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Abstract

The exchange of mass, heat, salt and anthropogenic carbon (C™) between the South
Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data
obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon
are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S)
boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with
an overturning circulation that exports freshwater from the North Atlantic, and consistent
with a bistable Meridional Overturning Circulation (MOC), under conditions of excess
freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC)
transport, south of the Subtropical Front, is compensated by a 15.9+£2.3 Sv westward flow
along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric

anthropogenic carbon of 0.51+0.37 PgC yr', of which 0.18+0.12 PgC yr"' accumulates
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and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is
associated with a 0.11 PgC yr' C*™ overturning. The remainder is transported into the
Atlantic Ocean north of 24°S (0.28+0.16 PgC yr'") and Indian sector of Southern Ocean
(1.12+0.43 PgC yr'"), having been enhanced by inflow through Drake Passage (1.07+0.44
PgC yr''). This underlines the importance of the South Atlantic as a crucial element of the

anthropogenic carbon sink in the global oceans.

1 Introduction

At the confluence of the southward-flowing deep water from the northern North Atlantic
Ocean and the eastward-flowing Antarctic Circumpolar Current (ACC), the South
Atlantic sector of the Southern Ocean is a key component of the global meridional
overturning circulation (MOC; Marshall and Speer 2012). The critical role of the South
Atlantic was recognised by Rintoul (1991), who quantified the basic heat and freshwater
exchange associated with balancing deep-water formation in the North Atlantic with
Intermediate Water and Bottom Water formation in the Southern Ocean. Overturning
within the South Atlantic is critical for the ventilation of older water masses facilitating
uptake and storage of anthropogenic carbon (C*™) (Iudicone et al., 2011; Sallée et al.,
2012). Bottom Water formation; in particular, provides a mechanism for injection of C*™

into the deep ocean (Brown et al., 2015; Vazquez-Rodriguez et al., 2009).

This paper focuses on the South Atlantic sector of the Southern Ocean south of 24°S
from Drake Passage to 30°E. The ACC crosses this region and, together with the Agulhas
Current, links the Pacific and Indian Ocean sectors of this region. The ACC transport is
concentrated into fronts (Subantarctic Front, SAF; Polar Front, PF; Southern ACC Front,
SACCF), which preferentially carry different water classes and properties across the
region (see Figure 1). Drake Passage is the narrow entry point for the ACC into the
Atlantic sector, after which, the Subantarctic Front protrudes northwards into the
Argentine Basin. This widens the meridional extent of the ACC, and separates the
warmer subtropical waters to the north from colder, Antarctic and Subantarctic water to

the south (Belkin and Gordon, 1996; Orsi et al., 1995).
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North of the ACC in the Atlantic sector, the poleward-flowing Brazil Current (BC) lies
within the upper 300-600 dbar (Bryden et al., 2011; Peterson and Stramma, 1991). Fully
formed north of the Vitoria-Trinidade Seamounts at ~20°S (marked in Figure 1), it
intensifies southwards on the order of 5% per 100 km (Gordon and Greengrove, 1986)
with transport estimates at 24°S ranging between 4.1 Sv and 13.2 Sv (Bryden et al., 2011;
Evans et al., 1983; Evans and Signorini, 1985; Garfield, 1990; Signorini, 1978; Stramma,
1989; Zemba, 1991). At the eastern South Atlantic boundary within the Cape Basin, the
South Atlantic Current (SAC) feeds the northward flowing Benguela Current. Previous
transport estimates are of 6 Sv for the South Atlantic Current and 28 Sv for the Benguela
Current, respectively (Garzoli and Gordon, 1996; Mercier et al., 2003; Smythe-Wright et
al., 1998; Stramma and Peterson, 1990). The Benguela Current is also fed by the residual
westward flow into the South Atlantic from the Agulhas system, commonly termed
Agulhas leakage. The majority of the Agulhas Current flows along the East African
continent, and is retroflected at 16-20°E (Lutjeharms and Van Ballegooyen, 1988) as the
eastward flowing Agulhas Return Current, closing the subtropical gyre of the South
Indian Ocean (Dencausse et al., 2010; Lutjeharms and Van Ballegooyen, 1988; Matano et
al., 1998).

South of the ACC in the Atlantic sector, previous studies (e.g. Meredith, 2013) have
suggested that the Weddell Sea contributes to about 40% of the global formation of
Antarctic Bottom Water (AABW). Westward inflow along the Antarctic shelf into the
Weddell Sea is partially comprised of recently formed Cape Darnley Bottom Water
(CDBW; Ohshima et al. 2013) and older AABW varieties from farther east. CDBW
contributes ~13-30% to global AABW production (Ohshima et al., 2013). Within the
Weddell Sea, local ventilation and interaction with the Filchner-Ronne (Whitworth et al.,
1998) and Larsen (Fahrbach et al., 1995; Weppernig et al., 1996) ice shelves contributes
to further AABW formation, carrying C*™ into the deep ocean (Huhn et al., 2013; van
Heuven et al., 2011). Some of this AABW recirculates within the eastward flowing
northern limb of the Weddell Gyre, whilst the remainder escapes either into the western
South Atlantic basin through narrow deep water pathways (e.g. Gordon et al., 2010,
Jullion et al., 2014), by South Scotia Ridge overflow (Jullion et al., 2014; Locarnini et al.,
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1993; Naveira Garabato et al., 2002a), or into the eastern South Atlantic basin with 8+2
Sv of AABW in total exported from the Weddell Gyre (Jullion et al., 2014). At the
Argentine Basin to Brazil Basin transition, northward AABW flow is restricted to key
topographical features (Figure 1): Vema Channel (25-50 km wide, sill depth ~4600 m;
Johnson and Biscaye (1976)) and Hunter Channel (200 km wide, sill depth ~4200 m;
Speer et al. (1992); Zenk et al. (1999)). Bottom water warming between the Weddell Sea
and 24°S alters the typical bottom water definition from 6<0 °C to 6<2 °C. Bottom water
transports for 0<2 °C are 4.0+1.2 Sv at Vema Channel (Hogg et al., 1999), and 2.92+1.24
Sv at Hunter Channel (Zenk et al., 1999).

The MOC, ACC, Agulhas system and Weddell Gyre are all major contributors to the
global large-scale ocean circulation, and therefore an understanding of their contribution
to interbasin fluxes is key for interpreting large-scale changes in volume, heat or
freshwater transports, and identifying linkages to broader changes in the Earth’s climate.
Similarly interbasin fluxes of anthropogenic carbon (C*") provide an opportunity to
assess the South Atlantic’s capacity to uptake and store anthropogenic carbon on decadal-
centennial timescales, in order to improve understanding of its responses to future
atmospheric CO, changes. Here, C*™ is estimated using the AC* method following

Gruber et al. (1996), as described in section 2.1 and in further detail in Evans (2013). .

This paper uses a set of recent WOCE sections at the boundary of the South Atlantic
Ocean to update interbasin flux estimates of mass, heat and salt in comparison to earlier
studies (e.g. Rintoul, 1991), and to provide estimates of the interbasin flux of
anthropogenic carbon (C*"). This paper is structured as follows: Section 2 describes the
data used. Section 3 outlines the inverse box methodology, as applied in this study. The
solution of the inverse box model is discussed in Section 4 in terms of geostrophic and
Ekman velocity fields, diapycnal mixing and air sea fluxes of heat and freshwater as well
as the transports of anthropogenic carbon at the South Atlantic boundary. The major

findings are described in Section 5.

2 Data and Data Processing
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Hydrographic sections in Drake Passage (a repeat of World Ocean Circulation
Experiment (WOCE) section A21) in 2009, Africa to Antarctica along 30°E (repeat of
WOCE 16S) in 2008 and South America to Africa along 24°S in 2009 provide the data
for analysis. The Drake Passage and 24°S sections were occupied on board the research
vessel James Cook (King, 2010; McDonagh, 2009), with data stored within the British
Oceanographic Data Centre data archives, whilst the Africa to Antarctica occupation was
on board the Roger Revelle, with data stored by the CLIVAR (Climate Variability and
Predictability) and Carbon Hydrographic Data Office (CCHDO) (Speer and Dittmar,
2008; Wanninkhof et al., 2009).

Dissolved Inorganic Carbon (DIC) and Total Alkalinity were determined by coulometry
(Johnson et al. 1985, 1987, 1993; Johnson and Wallace 1992) and potentiometric titration
(Johnson et al., 1987; Dickson et al. 2003, 2007; Mintrop 2004), respectively. DIC and
Total Alkalinity were calibrated using Certified Reference Materials (CRM) (and gaseous
CO; loops for DIC along 30°E) to yield measurements with an accuracy of ~+2-3 umol
kg'1 (Speer and Dittmar, 2008; McDonagh, 2009; King, 2010; Schuster et al. 2013,
2014). Oxygen was measured using Winkler titration (Culberson et al., 1991; Culberson
and Huang, 1987), whilst nitrate, phosphate and silicate measurements follow the
processes described in Gordon et al. (1993) and Kirkwood (1996). Estimated accuracies
according to CARINA methodology are oxygen (1%) and nutrients (2%) (Key et al.,
2010). All salinities used are on the PSS-78 scale (Fofonoff and Millard, 1983).

Hydrographic properties were recorded using a conductivity-temperature-depth (CTD)
profiler in 2 dbar intervals, to enable geostrophic transport estimates. Geostrophic
velocity within the ‘bottom triangle’ is set by nearest neighbour extrapolation to the
deepest common level for each station pair. DIC, nutrient and alkalinity measurements
are recorded for a maximum of 24, or 36 discrete depths per station for Drake Passage
and 24°S, and 30°E, respectively. Potential temperature (0), salinity and oxygen are
linearly interpolated onto a 20 dbar vertical grid along the sections. Correction factors are
applied, as recommended by the GLODAP (Global Ocean Data Analysis Project) and
CARINA (Carbon in Atlantic Ocean) projects, listed in Table 1, to eliminate systematic
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measurement biases (see Gouretski and Jancke, 2000; Hoppema et al., 2009; Key et al.,
2010, 2004; Lauvset et al., 2016; Olsen et al., 2016; Tanhua et al., 2010; Wanninkhof et
al., 2003).

The geographical locations of the sections are displayed in Figure 1. ACC fronts along
Drake Passage are determined as a distinct transition in 6-S space between 0-S
hydrographic station profiles. Each transition represents an ACC front separating each
frontal zone, and follows the Cunningham et al. (2003) analysis. Across 30°E,
thermohaline frontal definitions from Orsi et al. (1995) and Belkin and Gordon (1996) are

applied.

2.1 Anthropogenic Carbon Calculation

Anthropogenic carbon is estimated here using the AC* method, whereby biological
effects, a pre-industrial background signal (based on ocean-atmospheric equilibrium
(C*™) (Brewer, 1978; Chen and Millero, 1979) and an estimate of ocean-atmosphere
disequilibrium (C*™*%) (Gruber et al., 1996) are removed from the modern inorganic
carbon signal. C*"™ is calculated based on pre-industrial fugacity (fCO, = 280 patm), and
present day potential temperature, salinity, silicate and phosphate using “CO2SYS.m”
(Lewis and Wallace, 1998). C**? is represented using the linearised parameterisations for
specified potential temperature intervals from Pardo et al. (2011) (Indian/Pacific Ocean)
and Vazquez-Rodriguez et al. (2012) (Atlantic Ocean) and an Optimum Multiparameter
Analysis (OMP) technique (Karstensen and Tomczak, 1998; Sabine et al., 2002) below
the 5°C isotherm. C*™ and C®™*! utilise the potential total alkalinity parameterisation
from Vazquez-Rodriguez et al. (2012), and the conversion from potential total alkalinity
to total preformed alkalinity following Brewer et al. (1975) and Fraga and Alvarez-
Salgado (2005). The uncertainty of C*™ estimates calculated using this method is up to ~6
umol kg™ (Sabine et al., 1999). For visualisation and comparison in Section 4.3.1, a two-
dimensional distribution in neutral density:geopotential height or neutral
density:longitude space of C*" is generated by least squares fitting using a +2 station and
+0.04 y" grid box centred at each CTD grid point. The geopotential height () field is
calculated from the geopotential height anomaly at 500 dbar relative to 1500 dbar for
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neighbouring stations. For transport calculations in Section 4.3.2, a two-dimensional
distribution in pressure:latitude or pressure:longitude space of C*™ is generated by least
squares fitting using a +2 station and £80 dbar grid box centred at each CTD grid point.

Full details of the calculation of C*™ are found in Evans (2013).

2.1.1 Anthropogenic carbon storage

Two independent methods are used to calculate the rate of accumulation of anthropogenic
carbon within the South Atlantic water column. The first is based on the assumption of a
transient steady state relationship between surface carbon changes and at depth, following
the methodology of Holfort et al. (1998) and Alvarez et al. (2003). This approach has
been indicated to be broadly consistent with Green‘s Function and inverse approaches
(Khatiwala et al., 2013). Secondly we use results of the Time Series Residual (TSR)
approach (van Heuven et al., 2011; van Heuven, 2013), where a residual DIC is
calculated from the difference between measured DIC and synthetic DIC values
constructed from a multivariate linear regression of all available data points. The time
trend of that residual DIC is interpreted as equivalent to the time trend of C*". The TSR-
based C'™ storage estimate (provided by van Heuven, S. (2016), manuscript in
preparation) uses all historical carbon data from 1972-2012 from the GLODAPv2 data
product (Olsen et al., 2016) as well as the climatologies produced therewith (Lauvset et

al., 2016).

2.1.1.1 Mean penetration depth (MPD)

In general terms, the build-up of carbon within any ocean basin is given by the difference
between box boundary transports and atmosphere — sea-surface exchange, whilst
assuming a negligible effect for a number of compensatory processes (following Alvarez
et al. (2003)): riverine input (Holfort and Siedler, 2001; Jacobson et al., 2007), meltwater
iput (Rignot et al., 2008), net organic carbon production and sediment burial (Roson et
al., 2003; Sarmiento et al., 1995), and calcium carbonate dissolution and burial (Stoll et
al., 1996). Other transient terms related to seasonal or biological variability at the box
boundary are assumed as negligible for the basin-wide C*" storage estimate. As diapycnal

and air-sea induced diapycnal transfer do not add or remove C*" from the full depth C*™
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budget, the inclusion of only geostrophic and Ekman effects therefore create the
following equation:

C™™ Storage = Fi; seat TntTw+TE (1)
with the average air-sea C™ flux being F__ and Tn, Tw and Tg being C*" transports
across the northern, western and eastern boundaries of the South Atlantic Ocean sector
(Figure 1). For C*™, storage is represented by the temporal increase of C*™ throughout the
water column, or mathematically by:

djCldz (2)
dt

C™ Storage rate =
where t is time and [ C3"'dz is the accumulation of anthropogenic CO, at each depth level
z vyielding a storage rate with units of mol m? yr' (Alvarez et al, 2003). An
approximation for the magnitude of the anthropogenic CO; storage is calculated from the
mean penetration depth (MPD) from Broecker et al., (1979):

MPD = f%:tdz ©)
ml
where C2" and C2 are anthropogenic CO, estimates at depth, z, and within the mixed
layer, respectively. MPD is therefore the C*™ column inventory divided by C*™ from the
mixed layer, and always yields a depth which is shallower than the actual depth to which
the tracer penetrates (Peacock, 2004). Combining equation 2 and 3 gives an estimate of
the anthropogenic CO; storage rate:

dfC"dz dcar 4)

dt

C™ Storage rate = = MPD x

This assumes that the vertical profile of C*™ is constant in shape and scale depth with
time following the transient steady-state assumption of Gammon et al. (1982). This
prescribes that a conservative tracer propagating into an ocean with steady circulation,
but forced by an exponentially-increasing atmospheric boundary source function, will
reach a transient steady state with constant shape. Mixed layer increases in C*™ are then
assumed to increase proportionally with tracer concentrations at all depths (Tanhua et al.,
2007). C*" is thought to have passed into transient steady-state, given the length of its
atmospheric history (>200 years). The MPD assumptions are most problematic in regions
of significant deep water ventilation, where the assumption of a constant vertical C*™

profile to the ocean bottom may be false. In this study, recently ventilated deep waters, in
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the form of AABW along Drake Passage and 30°E sections, still maintain low C*™. This
helps to validate the usage of an MPD-based C*™ storage rate estimate in this instance,

however, this methodology contributes to a relatively large uncertainty in the result.

The ACY) is calculated by determining the rate of change in mean C*™ within the mixed
layer between occupations. In this study, AChy is computed using historical hydrographic
occupations of Drake Passage (Meteor: 1990) and 30°E (Marion Dufresne: 1996) with
further details in Evans (2013). Along the 24°S transect, ACa is calculated based on
overlapping stations from meridional hydrographic occupations A13, A14 (Mercier and
Arhan, 1995), A15 (Smethie and Weatherly, 1994), A16 (Talley et al., 1989) and A17
(Mémery, 1994) within the South Atlantic. This constitutes all historical data for the
region available within GLODAPv2 (see Appendix B for details). The small sample of
repeat DIC measurements at the northern boundary increases storage uncertainty. Storage
rate is re-written as:
Storage rate = MPD x ACRi' % p__ (5

where ppy is the in-situ density within the mixed layer yielding storage rate with units of

mol m? yr.

2.1.1.2 Time Series Residual (TSR)

TSR-based C*" storage estimates rely upon assumptions that (i) the relationship between
DIC and the independent variables in the regression is linear, that (ii) bias and noise
within the sampling is considered negligible (or average out for the large dataset
employed) and that (iii) real changes in one or more independent variable is associated
with changes in one or more of the other independent variables (van Heuven, 2013). The
time trend in C*" is expected to depend upon the ventilation age of the water mass, with
AOU used as a proxy for ventilation age. For a particular water mass, i, the time trend of

C™ is represented by the linear regression of:

dc™™, (6)
—— —a+AAOUD,

Where AAOU is the difference between the AOU of the sample and the mean AOU in

the water mass core (van Heuven, 2013). The contribution of a water mass to a given
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sample is determined using Optimum Multiparameter analysis (OMP) (Karstensen and
Tomczak, 1998; Sabine et al., 2002; van Heuven, 2013). The C*™ storage for the South
Atlantic basin is thus estimated by the inclusion of a gridbox mass following:
PNVt (7)
T‘ = Z x ;- (a; + AAOU'b,) - GBM

=1
Where x; is the fractional contribution of water mass i to the inventory, and GBM

represents the mass of a grid box surrounding each grid point, as described in van

Heuven, (2013). The resulting inventory (dINVCami /dt) can be expressed in units of PgC

yr‘1 .

3 Box Inverse analysis

3.1 Setup

The box inverse framework combines initial estimates of the circulation on each of the
three hydrographic sections (Section 3.2) with constraints on the large-scale circulation,
convergence of properties in the box, mixing and air-sea fluxes (Section 3.3). This
generates an estimate of the circulation, the solution that is consistent across all three
sections and the enclosed region (Section 3.4). The hydrographic sections used here
(Figure 1) were made in February and early April, however, in either 2008 or 2009. The
lack of synopticity of the data increases the uncertainty; however, this is partially
accounted for by the choice of constraints to avoid a synoptic bias. This solution for this
inverse box model is therefore most representative of South Atlantic circulation during

austral summer.

The setup and method used is summarised here and detailed in Wunsch (1996). The
inverse box model with the additional inclusion of noise vector € to account for errors
(Evans, 2013), is represented by:

Ex+e=y (8)
E is an m x n matrix, x is an m x 1 vector of unknowns and y is an m x 1 vector of the
imbalance between the initial field and the constraints. The coefficients in E represent the

geometry of the section. Each row of E represents a constraint on the system. Each
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column of E represents an unknown. In this study, the system has 340 unknowns and 73
constraints. The unknowns are those elements of the system that can be adjusted in order
to satisfy the constraints. The inverse model solves for 217 depth-independent x
velocities, one from each pair of adjacent hydrographic stations on each section. In
addition, a single unknown represents the correction to the Ekman transport on the 24°S
section, whilst 60 unknowns represent the mixing of volume, temperature and salinity
between density layers within the box and another 62 unknowns represent the

transformation between layers driven by air-sea interaction.

3.2 Initial Field

Flow across the sections is assumed to be geostrophic with an additional surface Ekman
transport across 24°S. An initial reference level and geostrophic field is constructed for
each section (Table 2) based on historical analysis. The basic premise of the box inverse
is to adjust the strength of the reference velocity at each station pair so that constraints are
satisfied within a given uncertainty (Section 3.2). In addition in this study, the box
inverse allows for a correction to initial estimates of the mixing between neutral density
layers, air sea fluxes and an Ekman transport. All diapycnal fluxes associated with
interior mixing or air-sea induced transformation are initialised to zero (McDonagh and
King, 2005). As the solution that is estimated is dependent upon the initial field, it is

important that the initial field is as representative as possible.

At Drake Passage, the reference level choice (Table 2) of the deepest common level
between the station pairs is based on the analysis of the mean volume transport of
multiple repeat stations across Drake Passage of 136.7+6.9Sv (Cunningham et al 2003,
Meredith et al., 2011), Lowered Acoustic Doppler Current Profiler transport estimates
(Meredith et al.,, 2011) and the scale of interannual variability (King and Jullion, in
prep.,). At 24°S, the 1300 dbar reference level approximates the upper water/NADW
interface. At 30°E, Bryden et al. (2005) and Arhan et al. (2003) are used as a guide for
the vertical transition between the Agulhas Current and Agulhas Return Current, and the

Agulhas Undercurrent at depth (Beal and Bryden, 1999). On all sections the geostrophic
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velocity within the ‘bottom triangle’ is set by nearest neighbour extrapolation to the

deepest common level for each station pair.

For the 24°S section, Ekman transport from NCEP (National Centers for Environmental
Prediction) wind stresses, an annual average calculated between 1980-2010 in Bryden et
al. (2011), of 3.3 Sv southward is applied as a single velocity above the 80 dbar Ekman
depth (Dgx). The Ekman component is included at 24°S as part of the initial field.

3.3 Constraints

3.3.1 Constraints to circulation and property transports on sections
The constraints across hydrographic sections, based on historical analyses and listed in
Table 3, are applied to better constrain the initial field, and later used to constrain the box

inverse model. Further details regarding the constraints in Table 3 are described below.

Across Drake Passage, full-depth volume transport is constrained to 136.7 Sv

(Cunningham et al., 2003; Meredith et al., 2011).

Bottom Water (BW) across 24°S has been defined to be below the 2 °C isotherm (Hogg
et al., 1999; McDonagh et al., 2002), shallower than the typical AABW neutral density
class definition (neutral density: y">28.27) in the Southern Ocean, and partly includes the
lower layers of the LCDW neutral density class within the Vema Channel and Hunter
Channel. Northward BW flow is constrained following Hogg et al. (1999), Zenk et al.
(1999) and McDonagh et al. (2002), as 6.9 Sv below the 2 °C isotherm. Within the
northern Cape Basin, east of Walvis Ridge (6°E), a zero mass transport constraint is
applied below the 2 °C isotherm (Arhan et al., 2003; McDonagh and King, 2005). For the
sectionwide upper 80 dbar, a southward, wind-driven estimate for the Ekman transport of
3.3 Sv is included following Bryden et al. (2011). For the upper 300 dbar, west of 35°W,
the Brazil Current is constrained to 4.9 Sv southward (Bryden et al., 2011). Finally, full
depth salinity transport across 24°S is constrained to be equal to the Bering Strait salinity

transport of 26.0 Sv psu, assuming salinity conservation (Coachman and Aagaard, 1988).
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For the 30°E section, north of the Subtropical Front (42.9°S), the residual westward flow
of warm, salty Indian Ocean water into the Atlantic Ocean or ‘Agulhas leakage’ is
estimated based on McDonagh et al. (1999) as 9 Sv above the 3.5 °C isotherm. Finally, a
box-wide constraint for zero net salinity divergence is applied by summing together
salinity transport through the Agulhas regime, Drake Passage and across 24°S. Total
salinity transport outflow across the 30°E ACC regime is adjusted to match the inflow
across Agulhas regime, Drake Passage and 24°S (Table 3). The residual mass transport is

interpreted as the freshwater flux of the initial field.

3.3.2 Property constraints in the box

Each transect is split into 21 neutral density (y") layers (Table 4; Jackett and McDougall
(1997)). Neutral density class interfaces, appropriate for the Southern Ocean, are
extracted from Heywood and King (2002), Naveira Garabato et al. (2009, 2002a, 2002b)
and Orsi et al. (1999, 1995). The layers are grouped into six neutral density classes. Each
y" layer represents an equation to be solved for, with an additional row for the full depth
water column. Conservation of mass, heat and salt (approximated as volume, potential
temperature anomalies and salinity anomalies) for each layer plus full depth conservation
gives 66 equations or constraints for the analysis. Additionally, full-depth silicate
conservation plus 6 constraints from previous knowledge of the circulation (Table 3)
gives a total of 73 constraints. Salinity and 6 within each y" layer are conserved in the
form of a property anomaly, calculated by subtracting each property value by the
boundary-wide average, calculated using the whole domain boundary. The use of
property anomalies improves the matrix conditioning (Ganachaud, 2003; McIntosh and
Rintoul, 1997). For silicate, as argued by Ganachaud (1999), property anomalies are not
calculated given the large concentration range between surface and deep waters. Loss of
silicate through opal deposition is assumed negligible, given large uncertainties in the
silicate budget (Tréguer and De La Rocha, 2013) with this assumption encouraging

conservation within the silicate-rich bottom waters.

3.4 Solution

3.4.1 Unknown velocities
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In this study, the columns of E are constructed to solve for unknowns; geostrophic,
diapycnal, air-sea fluxes and Ekman transports, and each row in E represents an equation
or constraint. In order to better condition the pre-inversion matrix for solving for the
unknown velocities, each row and each column of the m x n coefficient matrix E is
weighted based on estimates of the previously known, ‘a priori’ uncertainties within each
component (see Appendix A). Solution weightings are applied as stated in Appendix A
following the method of McDonagh and King (2005) and Tsubouchi et al. (2012).

The geostrophic component of each cross-sectional station pair is applied with an a priori
uncertainty of 1 x 107 m s™, as in Naveira Garabato et al. (2003), McDonagh and King
(2005) and Jullion et al. (2010). The a priori uncertainty is uniform for all station pairs

across all transects.

For the inverse model, the Ekman transport adjustment is initialised as a single unknown.
The coefficient matrix E, initialised for a single unknown representative of the Ekman
transport adjustment, is initialised by the area above Dgy, the property mean of the Ekman
layer, and the proportional contribution of the Ekman transport to each y" layer above
Dgk. As the climatological data contains uncertainties, which are difficult to quantify, an
a priori uncertainty of 50% of the initial estimate of the Ekman transport adjustment is

assigned.

3.4.1.1 Interior diapycnal velocities

A separate diapycnal velocity is resolved for each property (McIntosh and Rintoul, 1997)
and for each layer interface. The interface mean for each property (S, 0) is generated
using the WOCE Global Hydrographic Climatology (WGHC) by Gouretski and
Koltermann (2004). The WGHC data is on a 0.5° grid, and averaged along isopycnal
surfaces, such that the properties are broadly in agreement with the properties along the
sections. The layer interface area for each of the neutral density interfaces in this study is
constructed from the initial 45 levels from WGHC for each mapped property field. For
the diapycnal mixing, a priori uncertainties are dependent on the pre-existing estimates of

diapycnal velocities (o) and assigned as 10° m s, following Orsi et al. (1999) and
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Naveira Garabato et al. (2003), for an estimate of an upper value for deep ocean

diapycnal velocities.

3.4.1.2 Diapycnal transfers induced through Air-Sea interactions

Heating and cooling of neutral density classes, as the isopycnals outcrop at the ocean
surface provides a mechanism for across isopycnal transformation (Speer and Tziperman,
1992; Tziperman and Speer, 1994). Within the Southern Ocean, all layers are assumed to
outcrop given the upwelling of deep neutral density classes. Following Jullion et al.
(2010a), net air-sea fluxes of mass (freshwater) M, and heat My are calculated for each
layer, whilst the diapycnal volume flux induced by air-sea interaction F, is included for
each layer interface. The area of outcrop for each neutral density layer is estimated from
monthly averaged sea surface temperature and salinity fields from World Ocean Atlas
(WOA) on a 1° grid (Antonov et al., 2010; Boyer et al., 2005; Locarini et al., 2010). To
ensure an area of outcrop for the densest y" layers, the area of outcrop for all LCDW and
AABW layers was averaged, and this value was assigned to all LCDW and AABW

layers.

Heat flux terms are supplied by monthly-averaged estimates from the National
Oceanography Centre (NOC v2.0) climatology (Berry and Kent, 2011, 2009). Net heat
flux Que is the sum of contributions from latent (Qy) and sensible heat flux (Qg),
longwave flux (QLw) and shortwave flux (Qsw) (Grist and Josey, 2003). The mean heat
flux for the January-February-March (JFM) period is 65 W m>.

Freshwater flux is based on the climatologies recommended by Schanze et al. (2010):
Global Precipitation Climatology Project (GPCP) for precipitation (Adler et al., 2003),
and Objectively Analysed Ocean-Atmosphere Flux (OAFlux) for evaporation (Yu et al.,
2008; Yu and Weller, 2007). Evaporation is subtracted by precipitation (E-P) at each grid
point using the 2008 and 2009 estimates, before finding the inverse box model mean. A
priori uncertainties are estimated to be 50% of the initial estimates. Uncertainties arise
from the uncertainty of the climatologies as described in Lumpkin and Speer (2007), as

well as from not considering the contribution of sea-ice near the Antarctic continent.
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3.4.2 Choice of preferred solution

The solution rank of 60 out of 73 is chosen after application of SVD. Truncation to the
solution rank occurs at the point at which the noise added by including additional rows
negates the information gained. The co-dependency between ocean layers gives reason
for selection of a solution rank below the full rank. Ranks ~>50 are suitable solutions
with a full depth volume transport ~<1 Sv, equivalent to the freshwater divergence.
Reference velocities for the geostrophic component are generally within £0.5 cm/s with

all adjustments off continental shelves within +0.7 cm/s.

3.5 Model Diagnostics

3.5.1 Overturning freshwater and heat transport

The overturning component of the salinity transport at 24°S is calculated for comparison
to the outputs of Bryden et al. (2011) using the M,, salt transport, in addition to the
azonal component M,,. Additionally the heat transport associated with the ‘overturning’
and ‘gyre’ components is separated following the methods of Bryden and Imawaki

(2001) and Bryden et al. (2011).

For freshwater, values for M,, and M,, are calculated following Bryden and Imawaki

(2001), Dijkstra (2007), Huisman et al. (2010) and Bryden et al. (2011):

=% 9
M= = s [ (81N a2 ©)

My~ /s f (v-(v)) (S(S))dxdz (10)

where v is the northward velocity, S is salinity, L is zonal section width and z is depth.
Triangular brackets indicate a zonal average and an overline represents a vertical average.
The M,, and M,, transports are effectively the freshwater transports associated with the
overturning and gyre circulation components, respectively. Cimatoribus et al. (2012)
suggest that an increase in the zonal salinity contrast across the South Atlantic increases
M,, and that this is compensated by a decrease in M,,. Changes in M,, could therefore

dictate potential MOC shutdown (Cimatoribus et al., 2012).
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The volume transports and overturning freshwater transports associated with the MOC
are detailed in section 4.1. Geostrophic and non-geostrophic results are described and
circulation features examined in section 4.2. For section 4.3, C*™ transports are calculated

for each layer, whilst C*™ air-sea flux is considered in section 4.3.3.

4 Inverse Model Solution

4.1 Volume and overturning freshwater transports

4.1.1 Geostrophic solution

The geostrophic velocities of the final solution are shown in Figure 2. The overall
velocity pattern is for strong flow into the box through Drake Passage and an outflowing
velocity along 30°E, south of the Subtropical Front. North of the Subtropical Front,
positive and negative velocities reflect the Agulhas Current inflow and Agulhas Return
Current outflow. The box-wide salinity transport conservation results in a net volume
imbalance of -0.47 Sv, interpreted as a loss of freshwater, balanced by excess

precipitation over the box.

The net transport (Figure 3, right) indicates convergence (positive numbers) or
divergence (negative numbers) of a neutral density class within the box. Convergence can
be interpreted as destruction of that neutral density class within the box and divergence
reflects production of that neutral density class. Basinwide UCDW layer convergence is
caused by upwelling of the MOC southern limb (see Section 4.1.2.1), resulting in
northward flowing surface and mode water and AABW layer formation to the south.
LCDW layer divergence corresponds with greater outflow across 30°E (44.4 Sv)
compared to Drake Passage inflow (28.1 Sv), caused by mixing the NADW and AABW
layers with the LCDW layer.

4.1.1.1 Drake Passage

The final solution decreases the Drake Passage initial field full-depth volume transport of
136.7£10 Sv to 128.4+8.3 Sv (Table 3). This is within the uncertainty of the volume
transport, estimated as 126.3-147.1 Sv (King and Jullion, in prep., and Meredith et al.
(2011) (their Figure 11)). Transport of UCDW layers constitutes almost half of the Drake
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Passage full depth volume transport (58.1 Sv out of 128.4 Sv; Figure 3), in agreement
with the 62.3 Sv estimate of Cunningham et al. (2003), relative to the deepest common
level. Within the SACCEF, the transport is equally split between UCDW and LCDW
layers. The contribution of SAMW and AAIW layer transport increases progressively to

the north along the section.

4.1.1.2 24°S

For the Brazil Current, the final solution of 5.8+0.1 Sv falls within the historical range as
described in Bryden et al. (2011) with the salty Brazil Current being important for the
total salinity transport across 24°S. Bottom water exchange from the northern Cape Basin
into the eastern South Atlantic basin is limited by Walvis Ridge. The final solution shows
0.2+0.1 Sv of southward AABW layer transport, and is similar to McDonagh and King
(2005)’s estimate of 0.1+0.5 Sv.

The southward basin-wide full-depth salinity transport at 24°S (25.8+0.2 Sv psu, Table
3) closely matches observations from the Bering Strait throughflow (Coachman and
Aagaard, 1988; Woodgate and Aagaard, 2005) and is similar to Holfort and Siedler
(2001)’s 26.75+0.77 Sv southward salinity transport for the quasi-zonal A10 WOCE
section across 30°S. Historical meridional freshwater, heat and salt transports across
24°S, 30°S and 32°S are included for comparison with the results from our box inverse
(Table 5). Focussing firstly on net freshwater transport, the difference between 0.8 Sv
Bering Strait volume transport and the southward 0.7 Sv volume transport at 24°S
provides an indirect 0.1 Sv estimate for freshwater divergence between Bering Strait and
24°S. Figure 4, adapted from Piecuch and Ponte (2012), compares hydrographic
estimates of meridional heat transport, following Hall and Bryden (1982), within the
Atlantic Ocean. The estimate from this study is added (marked with a red point),
calculated by adjusting the inverse model solution to yield zero net mass transport along
24°S by adding an additional barotropic velocity. The estimate of 0.40+0.08 PW out of

the box is within the range of the anticipated heat transport across 24°S.
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In order to assess the overturning circulation, each of the 21 y" layers (Table 4) is
grouped, depending on flow direction. The circulation consists of 0.8+4 Sv of southward
flowing surface water (layers 1-2), as a result of the Ekman transport, 15.8+3 Sv
northward flow of upper ocean water (layer 3-12), 20.2+2 Sv southward flow of deep
water (layers 13-18) and 4.6+1 Sv northward flow of lower LCDW and AABW (layers
19-21). The MOC strength is estimated as the 20.2 Sv southward flow of deep water,

comparable with the previous estimates in Table 5.

4.1.1.3 30°E

On the 30°E section north of 34°S, strong westward flow of warm, salty Indian Ocean
water close to the continental slope results in a total westward transport of 65.7 Sv
(Figure 3), similar to findings by Casal et al. (2009). Between ~34-35°S, westward
transport is interrupted by eastward flow. The maximum westward flow is 84.5£2.0 Sv
for the Agulhas Current. The Agulhas Return Current is attributed to the net eastward
flow south of ~36.25°S, occupying a broader meridional extent compared to the Agulhas
Current. The Agulhas Return Current transport is estimated as 82.2+2.0 Sv, extending
between 36.25°S and the Subtropical Front (42.9°S). Above 3.5 °C, a 10.7£1.3 Sv
Agulhas leakage is detected, comparable with an estimate of 15 Sv from observations

using subsurface floats and surface drifters (Richardson, 2007).

South of the Subtropical Front (STF), the net eastward transport of 131.7 Sv is dominated
by the ACC. This estimate is lower than the previous estimates of 160 Sv (full 30°E
section, Park et al. (2001)), 147 £ 10 Sv (STF to SACCF between 0°E and 30°E, Legeais
et al. (2005)), 136 Sv to 153 Sv for baroclinic and total transport (north of 54.75°S
between 0°E and 20°E, (Gladyshev et al., 2008)) and 141.6 £2.9 Sv along 30°E (Naveira
Garabato et al., 2014). The estimate is closer to the Drake Passage volume transport, as a
consequence of constraining the salinity transport around the box boundary. Significant
westward flow of AABW is predominately associated with the westward-flowing
southern limb of the Weddell Gyre, as previously observed by Schroder and Fahrbach
(1999), Park et al. (2001) and Jullion et al., (2014) along the Antarctic continent at O°E
and 30°E.
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4.1.2 Non-geostrophic terms
4.1.2.1 Diapycnal transfer of volume, freshwater and heat in the ocean
interior

A positive diapycnal volume flux represents an upward diapycnal transfer from a denser
neutral density class to a lighter neutral density class. In this study, the net diapycnal
velocities and volume fluxes (Figure 6a-b) indicate that diapycnal transfer is primarily
within the denser layers with nearly zero diapycnal volume flux for layer 10 and above.
The vertical structure becomes more significant within the UCDW layer with a tendency
for positive fluxes of up to 1 Sv suggesting diapycnal upwelling, including for NADW
defined as at the UCDW/LCDW interface (27.90<y"<28.10), equal to layers 16 and 17
(Table 4). The lighter LCDW layer also upwells (4.9 Sv), whilst the most significant
downwelling signal of 2 Sv contributes to the production of the densest LCDW layer.
The production within this layer is furthered by significant upwelling of 6.3 Sv of AABW
layer to LCDW layer with a diapycnal velocity of ~ 1.5 x 10° m s'. The rough
topography of the Scotia Sea (Heywood et al., 2002; Naveira Garabato et al., 2004), and
deep passages, such as Vema Channel (Morris et al., 2001), potentially contribute to the
significant upwelling and mixing of the AABW and LCDW layers. The absence of large
scale diapycnal flux of NADW to lighter neutral density classes supports the findings of
Sloyan and Rintoul (2001) for deep to intermediate water conversion in the Southern
Ocean to occur along isopycnals, rather than by uniform interior upwelling as suggested

in historical conceptual models (e.g Munk, 1966; Gordon, 1986).

Upward diapycnal salinity flux (Figure 6d) from the SAMW layer towards the fresher
surface water and downward diapycnal salinity flux towards the AAIW layer implies a
divergence of salinity from the SAMW layer. The SAMW layer is relatively salty in
comparison to the waters above and below. This salty SAMW signature is consistent with
SAMW sourced from the inflow of salty Indian Ocean water south of Africa, as opposed
to fresher SAMW through Drake Passage, in agreement with Sloyan and Rintoul (2000).
A similar, if smaller divergence of the salinity flux is observed for the NADW layer at

the UCDW/LCDW boundary. Upwelling of salinity to lighter UCDW layers, and
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downwelling to denser LCDW layers, contributes to the erosion of the NADW salinity

maximum.

Diapycnal temperature velocities (Figure 6f) greater than 0.1 m s™ are only found within
the LCDW and AABW layers. For the temperature fluxes, the contribution from
diffusion results in the upwelling of temperature flux from denser to lighter LCDW

layers, and the downward mixing of LCDW temperature flux to the AABW layer.

4.1.2.2 Diapycnal transfer of volume, freshwater and heat by Air-Sea
interaction

Air-sea interaction contributes to the formation of 14.6 Sv of SAMW through the AATW
to SAMW flux in Figure 7a. This matches (despite the difference in area) the 14 Sv
estimate of Sloyan and Rintoul (2001) for their South Atlantic box, nominally bounded
by transects at Drake Passage, 0°E and 12-19°S. This process is hypothesised to dominate
within the southwest Atlantic region, in the vicinity of the energetic Brazil-Malvinas
Confluence (BMC) (Jullion et al., 2010a). Convergence of dense surface water/SAMW is
approximately compensated by the divergence of deep neutral density classes: UCDW
and upper LCDW (~15.2 Sv; c.f. 8 Sv (Sloyan and Rintoul, 2001b)). Upwelling of lighter
deep neutral density classes, primarily UCDW, and transformation to SAMW/AAIW via
exposure to wind, heat and freshwater fluxes contributes towards the MOC southern

limb.

Net freshwater flux contributes to volume flux induced by air-sea interaction, and reflects
adjustments to the initial freshwater flux estimate, with extra evaporation required from
the surface water layer. As described in Jullion et al. (2010a), freshwater flux is difficult
to estimate accurately given uncertainties in upper ocean baroclinic variability and
therefore the a priori uncertainties applied to the inverse box model (Ganachaud, 2003;

Naveira Garabato et al., 2003).

Air-sea heat fluxes are dominated by the higher temperature surface ocean within the

western South Atlantic basin (Figure 7c). Air-sea heat flux adjustments reach -0.53 PW
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for radiative heat loss from the warm uppermost surface layer, as it moves northwards
towards the North Atlantic Ocean. However, over the water column, the total net
adjustment is -0.07 PW for the net air-sea heat flux input estimate of 2.15 PW (65 W m™
over the South Atlantic area) as denser surface layers are heated by the atmosphere.
Therefore whilst the whole column adjustment is insignificant, alterations for individual
layers show greater significance. Small overall adjustments suggest good agreement
between the NOC (v2.0) climatology and observations, despite variability between NOC
(v2.0) climatology and alternative heat flux climatology products, particularly in the

Southern Ocean (Liu et al., 2011).

4.1.2.3 Ekman

The model diagnoses Ekman transport adjustments, assumed meridionally uniform across
24°S, in addition to the initial field Ekman transport. Total volume transport adjustment
is 0.5 Sv contributing towards the 0.7+0.3 Sv freshwater flux. Given uncertainty within
the NCEP wind stress (Brunke et al., 2011) used to derive the initial field Ekman
transport, the additional transport associated with the Ekman adjustments is only
significant within the context of ensuring a net salinity transport of about 26 Sv psu

across 24°S.

4.2 South Atlantic circulation

Schematic circulation of geostrophic flow within the South Atlantic is shown in Figure 8
for the upper and deep ocean neutral density classes. Conversion of the AAIW layer to
surface water and SAMW layers occurs between Drake Passage and the 30°E ACC
regime. Accumulation within the LCDW layer between Drake Passage and 30°E is offset
by AABW layer inflow, as part of the Weddell Gyre southern limb. These results also
suggest that the entrainment of the AABW layer into the Circumpolar Deep Water layer
is more significant than the intermediate to deep water conversion based on the

convergence of the AABW layer at the box boundary.

Within the subtropics, surface water and SAMW entering the South Atlantic through the

Agulhas regime is entrained at the South Atlantic Current/Benguela Current transition,
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and joins the northward pathway for Agulhas-sourced upper ocean water across 24°S.
Given a southward flow of 18.1 Sv of deep water (UCDW and LCDW) across 24°S, the
eastward flow of 5.9 Sv of deep water across the Agulhas regime proportionally accounts
for approximately one-third of the deep water exiting the South Atlantic that entered the
South Atlantic across 24°S. The remainder of the deep water flows into the Southern

Ocean and contributes to both Circumpolar Deep Water, and the MOC southern limb.

4.2.1 North Atlantic Deep Water layer circulation

For the NADW layer (Figure 9), defined as 27.90<y"<28.10, the box-wide circulation is
as follows. A net excess inflow from the sum of the box boundary transports requires the
divergence of 7.5 Sv from the NADW layer, predominately by upwelling to lighter
neutral density classes. This broadly matches the estimate of diapycnal fluxes induced by

air-sea interaction of 7.3 Sv from Figure 7a for the NADW layer (layers 16, 17).

4.2.2 Antarctic Bottom Water sources and recirculation

A significant source of AABW formation at the Cape Darnley polynya (65°E - 69°E)
(Meijers et al., 2010, Ohshima et al., 2013) contributes to full depth cumulative transport
of 15.94£2.3 Sv (Figure 3) for the westward flowing, Weddell Gyre southern limb, south
of 64.25°S (Naveira Garabato et al., 2014, 2002a). This is largely comprised of LCDW
(6.3£1 Sv) and AABW (8.8+0.5 Sv), and comparable to the 24+4 Sv flow associated with
the Antarctic Slope Front by Jullion et al. (2014) or 9.6£2.3 Sv Antarctic Slope Front
estimate by Dong et al. (2016). Within the Weddell Sea, LCDW and AABW are
modified and subsequently exported northward, with wind-forcing thought to dominate
this process (Gordon et al, 2010; Jullion et al, 2010b; Wang et al, 2012).
Comparatively, the recirculating northern limb of the Weddell Gyre shows a much
weaker eastward AABW layer flow across 30°E (Figure 3). The difference between the
8.8+0.5 Sv inflow of the AABW layer, as part of the Weddell Gyre southern limb, and
the smaller AABW layer outflow across 24°S of 2.6+0.5 Sv is, at least, partially offset by
6.3£1.0 Sv of diapycnal upwelling to the densest LCDW layers. This contributes to a
6.7+2.2 Sv northward flow, below the 2 °C isotherm, west of the Mid-Atlantic Ridge
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(10°W), whilst the remaining AABW layer is hypothesised to recirculate within the
South Atlantic box.

4.2.3 Overturning and gyre circulation for heat and freshwater

The overturning component (Table 6a) is particularly sensitive to the Ekman transport
(assumed uniform across the section initially) and initial constraints on the Brazil Current
transport. Both components of the total heat transport were similar to those estimated by

Bryden et al. (2011).

The M,y estimates (Table 6b, Figure 5a) are similar to Bryden et al. (2011) and indicate a
net southward freshwater transport. Positive M,, in this study and Bryden et al. (2011),
corresponds with the gyre and the flow near the boundaries transporting freshwater out of

the South Atlantic box (Figure 5b).

4.3 Anthropogenic Carbon
4.3.1 Distributions

The Drake Passage C*™ distributions in Figure 10 are calculated using the AC* method,
with the C*™ transports in section 4.3.2 all calculated using the 2009 transect. This
transect indicates C*™ concentrations markedly shallow from north to south, partly
following the general trend of the neutral density isopycnals. The transect maximum of
>30 pmol kg is primarily within surface, SAMW and AAIW neutral density classes
with negligible C*™ for the AABW neutral density class. Across 30°E (Figure 11), higher
concentrations (>25 pmol kg'l) are either found within the Agulhas regime down to 1000
dbar or within the upper 200 dbar, south of the Agulhas regime. C*™ transports in this
study, all make use of the 2008 transect across 30°E. Across 24°S (Figure 12), lower

concentrations (<10 pmol kg™) are predominately below 1000 dbar.

4.3.2 Transports
Total C*™ fluxes of individual neutral density classes are controlled by the underlying

volume transport. Net imports of C* into the South Atlantic box occur only through

Drake Passage (Table 7, Figure 13). Across 24°S, although total net DIC flow is
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southward (Gruber et al., 2009), the large surface-to-deep C*™ gradient causes a net
northward transport, in line with previous estimates (Holfort et al., 1998). A C™
overturning estimate of 0.11 PgC yr', associated with the 20.2 Sv overturning, is
calculated based on the southward transport of C*“-poor deep water (layers 13-18
following Section 4.1.1.2). A net eastward C*™ transport within the Agulhas regime is
caused by ventilation within the highly energetic South Atlantic sector of the Agulhas

regime and C*" increase in the upper ocean, prior to the eastward return flow.

The mean transport-weighted (TW) C*" is calculated for each neutral density class at the
box boundaries by dividing the total C*™ transport by the total volume transport (Table 8).
Transport-weighted values are most heavily weighted at the location of the transport
maximum, and hence are directly influenced by changes in the transport profile (Georgi
and Toole, 1982; Tillinger and Gordon, 2010). Neutral density classes with the largest
volume transports along both Drake Passage and the 30°E ACC regime, particularly
UCDW and LCDW layers (Figure 8), therefore contribute significantly to the observed
C™ divergence (Figure 13). Small systematic biases within these low C*" waters, below
the level of the adjustments calculated as part of GLODAPvV2, could contribute towards
the significant C*™ divergence. The C*" divergence shown by larger eastward-flowing
TW C™ at 30°E, compared to either eastward-flowing TW C*™ at Drake Passage or

southward-flowing C*™ at 24°S is suggestive of an air-sea C*" input requirement.

Storage rate is calculated using MPD estimates from Drake Passage, 24°S and 30°E
multiplied by the mean rate of C*" increase in the mixed layer (Table 9). As listed in
Table 9, MPD from Drake Passage and 30°E are notably shallower than 770m for the
region between 10°S and 30°S (Holfort et al., 1998), and 790 m at 24.5°N (Roson et al.,
2003). As described in Alvarez et al. (2003), areas with higher stratification yield
shallower MPD, with comparatively lower penetration of C*™ below the upper 2000 dbar
at Drake Passage, compared to 30°E, resulting in the shallower MPD. Increased
convection, therefore leads to increased uncertainty in the time variability of the MPD

(Khatiwala et al., 2013; Pérez et al., 2008).

18/11/2016 25



Storage rates of 0.22+0.29 mol m” yr"' along Drake Passage, 0.81+0.53 mol m™” yr”
along 24°S and 0.29+0.18 mol m™ yr"' along 30°E extend the range of previous South
Atlantic storage rate estimates from repeat hydrography (Table 10). The values show
similarities with the time-averaged Green’s Function Inversion in Khatiwala et al. (2013)
(their Figure 7). The Drake Passage estimate reflects its shallower MPD of 259.8 m than
for other parts of the Southern Ocean, given that less C*™ has penetrated into deeper
neutral density classes based on the lower TW C*™ estimates for UCDW, LCDW and
AABW (Table 8). Along 30°E, the C*™ values are normalised by temperature to remove
biases caused by cooler temperatures within the mixed layer in the 2008 occupation
compared to the 1996 occupation. The temperature normalisation reduced the initial high
AC™ estimate of 1.52 pmol kg™ yr'' along 30°E to 0.45 pmol kg™ yr'. The 0.45 pmol
kg” yr! estimate is at the lower range of previous South Atlantic estimates of CO, uptake
(0.6-1.0 pmol kg yr') (Murata et al., 2008; Peng and Wanninkhof, 2010; van Heuven,
2013). The 24°S estimate is similar to Holfort et al. (1998)’s estimate of 0.59+0.12 umol

kg yr! for the 10°S and 30°S region and within their 20% uncertainty estimate.

For the South Atlantic box, the mean storage rate for Drake Passage, 24°S and 30°E
(Table 10), calculated from the mean MPD, mean ACfl?lt and mean py (Table 9) and
integrated over the ocean surface area (estimated as 3.3 x 10" m’ assuming a
parallelepiped ocean) yields a basin-wide C*™ storage of 0.18+0.12 Pg C yr™'. Application
of the TSR-based C™™ storage estimation method, which makes use of additional
historical hydrographic cruise data from the interior of the South Atlantic Ocean sector,
generates a storage term of 0.21+0.06 Pg C yr'' (van Heuven, S. (2016), manuscript in
preparation). The two estimates compare well despite substantially different
methodologies. The smaller TSR uncertainty represents its greater robustness as a
calculation approach, due to the additional data and lack of structural assumptions
compared with the MPD method (transient steady state, parallelepiped ocean). Historical
storage estimates for the South Atlantic regions show slightly higher values: 0.30 Pg C
yr' between 2°S-58°S based on decadal hydrographic observations (Peng and
Wanninkhof, 2010) and 0.29 Pg C yr"' between 0°S-58°S from multiple global ocean
inversions based on hydrographic section data (Mikaloff Fletcher et al., 2006). Based on
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this study, usage of MPD calculations appear to have some value in providing a
reasonable estimate for C*™ storage in the absence of full basin-scale historical data.
However, greater uncertainty will be assigned to estimates if the sampling pattern of the
hydrographic cruises chosen does not fully capture the north-south variability within the
Southern Ocean of the column inventory of AC*™ (see Figure 7.13 from van Heuven,
(2013)). Similarly, MPD calculations are also dependent upon the shape of the C*™
profile, such that the presence of increasing amounts of C*" within bottom water layers
(due to proximity to bottom water ventilation locations) may compromise the MPD
assumption (Khatiwala et al., 2013; Pérez et al., 2008). However, the sections used here
are not thought to suffer from this at this stage, with negligible bottom-water C*" change

identified (Evans, 2013).

4.3.3 Anthropogenic CO; air-sea flux

The C*™ budget for the South Atlantic box - comprising storage and divergent flux terms
at the box boundaries (Figure 13) - is balanced by a 0.51+0.37 Pg C yr™" air-sea flux term.
This compares to a global anthropogenic CO, uptake of 2.2 to 2.620.3 Pg C yr’
estimated from ocean inverse and biogeochemical models (DeVries, 2014; Gruber et al.,
2009), or more generally 2 Pg C yr' from a range of oceanic and atmospheric
observations (Wanninkhof et al., 2013). The Southern Ocean is the largest annual sink
region of total (natural and anthropogenic) CO, of more than 0.42 Pg C yr'' south of 44°S
(Lenton et al., 2013). Regional observations and model outputs for its Atlantic sector
combined within the South Atlantic from 18-58°S, broadly similar to our South Atlantic
box but excluding the small sea-air CO;, flux south 58°S (Lenton et al., 2013; van
Heuven, 2013), suggest a net annual mean total (natural and anthropogenic) CO; flux of
0.19 —0.38 Pg C yr’' (Lenton et al., 2013; Schuster et al., 2013). This is smaller than the
air-sea uptake estimate derived here that only quantifies the anthropogenic component.
However, large outgassing of natural carbon identified in the Southern Ocean (Mikaloff
Fletcher et al., 2007) suggests that any estimates of regional CO, uptake here will be
disproportionately of anthropogenic origin. A global ocean circulation inverse model
assimilating potential temperature, salinity, CFC-11 and radiocarbon observations

(DeVries, 2014) supports the distinction between natural and anthropogenic CO; uptake,
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with an estimated total (natural and anthropogenic) CO, uptake for the South Atlantic
box of 0.43 Pg C yr”' of which 0.38 Pg C yr' is anthropogenic CO». Although the air-sea
C*" uptake estimate here is larger than other observational and model estimates this is not
entirely unexpected, as a seasonal bias may exist in the input C*™ estimates due to the
austral summer-based cruise timings: increased stratification and intense biological
production draw down surface carbon levels and increase the air-sea ApCO, difference.
Combined with a temperature-related increase in the Revelle factor (Sabine et al., 2004)
that enables greater anthropogenic carbon loadings, the associated uptake reaches its
maximum during the summer months and is a likely major contributor to the large budget

residual.

Differences from alternative estimates may also be partially methodological in nature.
Given the large volume transports associated with the UCDW and LCDW neutral density
classes in this study, systematic biases within these deep waters could potentially
contribute to large differences in C*™ between Drake Passage and 30°E, which are
inferred as being balanced by the air-sea flux. The differences between volume transport-
weighted C*™ estimates at Drake Passage and 30°E (Table 8) also imply that these deeper
neutral density classes must be gaining C*" within the South Atlantic. Khatiwala et al.,
(2013) describe a key difference between the ‘ocean inversion’ method, where
hydrographic section estimates of C*" are combined with Ocean General Circulation
Models (OGCMs), first applied in Gloor et al. (2003) and later in further depth in
Mikaloff Fletcher et al. (2006, 2007), Gruber et al. (2009) and Khatiwala et al., (2013),
and C*™ flux estimates from ship transects. Hydrographic occupations are accurate for a
single point in time and thus subject to sampling biases, whilst the ocean inversion
method represents a transport integrated in time since the industrial revolution, and
typically scaled to any selected year (e.g. 1995 in Mikaloff Fletcher et al. (2006)).
Additionally, seasonal variability affects hydrographic fluxes (Wilkin et al., 1995) with
Lachkar et al. (2009) suggesting that subtropical South Atlantic seasonal variability
corresponds to up to 20% of the annual mean transport of C*". The inverse model in the
current study is designed to create a 2008-2009 ocean mean such that the calculated

divergence within the South Atlantic Ocean is representative of that time period.
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5 Conclusions

An inverse box model was used to examine net exchange between the South Atlantic

Ocean and surrounding basins, inspired by the work of Rintoul (1991). We revisit this

study with newer data and the inclusion of C*". The key findings include:

The 15.9 Sv of westward Weddell Gyre return flow at 30°E contains 8.8+0.5 Sv of
the AABW layer, contributing to a net 13.8+1.0 Sv inflow of the AABW layer to the
box across all sections. Diapycnal upwelling of 6.3+1.0 Sv from the AABW layer to
the LCDW layer within the box, leads to a net AABW recirculation within the South
Atlantic of 7.5+1.4 Sv.

A Meridional Overturning Circulation of 20.2 Sv with a net mass transport of 0.7+0.3
Sv southward and a freshwater transport associated with the overturning component
M,y of 0.09 Sv southward across 24°S. This southward overturning freshwater flux of
0.09 Sv supports the notion of MOC bistability.

Agulhas leakage, defined as westward flow above the 3.5 °C isotherm, is 10.7+1.7
Sv. Total eastward transport of Circumpolar Deep Water is 5.9+2.2 Sv beneath the
Agulhas Current system, north of the Subtropical Front. Agulhas leakage contributes
towards the northward flowing upper ocean water across 24°S, whilst up to one-third
of southward-flowing deep water across 24°S, exits the South Atlantic underneath the
net westward-flowing Agulhas leakage.

The C* divergence from the South Atlantic box of 0.33+0.31 Pg C yr' and
0.18+0.12 Pg C yr™' of C*™ storage correspond to a C*™ air-sea uptake of 0.51+0.37 Pg
C yr'. While 0.18+0.12 Pg C yr" of anthropogenic carbon is stored within the box,
89% of C*™ input to the South Atlantic box is exported from the South Atlantic. C*™
export from the South Atlantic occurs across both the 24°S section (0.28+0.16 Pg C
yr'"), and across 30°E, associated with the 1.04+0.42 Pg C yr' ACC and the
0.08+0.07 Pg C yr'' Agulhas Current and its return flow.

Significant C*™" divergence within the South Atlantic box is only sustainable with
significant C*™ uptake from the atmosphere. C*™ uptake of 0.51+0.37 Pg C yr'

equivalent to approximately 25% of previous estimates of global C*™ uptake may be
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caused through the upwelling of C*™-poor NADW as part of the MOC, which

subsequently absorbs atmospheric CO, into the ocean surface layers.
In conclusion, the South Atlantic circulation diagnosed in this study is characterised by
inflow through Drake Passage, overturning south of 24°S consistent with southward-
flowing UCDW and LCDW and conversion to lighter neutral density classes through
diapycnal processes. Northward flows of surface water, SAMW and AAIW layers merge
with a net westward Agulhas leakage from the Agulhas system to complete the MOC
upper cell. AAIW, UCDW and LCDW flow eastward below the Agulhas system, whilst
further south, eastward transport in the ACC dominates. Near the Antarctic continental

margin, a westward flow supplies AABW to the Weddell Sea.

Ventilation and transformation within the Weddell Sea precedes the northward flow of
the renewed AABW layer out of the Weddell Sea, whereupon significant diapycnal
processes convert the AABW layer to the LCDW layer, limiting the volume of AABW
exiting the South Atlantic. There is net SAMW production, LCDW layer creation and
AABW layer destruction in the South Atlantic. For C™ an imbalance between the
transport-weighted inflow and outflow for each neutral density class indicates significant
uptake of CO, from the atmosphere within the South Atlantic, subsequently supplying the
Atlantic Ocean north of 24°S and the Indian sector of the Southern Ocean with C*™. Inter-
basin exchange within the South Atlantic therefore ventilates CDW, receives, modifies

and then consumes AABW, and supplies C*™ to the rest of the global ocean.
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Appendix A

Constraint weighting

Each constraint has an associated uncertainty. As each constraint is represented by a row
in E, each row is weighted according to the constraint’s uncertainty. For the layer volume
constraints, larger a priori uncertainties (g;) are applied to the upper ocean than the deep
ocean following Ganachaud (2003) for the neutral density classes: Surface (£4Sv),
SAMW (£4Sv), AAIW (+3Sv), UCDW (+2Sv), LCDW (£1Sv) and AABW (0.5Sv).
For volume transport constraints, the reciprocal of the a priori uncertainty is applied as
the row weighting whilst for property transports, the reciprocal of the a priori uncertainty
multiplied by 2, and multiplied by the larger of either the property standard deviation or
property mean is applied for each layer/row. Typically a property standard deviation is
applied, however, the property mean is included to cope with excessively small standard
deviation values, and to better weight higher temperature anomalies within the surface
waters across the box. For full depth salinity anomaly transport around the box boundary,
a small a priori uncertainty (0.2 Sv psu) is applied to better constrain the system, making
use of well-constrained values for Drake Passage (Cunningham et al., 2003; Meredith et
al., 2011) and 24°S (Coachman and Aagaard, 1988; Woodgate and Aagaard, 2005),
following the constraint for full depth boundary salinity transport applied to the initial
field. The small uncertainty improves the zero salinity convergence constraint for the
inverse box, rather than reflecting actual uncertainty. Only small full-depth residual
imbalances for volume of -0.47 Sv and salinity anomaly of -1.08 Sv psu remain after
applying the inverse box model.

Weightings for unknown velocities

The accuracy of the depth-independent velocities is affected by the inclusion of a priori
uncertainties for weighting each column in E, and designed to optimally weight the
different components of the solution. Column weighting takes the general form of the a

priori uncertainty divided by the appropriate area and subsequently square rooted.

Appendix B
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Historical surface data from five meridional cruises that intersect the 2009 24°S section
across its full extent have been used to generate estimates of the change of anthropogenic

carbon within the mixed layer (AC%Y

) and thus C*™ storage rates across 24°S, as detailed
in Sections 2.1 and 4.3. Each meridional cruise provides a single intersection for
comparison to the 24°S zonal transect. C*™ was calculated in an identical manner to the
other box sections. The C*™ profile of the nearest station, in terms of latitude and
longitudes coordinates, along each of the meridional sections is matched to the nearest
station along the 24°S zonal transect to help determine ACY). Historical cruises used
were as follows: A14 (35A3CITHER3_1) occupying a longitude of 9°W at 24°S between
January-February 1995 (Mercier and Arhan, 1995); A13 (35A3CITHER3_2) crossing
through 24°S at 8°E between February-April 1995 (Mercier and Arhan, 1995);
A15/AR15 (316N142_3) crossing 24°S at 19°W in May 1994 (Smethie and Weatherly,
1994); A16 (318HYDROS4) crossing 24°S at 25°W in March 1989 (Talley et al., 1989);
and A17 (3230CITHER2_1-2) intersecting 24°S at 33°W in February 1994 (Mémery,

1994). Data from each of these cruises is accessible from the Carbon Hydrographic Data

Office (CCHDO).
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Figure 1: Map of the hydrographic sections that form the boundaries to the South Atlantic
inverse box model. Sections are A21 (Drake Passage), 16S (30°E) and 24°S. The
Subtropical Front (STF), Subantarctic Front (SAF), North Polar Front (NPF), South Polar
Front (SPF) and Southern Antarctic Circumpolar Current Front (SACCF) are indicated.
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Major topographical and circulation features are: Vitoria-Trinidade seamounts VT, Vema
Channel VC, Hunter Channel HC, Brazil Malvinas Confluence BMC, Malvinas Current
MC, South Georgia SG and the Agulhas Return Current ARC.
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Figure 2: Geostrophic velocities (barotropic plus baroclinic velocities from the final
solution) on the box boundary in units of m s, Into (out of) the box is shown by red
(blue). The dashed lines indicate frontal positions along the Drake Passage section from
south to north: SACCF, SPF, NPF and SAF, and along the 30°E section from north to

south: STF, SAF, PF, SACCF.
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Figure 3: Cumulative transport along the box boundary for the final solution for each
neutral density class in units of Sv. The total cumulative transport for each neutral density
class is shown. Positive transports refer to a net gain by the box, whilst negative

transports refer to a net loss. Vertical dashed lines indicate fronts.
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Figure 4: Heat transport (red; petawatts (PW)) for zero net mass transport across 24°S.

Additional hydrographic estimates and errors (grey bars) are shown together with

meridional heat transport (from Piecuch and Ponte (2012)) with an average time-mean

ECCO (Estimating the Circulation and Climate of the Ocean; black solid thick line)

estimate from model-observation syntheses. The uncertainty interval is given as the

standard deviation of the heat transport time series (black thin lines).
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Figure 6: a) Diapycnal volume velocity (m s'l) and b) volume flux (Sv), c) diapycnal
salinity velocity (m s™) and d) salinity flux (kg s™) and e) diapycnal temperature velocity
(m s’l) and f) temperature flux (W) across each layer interface within the South Atlantic
box. A positive (negative) velocity or transport represents an upward (downward) flow.
The dashed lines represent one standard deviation. Neutral density class boundaries are

marked (solid black line), and neutral density classes labelled.
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and neutral density classes labelled.
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60°
Figure 8: Schematic circulation for the inverse model solution. The length of each bar is
proportional to the net transport associated with each neutral density class. Neutral
density classes shown are a) surface water (red), SAMW (blue), and AAIW (yellow) and
b) UCDW (pink), LCDW (green) and AABW (orange). Numbers at the end of each bar

give transports in Sv. A priori uncertainties for transport in each neutral density class
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transport are: surface water 4 Sv, SAMW 4 Sv, AAIW 3 Sv, UCDW 2 Sv, LCDW 1 Sv
and AABW 0.5 Sv.

60°W  30°W 0° 30°E 60°E 90°E

Figure 9: Schematic circulation for the NADW from the inverse model solution, defined
as at the UCDW/LCDW interface (27.90<y"<28.10), equal to layers 16 and 17 (Table 4).
The length of each bar is proportional to the net transport. Numbers at the end of each bar

give transports in Sv with an uncertainty of 2 Sv.
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Figure 10: AC*-derived distribution across Drake Passage of C*™ for Left: 1990 and
Right: 2009. The neutral density:geopotential height interpolation scheme mentioned in
Section 2.1 uses a 0.02 geopotential height (¢) grid across Drake Passage. Neutral density

classes are labelled following the neutral density interfaces in Table 4. Units of umol kg
1
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Figure 11: AC*-derived distribution across 30°E of C*™ for Left: 1996 and Right: 2008.
The neutral density:geopotential height interpolation scheme mentioned in Section 2.1
uses a 0.02 geopotential height (@) grid across 30°E between 35°S and 58°S and a 0.002
¢ grid south of 58°S. Neutral density classes are labelled following the neutral density

interfaces in Table 4. Units of pmol kg™
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Figure 12: AC*-derived distribution across 24°S of C*™ in 2009. Neutral density classes

are labelled following the neutral density interfaces in Table 4. Units of pmol kg™
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Figure 13: Schematic circulation for the each component of C*™ transport within the
inverse model solution (PgC yr’l). The length of each bar is proportional to the net
transport. The implied net air-sea flux required to maintain the C*™ divergence is
0.51+0.37 PgC yr'l. Numbers at the end of each bar give transports in PgC yr'l.

Uncertainties are presented in Table 7.
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Table 1: GLODAP/CARINA correction factors as detailed in Gouretski and Jancke
(2000), Wanninkhof et al. (2003), Key et al. (2004) and Hoppema et al. (2009).
GLODAPvV2 correction factors are detailed in Lauvset et al. (2016) and Olsen et al.
(2016). Adjustments applied to hydrographic cruises along A13, Al4, A15, A16 and A17

are required for section 2.1. Nitrate, phosphate, silicate and alkalinity are in units of pmol

kg™'. Salinity is listed as an addition in parts per million. Oxygen is listed in units of ml/1

requiring multiplication by a factor of 43.55 to convert to pmol kg™ for all cruises apart

from A21 (Drake Passage 2009) and 24°S 2008 where the multiplicative factors have

already been optimised for pmol kg™

Salinity  Nitrate Phosphate  Oxygen Silicate  Alkalinity

A21 (Drake +1.1 +0.04 -0.06 +0.03 +4.9 x1.0
Passage 1990)

A21 (Drake x1.0 x0.975 x1.0 x1.035 x1.0 -6.0
Passage 2009)

I6S (30°E 1996) x1.0 x0.96 x0.97 x1.0 x0.9 x1.0
24°S 2008 x1.0 x0.99 x1.0 x1.035 x0.95 x1.0
A13 (8°E 1995) +2.8 -1.3 -0.153 +0.003 -3.0 x1.0
A14 (9°W 1995) +2.3 -0.19 -0.033 +0.016 -1.9 x1.0
A15(19°W 1994) +0.3 -0.3 -0.023 -0.001 -1.5 x1.0
A16 (25°W 1989) -0.5 -0.28 -0.029 +0.019 +0.3 x1.0
A17 (33°W 1994) +1.8 +0.06 -0.024 +0.001 +1.6 x1.0
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Table 2: Reference levels for each of the box boundaries. The 30°E section has been split

by the Subtropical Front (42.9°S) into an Agulhas and ACC regime.

Section Reference Reference
Level
Drake Passage Bottom Meredith et al, (2011), (King &

24°S 1300 dbar

30°E Agulhas regime (North of 40°S) 2000 dbar

30°E Agulhas regime (40°S — 42.9°S) Bottom
30°E ACC regime (South of 42.9°S) Bottom

Jullion, in prep.,).

Bryden et al, (2011), Warren and
Speer, (1991)

Arhan et al, (2003; Bryden et al.,
(2005)

Arhan et al., (2003)

Park et al., (2001)

Table 3: Constraints applied to better construct the initial field for each of the sections

along the box boundary. Positive (negative) values indicate a transport into (out of) the

box. The boundary salinity transport refers to the net inflow of salinity transport across

Drake Passage, 24°S and the 30°E Agulhas regime combined to equal the net outflow of

salinity transport through the ACC regime at 30°E. All constraints are applied to better

constrain the initial field. The Ekman transport and the ACC regime boundary salinity

transport are not included as explicit constraints within the box inversion. Stated errors

are the residual noise terms from the conservation equations.

Reference Property Vertical extent Constraint Solution

Drake

Passage

24°S:
Full

section

Cunningham et al. ~ Volume Full depth
(2003), Meredith
et al. (2011)

Coachman and Salinity Full depth
Aagaard, (1988)
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Vema Hogg et al. (1999), Volume 0<2°C -6.9+2 Sv -6.7£1.9 Sv
and Hunter McDonagh et al.
Channel (2002), Zenk et al.

(1999)
Brazil Bryden et al. Volume Above 300 dbar  4.9+5 Sv 5.8+0.1 Sv
Current (2011)
Cape Arhan et al. Volume 0<2°C 0+1 Sv 0.2+0.1 Sv
Basin (East  (2003),
of 6°E) McDonagh and

King (2005)

Ekman Bryden et al. Volume Above 80 dbar 3.3Sv
transport (2011)
30°E:
Agulhas  McDonagh et al. Volume 0>3.5°C 943 Sv 10.7£1.3 Sv
regime (1999)
ACC This study Salinity Full depth Salinity
regime transport

inflow to box
(4773.64 Sv
psu)
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Table 4: Neutral density limits for each layer and corresponding water classes.

Definitions following Orsi et al. (1999), Naveira Garabato et al. (2002a), Heywood and
King (2002) and Naveira Garabato et al. (2009). A North Atlantic Deep Water (NADW)

neutral density class is labelled at 27.90< y"<28.10 primarily for usage along the 24 °S

section where NADW is prevalent.

Layer Lower limits Water classes

1 y'<24

2 24< y"<25

3 25< 1'<26 Surface Water

4 26< v"<26.80

5 26.80<y"<26.90

6 26.90<y"<27.00

. 27.00<°<27.10 Subantarctic Mode Water (SAMW)

8 27.10<y"<27.23

9 27.23<y"<27.30

10 27.30<y"<27.40 Antarctic Intermediate Water (AAIW)
11 27.40<y"<27.50

12 27.50<y"<27.60

13 27.60<y"<27.70 Upper Circumpolar

14 27.70<y"<27.80 Deep Water

15 27.80<y"<27.90 (UCDW)

16 27.90<y"<28.00 ‘North AtlanticDeep Water
17 28.00<y"<28.10 Lower Circumpolar (NADW)

18 28.10 <y"<28.20  Deep Water
19 28.20<y"<28.27 (LCDW)

20 28.27<y"<28.35

)1 28.35<" Antarctic Bottom Water (AABW)
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Table 5: Meridional property transport from inverse studies and empirical analysis across
24°S, 30°S (WOCE A10) and nominally at 45°S (WOCE A11), adapted from McDonagh
and King (2005) and Williams (2007). The MOC strength in this study, is interpreted as

the southward flow of deep water, primarily NADW. The MOC strength estimate in

Dong et al. (2009) is an average of 17 hydrographic occupations. A northward net flux is

positive.

Source Section Freshwater Heat (PW) Salt (Gg st MOC
(Sv) or Sv psu) strength (Sv)

Ganachaud (1999) All - 0.6620.12 - 18+4
Holfort and Siedler (2001) All -0.55£0.02  0.37£0.02  -26.37+0.73 21.7
McDonagh and King (2005) All -0.7 0.43+0.08 -26 21.0+2
Naveira Garabato et al. (2014) All -0.7+£0.48 0.14+£0.06  -29.2+17.2 15.8
Dong et al. (2009) 35°S - 0.55+0.14 - 17.9
Rintoul (1991) 32°S - 0.25 - -
Lumpkin and Speer (2007) 32°S - 0.60+0.08 - -
Ganachaud (1999) 30°S - 0.35+0.15 - 2343
Holfort and Siedler (2001) 30°S -0.51+£0.02  0.29+0.05  -26.75+0.77 22.7
Ganachaud and Wunsch (2003) 30°S -0.5%0.1 - -26.7 -
McDonagh and King (2005) 30°S -0.5+£0.1 0.22+0.08 -26 19.9+£2
Naveira Garabato et al. (2014)  30°S -0.58+0.48  0.31+0.04  -13.8+17.1 13.7
Bryden et al. (2011) 24°S -0.34/-0.29 0.7 -26 21.5/16.5
This study 24°S -0.7£0.3 0.40+0.08 -25.8+0.2 20.2+2
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Table 6: a) Net heat flux across 24°S separated into overturning and gyre components. b)
Overturning component of the salinity transport and associated M,y and M,, transports.
Positive (negative) transport is defined as northwards (southwards) for compatibility with

Bryden et al. (2011).

a) Overturning (PW) Gyre (PW) Total (PW)
This study 0.52 -0.12 0.40
Bryden et al. (2011) 2009 section 0.76 -0.07 0.68
Bryden et al. (2011) 1983 section 0.53 -0.14 0.38

b) Overturning (Sv psu) M,y (Sv) M., (Sv)
This study 3.3 -0.09 0.16
Bryden et al. (2011) 2009 section 4.6 -0.13 0.12
Bryden et al. (2011) 1983 section 3.3 -0.09 0.21
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Table 7: C*™ transports at the box boundary, C*™ storage within the box and C*™ air-sea

flux in PgC yr‘l. Positive (negative) values indicate a transport into (out of) the box.

Section C™ Transport (Pg C yr™)
Drake Passage +1.07+0.44
24°S -0.28+0.16
30°E: Agulhas -0.08+0.07
30°E: ACC -1.04+£0.42
Total -0.334+0.31
Storage +0.18+0.12
Air-Sea flux +0.51+0.37
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Table 8: Transport-weighted C*™ (umol kg™) at each box boundary. For 24°S and 30°E

(Agulhas), the transports are separated into north-south, or east-west components

respectively, given the substantial flow in both directions. Uncertainties are the standard

error of the mean with units of pmol kg™

Neutral Drake 24°S 30°E (Agulhas) 30°E
density Passage North South West East

Surface 34.9+0.4 65.2+0.3 63.2+0.4 48.2+0.3 49.740.2 50.0+0.5
SAMW 39.240.3 51.9+0.4 50.8+0.4 29.2+40.6  35.6£0.7 40.9+0.6
AAIW 36.0+0.5 26.9+0.3 25.8+0.3 16.8+0.5 17.840.4 31.8+0.5
UCDW 16.3+0.2 14.3+0.1 13.9+0.1 16.5+0.1 16.3£0.1 16.6+0.2
LCDW 6.9+0.1 10.2+0.1 10.8+0.1 11.1£0.1  12.6£0.1 10.3£0.1
AABW 2.2+40.1 12.6+0.2 11.1+0.2 10.1£0.1  11.7#0.1 11.1%0.1
Total 20.9+0.2 30.1£0.2 25.6+0.2 33.840.3 35.1£0.3 18.8+0.1
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Table 9: Mean Penetration Depth (MPD), mean AC% (umol kg™ yr') within mixed layer
and mean in-situ density py; (kg m™) within mixed layer for Drake Passage, 30°E, and
24°S and a mean of the hydrographic sections. Along 30°E, C*" is normalised to a mean

temperature. MPD is estimated to have a 20% uncertainty, and a £0.5 pmol kg™ yr

ACY! uncertainty.

MPD (m) AC™'(pmol kg yr')  pmi (kgm™)
Drake Passage 259.8 0.84 1027.0
24°S 933.2 0.85 1024.8
30°E 624.3 0.45 1026.2
Mean 605.8 0.71 1025.9

Table 10: Comparison of C*" storage rate (mol m?> yr'l) for the South Atlantic (south of

15°S), and South Atlantic sector of the Southern Ocean. For Peng and Wanninkhof

(2010), the two estimates derive from two different calculation methods.

Author Region Storage rate
(mol m> yr'l)
Holfort et al. (1998) 10°S -30°S 0.59+0.12
Murata et al. (2008) Along 30°S 0.620.1
Peng and Wanninkhof (2010) South of 15°S 0.56/0.35+0.3
Wanninkhof et al. (2010) South of 15°S 0.76
Rios et al. (2012) 10°N-55°S, 0.92+0.13
western basin
This study Drake Passage 0.22+0.29
This study 24°S 0.81+0.53
This study 30°E 0.29+40.18
This study Mean 0.44+0.30
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