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Abstract: Identifying the locations of hydrothermal chimneys across mapped areas of seafloor
spreading ridges unlocks the ability to research questions about their correlations to geology, the
cooling of the lithosphere, and deep-sea biogeography. We developed a Chimney Identification Tool
(CIT) that utilizes a Convolutional Neural Network (CNN) to classify 1 m gridded AUV bathymetry
and identify the locations of hydrothermal vent chimneys. A CNN is a type of Machine-Learning
model that is able to classify raster data based on the shapes and textures in the input, making it
ideal for this task. The criteria that have been used in previous manual classifications of chimneys
have focused on the round base and spire shape of the features, and are not easily quantifiable.
Machine-Learning techniques have previously been implemented with sonar data to classify seafloor
geology, but this is the first application of these methods to hydrothermal systems. In developing the
CIT, we compiled the bathymetry data from two rasters from the Endeavor Ridge—each gridded at
a 1 m resolution—containing 34 locations of known hydrothermal chimneys, and from the 92° W
segment of the Galapagos Spreading Center (GSC) containing 14. The CIT produced a primary group
of outputs with 96% agreement with the manual classification; moreover, it correctly caught 29 of
the 34 known chimneys from Endeavor and 10 of the 14 from the GSC. The CIT is trained to identify
features with the characteristic shape of a hydrothermal vent chimney; therefore, it is susceptible
to the misclassification of unusually shaped cases, given the limited training data. As a result, to
provide the option of having a more inclusive application, the CIT also produced a secondary group
of output locations with 61% agreement with the manual classification; moreover, it caught three of
the four additional known chimneys from the GSC and four of the five from Endeavor. The CIT will
be used in future investigations where an inventory of individual chimneys is important, such as
the cataloguing of off-axis hydrothermal venting and the investigation of chimney distribution in
connection to seafloor eruptions.

Keywords: Machine Learning; hydrothermal venting; AUV; remote sensing; classification; bathymetry;
Neural Networks

1. Introduction

High-resolution mapping using Autonomous Underwater Vehicles (AUVs) at seafloor
spreading ridges has ushered in new capabilities for investigating hydrothermal venting at
the individual-vent scale. Without meter-scale mapping, hydrothermal vents have typically
been visually identified using manned and remotely operated submersibles that investigate
areas where water-column temperature or particle anomalies exist [1-3]. These surveys
focus primarily on active vents and require the submersibles to operate within visual range
of the seafloor, at <10 m; this restricts their speed and, thus, the area explored. However,
AUV multibeam mapping surveys conducted ~50 m off-bottom produce bathymetry that
can be gridded at a <1 m resolution [4]. These maps can cover tens to hundreds of square
kilometers, while also resolving active and inactive hydrothermal chimneys and mounds
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that are only a few meters wide and high (Figure 1) [4-6]. Identifying the locations of
hydrothermal chimneys across mapped areas of seafloor spreading ridges unlocks the
ability to investigate questions about their spatial distributions and correlations to related
characteristics of ridge geology, and ultimately, larger questions about the flux of seawater
and seawater composition. For example, Jamieson et al. [5] estimated the volume of
hydrothermal sulfide edifices over a 62 km? area of the Endeavor segment of the Juan
de Fuca ridge by identifying active and inactive chimneys resolved by AUV bathymetry.
Clague et al. [7] observed the clustering of hydrothermal chimneys within segments along
the ridge axis of the Endeavor segment, and compared the density of chimneys to the
observed distribution from the Alarcon rise identified by Paduan et al. [6].

Figure 1. Photographs of hydrothermal chimneys (A-D) and their expression in bathymetry, grid-
ded at 1 m with 0.5 m contour lines (E-H, respectively). Because of parallax, white scale bars in
(A-D) represent estimations for scale at the chimney location in the image. (A,E) and (B,F) are exam-
ples from the GSC (Expedition AT15-63, J. Sinton, chief sci.). (A) is a mosaic of 2 images and shows
the entire chimney edifice, and (B) shows only the top half of the chimney. (C,G) show 2 chimneys
from the Stonehenge field at Endeavor, and (D,H) show the Bridgit vent. Photographs modified from
Glickson et al. [3].

High-resolution AUV bathymetry exists at several seafloor spreading ridges and is
rapidly becoming much more available. However, classifications of these datasets to iden-
tify hydrothermal chimneys from bathymetry have exclusively been performed manually,
with individuals looking at visualizations of the bathymetry and selecting features that
resemble known chimneys [5-9]. In this study, we begin to develop criteria for identifying
chimneys from their characteristic spire shape in bathymetry (Figure 1). Previous manual
picking of hydrothermal chimneys developed a general consensus that chimneys manifest
in 1 m gridded bathymetry as steep-sided spires, several meters wide, with a round to
semi-round base, and have a height range of roughly 3-30 m. Identifying chimneys by
manual selection requires substantial time and effort and is not strictly reproducible, as
the interpretation is affected by the skill and attention of the individual performing the
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classification, which varies between people and for an individual over time. An automated
computer tool that algorithmically searches high-resolution bathymetry and identifies the
hydrothermal chimneys solves both of these issues.

We developed a Chimney Identification Tool (CIT) that utilizes a Convolutional Neural
Network (CNN), which works with 1 m gridded bathymetry to identify the locations of
hydrothermal vent chimneys. A CNN is a type of Machine-Learning model that classifies
raster data by building a network of relative connections between the pixels within the
raster [10,11]. The nested nature of these connections allows classification based not only
on the difference in input pixel values, but also on the incredibly complex relationships
between pixels arranged across different parts of the raster that humans visually interpret
as shape or texture [11-13]. The CNN is uniquely useful in this context of hydrothermal
chimney detection where the shapes of features, and not just specific raster values, are a key
part of the criteria that have been used in previous manual classifications. One drawback
of a CNN is that due to the abstract mathematical structure and complexity, it operates as a
black box; it can be successfully trained to classify input, but what it is actually “seeing” in
the input is impossible to extract and examine in human terms [14,15]. Machine-Learning
techniques have been successfully implemented with sonar data to classify seafloor geology
in many studies (e.g., [16-20]); however, to our knowledge, this is its first application in
hydrothermal chimney identification.

2. Study Areas

The CIT was developed using data from two study areas: the Endeavor segment of
the Juan de Fuca Ridge and the 92° W segment of the Galapagos Spreading Center (GSC)
(Figure 2). These were chosen not only because processed AUV multibeam bathymetry is
available at meter-scale resolution [7,18], but also because previous manual classifications
to identify hydrothermal chimneys have been conducted on both bathymetry datasets [7,8]
(Figures 3 and 4). These inventories of chimney locations provide a ground-reference
dataset that is necessary for training a supervised automated classifier, and also provide
pre-existing testing data from completely independent manual classification.

The 92° W segment of the GSC and the Endeavor Segment have similar average
spreading rates of 54 and 52 mm/year, respectively [21], and provide a valuable comparison
because they have very different geology and bathymetry. The GSC 92° W segment has
high levels of magma supply due to its proximity to the Galapagos hotspot; this results
in a shallow axial high (1600 m), much less faulting than at the Endeavor Segment, and
the presence of unfaulted volcanic cones and mounds (Figures 2 and 4) [22,23]. The
Endeavor Segment has a large axial graben 0.8-1.7 km wide and 100-200 m deep, and
a much smaller area covered by unfractured lava flows (Figures 2 and 3) [24,25]. These
geologic environments directly relate to the process of developing the CIT to work in a
range of geologic environments; this is because Endeavor has many more steep-sided
features and more fractured terrain than GSC, and contains numerous large chimneys due
to the combination of increased permeability from the fracturing and the lack of volcanic
resurfacing [7]. Developing a CIT to effectively identify chimneys in both of these settings,
with characteristics of both low and high magma-supply environments, suggests that it has
the capability to be deployed in a wide range of seafloor spreading ridge environments.

Before developing the CIT, we compiled the bathymetry data from each area into two
rasters, each gridded at a Im-resolution. The Clague et al. [7] dataset of manual picks
from Endeavor contains 406 locations of hydrothermal chimneys (Figure 3), and the White
and Lee [8] dataset from the GSC contains 122 (Figure 4). There is a subset of each set of
manual pick locations that are known vents and are confirmed by direct observation with
a submersible. In the Clague et al. [7] Endeavor dataset, these examples were identified
as those with individual chimney names, and in the White and Lee [8] GSC dataset, these
confirmed chimneys are un-named. There are 34 confirmed chimneys in the Endeavor
dataset and 14 for the GSC.
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Figure 2. Regional bathymetry for the 2 study areas: (A) the Endeavor Segment of the Juan de Fuca
Ridge; (B) the 92° W segment of the Galapagos Spreading Center (GSC). The extents of the 1 m
gridded bathymetry rasters are outlined. Insets show the plate boundaries and plate names wherein
red lines indicate the specific segment of the plate boundary in which the study areas are located.
Basemap bathymetry is from GMRT [26].
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Figure 3. Shaded relief bathymetry map of the Clague et al. [7] manually selected chimney locations (black
dots) for the Endeavor study area’s 1 m gridded AUV bathymetry. The black box outlines the test area that
was used to evaluate the CIT in this study. Note the clustering of chimney locations, the pronounced axial

graben, and pervasive faulting, expressed as NE-SW trending lineaments, in the bathymetry.
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Figure 4. Shaded relief map of the 1 m gridded AUV bathymetry of the GSC study areas [18], with the
White and Lee [8] manually picked chimney locations plotted as black dots. The black box outlines the test
area that was used to evaluate the CIT. Note the pronounced volcanic cone and numerous volcanic mounds,

along with much lower expression of faulting compared to the Endeavor Ridge segment in Figure 3.
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3. Methods

The initial construction of the CIT came from implementing techniques from the
field of image classification. The idea of using a selective search to classify subsets of a
larger raster using a Neural Network is known in the field of computer vision as Object
Detection [27]. We drew direct guidance on how to apply this technique—originally de-
veloped for analyzing digital photographs—to bathymetric rasters from Bycroft et al. [28],
who adapted it for high-resolution surveying with unmanned aerial vehicles, and Valen-
tine et al. [20], who classified seafloor bathymetry to identify seamounts. Bycroft et al. [28]
found a CNN successful at identifying round crab burrows which have a footprint of
typically <15 pixels in diameter; this is a similar pixel footprint to hydrothermal chimneys
in 1 m gridded bathymetry. Valentine et al. [20] used a selective search to extract subset
patches of the larger bathymetric raster and identified discrete output locations by identi-
fying extrema in a model output raster, inspiring the use of similar techniques in the CIT.
The overall structure of the CIT workflow was derived and modified from these previous
applications (Figure 5).

We refined the CIT workflow to tailor it specifically to the task of hydrothermal
chimney detection through iterative testing; we achieved this by utilizing two criteria for
evaluation, each focused on a different type of classification error, omission, or commission.
Omission was measured by running each known (visually observed) hydrothermal chimney
from both the Endeavor and GSC datasets (34 and 14, respectively) through the CIT and
confirming whether they were correctly identified. The number of these known chimneys
that were correctly identified gave a measure of how effectively the CIT met the target
goal of identifying all the chimneys. Commission was evaluated by generating a CIT
output for a test area raster from each study area (areas outlined in Figures 3 and 4). We
manually classified each of the generated locations, plotting the bathymetry and 0.5m
contours in ArcGIS, and positively labeling round features with >5 closed 0.5 m contours
that resembled the size and shape of known chimneys. We studied both the bathymetry
associated with the known hydrothermal chimneys and the methods by which previous
manual classifications were conducted, to gain an understanding of how hydrothermal
chimneys look in bathymetry: steep-sided spires several meters wide, with a rounded
footprint and a height range of roughly 3 to 30 m tall. The number of CIT output locations
that also passed our manual classification gave a measure of how effectively the CIT
included only chimneys in the output. Throughout the development process, we were
often faced with a choice between optimizing for lower omission or lower commission. In
these cases, we chose to optimize for lower omission, wanting to ensure that the CIT had
the lowest chance possible of missing hydrothermal vent chimneys if they were present in
the input data.

The CIT was built using Python 3.7 and PyTorch 1.6 [29]. A GitHub repository
containing the Python scripts created for this project is linked in the data availability
statement. The initial stage of raster filtering was not automated within the CIT, and was
performed manually using a combination of ArcGIS Desktop 10.7, R 4.0.3, and Python 3.7.

3.1. Filtering Bathymetry to Produce Multiple Derived Rasters

The CIT was developed to take 3 raster layers as inputs—(1) normalized bathymetry,
(2) normalized local slope, and (3) normalized Bathymetric Position Index (BPI)—derived
from an initial bathymetric raster (Figure 6). During the development process, we found
that utilizing this combination of 3 layers resulted in consistent improvements in omission
and commission errors compared to using a single layer. Pixel values in the derived rasters
are the outputs of a function applied to a square moving-window neighborhood of pixels.
Each raster layer is normalized so that all pixel values are within the range of —1 to 1. This
is a standard step when using a CNN as it brings the input values to a similar magnitude
as the function coefficients contained in each node of the network.
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Figure 5. CIT workflow to generate output chimney locations from input 1 m gridded bathymetry.
Contained in the box representing the Convolutional Neural Network is a sub-flowchart for the
model training process.
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Figure 6. Examples of the 3 bathymetry-derived rasters (columns) that are sent into the CNN as
15 x 15m (15 x 15 pixel) patches, as described in the text. Each row represents a typical example
from each of 4 training classes.

The first raster layer is a locally normalized bathymetry. The textures and shapes
observed in this layer capture the seafloor surface just as the raw bathymetry does, but it
can be directly compared between different areas that vary in absolute water depth. Each
pixel value is scaled by subtracting the minimum value within a 30 m wide neighborhood
window, and then dividing it by a scaling factor of 50 m. This 50 m scaling factor was
chosen to be greater than the largest range of bathymetry, which was observed to be within
a 30 m neighborhood from the GSC and Endeavor datasets. In future applications of the
CIT, using this constant scaling factor could potentially lead to pixels from an area with
larger variation than was observed in these 2 study areas, having pixel values greater
than 1. This would not directly lead to the CIT being ineffective, as a CNN can take input
values outside of the —1 to 1 range; however, if these input values were several times
larger than 1, it could negatively affect performance. CIT is developed to handle inputs
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from different bathymetry datasets and areas. If each input was normalized using the
minimum and maximum values of its containing raster, features of the same size and shape
from different areas would not translate in the same way when normalized. Choosing
this constant scaling factor is necessary to ensure that examples from different rasters are
normalized consistently.

The second layer is the local slope of median-filtered bathymetry using a 3 x 3 pixel
(or 3 m square) neighborhood. This layer represents the rate of change of the bathymetry
and is calculated by taking the maximum change in depth between each pixel and its
8 neighbors. This slope can be calculated as an angle relative to a flat surface of constant
bathymetry. With calculating slope as an angle, the resulting layer can be normalized by
simply dividing by 90°, as that is the largest possible value.

The third layer is the normalized Bathymetric Position Index (BPI), with an inner
neighborhood of 3 m and an outer neighborhood 11m in diameter [30]. BPI calculates
the difference in the mean bathymetry between the inner and outer neighborhoods. At
the meter scale, features such as chimneys and the upper edges of fault scarps show up
as more positive values, and features such as pits, fissures, and the lower edges of fault
scarps show up as more negative values (Figure 6). Flat areas, including those that slope
uniformly over 10 m or larger spatial scales, have BPI values close to zero (Figure 6). This
layer was normalized similarly to the locally normalized bathymetry by using a scaling
value of 20, resulting in the same considerations for future applications that might have
BPI values larger than 20. This value was chosen to be greater than largest absolute value
observed in any of the input training areas (18.0). The mean for BPI was ~0, with positive
and negative values indicating local highs and lows, respectively; therefore, dividing by
this constant value rescaled all of the input values to within the desired range of —1to 1,
while preserving the sign. Layers 1 and 2 do not contain negative values, because there
is no change in sign associated with the un-normalized raster layers as there is with BPL
This difference in the range of values between layers is not a problem for the CNN, as
this normalization step is needed to adjust the absolute values of inputs to be a similar
magnitude to the internal coefficients.

3.2. Selective Search to Extract Candidate Patches

In order to improve the runtime of the CIT, a simple logical filter is used to identify po-
tential chimney candidate locations from the entire study area, and then local 15 x 15-pixel
patches are extracted for input to the CNN, only from those areas that passed this prelimi-
nary set of criteria. The goal of this filter is to rapidly restrict the search by eliminating any
areas that contain no chimney-like features. Pixels are selected by this preliminary search
if they are local maxima in the bathymetry compared to the 8 adjacent pixels and have a
BPI value >1. The BPI values used were from the 3 m/11 m BPI raster used as input into
the CNN, but before the normalization was applied. This threshold value of 1 for the filter
value was selected to be extremely conservative based on our empirical observation of the
training data. The spire of a hydrothermal chimney will always be a local maximum in 1 m
gridded bathymetry, and no hydrothermal chimneys in the two training datasets have an
observed BPI value below 1. For each candidate pixel that passed the selective search, a
15 x 15 raster patch centered on that pixel is extracted. The 3-band normalized raster for
each patch is sent into a CNN for classification. This logical filter does successfully execute
the role of restricting the local patches needed for the search, as less than 1% of the pixels
from the input raster are usually passed.

3.3. Evaluating Each Candidate with a CNN

The CNN produces output values for 4 different classes that it was constructed to
classify between: (1) flat or gently sloping areas, (2) chimneys, (3) fault scarp edges, and
(4) rounded non-chimney features (Figure 7). Each of these output values ranges roughly
from 0 to 1, with 1 being a strong class match. Additionally, the sum of all 4 for a given
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output is roughly equal to 1, so equal confusion in the CNN between 2 classes would result
in each of those classes having an output value of ~0.5.

Class 1: Flat or
gently sloping

Depth (m) Depth (m)
m 0 Meters 5
-2145 - m——

- | |
-2139 -2208  -2209
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Figure 7. Bathymetry maps showing examples of the features picked for the classes used for training
the CNN. Two examples of each class are provided. Each panel is 15 x 15 m, which is the size of each
patch sent into the CNN. Grey lines are 0.5 m contours.

Before implementation in the CIT, the CNN was trained with reference examples from
the 4 classes. These examples were 15 X 15 raster patches of the 3 normalized raster layers
extracted for each point in a set of training locations. Training examples for classes 1, 3,
and 4 were originally produced for this project by manually identifying locations in the
two study areas. We generated 300 of each class from the Endeavor dataset and 140 of
class 1 and 3 from the GSC dataset. We only generated 85 examples for class 4 from the
GSC dataset, as the frequency of these rounded non-chimney features was much lower
than at Endeavor. The chimney (class 2) examples were adapted from the existing manual
classification picks of Clague et al. [7] and White and Lee [8]. We adjusted these locations,
by no more than 5 m, so that the center pixel of each training patch would be the exact peak
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of the chimney. Ensuring that each chimney training example has the peak in the center
minimizes unnecessary variation that could confuse the CNN and leads to a model that is
trained to identify patches that not only contain a chimney, but are specifically centered
on one. This ties directly into the end goal of the CIT, which is to identify a distinct point
location for each chimney.

One of the common difficulties with training Machine-Learning models is the limited
number of training examples. Between the two study areas, there were only ~500 chimney
examples available for training the model. We were only able to reach the model perfor-
mance of this version of the CIT after generating artificial training examples by transforming
the original ones [31]. Before model training, new permutations of each 15 x 15 m example
patch from the 4 classes are generated using all 8 unique combinations of 90° rotations and
mirror flips. Chimneys are theoretically radially symmetric features and, therefore, can be
viewed as transformation invariant for rotations and flips. Creating these new examples
from modifications of the existing ones has the effect of multiplying the training dataset
7x. After augmentation of the training dataset, the original training examples for the
48 known chimneys, as well as those located in both test areas, were removed from the
training dataset, as these examples are used to evaluate the CIT performance.

The CNN model is trained by iteratively providing single 15 x 15 example patches of
a known class, running the CNN model, evaluating the output against that known class,
then updating the values of the nodes within the network in a way that would improve
the classification of that example. Because this is a very basic overview, an in-depth
explanation of the mathematical theory behind the structure of a Convolutional Neural
Network and the iterative training process is beyond the scope of this paper; however, it
is extensively covered in other literature [10-13,31]. The order in which these examples
are shown to the network is randomized, and the set of training examples is sampled so
that the CNN sees the same total number of examples from each class by the end of the
training process. The CIT uses a mean-square-error loss for evaluating the accuracy of
each training iteration, and a stochastic gradient descent method for determining how
the nodes should be updated [32,33]. The amount of change applied to the CNN on a
single iteration is controlled by a learning-rate parameter. The CNN in the CIT is trained
using epochs. An epoch is a full cycle of training whereby the set of training examples
is sent through the model. Between each Epoch, the order of the training examples is
rerandomized and the learning rate incrementally decreases. The model training ends
after the model performance converges using the criteria, which state that the average
mean-square-error loss for the epoch is <0.005 and that the value has changed by less than
5% from the previous epoch.

3.4. Deriving Distinct Chimney Locations from the Output Values of the CNN

The CIT generates chimney locations from the candidate pixel locations by evaluating
the output values produced by the CNN. In order to be classified as a chimney, the CNN
output value for the chimney class (class 2) must be higher than any other chimney (class 2)
value within a 3 m radius. Any two candidate pixels that are within this distance are
assumed to be from the same feature. From these, two sets of classified chimney locations
are generated. First, pixels are assigned to a ‘most likely chimney” set if the class 2 value is
above 0.95, as there is a distinct peak of examples with values near 1 and above a threshold
near 0.95 (Figure 8).
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Figure 8. Annotated histograms of the chimney class (class 2) CNN output values for (A) the set of
known chimney examples and (B) the set of candidate patches extracted from the two test areas. The
distinct population of output values above 0.95 are classified as the ‘most likely chimneys’ group.
The 7 examples of known chimneys with intermediate class 2 values are caught by the “probable
chimneys’ in the CIT output.

To provide the ability for the CIT to be as inclusive of hydrothermal chimneys as
possible, the CIT generated a second “probable chimney’ set of points with a combination
of intermediate class 2 and class 4 values. When we evaluated how the CNN classified
the examples of known chimneys, we observed a smaller but distinct group with class 2
values of 0.3-0.75 (Figure 8). Each of these examples had a corresponding class 4 value
for which the sum of both was equal to ~1. We interpreted this group of examples to be
chimneys (class 2) that the model was unable to fully discern from the features of class 4,
which loosely resembled chimneys. To allow for the inclusion of chimneys that might be
confused with class 4, the CIT generated this second group of “probable chimney’ outputs,
with class 2 CNN output values in the range of 0.30-0.95, and for which the sum of class 2
and class 4 values was >0.95.

4. Results

Looking qualitatively at the CIT output for the Main Endeavor Field suggests that the CIT
consistently identifies local peaks that resemble chimneys and identifies all of the known (named)
chimneys (Figure 9). The CIT output is very similar to the chimney picks from Clague et al. [7].
All of the identified features are rounded, spiky features, and no outputs are erroneously placed
on features such as fault scarp edges that obviously are not chimney-like.

' CIT output

Depth (m)
-2210 -2160
3 |

Figure 9. Perspective plot of 1 m gridded bathymetry of the Main Endeavor Field from the Endeavor
segment. Black flags indicate the ‘most likely chimney’ locations identified by the CIT. White text
indicates named hydrothermal chimneys that have been directly confirmed by submersible dives.
The distance between Hulk and Milli-Q is 342 m. Note how the CIT identifies all the confirmed
chimneys and only distinct spire-shaped features, which are likely un-named chimneys because they
are either inactive or not visited by a submersible.
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The CIT correctly classified as ‘most likely chimneys’ 29/34 known chimneys from
Endeavor and 10/14 from the GSC, for a combined accuracy of 81.3% (Table 1). The CIT
classified 95.8% of known chimneys when the more inclusive set of “probable chimneys’
was also included. We note that the two known chimneys that were missed by the CIT are
very small, each only consisting of one bathymetry pixel that rises significantly above the
surrounding area (Figure 10).

Table 1. Assessment of known chimneys caught by the CIT.

. ‘Probable ‘Most Likely ‘Most Likely . o
Study Area Missed Chimneys’ Chimneys’ Total Chimneys’ % Either Group %
GSC 1 3 10 14 71.4% 92.9%
Endeavor 1 4 29 34 85.3% 97.1%
Combined 2 7 39 48 81.3% 95.8%

\Depih (m)

= )
-2266 -2272

Figure 10. Bathymetric patches (A,B) of two known chimneys that were completely missed by the
CIT; in other words, the CNN output value for the chimney class was roughly 0. At this scale,
individual pixels are easily seen; each of these chimneys is defined almost exclusively by only 1 pixel
higher than the surrounding area. The slope of median filtered bathymetry, before normalization for
use in the CIT is shown in (C,D), respectively. The chimney shown in (A,C) is from Endeavor, and
the one in (B,D) is from the GSC. The smoothing of these single pixels is likely a major factor in their
misclassification, and illustrates the lower size limit of detection in 1 m gridded bathymetry data.

The CIT identified 78 ‘most likely chimneys’ within the two test areas, with 63 features
from Endeavor and 15 from the GSC (Table 2). Compared to our manual chimney picks of
those that strongly resembled, and were interpreted to be, hydrothermal chimneys, 61/63
and 14/15 matched from the Endeavor and GSC test areas, respectively. This translates
to 96% agreement across both areas combined. The less selective ‘probable chimney” set
did introduce more commission error, as anticipated, matching 38/61 and 5/10 manual
picks from the Endeavor and GSC test areas, respectively, for a combined accuracy of 61%
(Table 2).
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Table 2. Assessment of the CIT outputs from the test areas that also passed manual classification criteria.

Study Area Output Group Passed Failed Total Agreement %
GSC ‘most likely” 14 1 15 93.3%
GSC ‘probable’ 5 5 10 50.0%

Endeavor ‘most likely” 61 2 63 96.8%
Endeavor ‘probable’ 38 23 61 62.3%
Combined ‘most likely” 75 3 78 96.2%
Combined ‘probable’ 43 28 71 60.6%

5. Discussion

The CIT was developed in order to support future investigations into hydrothermal
venting in seafloor spreading ridge environments, specifically those that benefit from the
ability to find individual chimneys or make a more complete inventory of both active and
inactive chimneys. Examples of these types of investigations include the recent discovery
of off-axis hydrothermal venting at the 9° N segment of the EPR [34], an investigation the
relationship between hydrothermal venting and eruptive fissures [35,36], and a study of
the role of faults in hydrothermal vent field locations [3]. Previous investigations, where
<1 m gridded AUV bathymetry data exist, currently rely on the time-consuming manual
picking of hydrothermal vents to achieve these goals and, consequently, are uncommon
in the literature (e.g., [7,33]). In the context of exploration efforts, AUV surveys are be-
coming commonplace for hydrothermal vent research, and yet, pinpointing locations for
near-bottom work is crucial [4]. One of the advantages that the CIT provides for future
research into hydrothermal systems is that the classification method is consistent and
repeatable, meaning that differences in the observations between seafloor environments
can be attributed to environmental variables rather than variations in the classification
procedure by humans.

The two output sets of classified chimneys from the CIT, ‘most likely chimneys” and
‘probable chimneys’, can be used in different ways to identify chimneys in areas of explo-
ration. For example, utilizing the “most likely chimneys’ output from the CIT provides a
way to quickly identify candidates for follow-up investigations (e.g., sampling or visual
imaging) from exploratory AUV mapping because of the low commission error. The “prob-
able chimneys’ group of the CIT output provides the ability to not only identify areas with
hydrothermal chimneys present, but also to confidently identify those areas where there
are no chimneys due to the low omission error.

The accurate classification of chimneys by the CNN is the most important aspect of
the CIT, and we found that changes to the training dataset had the largest impact on the
CNN model. The most drastic improvements to CNN performance were observed with the
addition of more training classes, so that the CNN could learn to recognize and exclude
features that are similar to but not hydrothermal chimneys. When initially constructed,
the CNN was trained using two sets of examples: locations from the manual-pick datasets
from each study area, and a set of randomly selected points from each dataset that were
not chimneys. Visual inspection of the results of this version of the CIT showed many
misclassified points located on the upper edges of fault scarps. In order to directly address
this error, we implemented four classes of training data: flat/gently sloping areas, chimneys,
the upper edges of fault scarps, and rounded local maxima that were at the edges of larger
features (Figure 7). The flat, fault scarp, and rounded training datasets were produced
using manual classification. We were unable to continue this method of adding training
classes to improve performance, because there was no longer a consistent group of features
with shared characteristics showing up in the output. This area of seafloor geosciences is
still developing, and only a limited number of hydrothermal chimneys are available for
training at this time. However, with additional training data, future AUV mapping surveys
in more areas with past or present hydrothermal activity could benefit the performance of
the CNN developed here.
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The comparison of the CIT classification with the manual picking of hydrothermal
chimneys show some mismatch between these datasets (Figures 11 and 12). For the GSC,
there are only two chimneys identified by the CIT as ‘most likely chimneys’ that are not
in the White and Lee [8] dataset, and several of the manual picks are also included in the
‘probable chimneys’ group. However, in the Endeavor test area, the CIT output sets and
Clague et al.’s [7] manual picks show several examples of spatial disagreement (Figure 11)
despite only two of the CIT outputs being caught by our manual classification in this study
(Table 2). There are 51 Clague et al. [7] picks within this test area and 63 ‘most likely” CIT
outputs, and 34 of them are shared. Some features that strongly resemble a chimney are
included in the CIT output but not in the Clague et al. [7] manual picks, and a hydrothermal
mound without a spire shape was included in the pre-existing dataset but not the CIT
output (Figure 13). One potential reason for this is that Clague et al. [7] used other data to
supplement the AUV bathymetry where available, such as ROV observations, to improve
their hydrothermal chimney catalog. The CIT is designed to identify features that have the
characteristics of a hydrothermal chimney from only the AUV bathymetry, which is the
data available for most areas of the seafloor. Because the previous manual classifications use
other observations and are interpretations made by expert human judgement, an imperfect
match is expected. Additionally, we analyzed the CIT outputs by manually evaluating
each output ourselves—instead of just comparing the output locations to the pre-existing
datasets—as a basis for comparison to human picks from bathymetry alone, without the
aid of a priori knowledge.
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Figure 11. Shaded-relief bathymetry map showing the CIT ‘most likely chimneys’ output (open
circles) for the Endeavor test area, along with the locations from the previous manual picks by
Clague et al. [7] (black Xs). Although most of the chimney locations are the same in both datasets,
there are multiple examples missed in one of the two datasets.
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Figure 12. The CIT ‘most likely chimneys’ output for the GSC test area, along with the locations from
the previous manual picks by White and Lee [8], on a basemap of shaded-relief 1 m gridded bathymetry.
There is much less disagreement between the pre-existing manual picks and the CIT output, although
the White and Lee [8] dataset contains many smaller chimneys not found by the CIT.
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Figure 13. Bathymetric maps (0.5 m contour lines) showing a comparison of a feature identified
by the CIT that is not included in the Clague et al. [7] manual-pick dataset (A) and an example of
a feature from Clague et al. [7] that was not identified by the CIT (B). Both of these examples are
considered accurate classifications by the CIT compared to the criteria used in this study; however,
the previous manual picks were more inclusive of features that have atypical bathymetric expression.

The comparison of the CIT classifications and previous manual picks highlights the
diversity of features, such as chimneys, that appear in meter-scale bathymetry of seafloor
spreading ridges. Distinguishing hydrothermal chimneys in bathymetry is a difficult task
not only for a Machine-Learning tool, but for humans as well. Clague et al. [7] discuss how
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both lava pillars and mounds of pillow lava were included in their preliminary manual
picks of chimneys on the Endeavor segment, and although they removed many, they
expect that some still remain in their results. This point underscores the need for accuracy
assessment inherent in all classifications from remote-sensing data [37]. The CIT performs
well into the 80% accuracy range, but consideration of the potential for misclassification
of features is important for future applications of the CIT. Areas of complex bathymetry,
faulted grabens, calderas, and collapsed axial summit troughs will pose challenges for
hydrothermal chimney detection from bathymetric mapping alone.

6. Conclusions

This CIT was created to find hydrothermal chimneys from meter-scale bathymetry
alone by training a Machine-Learning classifier. The CIT generates a primary group of
locations, labeled as ‘most likely chimneys’; it has been shown to catch a large majority
of known hydrothermal chimneys (81%), and to only include features that were included
in manual picks by expert human interpreters (96%). The CIT also produces a secondary
group of ‘probable chimneys’ that identifies all known chimneys in our study areas, except
for two very small chimneys with footprints of only 1-2 pixels; however, these are identified
at the cost of including many more classified chimneys than what we found with manual
classification (61% agreement). Having the ability to utilize both of these output groups
provides flexibility in the use cases of the CIT, for applications requiring the identification of
targets that are ‘most likely chimneys’ or for a more inclusive cataloguing of every ‘probable
chimney’. Benefits to the CIT are the consistency of the classification and the efficiency
of automated classification compared to human interpretation. The CIT will aid research
efforts focused on the distribution of hydrothermal venting, comparisons between different
ridge environments, and the connections to underlying ridge geology, by providing an
efficient and repeatable tool to identify hydrothermal chimney locations from 1m resolution
gridded bathymetry.
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