) MLP-VIIRS: A deep learn-
ing based MLP model trained on VIIRS data, 3) MLP-CALIOP: A
deep learning based MLP model trained on CALIOP data.

In order to make fair comparison to our proposed model, we
apply the same neural network used in the shared layer of our
DAMA network to build the neural network for baseline models
(MLP-CALIOP and MLP-VIIRS), with the same type and number
of layers. In our experiments, the MLP (shared) layers are 4 dense
layers with 128, 256, 128, 64 neurons respectively, each layer is
followed with a ReLU activation function and Dropout (0.5). To
train the RF model, we specify 100 as the number of trees and
15 as the maximum depth of the trees in the forest, chosen after
hyperparameter tuning.

As shown in Table 1, as an ML-based baseline result, RF achieves
around 82% test accuracy (for January 2017). For the single domain
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Table 1: Accuracy on predicting the cloud types on VIIRS (target) dataset.

Models - Single Domain Label Source Target Jan. 2014 Jan. 2015 Jan. 2016 Jan. 2017

Random Forest CALIOP VIIRS VIIRS 0.815 0.823 0.821 0.828
Random Forest-WL VIIRS VIIRS VIIRS 0.775 0.783 0.781 0.790
MLP-VIIRS CALIOP VIIRS VIIRS 0.805 0.811 0.810 0.815
MLP-CALIOP CALIOP CALIOP CALIOP 1.0 1.0 1.0 1.0
Models - Multiple Domains

Auto Encoder model CALIOP + VIIRS CALIOP VIIRS 0.821 0.833 0.830 0.836
Model without domain mapping CALIOP + VIIRS CALIOP VIIRS 0.512 0.533 0.530 0.539
Model without 1d-CNN CALIOP + VIIRS CALIOP VIIRS 0.855 0.863 0.861 0.866
DAMA-WL[12] CALIOP + VIIRS CALIOP VIIRS 0.842 0.848 0.846 0.851
The proposed model CALIOP + VIIRS CALIOP VIIRS 0.868 0.872 0.871 0.878

experiments, we can see MLP-CALIOP achieves 100% accuracy in
predicting the active sensing dataset, which is expected as the data
distribution of each cloud type is very discriminative in the CALIOP.
Our ultimate goal is to transfer the discriminative representation
from this active sensor CALIOP to passive sensor VIIRS in order to
accurately classify the cloud types in the passive dataset. In compar-
ison, MLP-VIIRS model has lower accuracy around 81%, as VIIRS
is a passive dataset collected by detecting the reflection of natu-
ral radiation and their feature discrimination power is weak. This
observation highlights the importance of using multiple sensors
data to better understand and classify the unlabeled passive sensing
data that has wider spatial coverage. Our proposed VAE based deep
domain adaptation model aims to achieve higher accuracy than
using single domain data by transferring the discriminating power
from the source domain to target domain.

Our proposed model’s prediction accuracy outperforms Random
ForestModel that is widely used in climate data. Supervised learning
model such as Random Forest in the single domain assumes the
label information on the target domain is available, in comparison,
our VAE based domain adaptation is weakly unsupervised domain
adaptation that does not require accurate label information in the
target domain, and mainly rely on the label information of source
domain and correlation between the source and target domain to
build the model and make the prediction.

5.3 Performance Comparison of using Data
from Multiple Domains

For domain adaptation model comparisons, we conducted experi-
ments on three more baseline models that use our heterogeneous
domain mapping and correlation alignment respectively, using both
source and target datasets. These baseline models include the fol-
lowing: 1) Auto Encoder model: using Auto Encoder instead of
VAE in the proposed model, 2) Model without domain mapping: it
removes the domain mapping module from the proposed model,
3) Model without 1d-CNN: It removes the 1d-CNN layers from
the proposed model. 4) Our proposed full model. Comparing these
baseline models with our proposed model can help understand the
importance of each module in our model.

From the result of multiple sources based models in Table 1, our
proposed model outperforms the other domain adaptation base-
lines significantly. Firstly, by comparing the results of VAE module

to using Auto Encoder method, we can see there are about 4%
improvement in using VAE, which tells the learned variational dis-
tribution help train a better model. Secondly, Our method improves
the accuracy by 34% on average of all the predictions from January
2013 to January 2017 when compared to not including the Domain
Mapping module model. The very low accuracy (around 53%) in
predicting cloud satellite data without domain mapping exemplifies
inherent complexities in heterogeneous data representation and the
challenge of directly applying existing domain adaptation methods
in heterogeneous domains. Our proposed deep domain mapping
can mitigate the gap between the heterogeneous source and tar-
get domains and extract the domain invariant representation by
integrating with the domain adaptation technique. Thirdly, we see
the 1d-CNN layers improves our method’s accuracy by 1% for all
four months used in testing, that tells the spatial information is
captured in our model and help the model performance. Finally, we
also observe the proposed model outperforms the other domain
adaptation method DAMA-WL model introduced in [12], showing
around 2.5% accuracy improvement for all the 4 testing datasets.

6 CONCLUSION
In this paper, we present a VAE based deep domain adaptation
method to employ both active and passive sensing data in cloud
type detection. We develop a novel VAE based approach to learn
domain invariant representation that capture the spatial pattern
from multiple satellite remote sensing data, and further build a
domain invariant cloud property retrieval method to accurately
classify different cloud types (labels) in the passive sensing dataset.
We further exploit the weight based alignment method on the label
domain to learn a powerful domain adaptation technique that is per-
tinent to the remote sensing application. Experiments demonstrate
our method outperforms other state-of-the-art ML methods and
achieves higher accuracy in cloud property retrieval in the passive
satellite dataset. For future work, we plan to investigate taking into
account the information of off track pixels and incorporating deep
learning models that can capture temporal information (e.g., LSTM,
transformer) to further improve cloud property retrieval.
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