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Abstract

With the popularity of Internet of Things (IoT), edge computing and cloud computing, more and more stream analytics applications are being
developed including real-time trend prediction and object detection on top of IoT sensing data. One popular type of stream analytics is the
recurrent neural network (RNN) deep learning model based time series or sequence data prediction and forecasting. Different from traditional
analytics that assumes data are available ahead of time and will not change, stream analytics deals with data that are being generated continuously
and data trend/distribution could change (a.k.a. concept drift), which will cause prediction/forecasting accuracy to drop over time. One other
challenge is to find the best resource provisioning for stream analytics to achieve good overall latency. In this paper, we study how to best
leverage edge and cloud resources to achieve better accuracy and latency for stream analytics using a type of RNN model called long short-term
memory (LSTM). We propose a novel edge-cloud integrated framework for hybrid stream analytics that supports low latency inference on the
edge and high capacity training on the cloud. To achieve flexible deployment, we study different approaches of deploying our hybrid learning
framework including edge-centric, cloud-centric and edge-cloud integrated. Further, our hybrid learning framework can dynamically combine
inference results from an LSTM model pre-trained based on historical data and another LSTM model re-trained periodically based on the most
recent data. Using real-world and simulated stream datasets, our experiments show the proposed edge-cloud deployment is the best among all
three deployment types in terms of latency. For accuracy, the experiments show our dynamic learning approach performs the best among all
learning approaches for all three concept drift scenarios.

Keywords: Edge computing, internet of things (IoT), cloud computing, edge-cloud integration, stream data analytics, concept drift, hybrid
learning, long short-term memory (LSTM).

1. Introduction challenge of stream analytics is concept drift [6, 7] which de-
scribes changes in the concept or distribution of stream data.
There is a growing number of studies on how to conduct
stream analytics by leveraging IoT, edge and cloud resources.
Edge computing in an IoT environment brings computation and
data storage closer to data sources. It operates on “instant data”
that is usually time sensitive. Besides the latency benefit, edge
computing is normally designed for remote locations, where
there is limited or no connectivity to a centralized computa-
tion location. However, resources on edges are constrained and
limited in their capacity/capability and can only support rel-
atively simple data processing like inference/prediction based
on a pre-trained model. So it often relies on additional re-
sources, such as storage or memory optimized devices, for more

Stream analytics has become a major data analytics area
due to hardware and software advances in Internet of Things
(IoT), edge computing and cloud computing. It is now much
easier to obtain sensing data from IoT devices, which leads
to more and more stream analytics applications including real-
time trend prediction [1, 2, 3] and real-time object detection [4,
5] on top of IoT sensing data. Different from traditional ana-
lytics that assumes data to be processed are available ahead of
time and will not change, stream analytics processes data that
are being generated on the fly and continuously. A well-known
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ing data could also be delivered directly to the cloud and be
computed with enough computing power and storage capac-
ity. However, considering its distance to the data source, it is
hard to have a quick response when data injection for some
time-sensitive applications like earthquake warnings and auto-
matic driving. Since both edge and cloud resources have their
advantages and disadvantages, a related computing paradigm
like Edge-to-Cloud Continuum [9] has been proposed to inte-
grate edge with cloud. In an edge-cloud integrated framework,
the computation involves both front-end on-premise edge re-
sources like Raspberry Pi and NVIDIA Jetson Nano, and back-

end computing resources like big data and GPU clusters in cloud.

Deep learning has been widely used in stream analytics in
10T, edge or cloud environments. As a recent survey paper [10]
shows, about one third of studies surveyed in the paper employs
recurrent neural network (RNN) based deep learning models for
time series or sequence data prediction and forecasting. RNN
models can help learn temporal dependence and structures like
trends and seasonality. Most existing studies and systems, such
as [10] and [5], only support deep learning based inference on
IoT/edge devices. A new research area is how to best integrate
both edge resources and cloud resources for deep learning ap-
plications. Several researchers [9, 11, 12, 13, 14, 15, 16, 17]
have proposed solutions and frameworks for streaming data an-
alytics that leverage the capabilities of cloud services. However,
to integrate edge with cloud, we need to achieve a proper trade-
off between latency and accuracy for stream analytics between
edge and cloud resources.

Accuracy and latency are two common metrics in stream
analytics and many studies have how to balance them or make
trade-offs. In the paper, we focus on how to achieve good accu-
racy and latency for the RNN-based deep learning model in an
edge-cloud integrated environment by addressing the following
two challenges. First, while the existing studies like [9, 11, 12]
provided promising direction, it is still not clear how to best
deploy RNN-based deep learning models in edge and cloud
resources for stream analytics to achieve better latency. Sec-
ond, even though there have been many studies [18, 1] on how
to deal with unknown or changing data distributions in stream
data, a.k.a. concept drift, it is still an open question how to bal-
ance accuracy and latency for RNN based stream analytics in
an edge-cloud environment.

To tackle the above two challenges, we propose a novel
edge-cloud integrated framework and its corresponding open-
source modules [19] for stream analytics. To the best of our
knowledge, our work is the first to achieve hybrid RNN-based
deep learning for stream data in an edge-cloud integrated envi-
ronment. Our contributions are summarized as follows.

e We propose a novel edge-cloud integrated framework for
stream analytics that supports low latency inference on
the edge and high capacity training on the cloud. Tasks
like data injection, model inference and synchronization
are encapsulated as modules and can be flexibly deployed
on either an edge device like Raspberry Pi or a cloud re-
source like AWS.

e Based on users’ preferences, we propose three flexible

deployment modalities for our hybrid learning framework:
edge-centric, cloud-centric and edge-cloud integrated. Based
on a modular design, the hybrid learning framework can
still work even if parts of the cloud services or edge an-
alytics are unavailable. We further measured the latency
differences between the three deployments using a real-
world stream analytics application. Our experiments show
the proposed edge-cloud deployment is among the best in
terms of latency for inference, also will not run into ca-
pacity limitation for training.

e To adapt the concept drift challenge of stream data in
edge-cloud integrated environments, we propose an adap-
tive hybrid learning framework that combines and bene-
fits from both cloud resources’ high capacity and edge
resources’ low latency. Our hybrid learning framework
contains batch learning by employing a pre-trained RNN
model from large historical data, speed learning by pe-
riodically re-training an RNN model from most recent
data and hybrid learning by combining predictions from
batch and speed learning. We also study a new hybrid
learning algorithm that can combine results dynamically.
Our experiments show our hybrid learning approaches
can have better RMSE than cloud-based batch learning
and edge-based speed learning in most cases and our dy-
namic learning approach performs the best among all learn-
ing approaches for all three concept drift scenarios.

The rest of the paper is organized as follows. In Section 2,
we briefly introduce the related background our work is built
on. Section 3 provides an overview of the proposed edge-cloud
integrated hybrid learning framework. Section 4 introduces our
three flexible deployment modalities of hybrid learning frame-
work, including edge-centric, cloud-centric and edge-cloud in-
tegrated deployments. The adaptive hybrid stream analytics
and its two weight combinations, namely static and dynamic
weighting algorithms, are explained in Section 5. Evaluations
and benchmarking results are next discussed in Section 6. We
summarize related studies and compare them with our work in
7 and conclude in Section 8.

2. Background

2.1. Edge Computing and Edge-cloud Integration
Applications that utilize [oT devices are increasing day by
day and data volumes produced by IoT edge devices could be
enormous. In order to alleviate the heavy load of data trans-
fer, edge devices can pre-process, analyze and quickly react to
the time-sensitive application near data sources, and only de-
liver the processed data or inference results to back-end com-
putation centers. So, when data is handled by an edge device
that is close to data generation source, we could achieve faster
response time, higher computing efficiency and lower network
traffic in comparison to the case where IoT data is processed in
a centralized computation location. However, the capacity of
edge devices limits their capability to handle complex hetero-
geneous data and even could lead to unacceptable and unpre-
dictable performance. To deal with the challenge, work at [13]
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extended the idea of computing continuum, and proposed an
edge-to-cloud integration to support dynamic and data-driven
application workflows, which are capable of reacting to un-
predictable and heterogeneous real-time data. Pilot-Edge [9]
proposed its abstraction to support data and machine learning
(ML) applications in the edge-to-cloud continuum, which was
designed to address the challenge of computation performance
in heterogeneous edge environments.

2.2. RNN Models on Edge Devices

In recent years deep learning (DL) has gained attention due
to its ability to facilitate analytics in the IoT domain [10]. Se-
quence DL models like RNN and LSTM are useful for stream-
ing data prediction since these models can learn hidden features
from a sequence of records. Hermans et al. [20] state that con-
sidering the architecture and the functionality of RNNs, the hid-
den layers in RNNs are supposed to provide a memory instead
of hierarchical processing of features. LSTM, as a special form
of RNN, uses the concept of gates to actively control the mem-
ory cell and prevent perturbation from irrelevant inputs. The
work by Chung et al. [21] show that LSTM models perform
better than RNN models when data is characterized by a long
dependency like the observations from IoT applications. Tao et
al. [22] use LSTM architecture and mobile phone sensor data
for human activity recognition.

More advanced sequence models have also been proposed
for stream analytics. Zhang et al. [23] propose a multi-head
convolutional neural network with multi-path attention to de-
tect human activity signals received from the wearable sensors.
These experiments are carried out on a local computer rather
than the edge device and the authors mention their attention
models are computationally expensive.

The above studies only support a pre-trained RNN model.
As an initial work that supports RNN model update based on
more recent data, in this paper, we study a lighter weight LSTM
model on the edge device. In future works, we will explore
more complicated sequence models which use attention and
study how to best enable model inference and updates with lim-
ited resources at the edge.

2.3. Concept Drifts in Real-world IoT Data Streams

In real-world data-driven applications, analytics of IoT stream-

ing data often encounters the change in the data distribution
while extracting different features from stream sources. These
hidden changes in the concept or distribution of streaming data,
which are unknown to the learning algorithms, are termed as
concept drift [6, 7] or nonstationary data. Mathematically, if we
denote X as an input vector and y as an output vector, then (X, y)
will be an infinite sequence of data streams. Concept drifts be-
tween time point #; and time point #; can be defined as

pi(X,y) # pij(X,y) ey

where p;; and p;; denote joint probability distribution at
time #; and ¢}, respectively.

Changes in streaming data distribution over time might ap-
pear in various ways such as gradual drift and abrupt drift.

3

Abrupt drift happens suddenly by switching from one concept
to another in any time period [7]. Gradual or incremental drift
does not change abruptly, instead happens over a long period
and therefore can be expected. It defines a continuous change
that happens from one underlying process behavior to another
one. In this paper, simulated datasets consisting of gradual and
abrupt drift were used to know how hybrid stream analytics re-
acts in the context of different types of drifts.

2.4. Adaptive Learning and Lambda Architecture

Because underlying concepts of real-world stream data could
evolve over time, adaptive learning algorithms have been pro-
posed to address concept drift by adapting new instances and
forgetting old ones in order to naturally follow drifts in the
stream. It can also be considered as improved incremental learn-
ing algorithms that are able to integrate fresh data during their
operation to react to concept drifts [7]. Mentioned by [24], con-
cept drift detector, sliding windows, online learner and ensem-
ble learners are the most common adaptive learning approaches.
One challenge is, the estimation of performance feedback is
difficult for any adaptive learning system due to the absence of
ground truth in stream data. Besides, the anomalies of the algo-
rithm can readily be confused for changes in the stream data. In
our paper, we infer and evaluate our adaptive learning method
by analyzing earlier historical data and the data in the past time
windows.

Lambda architecture is a data-processing design pattern which
is usually used in data-driven applications by taking advantage
of both batch and stream processing methods [1]. The lambda
architecture has three layers, batch layer for batch processing
based on historical data, speed layer for real-time stream pro-
cessing, and serving/hybrid layer for combining outputs from
both batch and speed layer. The goal for lambda architecture
design pattern is to abstract and balance both the accuracy by
using batch processing to provide comprehensive knowledge
from historical data, and the latency by using stream process-
ing to learn the resent changes from real-time data. Inspired by
this design pattern, we propose a hybrid stream learning model
to achieve adaptive learning.

3. Overview of Hybrid Stream Analytics Framework

In this section, we briefly introduce our proposed hybrid
stream analytics framework from a high-level view. By com-
bining edge resources’ lower communication latency with cloud
resources’ higher computational power, we propose a novel hy-
brid learning framework that can achieve good latency and ac-
curacy for stream analytics.

We summarize our hybrid stream analytics framework in
Figure 1. In our design, different functionalities are wrapped
into multiple modules, which can be deployed on either edge
or cloud. Within the edge side, six modules are designed for
flexible and dynamic stream analytics. The first three modules,
namely batch inference, speed inference and hybrid inference,
are the main functionality for the inference task of stream ana-
Iytics. When stream data is injected, batch inference provides
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Figure 1: The overview of our proposed hybrid stream analytics framework.

batch predictions based on a pre-trained model from historical
data; speed inference enables predictions based on the latest
model trained from the previous time window; and hybrid in-
ference combines their inferred values to get a new prediction
value. We will explain in detail how we leverage our hybrid
learning model to achieve adaptive prediction further in Sec-
tion 5. Next, we introduce the last three modules on the edge
side. For model synchronization, it synchronizes the models for
speed inference from cloud to edge periodically. For data syn-
chronization, it synchronizes the streaming raw data and all in-
ference results to the cloud storage. All the synchronizations
are achieved through the edge-cloud MQTT messaging [25]
based on specific topics. Module data injection acts as a trans-
fer station to throttle the amount of streaming data in each time
window and control them to the target modules. All these mod-
ularized functionalities can work both independently and coop-
eratively based on usage. With this modular design, our hybrid
stream analytics framework can still work even if some mod-
ules are unavailable. Details of how our framework achieves
flexibility with different deployment modalities including edge-
centric, cloud-centric and edge-cloud integrated scenarios will
be explained in Section 4.

Within the cloud side, two resources are used as the back-
end of the hybrid stream analytics framework: 1) AWS IoT
Core manages the edge-cloud communication and accession,
and 2) AWS Lambda Function implements the pipeline of com-
plex data processing. AWS IoT Core provides resources and
services that help users achieve edge-cloud computing with AWS
IoT-based solutions. Within AWS open source IoT edge run-

time, called Greengrass [26], our pre-built modules can be de-
ployed, communicated and managed on the edge through AWS
web console or command line. Specifically, defined by AWS
access control, all permitted edge-to-edge and edge-to-cloud
communications are achieved by MQTT publishing and sub-
scribing protocol. Besides, IoT Core enables triggering rules
that provide a SQL-based language to filter MQTT payloads
and deliver them to the target services like Lambda Function.
As shown in Figure 2, filtering by the Lambda triggering rules,
the incoming MQTT payloads will be delivered to different
target Lambda functions as Lambda events (Step 1). In Step
2, Lambda functions will execute these triggered events asyn-
chronously based on their pre-defined pipeline. Prediction Re-
sults Archiving function only receives events from the inference
results topic and directly stores the payloads to AWS S3 ob-
ject storage. Data Archiving and Speed Training and Archiving
functions both receive events from the streaming data topic. For
Data Archiving function, just like the first function, it stores the
payloads to S3 directly. For Speed Training and Archiving func-
tion, it will first check AWS EC2’s availability, deliver stream-
ing data to an EC2 virtual machine for model training, and then
upload the latest model to S3 when training finished. In the
meanwhile, in Step 3, this Lambda function will also publish
a one-time pre-signed S3 URL to the edge. This S3 URL is
signed with cloud credentials, which grants temporary access
to the edge’s model synchronization.

4. Flexible Deployments of Hybrid Stream Analytics Frame-
work

To achieve the flexibility of the proposed hybrid stream an-
alytics framework, we use a modular design for all framework
components, which achieves a proper trade-off between latency
and accuracy for stream analytics. Based on different scenarios,
we design three types of deployments for the hybrid stream an-
alytics: edge-centric, cloud-centric and edge-cloud integrated
deployments. The summary of the three deployment modalities
is shown in Figure 3. We also summarize the advantages and
limitations of the proposed deployments in Table 1.

4.1. Edge-Centric Stream Analytics Deployment

Because stream analytics needs to process incoming data
continuously, it is common that the back-end cloud service will
be temporally unavailable due to network disconnection or re-
source overload problems. For this, we design an edge centric
deployment modality, which allows the edge to execute stream
analytics autonomously with local events, as shown in Figure
3a.

We can summarize the unavailability of the cloud into two
scenarios: part of cloud computational resources (like EC2) is
unavailable and the whole cloud service is unavailable. For
the first scenario, IoT Core and other Lambda functions still
work well except for the Speed Training and Archiving. If the
Lambda function cannot connect to any virtual machine in EC2,
it will put the process event into its waiting queue and wait for
the available resources. At this time, although other services
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Figure 2: The system sequence diagram for pipelines of Lambda functions for back-end processing in the cloud.

still work fine, the performance of speed inference may not have
good accuracy since it still uses an “out-of-date” model trained
by the data from the time window before the unavailability of
EC2.

‘When the whole cloud service is unavailable, that means the
edge cannot get any update from the cloud. In this scenario, all
the flexible modules and the functionalities of Lambda Func-
tion are wrapped into AWS Greengrass runtime and deployed
to the edge side. Based on the usage, if the stream analytics
framework is only assigned to do model inference, the batch,
speed and hybrid inference modules will wait for the data from
data injection and output the results separately. If the stream an-
alytics framework also requires to do model training, the speed
training module can be deployed to the edge device, subscribe
to the data injection, fulfill speed training and synchronize the
new model for next time window inference. To achieve this us-
age, MQTT publishes and subscribes messages locally within
the edge device. Specifically, the speed training module is in a
containerized Spark [27] based design. By default, it will ini-
tiate the training environment from a pulled docker image and
allocate available edge resources to train the model in a Spark
standalone mode. Our future work will study how this Spark-

based speed training module can be extended to different edge
devices as a distributed master-worker computing. If there are
idle edge devices, Spark will initiate these edges as workers and
auto-scale the training tasks to them. This Spark-based paral-
lel design of the speed training module also avoids the issue of
limited computational capability of individual edge devices.

4.2. Cloud-Centric Stream Analytics Deployment

To achieve the flexibility of the hybrid stream analytics frame-
work, we also provide a cloud-centric deployment for stream
analytics. In this scenario, as shown in Figure 3b, the edge de-
vice is only used to sense the streaming data and synchronize
them to the cloud.

When the edge device cannot perform any data processing,
the batch, speed, hybrid inference and model synchronization
modules should be deployed on cloud computational resources
like EC2. At this time, IoT Core service will mark the EC2 vir-
tual machine (VM) as the substituted edge computational capa-
bility and subscribe to the MQTT payloads from EC2.

Leveraged by Lambda functions, our cloud-centric deploy-
ment achieves automatic data processing for each time window
of stream analytics in the back-end cloud. Like the introduction

Table 1: Advantages and limitations of the proposed three deployment types for stream analytics.

Advantages

Limitations

Edge Centric

quick respond since
the computation is near to the source of data

capacity and capability shortage
for edge device

Cloud Centric

enough capacity and capability
for high accuracy computation

high communication overhead
between edge and cloud

Edge-cloud Integrated

quick respond for inference and
high accuracy for training

complex coordination
between edge and cloud
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Figure 3: Flexible deployments of our hybrid stream analytics framework.

in Section 3, for the hybrid stream analytics framework, when
an incoming MQTT payload triggers a filtering rule, IoT Core
invokes corresponding Lambda functions asynchronously and
passes the data payload from edge to the specific function. Af-
ter that, based on the pre-defined functions of data processing
pipeline, Lambda will check the availability of AWS EC2 vir-
tual machines, train the streaming data in EC2 and archive the
model to the S3 object storage. Later, Lambda will reply with
a one-time pre-signed S3 URL to edge, which grants the model
synchronization module temporary access to synchronize the
latest model from cloud.

4.3. Edge-Cloud Integrated Stream Analytics Deployment

We first make a short summary about the advantages and
limitations of the first two proposed deployments, as shown in
Table 1. For the edge-centric deployment, although all the hy-
brid stream analytics can run closer to the data sources, the lim-
itation is that the weak computational capability and capacity
of edge devices may cause process congestion or even crash
during stream analytics. Whereas for the cloud-centric deploy-
ment, all the data cannot be pre-processed before it arrivals to
cloud. In another word, the edge-centric deployment focus on
the quick on-site response of the stream analytics and the cloud-
centric deployment mainly benefits of the computing power and
storage capacity of cloud.

In order to achieve the proper trade-off between these two
deployment modalities, we propose a third deployment modal-
ity, namely edge-cloud integrated deployment. As shown in

Figure 3c, with edge-cloud integrated deployment, all the infer-
ence and synchronization modules are developed on the edge,
while speed training and all the archiving are developed on
the cloud. With this edge-centric deployment solution, hybrid
stream analytics can enjoy not only the computing power and
storage capacity of cloud, but also the low latency for edge re-
sources.

4.4. Flexible Deployment of Our Framework

In our hybrid stream analytics framework, we have six mod-
ules implemented as Python functions. For the flexible deploy-
ment, we use different ways to wrap these modules to achieve
proper coordination and trigger their invocations based on in-
coming stream data. Specifically, we use AWS IoT Compo-
nent with its Greengrass runtime for edge-based deployment
and AWS Lambda function for cloud-based deployment. To
deploy a module on edge, AWS IoT Component is required
with an update interval configuration so the modules can be
triggered by an AWS IoT event and the records of the time
windows periodically. To deploy a module on AWS, it can be
encapsulated into the docker container with its software envi-
ronment. In this way, the same modules and implementations
can be reused when switching from one deployment to another.

4.5. Extensibility of Our Framework

In this paper we implement the hybrid stream analytics frame-
work on AWS cloud, however the proposed framework can be
easily extended to other cloud providers. Most services from

Table 2: Cloud service mapping for hybrid stream analytics.

Service category Service description ‘ Amazon AWS ‘ Microsoft Azure ‘ Google Cloud ‘
Virtual machine Virtual instance that enables to host speed training. EC2 Virtual Machines Compute Engine
IoT platform Manage the edge-cloud communication and accession. IoT Core IoT Hub Cloud IoT
IoT runtime Help edges to build, deploy and manage the application. Greengrass IoT edge Cloud edge
Container service | Store, manage, and secure container images in private or public. ECR Azure Container Registry | Artifact Registry
Object storage Store, manage, and secure any amount of data in storage. S3 Blob storage Firebase
Serverless Run and manage the application with zero server management. | Lambda Functions Azure Functions Cloud Functions
Cloud Python SDK Easy-to-use interface to access cloud services. Boto/Boto3 .NET Core Cloud SDK

6
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different cloud providers can be mapped to each other. Table
2 lists related cloud services provided by Amazon AWS, Mi-
crosoft Azure and Google Cloud for hybrid stream analytics.
In order to achieve extension to Microsoft Azure and Google
Cloud, the user needs to wrap the flexible modules into its cor-
responding IoT runtime for each cloud. All functionalities can
be wrapped into the Greengrass runtime for AWS, the IoT Edge
runtime for Azure, and IoT Cloud Edge for Google. Addition-
ally, the serverless functions are needed to adapt to the specific
structure and format of each cloud.

5. Adaptive and Dynamic Hybrid Learning Model for Stream
Analytics

In order to tackle the challenge of concept drift, we pro-
pose a hybrid learning model, which can adapt to the changes in
stream analytics by weighted combining the results from batch
and speed inference. Like the design pattern of Lambda archi-
tecture, hybrid stream analytics should contain a batch layer,
a speed layer and a serving/hybrid layer. In this section, we
will first provide an overview of our hybrid learning model.
Then, we introduce the orchestration of the hybrid stream ana-
lytics, and its two weight combination algorithms, namely static
weighting algorithm and dynamic weighting algorithm.

5.1. Overview of Adaptive Hybrid Stream Analytics

Leveraging the lambda architecture, our hybrid stream an-
alytics achieves adaptability of stream data concept drift. We
first introduce problem statements of our hybrid stream analyt-
ics. In our hybrid learning model, we separate the inference
tasks of stream analytics into three layers: batch layer, speed
layer and hybrid layer.

Batch layer tasks. For the batch layer, our hybrid learning
model only trains the model once and reuses it for inference all
received stream data. Its model is defined as

= oY T 2)

We call the training in batch layer as the batch training and
its inference as batch inference.

Speed layer tasks. For the speed layer, there is no pre-trained
model before the stream analytics begins. Instead, the speed
layer re-trains a new model for every time window and uses it
to infer the next time window data. We define the inference
task as follows. For each time window ¢, the stream analytics
trains a model f; and uses it to make predictions for the new
time window ¢ + 1. For each timestep i within time window
t + 1, the prediction value ¥; can be defined as

3)

We call the training in speed layer as the speed training and
its inference as speed inference.

- i-1 -2 i—n
Vi1 = O Yt -+ 2 Y

Hybrid layer task. For hybrid layer, in order to aggregate the
inference results from both consistent patterns of historical data
distribution and the hidden changes of streaming data distribu-
tion, its model works based on formula

Predhyb,id =W« Predxpeed + Wb * Predbmh (4)

where the weights W* + W? = 1. The hybrid layer only has
inference (no training), so that we call it as hybrid inference.

Because model training happens only once for the batch
layer, referred to as Figure 4, the latency of batch training is
not part of the latency occurred for incoming streaming data.
Instead, we only focus on the latency for batch inference, speed
training, speed inference and hybrid inference for each time
window in the paper. Also, we run each module asynchronously
to lower overall latency.

5.2. Orchestration of Hybrid Stream Analytics

We explain how the modules of the hybrid stream analyt-
ics orchestrate, which is illustrated in Figure 4. There exist a
one-time batch training before the stream analytics start. Af-
ter that, the data injection module acts as a transfer station to
throttle the amount of sensing streaming data into a payload for
each time window, for example, catching streaming data every
30 seconds. With data injection throttling, incoming streaming
data can be temporarily stored in a buffer queue which avoids
the receiver from the crash when absorbing the peaks of incom-
ing data for a very short time lapse. Then, the data injection
module delivers data based on the usages of stream analytics,
which contains two asynchronous phases: training phase and
inference phase.

In the training phase, stream analytics executes the speed
training based on the stream data in each time window. After
receiving raw streaming data, the speed training module trains
a new model based on the current payload batch. Then this
new trained model will be synchronized to the speed inference
module for the prediction of the later stream analytics.

In the inference phase, the stream analytics pipeline requires
batch and speed inference, and the data injection module will
deliver the streaming payload to the inference modules in each
time window. With the design pattern of lambda architecture,
batch inference module predicts results using a pre-trained model
as the batch layer, which is learned from the historical dataset.
As the speed layer, speed inference module updates its model
for each time window, which uses a model learned from the pre-
vious time window and tests it in the current time window. And
hybrid layer will aggregate the inference results both from the
consistent patterns of historical data distribution and the hidden
changes in streaming data distribution in both batch and speed
layers. The hybrid inference results will later be published by
the MQTT publisher for archiving and further notification.

5.3. Hybrid Learning Model with Weight Combination

In this section, we introduce the two weight combination
algorithms for hybrid inference.

Static Weighting Algorithm. The weight combination algo-
rithm can be defined as the static weighting algorithm if the
weights W* and W? (in Equation 4) are been set as a fixed value
for every time window of the stream analytics. Because of the
fixed weights, it is obvious that the hybrid learning model with
the static weighting algorithm is hard to adapt to the dynamic
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Figure 4: Module orchestration of our hybrid stream analytics (rectangular boxes denote periodic operations and round boxes denote one-time operations).

changes of streaming data. To solve this problem, we provide
an optimized approach to dynamically learn the weights during
stream analytics, namely dynamic weighting algorithm.

Dynamic Weighting Algorithm. In theory, finding the dy-
namic weights is a mathematical optimization problem that is
used to find the best solution from all feasible solutions. Shift-
ing it to a machine learning problem, stacking ensemble meth-
ods [28, 29] combine multiple machine learning algorithms to
obtain a better predictive performance than that could be ob-
tained from any of the constituent learning algorithms alone.
Based on these ideas, we propose our dynamic weighting algo-
rithm.

Algorithm 1: Dynamic Weighting Algorithm (DWA)
Input: M°, M; . X[, Y,

Output: W>,W?

function DWAQ):

EnsembleModels « [ ]

Pred « [ ]
EnsembleModels.append(M®, M )

for model in EnsembleModels do
| Pred.append(model.predict(X/*Y))
end

Wit = 10.5] * len(Pred)

cons = lambda W : 1 — sum(W)

bounds = [(0, 1)] = len(Pred)

loss = LossFunc(Y[Y, Pred)

WP, W* — minimize(loss, W™, bounds, cons, S olver)

return W2, W?

As shown in Algorithm 1, for each time window ¢, tak-
ing the inputs of batch layer model M?, speed layer model
M, at time window ¢ — 1 with the test dataset XY, the dy-
namic weighting algorithm stacks the provided models and col-
lects their predictions using the test dataset as the serving layer.
By listing the constraints and bounds, like limiting the sum of
weights to equal 1 (W? + W = 1) and limiting the weights
W,b, W/ in range [0, 1], the optimization solver will find the
optimum values that can minimize the objective loss function,

starting from an initial guess W (we choose 0.5 as our ini-
tial weights). In our paper, we use Sequential Least Squares
Programming (SLSQP) [30] as the optimization solver S olver,
which is always used to solve nonlinear programming (NLP)
problems. We also use Root Mean Squared Error [31] regres-
sion loss as our loss function LossFunc that can be defined as

Lise (y) = (5)

which is the square root of the average of squared differ-
ences between prediction §; and actual observation y;.

In our algorithm implementation, at each time window ¢, we
stack two pre-trained models in the serving layer, which include
one speed layer model at time window ¢ — 1 and the batch layer
model. Since the ensemble method does not require a constant
pattern for stacking models from batch or speed layer, the dy-
namic weighting algorithm also has its variants like stacking
the most resent n speed layer models or stacking speed layer
models continuously. We will study these variants as part of
our future work.

6. Evaluation

This section conducts the evaluation of our proposed flexi-
ble and dynamic hybrid stream analytics framework. We imple-
mented our framework and open-sourced it on GitHub at [19].
One real-world and two synthetic datasets are applied in our
experiments and the metric includes latency and accuracy. The
evaluation compares the difference in two aspects: 1) different
types of hybrid learning framework deployment and 2) different
types of hybrid stream analytics approaches.

We note that our experiments have implemented approaches
from several related works as baselines for specific capabilities:
1) For hybrid time series forecasting, we implemented the static
approach in reference [1] as a baseline to evaluate the advantage
of our proposed dynamic capability (see Section 6.3.2 and Fig-
ure 8); 2) For hybrid inference, we implemented reference [2]
as the baseline for batch inference modality to evaluate the ad-
vantages of our dynamic hybrid inference modality (see Section
6.2 and Table 3).
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Figure 5: Data distribution for one real-world and two synthetic time-series of wind turbine temperature.

6.1. Datasets and Evaluation Settings

6.1.1. Dataset description

We use one real-world dataset and two simulated datasets
for gradual drifts and abrupt drifts, in order to evaluate our pro-
posed edge-cloud integrated framework. The data distributions
of each dataset are shown in Figure 5.

One real-world dataset. Our application is designed for the
real-world prediction of wind turbine temperature, based on the
ENGIE’s open wind farm data [32]. For the actual data dis-
tribution of wind turbine temperature, as shown in Figure Sa,
we use one turbine time series (from five temperature sensors)
from January to December in 2017, recorded every 10 min-
utes, which has around 50,000 observations in total. In order
to check concept drifts and data stationary for each variable
in actual time-series, we perform the augmented Dickey-Fuller
test [33], which is used to determine how strongly a series is de-
fined by a trend by calculating the corresponding p-value [34].
The null hypothesis of the test is that the tested series have a
certain time-dependent structure (namely not stationary). The
p-values of the five variables, namely Db1lt_avg, Db2t_avg,
Gblt_avg, Gb2t_avg and Ot_avg, turn out to be 1.82 X 722,
334 xe 17,344 x e, 238 x e 7 and 4 x 70, respectively.
Since these values are less than 0.05, we can reject our null hy-
pothesis and conclude that the time series is stationary without
concept drifts. We use this actual dataset in our no drift sce-
nario.

Two synthetic datasets. In order to evaluate the adaptiveness
of our hybrid learning dealing with streaming data concept drifts,
we synthetically generate two datasets and simulate gradual
drifts and abrupt drifts on each of them, as shown in Figures
5b and 5c.

Let GD;(t) and AD;(t) be the generated gradual and abrupt
drift value of target variable at timestamp ¢, and Y;(¢) be the
true value of input feature, where i € [0...n]. For gradual drift
scenario and abrupt drift scenario, the simulation rule for all n
variables is specified as Equations 6 and 7 separately, where «;
is the drift value for variable i, € is an invariant noise and A is
the random abrupt parameter.

GDi(t) =ait+ Yi(t)+ & ©6)
AD;(t) = aitd+ Yi(H) + € @)

6.1.2. Machine learning setting

For the evaluation of no-drift, gradual drift and abrupt drift
scenario, we split the modeling dataset into training and test-
ing subsets with the ratio of 4 : 6. We use 20,000 observations
to produce a pre-trained model for batch inference, and send
30,000 observations as streaming data in each time window to
test our hybrid learning analytics. The data from all five vari-
ables are been normalized using Min-Max Scaling to the range
of [0, 1] during computation.
Settings for model training. We run a multilayer-perception
long short-term memory (LSTM) network shown in Figure 6,
which has one long short-term memory layer with 40 units, one
fully connected layer with 10 units and ReLu activation, and
one final output layer (10,981 total parameters). For the pre-
train model used in batch inference, we train the model using
50 epochs and 512 batch sizes with a 0.001 learning rate. For
the speed model in each time window, we use 100 epochs and
64 batch sizes with a 0.001 learning rate. Because this study fo-
cuses on hybrid learning and its deployment on edge-cloud re-
sources, we did not employ more complicated RNN deep learn-
ing models, which can be easily evaluated in future work.

Figure 6: LSTM network architecture.

Settings for model inference. Our batch inference loads the
pre-trained model in each time window and makes predictions
for the records in the current time window. We set the time win-
dow size equal to 30 seconds in all experiments and throttle no
less than 200 records in each time window. For speed inference,
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Table 3: The latency of inference phase for different stream analytics with three deployment modalities (unit: second).

Speed Inference Batch Inference Serving/Hybrid Inference
Computation | Communication | Total | Computation | Communication | Total | Computation | Communication | Total
Cloud Centric 8.82 13.88 22.70 8.49 14.52 23.01 23.65 16.47 40.12
Edge Centric 10.25 6.83 17.08 10.65 6.61 17.26 27.19 8.52 35.71
Edge-Cloud Integrated 9.89 6.75 16.64 10.83 7.20 18.03 26.71 8.93 35.64

we have three parallel processes, which include 1) fetching the
latest pre-trained model from S3 and saving it to the edge disk;
2) loading the latest pre-trained model from the edge disk and
making a prediction for the current time window; and 3) train-
ing a new LSTM model based on the current time window and
uploading the model to S3. Because the three processes run in
parallel, we cannot guarantee to use the model trained from the
previous time window to infer the current time window. But
this approach can improve the latency greatly. For the hybrid
inference, the predicted value of each record is calculated from
its batch and speed inference prediction.

As the problem statement in Section 5.1, assuming values
foryi 1, yi2, ..., y"." are known when making predictions (same
with batch inference without the time window #). We evaluate
the prediction performance by calculating RMSE between pre-
dictions j)t' 1 and actual observations y;' +1- In the paper, we set
the time lag to be 5, namely n = 5.

6.1.3. Hardware and software setting

Hardware settings. For our experiments, we use a Raspberry
Pi 4 as our front-end on-premise edge device, which is attached
with the 32GB MicroSD memory card and 4GB RAM. We use
Amazon Web Services as our back-end cloud platform. A data
analytics server is deployed on AWS EC2, which allocate to
a compute-optimized c5.4xlarge instance with 16 virtual CPUs
(vCPUs) and 32GB of memory.

Software settings. For the software environment on the edge,
we use Debian 11 Bullseye OS with Python 3.8. The dependen-
cies on edge include Tensorflow-lite 2.5, Spark 3.0 and Pandas
for inference learning, Kafka 3.1 for data injection, and AWS
SDK Boto3 for edge-cloud data and model synchronization.
The Kafka data injection bandwidth is around 7 records/second
in our experiments. Meanwhile, the software environment on
the cloud is encapsulated in our public Docker image, which
contains Tensorflow 2.2, Spark 3.0 and Pandas for model train-
ing and also Boto3 for synchronization. Both our software en-
vironments support the Spark big data analytics engine, which
enables parallel computation on two sides.

6.2. Latency Evaluation for Different Deployment Modalities

We first evaluate the performance of hybrid learning frame-
work with the three deployment types explained in Section 4.
Since the deployment modalities, including edge-centric, cloud-
centric and edge-cloud integrated, only change the resources
where the modules are deployed in, the stream analytics still
executes based on the same logic which results in the same ac-
curacy performance. Therefore, we only evaluate their latency.

10

We separate the pipeline of stream analytics into two phases:
inference phase and training phase. These two phases work
asynchronously as illustrated in Figure 4. In inference phase,
starting from data injection to prediction archiving, we record
both computation latency and communication latency for each
time window, then we calculate their averages over all time win-
dows and show the results in Table 3. The table shows edge-
centric and edge-cloud integrated deployment are more efficient
than cloud-centric deployment because of their small commu-
nication overheads. For edge-centric and edge-cloud integrated
deployment, referred to as Figures 3a and 3b, they have roughly
the same latency in inference phase since their module deploy-
ments are exactly the same, except the speed training. Next in
the training phase, starting from data injection to model syn-
chronization, we only measure the average computation and
the communication latency for speed layer, since batch layer
only trains a model once and hybrid layer does not have the
training phase. For cloud-centric deployment, the average la-
tency of speed layer are 14.73 seconds for computation, 14.47
seconds for communication, and 29.20 seconds in total. For
the edge-cloud integrated deployment, the average latency are
15.69, 14.04 and 29.73 seconds, respectively. These two de-
ployment modalities perform in the same trend since their speed
training modules are both deployed in cloud. For edge-centric
deployment, referred to as Figure 3a, the speed training mod-
ule should be deployed in edge resource. We also evaluated the
edge-centric deployment with our Raspberry Pi edge device,
but the experiment failed with out-of-memory error. It shows
the edge device with a limited capacity cannot support this type
of deployment. So, if we compare the total latency (inference
and training), edge-cloud integrated deployment is the best.

In summary, for three deployment modalities, edge-cloud
integrated deployment works best, as its efficiency in inference
phase and the sufficient capacity in training phase. Specially,
comparing with the other two deployments, the edge-cloud de-
ployment can achieve similar latency performance as edge-centric
deployment without worrying about capacity limitations. There-
fore, for the rest of our evaluation, we only conduct experiments
with the edge-cloud integrated deployment.

6.3. Latency and Accuracy Evaluation for Different Stream An-
alytics Approaches

We focus on both latency and accuracy aspects when eval-
uating our adaptive hybrid stream analytics approaches. For
latency, we measure overhead created by stream analytics. For
accuracy, we compare its performance with the proposed dy-
namic weighting algorithm in different streaming concept drift
scenarios. For the dynamic weighting algorithm, we evaluate
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Figure 7: Inference and total latency of hybrid stream analytics for edge-cloud integrated deployment.
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the stacking of two pre-trained models (one latest speed model
and one batch model) as explained in Section 5.3.

6.3.1. Latency evaluation

We first discuss the latency of hybrid stream analytics with
static weighting and dynamic weighting. As shown in Figure 7,
we record the latency of execution in every streaming time win-
dow which includes around 200 streaming observations. The
latencies of speed and batch inference are in the same trend and
they are both lower than the latency of hybrid inference. Since
speed and batch inference are executing in parallel and their la-
tencies have overlap, we also evaluate the total latency for the
whole hybrid stream analytics.

With static weighting in Figure 7a, the latencies averaged
from all time windows are: 10.43 seconds for speed inference,
9.93 for batch, 15.81 for hybrid and 26.63 for total, respectively.
And with dynamic weighting in Figure 7b, the average latencies
are 10.25, 10.63, 18.34 and 29.19 seconds, respectively. Since
the weight combination algorithm is only applied in hybrid in-
ference, the latencies of speed and batch inference are roughly
the same in the two evaluations. For the hybrid inference and
the overall hybrid stream analytics, the percentage of average
latency increment of dynamic weighting turn out to be 14.82%
and 9.54%, compared with static weighting. The increment is
because our dynamic approach requires time to find the best
weights.

| | | | | |
Speed Batch Hybrid Hybrid Hybrid Hybrid

(€]

(b) Gradual-Drift Data.
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RMSE box-plots for different inference approaches.

6.3.2. Accuracy evaluation

To evaluate accuracy performance of hybrid stream analyt-
ics, we use Root Mean Squared Error (RMSE) metric to mea-
sure how far the predicted values §; are from the ground-truth
values y;, as mentioned in Equation 5. We compare the perfor-
mance of hybrid stream analytics in three data drifting scenarios
with two weight combination algorithms. We record the RMSE
of inference results for each streaming time window (100 time
windows in total), and convert them into the boxplots, as shown
in Figure 8. For the static weighting algorithm, we also mea-
sure the different weights in 3:7, 5:5 and 7:3 (speed:batch) of
the accuracy performance evaluation.

Figure 8 assesses the accuracy of hybrid stream analytics
and baseline approaches. In summary, for hybrid stream analyt-
ics, both static and dynamic weighting algorithm achieve bet-
ter RMSE values than speed and batch inference. For no-drift
scenario, the batch and speed inference get roughly the same
RMSE since there are no unexpected changes in the concept or
distribution or the streaming data. For both gradual-drift and
abrupt-drift scenarios, the speed inference works better than
the batch inference since the latter cannot detect the changes
in data distribution based on the model from historical data. On
the contrary, speed inference updates the model for each time
window, using a model trained from the previous time window
to test the streaming data in the current time window, which
can catch the drifting in time. Besides, this evaluation also
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Figure 9: RMSE of each time window for batch, speed and dynamic hybrid inference.

shows the hybrid stream analytics with dynamic weighting al-
gorithm achieves the best average RMSE in all three scenarios,
and the improved percentages of RMSE are 10.73%, 12.73%
and 5.20% respectively. We also record the RMSE for each
time window in all three drifting scenarios, as shown in Figure
9. It also shows our dynamic hybrid approach achieves the best
RMSE for most time windows.

Table 4: Time percentage of each inference being the best in terms of RMSE
for no-drift data.

[ | Static (3:7) | Static (5:5) | Static (7:3) | Dynamic

Speed 0.5460 0.4757 0.3311 0.1648
Batch 0.1172 0.1967 0.2578 0.088
Hybrid 0.3368 0.3275 0.4111 0.7472

Table 5: Time percentage of each inference being the best in terms of RMSE
for gradual-drift data.

[ | Static (3:7) | Static (5:5) | Static (7:3) | Dynamic |

Speed 0.3472 0.2830 0.1702 0.0513
Batch 0.1093 0.1332 0.2230 0.0252
Hybrid 0.5436 0.5838 0.6068 0.9235

Table 6: Time percentage of each inference being the best in terms of RMSE
for abrupt-drift data.

[ | Static (3:7) | Static (5:5) | Static (7:3) | Dynamic |

Speed 0.4839 0.2106 0.1129 0.0290
Batch 0.0000 0.0091 0.0183 0.0000
Hybrid 0.5161 0.7802 0.8687 0.971

In order to verify above conclusions, we further draw Ta-
bles 4, 5 and 6, which show the percentage of each inference
being the best with no-drift, gradual-drift and abrupt-drift data
separately. For no-drift scenario, hybrid inference is the best ap-
proach only in dynamic weights and one static weighting (7:3)
algorithm. For both the gradual-drift and abrupt-drift scenar-
ios, however, hybrid inference is always the best approach for
every weight combination algorithm. As a result, our hybrid
stream analytics can adapt the gradual and abrupt concept drift
effectively.
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7. Related work

There have been many studies related to the topics we dis-
cussed in the paper. Based on their framework capabilities and
main focused challenges, as shown in Table 7, we categorize
them into different groups. Next, we describe the details of
these related work from the three aspects we listed in the table.

7.1. Machine Learning based IoT Stream Data Analytics

When dealing with concept drift in stream data analytics,
we study how to optimally integrate batch learning and stream
learning in our paper. Paper [1] proposes a framework that gen-
erates improved time series forecasting by supporting batch-
based, stream-based and hybrid time series forecasting, to tackle
the adaptability challenges. Several papers [35, 36, 37, 43, 2,
38, 39, 44] study how to update the model based on stream-
ing data and propose their solutions. Shao et al. [35] propose
an adaptive strategy in conjunction with ensemble learning for
the task of concept drift detection, while Puschmann et al. [36]
use an online clustering mechanism to cluster the streaming
data, which remains adaptive to drifts by adjusting itself as
the data changes. Yang et al. [37] propose their drift adapta-
tion method algorithm based on the combination of sliding and
adaptive window-based methods, as well as performance-based
methods. All these studies focus on the algorithm design for
training and updating one identical ML/DL model to deal with
streaming concept drift with the best performance. Some of
these [36, 38, 39] did not consider the computational power of
the edge computing environment, so the algorithms need to be
further deployed in additional resources (like storage or compu-
tation optimized device). In contrast, the adaptive hybrid stream
analytics we proposed is a weight combination solution from
two (batch and stream) inferences, which does not re-evaluate
or adjust the layers of the neural network based on the results.
By periodically applying knowledge from two trained and com-
pressed models, our work is more lightweight and portable for
edge devices in real-time concept drift adaptation.

7.2. Edge-cloud Integration

There are also several studies [13, 14, 15, 16, 17] for work-
load management on edge-cloud integrated resources, more tar-



Wang, et al. / Future Generation Computer Systems 00 (2023) 1-14

Table 7: Related works that support different of capabilities. ONo @Yes ©Some approaches support it.

Inference

Approaches on edge

Periodic model
training on cloud

Model update
from cloud to edge

Multi-model analytics
for adaptability

Flexible edge-
cloud deployment

Machine learning based IoT stream

data analytics [1, 35, 36, 37, 36, 38, 39] 0

O

O [ J O

Edge-cloud integrated
framework [13, 14, 15, 16, 17,9, 11, 12]

System or toolkit for deep learning
based inference [5, 40, 41, 26, 42]

O [ J
[ J O
Edge-cloud
integrated framework o d

© ©) O
O O ([ ]
[ ] ([ ] ([ ]

geting an optimized cyber-infrastructure design but not much
for machine learning related workload. Luckow et al. [9] study
how to manage distributed edge and cloud resources and stud-
ies the performance of machine learning models for the outlier
detection. However, the edge devices in the paper are simu-
lated so it is yet to be seen whether the findings are the same
in real-world. Also, the machine learning models are only de-
ployed on the cloud side, not on the edge side. Osia et al. [11]
deploy deep learning models to predict images collected by the
edge, where sensitive information is first pre-processed on the
edge and its representation is sent to the cloud for complex in-
ferences. Since the edge devices are only used for data pre-
processing, not for actual machine learning based inference,
the total latency of their framework will be higher than infer-
ring directly on edge. Abdulla et al. [12] argue that using adap-
tive learning for streaming data processing could solve concept
drift problems, and the proposed cooperative fog-cloud archi-
tecture shows updating machine learning models periodically
can help reduce RMSE by about 20%. However, their experi-
ments did not use portable edge devices such as Raspberry Pi,
instead they used a local computer. The edge-cloud integrated
framework we proposed is a general and flexible design, whose
docker-based modules can be developed in either cloud or edge
side even with different types of edge devices.

7.3. Complete System or Toolkit for Deep Learning based In-
ference

There have been many systems or toolkits that support deep
learning based inference on IoT/edge devices. NVIDIA’s Deep-
Stream [5] is a streaming analytic toolkit that helps the user
build and deploy video analytics applications on-premises, on
the edge, and in the cloud. DeepStream features hardware-
accelerated building blocks [45] that bring deep neural networks
and other complex stream data processing tasks into GStreamer

processing pipelines and maximize the computation using GPUs.

Based on its design, DeepStream can be highly optimized to
run on NVIDIA series or GPU-enabled edge devices like Jetson
Xavier NX and Jetson Nano. However, while DeepStream has
multiple examples that are provided as source code, its SDK is
not released as open-source software. An alternative toolkit for
deep learning based inference is Google Coral [40]. Coral is a
complete toolkit for building intelligent devices with fast deep
neural network inferencing. Same with DeepStream, Coral can
enable its peak capability with the proposed hardware and soft-
ware solutions like Edge TPU coprocessor [41].
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More focused on deployment rather than inference learn-
ing, some Cloud platforms like AWS and Azure also provide
their general-propose solution for edge devices inference even
offline from the cloud. AWS IoT Greengrass [26] is an open-
source edge runtime and cloud service for building, deploying,
and managing edge devices. Greengrass manages and oper-
ates multiple edge devices in the field locally or remotely us-
ing MQTT or other protocols. With the solution, inference can
be deployed across edges using any language, packaging tech-
nology, or runtime. Our hybrid learning framework is based
on the Greengrass runtime. We further study how to deploy
stream analytics among edge and cloud resources and improve
their accuracies. Microsoft also provides Azure IoT Edge [42]
service to scale out inference learning by packaging the logic
into standard containers, deploying these containers to any of
the edge devices and monitoring it all from the cloud. Differ-
ent from Greengrass, the applications like inference learning in
Azure 10T Edge need to be developed in one of the supported
programming languages.

8. Conclusions

Stream analytics aims to analyze and process high volumes
of streaming data continuously. In this paper, we study how
to best leverage edge and cloud resources to achieve better ac-
curacy and latency for RNN-based stream analytics and better
adapt concept drift in stream data. We propose three flexible
deployments for the hybrid stream analytics framework in or-
der to achieve the proper trade-off between latency and accu-
racy for stream analytics. We also propose an adaptive and dy-
namic hybrid learning model with two weight combination al-
gorithms for solving the concept drift during stream analytics.
The evaluation with real-world stream datasets shows the pro-
posed edge-cloud deployment can archive similar latency per-
formance as edge-centric deployment without worrying about
capacity limitations, and our dynamic weighting algorithm per-
forms the best among other hybrid learning model approaches
for all three concept drift scenarios in terms of accuracy.

For future work, we will mainly focus on the following
three aspects of the hybrid stream analytics framework. First,
the Spark-based speed training module can be extended to mul-
tiple edge devices as a distributed master-worker computing.
Second, we will study more variants of the proposed dynamic
weighting algorithm, like stacking the most resent n speed layer
models or stacking speed layer models continuously. Last, we
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will try more advanced RNN deep learning models like atten-
tion models with our framework.
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