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Abstract 

The exchange of mass, heat, salt and anthropogenic carbon (Cant) between the South 

Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data 

obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon 

are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S) 

boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with 

an overturning circulation that exports freshwater from the North Atlantic, and consistent 

with a bistable Meridional Overturning Circulation (MOC), under conditions of excess 

freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC) 

transport, south of the Subtropical Front, is compensated by a 15.9±2.3 Sv westward flow 

along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric 

anthropogenic carbon of 0.51±0.37 PgC yr-1, of which 0.18±0.12 PgC yr-1 accumulates 
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and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is 

associated with a 0.11 PgC yr-1 Cant overturning. The remainder is transported into the 

Atlantic Ocean north of 24°S (0.28±0.16 PgC yr-1) and Indian sector of Southern Ocean 

(1.12±0.43 PgC yr-1), having been enhanced by inflow through Drake Passage (1.07±0.44 

PgC yr-1). This underlines the importance of the South Atlantic as a crucial element of the 

anthropogenic carbon sink in the global oceans. 

 

1 Introduction 

At the confluence of the southward-flowing deep water from the northern North Atlantic 

Ocean and the eastward-flowing Antarctic Circumpolar Current (ACC), the South 

Atlantic sector of the Southern Ocean is a key component of the global meridional 

overturning circulation (MOC; Marshall and Speer 2012). The critical role of the South 

Atlantic was recognised by Rintoul (1991), who quantified the basic heat and freshwater 

exchange associated with balancing deep-water formation in the North Atlantic with 

Intermediate Water and Bottom Water formation in the Southern Ocean. Overturning 

within the South Atlantic is critical for the ventilation of older water masses facilitating 

uptake and storage of anthropogenic carbon (Cant) (Iudicone et al., 2011; Sallée et al., 

2012). Bottom Water formation; in particular, provides a mechanism for injection of Cant 

into the deep ocean (Brown et al., 2015; Vázquez-Rodríguez et al., 2009).   

 

This paper focuses on the South Atlantic sector of the Southern Ocean south of 24°S 

from Drake Passage to 30°E. The ACC crosses this region and, together with the Agulhas 

Current, links the Pacific and Indian Ocean sectors of this region. The ACC transport is 

concentrated into fronts (Subantarctic Front, SAF; Polar Front, PF; Southern ACC Front, 

SACCF), which preferentially carry different water classes and properties across the 

region (see Figure 1). Drake Passage is the narrow entry point for the ACC into the 

Atlantic sector, after which, the Subantarctic Front protrudes northwards into the 

Argentine Basin. This widens the meridional extent of the ACC, and separates the 

warmer subtropical waters to the north from colder, Antarctic and Subantarctic water to 

the south (Belkin and Gordon, 1996; Orsi et al., 1995). 
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North of the ACC in the Atlantic sector, the poleward-flowing Brazil Current (BC) lies 

within the upper 300-600 dbar (Bryden et al., 2011; Peterson and Stramma, 1991). Fully 

formed north of the Vitoria-Trinidade Seamounts at ~20°S (marked in Figure 1), it 

intensifies southwards on the order of 5% per 100 km (Gordon and Greengrove, 1986) 

with transport estimates at 24°S ranging between 4.1 Sv and 13.2 Sv (Bryden et al., 2011; 

Evans et al., 1983; Evans and Signorini, 1985; Garfield, 1990; Signorini, 1978; Stramma, 

1989; Zemba, 1991). At the eastern South Atlantic boundary within the Cape Basin, the 

South Atlantic Current (SAC) feeds the northward flowing Benguela Current. Previous 

transport estimates are of 6 Sv for the South Atlantic Current and 28 Sv for the Benguela 

Current, respectively (Garzoli and Gordon, 1996; Mercier et al., 2003; Smythe-Wright et 

al., 1998; Stramma and Peterson, 1990). The Benguela Current is also fed by the residual 

westward flow into the South Atlantic from the Agulhas system, commonly termed 

Agulhas leakage. The majority of the Agulhas Current flows along the East African 

continent, and is retroflected at 16-20°E (Lutjeharms and Van Ballegooyen, 1988) as the 

eastward flowing Agulhas Return Current, closing the subtropical gyre of the South 

Indian Ocean (Dencausse et al., 2010; Lutjeharms and Van Ballegooyen, 1988; Matano et 

al., 1998).  

 

South of the ACC in the Atlantic sector, previous studies (e.g. Meredith, 2013) have 

suggested that the Weddell Sea contributes to about 40% of the global formation of 

Antarctic Bottom Water (AABW). Westward inflow along the Antarctic shelf into the 

Weddell Sea is partially comprised of recently formed Cape Darnley Bottom Water 

(CDBW; Ohshima et al. 2013) and older AABW varieties from farther east. CDBW 

contributes ~13-30% to global AABW production (Ohshima et al., 2013). Within the 

Weddell Sea, local ventilation and interaction with the Filchner-Ronne (Whitworth et al., 

1998) and Larsen (Fahrbach et al., 1995; Weppernig et al., 1996) ice shelves contributes 

to further AABW formation, carrying Cant into the deep ocean (Huhn et al., 2013; van 

Heuven et al., 2011). Some of this AABW recirculates within the eastward flowing 

northern limb of the Weddell Gyre, whilst the remainder escapes either into the western 

South Atlantic basin through narrow deep water pathways (e.g. Gordon et al., 2010, 

Jullion et al., 2014), by South Scotia Ridge overflow (Jullion et al., 2014; Locarnini et al., 
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1993; Naveira Garabato et al., 2002a), or into the eastern South Atlantic basin with 8±2 

Sv of AABW in total exported from the Weddell Gyre (Jullion et al., 2014). At the 

Argentine Basin to Brazil Basin transition, northward AABW flow is restricted to key 

topographical features (Figure 1): Vema Channel (25-50 km wide, sill depth ~4600 m; 

Johnson and Biscaye (1976)) and Hunter Channel (200 km wide, sill depth ~4200 m; 

Speer et al. (1992); Zenk et al. (1999)). Bottom water warming between the Weddell Sea 

and 24°S alters the typical bottom water definition from θ≤0 °C to θ≤2 °C. Bottom water 

transports for θ<2 °C are 4.0±1.2 Sv at Vema Channel (Hogg et al., 1999), and 2.92±1.24 

Sv at Hunter Channel (Zenk et al., 1999).  

 

The MOC, ACC, Agulhas system and Weddell Gyre are all major contributors to the 

global large-scale ocean circulation, and therefore an understanding of their contribution 

to interbasin fluxes is key for interpreting large-scale changes in volume, heat or 

freshwater transports, and identifying linkages to broader changes in the Earth’s climate. 

Similarly interbasin fluxes of anthropogenic carbon (Cant) provide an opportunity to 

assess the South Atlantic’s capacity to uptake and store anthropogenic carbon on decadal-

centennial timescales, in order to improve understanding of its responses to future 

atmospheric CO2 changes. Here, Cant is estimated using the ΔC* method following 

Gruber et al. (1996), as described in section 2.1 and in further detail in Evans (2013). .  

 

This paper uses a set of recent WOCE sections at the boundary of the South Atlantic 

Ocean to update interbasin flux estimates of mass, heat and salt in comparison to earlier 

studies (e.g. Rintoul, 1991), and to provide estimates of the interbasin flux of 

anthropogenic carbon (Cant). This paper is structured as follows: Section 2 describes the 

data used. Section 3 outlines the inverse box methodology, as applied in this study. The 

solution of the inverse box model is discussed in Section 4 in terms of geostrophic and 

Ekman velocity fields, diapycnal mixing and air sea fluxes of heat and freshwater as well 

as the transports of anthropogenic carbon at the South Atlantic boundary. The major 

findings are described in Section 5. 

 

2 Data and Data Processing 
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Hydrographic sections in Drake Passage (a repeat of World Ocean Circulation 

Experiment (WOCE) section A21) in 2009, Africa to Antarctica along 30°E (repeat of 

WOCE I6S) in 2008 and South America to Africa along 24°S in 2009 provide the data 

for analysis. The Drake Passage and 24°S sections were occupied on board the research 

vessel James Cook (King, 2010; McDonagh, 2009), with data stored within the British 

Oceanographic Data Centre data archives, whilst the Africa to Antarctica occupation was 

on board the Roger Revelle, with data stored by the CLIVAR (Climate Variability and 

Predictability) and Carbon Hydrographic Data Office (CCHDO) (Speer and Dittmar, 

2008; Wanninkhof et al., 2009).  

 

Dissolved Inorganic Carbon (DIC) and Total Alkalinity were determined by coulometry 

(Johnson et al. 1985, 1987, 1993; Johnson and Wallace 1992) and potentiometric titration 

(Johnson et al., 1987; Dickson et al. 2003, 2007; Mintrop 2004), respectively. DIC and 

Total Alkalinity were calibrated using Certified Reference Materials (CRM) (and gaseous 

CO2 loops for DIC along 30°E) to yield measurements with an accuracy of ~±2-3 μmol 

kg-1 (Speer and Dittmar, 2008; McDonagh, 2009; King, 2010; Schuster et al. 2013, 

2014). Oxygen was measured using Winkler titration (Culberson et al., 1991; Culberson 

and Huang, 1987), whilst nitrate, phosphate and silicate measurements follow the 

processes described in Gordon et al. (1993) and Kirkwood (1996). Estimated accuracies 

according to CARINA methodology are oxygen (1%) and nutrients (2%) (Key et al., 

2010). All salinities used are on the PSS-78 scale (Fofonoff and Millard, 1983). 

 

Hydrographic properties were recorded using a conductivity-temperature-depth (CTD) 

profiler in 2 dbar intervals, to enable geostrophic transport estimates. Geostrophic 

velocity within the ‘bottom triangle’ is set by nearest neighbour extrapolation to the 

deepest common level for each station pair. DIC, nutrient and alkalinity measurements 

are recorded for a maximum of 24, or 36 discrete depths per station for Drake Passage 

and 24°S, and 30°E, respectively. Potential temperature (θ), salinity and oxygen are 

linearly interpolated onto a 20 dbar vertical grid along the sections. Correction factors are 

applied, as recommended by the GLODAP (Global Ocean Data Analysis Project) and 

CARINA (Carbon in Atlantic Ocean) projects, listed in Table 1, to eliminate systematic 
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measurement biases (see Gouretski and Jancke, 2000; Hoppema et al., 2009; Key et al., 

2010, 2004; Lauvset et al., 2016; Olsen et al., 2016; Tanhua et al., 2010; Wanninkhof et 

al., 2003).   

 

The geographical locations of the sections are displayed in Figure 1. ACC fronts along 

Drake Passage are determined as a distinct transition in θ-S space between θ-S 

hydrographic station profiles. Each transition represents an ACC front separating each 

frontal zone, and follows the Cunningham et al. (2003) analysis. Across 30°E, 

thermohaline frontal definitions from Orsi et al. (1995) and Belkin and Gordon (1996) are 

applied.  

 

2.1 Anthropogenic Carbon Calculation 

Anthropogenic carbon is estimated here using the ΔC* method, whereby biological 

effects, a pre-industrial background signal (based on ocean-atmospheric equilibrium 

(Ceqm) (Brewer, 1978; Chen and Millero, 1979) and an estimate of ocean-atmosphere 

disequilibrium (Cdiseq) (Gruber et al., 1996) are removed from the modern inorganic 

carbon signal. Ceqm is calculated based on pre-industrial fugacity (fCO2 = 280 µatm), and 

present day potential temperature, salinity, silicate and phosphate using “CO2SYS.m” 

(Lewis and Wallace, 1998). Cdiseq is represented using the linearised parameterisations for 

specified potential temperature intervals from Pardo et al. (2011) (Indian/Pacific Ocean) 

and Vázquez-Rodríguez et al. (2012) (Atlantic Ocean) and an Optimum Multiparameter 

Analysis (OMP) technique (Karstensen and Tomczak, 1998; Sabine et al., 2002) below 

the 5°C isotherm. Ceqm and Cdiseq utilise the potential total alkalinity parameterisation 

from Vázquez-Rodríguez et al. (2012), and the conversion from potential total alkalinity 

to total preformed alkalinity following Brewer et al. (1975) and Fraga and Álvarez-

Salgado (2005). The uncertainty of Cant estimates calculated using this method is up to ~6 

μmol kg-1 (Sabine et al., 1999). For visualisation and comparison in Section 4.3.1, a two-

dimensional distribution in neutral density:geopotential height  or neutral 

density:longitude space of Cant is generated by least squares fitting using a ±2 station and 

±0.04 γn grid box centred at each CTD grid point. The geopotential height (φ) field is 

calculated from the geopotential height anomaly at 500 dbar relative to 1500 dbar for 
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neighbouring stations. For transport calculations in Section 4.3.2, a two-dimensional 

distribution in pressure:latitude or pressure:longitude space of Cant is generated by least 

squares fitting using a ±2 station and ±80 dbar grid box centred at each CTD grid point. 

Full details of the calculation of Cant are found in Evans (2013). 

 

2.1.1 Anthropogenic carbon storage 

Two independent methods are used to calculate the rate of accumulation of anthropogenic 

carbon within the South Atlantic water column. The first is based on the assumption of a 

transient steady state relationship between surface carbon changes and at depth, following 

the methodology of Holfort et al. (1998) and Álvarez et al. (2003). This approach has 

been indicated to be broadly consistent with Green‘s Function and inverse approaches 

(Khatiwala et al., 2013). Secondly we use results of the Time Series Residual (TSR) 

approach (van Heuven et al., 2011; van Heuven, 2013), where a residual DIC is 

calculated from the difference between measured DIC and synthetic DIC values 

constructed from a multivariate linear regression of all available data points. The time 

trend of that residual DIC is interpreted as equivalent to the time trend of Cant. The TSR-

based Cant storage estimate (provided by van Heuven, S. (2016), manuscript in 

preparation) uses all historical carbon data from 1972-2012 from the GLODAPv2 data 

product (Olsen et al., 2016) as well as the climatologies produced therewith (Lauvset et 

al., 2016).  

 

2.1.1.1 Mean penetration depth (MPD) 

In general terms, the build-up of carbon within any ocean basin is given by the difference 

between box boundary transports and atmosphere – sea-surface exchange, whilst 

assuming a negligible effect for a number of compensatory processes (following Álvarez 

et al. (2003)): riverine input (Holfort and Siedler, 2001; Jacobson et al., 2007), meltwater 

input (Rignot et al., 2008), net organic carbon production and sediment burial (Rosón et 

al., 2003; Sarmiento et al., 1995), and calcium carbonate dissolution and burial (Stoll et 

al., 1996). Other transient terms related to seasonal or biological variability at the box 

boundary are assumed as negligible for the basin-wide Cant storage estimate. As diapycnal 

and air-sea induced diapycnal transfer do not add or remove Cant from the full depth Cant 
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budget, the inclusion of only geostrophic and Ekman effects therefore create the 

following equation:   

 Cant Storage    air sea        E (1)  

with the average air-sea Cant flux being Fair-sea and TN, TW and TE being Cant transports 

across the northern, western and eastern boundaries of the South Atlantic Ocean sector 

(Figure 1). For Cant, storage is represented by the temporal increase of Cant throughout the 

water column, or mathematically by: 

 Cant Storage rate   d C 
antd 
dt   

(2)  

where t is time and  C 
antd  is the accumulation of anthropogenic CO2 at each depth level 

z yielding a storage rate with units of mol m-2 yr-1 (Álvarez et al., 2003). An 

approximation for the magnitude of the anthropogenic CO2 storage is calculated from the 

mean penetration depth (MPD) from Broecker et al., (1979):  

  PD   
 C 

antd 
Cml
ant  

(3)  

where C 
ant and Cml

ant are anthropogenic CO2 estimates at depth, z, and within the mixed 

layer, respectively. MPD is therefore the Cant column inventory divided by Cant from the 

mixed layer, and always yields a depth which is shallower than the actual depth to which 

the tracer penetrates (Peacock, 2004). Combining equation 2 and 3 gives an estimate of 

the anthropogenic CO2 storage rate:  

 Cant Storage rate   d C 
antd 
dt

    PD  dCml
ant

dt
  (4)  

This assumes that the vertical profile of Cant is constant in shape and scale depth with 

time following the transient steady-state assumption of Gammon et al. (1982). This 

prescribes that a conservative tracer propagating into an ocean with steady circulation, 

but forced by an exponentially-increasing atmospheric boundary source function, will 

reach a transient steady state with constant shape. Mixed layer increases in Cant are then 

assumed to increase proportionally with tracer concentrations at all depths (Tanhua et al., 

2007). Cant is thought to have passed into transient steady-state, given the length of its 

atmospheric history (>200 years). The MPD assumptions are most problematic in regions 

of significant deep water ventilation, where the assumption of a constant vertical Cant 

profile to the ocean bottom may be false. In this study, recently ventilated deep waters, in 
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the form of AABW along Drake Passage and 30°E sections, still maintain low Cant. This 

helps to validate the usage of an MPD-based Cant storage rate estimate in this instance, 

however, this methodology contributes to a relatively large uncertainty in the result. 

 

The  Cml
ant is calculated by determining the rate of change in mean Cant within the mixed 

layer between occupations. In this study,  Cml
ant is computed using historical hydrographic 

occupations of Drake Passage (Meteor: 1990) and 30°E (Marion Dufresne: 1996) with 

further details in Evans (2013). Along the 24°S transect,  Cml
ant is calculated based on 

overlapping stations from meridional hydrographic occupations A13, A14 (Mercier and 

Arhan, 1995), A15 (Smethie and Weatherly, 1994), A16 (Talley et al., 1989) and A17 

(Mémery, 1994) within the South Atlantic. This constitutes all historical data for the 

region available within GLODAPv2 (see Appendix B for details). The small sample of 

repeat DIC measurements at the northern boundary increases storage uncertainty. Storage 

rate is re-written as:  

 Storage rate    PD    Cml
ant    ml (5)  

where  ml is the in-situ density within the mixed layer yielding storage rate with units of 

mol m-2 yr-1. 

 

2.1.1.2 Time Series Residual (TSR) 

TSR-based Cant storage estimates  rely upon assumptions that (i) the relationship between 

DIC and the independent variables in the regression is linear, that (ii) bias and noise 

within the sampling is considered negligible (or average out for the large dataset 

employed) and that (iii) real changes in one or more independent variable is associated 

with changes in one or more of the other independent variables (van Heuven, 2013). The 

time trend in Cant is expected to depend upon the ventilation age of the water mass, with 

AOU used as a proxy for ventilation age. For a particular water mass, i, the time trend of 

Cant is represented by the linear regression of: 

 
dCant

i

dt
   ai    A   bi 

(6)  

 here ΔA   is the difference between the A   of the sample and the mean A   in 

the water mass core (van Heuven, 2013). The contribution of a water mass to a given 
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sample is determined using Optimum Multiparameter analysis (OMP)  (Karstensen and 

Tomczak, 1998; Sabine et al., 2002; van Heuven, 2013). The Cant storage for the South 

Atlantic basin is thus estimated by the inclusion of a gridbox mass following: 

 
d   Cant

i

dt
    x i   ai    A   bi        

i  

 
(7)  

Where xi is the fractional contribution of water mass i to the inventory, and GBM 

represents the mass of a grid box surrounding each grid point, as described in van 

Heuven, (2013). The resulting inventory (d   Cant
i dt ) can be expressed in units of PgC 

yr-1. 

 

3 Box Inverse analysis 

3.1 Setup 

The box inverse framework combines initial estimates of the circulation on each of the 

three hydrographic sections (Section 3.2) with constraints on the large-scale circulation, 

convergence of properties in the box, mixing and air-sea fluxes (Section 3.3). This 

generates an estimate of the circulation, the solution that is consistent across all three 

sections and the enclosed region (Section 3.4). The hydrographic sections used here 

(Figure 1) were made in February and early April, however, in either 2008 or 2009. The 

lack of synopticity of the data increases the uncertainty; however, this is partially 

accounted for by the choice of constraints to avoid a synoptic bias. This solution for this 

inverse box model is therefore most representative of South Atlantic circulation during 

austral summer. 

 

The setup and method used is summarised here and detailed in Wunsch (1996).  The 

inverse box model with the additional inclusion of noise vector ε to account for errors 

(Evans, 2013), is represented by:  

    ε    (8)  

E is an m x n matrix, x is an m x 1 vector of unknowns and y is an m x 1 vector of the 

imbalance between the initial field and the constraints. The coefficients in E represent the 

geometry of the section. Each row of E represents a constraint on the system. Each 
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column of E represents an unknown. In this study, the system has 340 unknowns and 73 

constraints. The unknowns are those elements of the system that can be adjusted in order 

to satisfy the constraints. The inverse model solves for 217 depth-independent x 

velocities, one from each pair of adjacent hydrographic stations on each section. In 

addition, a single unknown represents the correction to the Ekman transport on the 24°S 

section, whilst 60 unknowns represent the mixing of volume, temperature and salinity 

between density layers within the box and another 62 unknowns represent the 

transformation between layers driven by air-sea interaction.  

 

3.2 Initial Field 

Flow across the sections is assumed to be geostrophic with an additional surface Ekman 

transport across 24°S. An initial reference level and geostrophic field is constructed for 

each section (Table 2) based on historical analysis. The basic premise of the box inverse 

is to adjust the strength of the reference velocity at each station pair so that constraints are 

satisfied within a given uncertainty (Section 3.2). In addition in this study, the box 

inverse allows for a correction to initial estimates of the mixing between neutral density 

layers, air sea fluxes and an Ekman transport. All diapycnal fluxes associated with 

interior mixing or air-sea induced transformation are initialised to zero (McDonagh and 

King, 2005). As the solution that is estimated is dependent upon the initial field, it is 

important that the initial field is as representative as possible.  

 

At Drake Passage, the reference level choice (Table 2) of the deepest common level 

between the station pairs is based on the analysis of the mean volume transport of 

multiple repeat stations across Drake Passage of 136.7±6.9Sv (Cunningham et al 2003, 

Meredith et al., 2011), Lowered Acoustic Doppler Current Profiler transport estimates 

(Meredith et al., 2011) and the scale of interannual variability (King and Jullion, in 

prep.,). At 24°S, the 1300 dbar reference level approximates the upper water/NADW 

interface. At 30°E, Bryden et al. (2005) and Arhan et al. (2003) are used as a guide for 

the vertical transition between the Agulhas Current and Agulhas Return Current, and the 

Agulhas Undercurrent at depth (Beal and Bryden, 1999).  On all sections the geostrophic 
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velocity within the ‘bottom triangle’ is set by nearest neighbour extrapolation to the 

deepest common level for each station pair. 

 

For the 24°S section, Ekman transport from NCEP (National Centers for Environmental 

Prediction) wind stresses, an annual average calculated between 1980-2010 in Bryden et 

al. (2011), of 3.3 Sv southward is applied as a single velocity above the 80 dbar Ekman 

depth (DEk).  The Ekman component is included at 24°S as part of the initial field.  

 

3.3 Constraints 

3.3.1 Constraints to circulation and property transports on sections 

The constraints across hydrographic sections, based on historical analyses and listed in 

Table 3, are applied to better constrain the initial field, and later used to constrain the box 

inverse model. Further details regarding the constraints in Table 3 are described below.  

 

Across Drake Passage, full-depth volume transport is constrained to 136.7 Sv 

(Cunningham et al., 2003; Meredith et al., 2011).  

 

Bottom Water (BW) across 24°S has been defined to be below the 2 °C isotherm (Hogg 

et al., 1999; McDonagh et al., 2002), shallower than the typical AABW neutral density 

class definition (neutral density: γn>28.27) in the Southern Ocean, and partly includes the 

lower layers of the LCDW neutral density class within the Vema Channel and Hunter 

Channel. Northward BW flow is constrained following Hogg et al. (1999), Zenk et al. 

(1999) and McDonagh et al. (2002), as 6.9 Sv below the 2 °C isotherm. Within the 

northern Cape Basin, east of Walvis Ridge (6°E), a zero mass transport constraint is 

applied below the 2 °C isotherm (Arhan et al., 2003; McDonagh and King, 2005). For the 

sectionwide upper 80 dbar, a southward, wind-driven estimate for the Ekman transport of 

3.3 Sv is included following Bryden et al. (2011). For the upper 300 dbar, west of 35°W, 

the Brazil Current is constrained to 4.9 Sv southward (Bryden et al., 2011). Finally, full 

depth salinity transport across 24°S is constrained to be equal to the Bering Strait salinity 

transport of 26.0 Sv psu, assuming salinity conservation (Coachman and Aagaard, 1988).  
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For the 30°E section, north of the Subtropical Front (42.9°S), the residual westward flow 

of warm, salty  ndian  cean water into the Atlantic  cean or ‘Agulhas leakage’ is 

estimated based on McDonagh et al. (1999) as 9 Sv above the 3.5 °C isotherm. Finally, a 

box-wide constraint for zero net salinity divergence is applied by summing together 

salinity transport through the Agulhas regime, Drake Passage and across 24°S. Total 

salinity transport outflow across the 30°E ACC regime is adjusted to match the inflow 

across Agulhas regime, Drake Passage and 24°S (Table 3). The residual mass transport is 

interpreted as the freshwater flux of the initial field.  

 

3.3.2 Property constraints in the box 

Each transect is split into 2  neutral density (γn) layers (Table 4; Jackett and McDougall 

(1997)). Neutral density class interfaces, appropriate for the Southern Ocean, are 

extracted from Heywood and King (2002), Naveira Garabato et al. (2009, 2002a, 2002b) 

and Orsi et al. (1999, 1995). The layers are grouped into six neutral density classes. Each 

γn layer represents an equation to be solved for, with an additional row for the full depth 

water column. Conservation of mass, heat and salt (approximated as volume, potential 

temperature anomalies and salinity anomalies) for each layer plus full depth conservation 

gives 66 equations or constraints for the analysis. Additionally, full-depth silicate 

conservation plus 6 constraints from previous knowledge of the circulation (Table 3) 

gives a total of 73 constraints. Salinity and θ within each γn layer are conserved in the 

form of a property anomaly, calculated by subtracting each property value by the 

boundary-wide average, calculated using the whole domain boundary. The use of 

property anomalies improves the matrix conditioning (Ganachaud, 2003; McIntosh and 

Rintoul, 1997). For silicate, as argued by Ganachaud (1999), property anomalies are not 

calculated given the large concentration range between surface and deep waters. Loss of 

silicate through opal deposition is assumed negligible, given large uncertainties in the 

silicate budget (Tréguer and De La Rocha, 2013) with this assumption encouraging 

conservation within the silicate-rich bottom waters. 

 

3.4 Solution 

3.4.1 Unknown velocities 
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In this study, the columns of E are constructed to solve for unknowns; geostrophic, 

diapycnal, air-sea fluxes and Ekman transports, and each row in E represents an equation 

or constraint. In order to better condition the pre-inversion matrix for solving for the 

unknown velocities, each row and each column of the m × n coefficient matrix E is 

weighted based on estimates of the previously known, ‘a priori’ uncertainties within each 

component (see Appendix A). Solution weightings are applied as stated in Appendix A 

following the method of McDonagh and King (2005) and Tsubouchi et al. (2012).  

 

The geostrophic component of each cross-sectional station pair is applied with an a priori 

uncertainty of 1 × 10-2 m s-1, as in Naveira Garabato et al. (2003), McDonagh and King 

(2005) and Jullion et al. (2010). The a priori uncertainty is uniform for all station pairs 

across all transects.  

 

For the inverse model, the Ekman transport adjustment is initialised as a single unknown. 

The coefficient matrix E, initialised for a single unknown representative of the Ekman 

transport adjustment, is initialised by the area above DEk, the property mean of the Ekman 

layer, and the proportional contribution of the Ekman transport to each γn layer above 

DEk. As the climatological data contains uncertainties, which are difficult to quantify, an 

a priori uncertainty of 50% of the initial estimate of the Ekman transport adjustment is 

assigned.  

 

3.4.1.1 Interior diapycnal velocities 

A separate diapycnal velocity is resolved for each property (McIntosh and Rintoul, 1997) 

and for each layer interface. The interface mean for each property (S, θ) is generated 

using the WOCE Global Hydrographic Climatology (WGHC) by Gouretski and 

Koltermann (2004). The WGHC data is on a 0.5° grid, and averaged along isopycnal 

surfaces, such that the properties are broadly in agreement with the properties along the 

sections. The layer interface area for each of the neutral density interfaces in this study is 

constructed from the initial 45 levels from WGHC for each mapped property field. For 

the diapycnal mixing, a priori uncertainties are dependent on the pre-existing estimates of 

diapycnal velocities (ω) and assigned as  0-5 m s-1, following Orsi et al. (1999) and 
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Naveira Garabato et al. (2003), for an estimate of an upper value for deep ocean 

diapycnal velocities.  

 

3.4.1.2 Diapycnal transfers induced through Air-Sea interactions 

Heating and cooling of neutral density classes, as the isopycnals outcrop at the ocean 

surface provides a mechanism for across isopycnal transformation (Speer and Tziperman, 

1992; Tziperman and Speer, 1994). Within the Southern Ocean, all layers are assumed to 

outcrop given the upwelling of deep neutral density classes. Following Jullion et al. 

(2010a), net air-sea fluxes of mass (freshwater) Mv and heat Mθ are calculated for each 

layer, whilst the diapycnal volume flux induced by air-sea interaction Fv is included for 

each layer interface. The area of outcrop for each neutral density layer is estimated from 

monthly averaged sea surface temperature and salinity fields from World Ocean Atlas 

(WOA) on a 1° grid (Antonov et al., 2010; Boyer et al., 2005; Locarini et al., 2010). To 

ensure an area of outcrop for the densest γn layers, the area of outcrop for all LCDW and 

AABW layers was averaged, and this value was assigned to all LCDW and AABW 

layers. 

 

Heat flux terms are supplied by monthly-averaged estimates from the National 

Oceanography Centre (NOC v2.0) climatology (Berry and Kent, 2011, 2009). Net heat 

flux Qnet is the sum of contributions from latent (QH) and sensible heat flux (QE), 

longwave flux (QLW) and shortwave flux (QSW) (Grist and Josey, 2003). The mean heat 

flux for the January-February-March (JFM) period is 65 W m-2.  

 

Freshwater flux is based on the climatologies recommended by Schanze et al. (2010): 

Global Precipitation Climatology Project (GPCP) for precipitation (Adler et al., 2003), 

and Objectively Analysed Ocean-Atmosphere Flux (OAFlux) for evaporation (Yu et al., 

2008; Yu and Weller, 2007). Evaporation is subtracted by precipitation (E-P) at each grid 

point using the 2008 and 2009 estimates, before finding the inverse box model mean. A 

priori uncertainties are estimated to be 50% of the initial estimates. Uncertainties arise 

from the uncertainty of the climatologies as described in Lumpkin and Speer (2007), as 

well as from not considering the contribution of sea-ice near the Antarctic continent. 
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3.4.2 Choice of preferred solution 

The solution rank of 60 out of 73 is chosen after application of SVD. Truncation to the 

solution rank occurs at the point at which the noise added by including additional rows 

negates the information gained. The co-dependency between ocean layers gives reason 

for selection of a solution rank below the full rank. Ranks ~>50 are suitable solutions 

with a full depth volume transport ~<1 Sv, equivalent to the freshwater divergence. 

Reference velocities for the geostrophic component are generally within ±0.5 cm/s with 

all adjustments off continental shelves within ±0.7 cm/s.  

 

3.5 Model Diagnostics 

3.5.1 Overturning freshwater and heat transport 

The overturning component of the salinity transport at 24°S is calculated for comparison 

to the outputs of Bryden et al. (2011) using the Mov salt transport, in addition to the 

azonal component Maz. Additionally the heat transport associated with the ‘overturning’ 

and ‘gyre’ components is separated following the methods of Bryden and Imawaki 

(2001) and Bryden et al. (2011). 

 

For freshwater, values for Mov and Maz are calculated following Bryden and Imawaki 

(2001), Dijkstra (2007), Huisman et al. (2010) and Bryden et al. (2011):  

  ov     S        v   S   S          d  
(9)  

  a     S        v  v   S  S  dxd 
 

(10)  

where v is the northward velocity, S is salinity, L is zonal section width and z is depth. 

Triangular brackets indicate a zonal average and an overline represents a vertical average. 

The Mov and Maz transports are effectively the freshwater transports associated with the 

overturning and gyre circulation components, respectively. Cimatoribus et al. (2012) 

suggest that an increase in the zonal salinity contrast across the South Atlantic increases 

Maz and that this is compensated by a decrease in Mov. Changes in Maz could therefore 

dictate potential MOC shutdown (Cimatoribus et al., 2012). 
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The volume transports and overturning freshwater transports associated with the MOC 

are detailed in section 4.1. Geostrophic and non-geostrophic results are described and 

circulation features examined in section 4.2. For section 4.3, Cant transports are calculated 

for each layer, whilst Cant air-sea flux is considered in section 4.3.3.  

 

4 Inverse Model Solution 

4.1 Volume and overturning freshwater transports 

4.1.1 Geostrophic solution 

The geostrophic velocities of the final solution are shown in Figure 2. The overall 

velocity pattern is for strong flow into the box through Drake Passage and an outflowing 

velocity along 30°E, south of the Subtropical Front. North of the Subtropical Front, 

positive and negative velocities reflect the Agulhas Current inflow and Agulhas Return 

Current outflow. The box-wide salinity transport conservation results in a net volume 

imbalance of -0.47 Sv, interpreted as a loss of freshwater, balanced by excess 

precipitation over the box. 

 

The net transport (Figure 3, right) indicates convergence (positive numbers) or 

divergence (negative numbers) of a neutral density class within the box. Convergence can 

be interpreted as destruction of that neutral density class within the box and divergence 

reflects production of that neutral density class. Basinwide UCDW layer convergence is 

caused by upwelling of the MOC southern limb (see Section 4.1.2.1), resulting in 

northward flowing surface and mode water and AABW layer formation to the south. 

LCDW layer divergence corresponds with greater outflow across 30°E (44.4 Sv) 

compared to Drake Passage inflow (28.1 Sv), caused by mixing the NADW and AABW 

layers with the LCDW layer.  

 

4.1.1.1 Drake Passage 

The final solution decreases the Drake Passage initial field full-depth volume transport of 

136.7±10 Sv to 128.4±8.3 Sv (Table 3). This is within the uncertainty of the volume 

transport, estimated as 126.3-147.1 Sv (King and Jullion, in prep., and Meredith et al. 

(2011) (their Figure 11)). Transport of UCDW layers constitutes almost half of the Drake 
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Passage full depth volume transport (58.1 Sv out of 128.4 Sv; Figure 3), in agreement 

with the 62.3 Sv estimate of Cunningham et al. (2003), relative to the deepest common 

level. Within the SACCF, the transport is equally split between UCDW and LCDW 

layers. The contribution of SAMW and AAIW layer transport increases progressively to 

the north along the section.  

 

4.1.1.2 24°S 

For the Brazil Current, the final solution of 5.8±0.1 Sv falls within the historical range as 

described in Bryden et al. (2011) with the salty Brazil Current being important for the 

total salinity transport across 24°S. Bottom water exchange from the northern Cape Basin 

into the eastern South Atlantic basin is limited by Walvis Ridge. The final solution shows 

0.2±0.1 Sv of southward AABW layer transport, and is similar to McDonagh and King 

(2005)’s estimate of 0. ±0.5 Sv.  

 

The southward basin-wide full-depth salinity transport at 24°S  (25.8±0.2 Sv psu, Table 

3) closely matches observations from the Bering Strait throughflow (Coachman and 

Aagaard, 1988; Woodgate and Aagaard, 2005) and is similar to Holfort and Siedler 

(2001)’s 26.75±0.77 Sv southward salinity transport for the quasi-zonal A10 WOCE 

section across 30°S. Historical meridional freshwater, heat and salt transports across 

24°S, 30°S and 32°S are included for comparison with the results from our box inverse 

(Table 5). Focussing firstly on net freshwater transport, the difference between 0.8 Sv 

Bering Strait volume transport and the southward 0.7 Sv volume transport at 24°S 

provides an indirect 0.1 Sv estimate for freshwater divergence between Bering Strait and 

24°S. Figure 4, adapted from Piecuch and Ponte (2012), compares hydrographic 

estimates of meridional heat transport, following Hall and Bryden (1982), within the 

Atlantic Ocean. The estimate from this study is added (marked with a red point), 

calculated by adjusting the inverse model solution to yield zero net mass transport along 

24°S by adding an additional barotropic velocity. The estimate of 0.40±0.08 PW out of 

the box is within the range of the anticipated heat transport across 24°S.  
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In order to assess the overturning circulation, each of the 21 γn layers (Table 4) is 

grouped, depending on flow direction.  The circulation consists of 0.8±4 Sv of southward 

flowing surface water (layers 1-2), as a result of the Ekman transport, 15.8±3 Sv 

northward flow of upper ocean water (layer 3-12), 20.2±2 Sv southward flow of deep 

water (layers 13-18) and 4.6±1 Sv northward flow of lower LCDW and AABW (layers 

19-21). The MOC strength is estimated as the 20.2 Sv southward flow of deep water, 

comparable with the previous estimates in Table 5.  

 

4.1.1.3 30°E 

On the 30°E section north of 34°S, strong westward flow of warm, salty Indian Ocean 

water close to the continental slope results in a total westward transport of 65.7 Sv 

(Figure 3), similar to findings by Casal et al. (2009). Between ~34-35°S, westward 

transport is interrupted by eastward flow. The maximum westward flow is 84.5±2.0 Sv 

for the Agulhas Current. The Agulhas Return Current is attributed to the net eastward 

flow south of ~36.25°S, occupying a broader meridional extent compared to the Agulhas 

Current. The Agulhas Return Current transport is estimated as 82.2±2.0 Sv, extending 

between 36.25°S and the Subtropical Front (42.9°S). Above 3.5 °C, a 10.7±1.3 Sv 

Agulhas leakage is detected, comparable with an estimate of 15 Sv from observations 

using subsurface floats and surface drifters (Richardson, 2007).  

 

South of the Subtropical Front (STF), the net eastward transport of 131.7 Sv is dominated 

by the ACC. This estimate is lower than the previous estimates of 160 Sv (full 30°E 

section, Park et al. (2001)), 147 ± 10 Sv (STF to SACCF between 0°E and 30°E, Legeais 

et al. (2005)), 136 Sv to 153 Sv for baroclinic and total transport (north of 54.75°S 

between 0°E and 20°E, (Gladyshev et al., 2008)) and 141.6 ± 2.9 Sv along 30°E (Naveira 

Garabato et al., 2014). The estimate is closer to the Drake Passage volume transport, as a 

consequence of constraining the salinity transport around the box boundary. Significant 

westward flow of AABW is predominately associated with the westward-flowing 

southern limb of the Weddell Gyre, as previously observed by Schröder and Fahrbach 

(1999), Park et al. (2001) and Jullion et al., (2014) along the Antarctic continent at 0°E 

and 30°E. 
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4.1.2 Non-geostrophic terms 

4.1.2.1 Diapycnal transfer of volume, freshwater and heat in the ocean 

interior  

A positive diapycnal volume flux represents an upward diapycnal transfer from a denser 

neutral density class to a lighter neutral density class. In this study, the net diapycnal 

velocities and volume fluxes (Figure 6a-b) indicate that diapycnal transfer is primarily 

within the denser layers with nearly zero diapycnal volume flux for layer 10 and above. 

The vertical structure becomes more significant within  the UCDW layer with a tendency 

for positive fluxes of up to 1 Sv suggesting diapycnal upwelling, including for NADW 

defined as at the UCDW/LCDW interface (27.90<γn<28.10), equal to layers 16 and 17 

(Table 4). The lighter LCDW layer also upwells (4.9 Sv), whilst the most significant 

downwelling signal of 2 Sv contributes to the production of the densest LCDW layer. 

The production within this layer is furthered by significant upwelling of 6.3 Sv of AABW 

layer to LCDW layer with a diapycnal velocity of ~ 1.5 × 10-5 m s-1.  The rough 

topography of the Scotia Sea (Heywood et al., 2002; Naveira Garabato et al., 2004), and 

deep passages, such as Vema Channel (Morris et al., 2001), potentially contribute to the 

significant upwelling and mixing of the AABW and LCDW layers. The absence of large 

scale diapycnal flux of NADW to lighter neutral density classes supports the findings of 

Sloyan and Rintoul (2001) for deep to intermediate water conversion in the Southern 

Ocean to occur along isopycnals, rather than by uniform interior upwelling as suggested 

in historical conceptual models (e.g Munk, 1966; Gordon, 1986). 

 

Upward diapycnal salinity flux (Figure 6d) from the SAMW layer towards the fresher 

surface water and downward diapycnal salinity flux towards the AAIW layer implies a 

divergence of salinity from the SAMW layer. The SAMW layer is relatively salty in 

comparison to the waters above and below. This salty SAMW signature is consistent with 

SAMW sourced from the inflow of salty Indian Ocean water south of Africa, as opposed 

to fresher SAMW through Drake Passage, in agreement with Sloyan and Rintoul (2000). 

A similar, if smaller divergence of the salinity flux is observed for the NADW layer at 

the UCDW/LCDW boundary. Upwelling of salinity to lighter UCDW layers, and 
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downwelling to denser LCDW layers, contributes to the erosion of the NADW salinity 

maximum.   

 

Diapycnal temperature velocities (Figure 6f) greater than 0.1 m s-1 are only found within 

the LCDW and AABW layers. For the temperature fluxes, the contribution from 

diffusion results in the upwelling of temperature flux from denser to lighter LCDW 

layers, and the downward mixing of LCDW temperature flux to the AABW layer.      

 

4.1.2.2 Diapycnal transfer of volume, freshwater and heat by Air-Sea 

interaction  

Air-sea interaction contributes to the formation of 14.6 Sv of SAMW through the AAIW 

to SAMW flux in Figure 7a. This matches (despite the difference in area) the 14 Sv 

estimate of Sloyan and Rintoul (2001) for their South Atlantic box, nominally bounded 

by transects at Drake Passage, 0°E and 12-19°S. This process is hypothesised to dominate 

within the southwest Atlantic region, in the vicinity of the energetic Brazil-Malvinas 

Confluence (BMC) (Jullion et al., 2010a). Convergence of dense surface water/SAMW is 

approximately compensated by the divergence of deep neutral density classes: UCDW 

and upper LCDW (~15.2 Sv; c.f. 8 Sv (Sloyan and Rintoul, 2001b)). Upwelling of lighter 

deep neutral density classes, primarily UCDW, and transformation to SAMW/AAIW via 

exposure to wind, heat and freshwater fluxes contributes towards the MOC southern 

limb.  

 

Net freshwater flux contributes to volume flux induced by air-sea interaction, and reflects 

adjustments to the initial freshwater flux estimate, with extra evaporation required from 

the surface water layer. As described in Jullion et al. (2010a), freshwater flux is difficult 

to estimate accurately given uncertainties in upper ocean baroclinic variability and 

therefore the a priori uncertainties applied to the inverse box model (Ganachaud, 2003; 

Naveira Garabato et al., 2003).  

 

Air-sea heat fluxes are dominated by the higher temperature surface ocean within the 

western South Atlantic basin (Figure 7c). Air-sea heat flux adjustments reach -0.53 PW 
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for radiative heat loss from the warm uppermost surface layer, as it moves northwards 

towards the North Atlantic Ocean. However, over the water column, the total net 

adjustment is -0.07 PW for the net air-sea heat flux input estimate of 2.15 PW (65 W m-2 

over the South Atlantic area) as denser surface layers are heated by the atmosphere. 

Therefore whilst the whole column adjustment is insignificant, alterations for individual 

layers show greater significance. Small overall adjustments suggest good agreement 

between the NOC (v2.0) climatology and observations, despite variability between NOC 

(v2.0) climatology and alternative heat flux climatology products, particularly in the 

Southern Ocean (Liu et al., 2011).  

 

4.1.2.3 Ekman 

The model diagnoses Ekman transport adjustments, assumed meridionally uniform across 

24°S, in addition to the initial field Ekman transport. Total volume transport adjustment 

is 0.5 Sv contributing towards the 0.7±0.3 Sv freshwater flux. Given uncertainty within 

the NCEP wind stress (Brunke et al., 2011) used to derive the initial field Ekman 

transport, the additional transport associated with the Ekman adjustments is only 

significant within the context of ensuring a net salinity transport of about 26 Sv psu 

across 24°S. 

 

4.2 South Atlantic circulation 

Schematic circulation of geostrophic flow within the South Atlantic is shown in Figure 8  

for the upper and deep ocean neutral density classes. Conversion of the AAIW layer to 

surface water and SAMW layers occurs between Drake Passage and the 30°E ACC 

regime. Accumulation within the LCDW layer between Drake Passage and 30°E is offset 

by AABW layer inflow, as part of the Weddell Gyre southern limb. These results also 

suggest that the entrainment of the AABW layer into the Circumpolar Deep Water layer 

is more significant than the intermediate to deep water conversion based on the 

convergence of the AABW layer at the box boundary.  

 

Within the subtropics, surface water and SAMW entering the South Atlantic through the 

Agulhas regime is entrained at the South Atlantic Current/Benguela Current transition, 
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and joins the northward pathway for Agulhas-sourced upper ocean water across 24°S. 

Given a southward flow of 18.1 Sv of deep water (UCDW and LCDW) across 24°S, the 

eastward flow of 5.9 Sv of deep water across the Agulhas regime proportionally accounts 

for approximately one-third of the deep water exiting the South Atlantic that entered the 

South Atlantic across 24°S. The remainder of the deep water flows into the Southern 

Ocean and contributes to both Circumpolar Deep Water, and the MOC southern limb.  

 

4.2.1 North Atlantic Deep Water layer circulation 

For the NADW layer (Figure 9), defined as 27.90<γn<28.10, the box-wide circulation is 

as follows. A net excess inflow from the sum of the box boundary transports requires the 

divergence of 7.5 Sv from the NADW layer, predominately by upwelling to lighter 

neutral density classes. This broadly matches the estimate of diapycnal fluxes induced by 

air-sea interaction of 7.3 Sv from Figure 7a for the NADW layer (layers 16, 17).  

 

4.2.2 Antarctic Bottom Water sources and recirculation 

A significant source of AABW formation at the Cape Darnley polynya (65°E - 69°E) 

(Meijers et al., 2010, Ohshima et al., 2013) contributes to full depth cumulative transport 

of 15.9±2.3 Sv (Figure 3) for the westward flowing, Weddell  Gyre southern limb, south 

of 64.25°S (Naveira Garabato et al., 2014, 2002a). This is largely comprised of LCDW 

(6.3±1 Sv) and AABW (8.8±0.5 Sv), and comparable to the 24±4 Sv flow associated with 

the Antarctic Slope Front by Jullion et al. (2014) or 9.6±2.3 Sv Antarctic Slope Front 

estimate by Dong et al. (2016). Within the Weddell Sea, LCDW and AABW are 

modified and subsequently exported northward, with wind-forcing thought to dominate 

this process (Gordon et al., 2010; Jullion et al., 2010b; Wang et al., 2012). 

Comparatively, the recirculating northern limb of the Weddell Gyre shows a much 

weaker eastward AABW layer flow across 30°E (Figure 3). The difference between the 

8.8±0.5 Sv inflow of the AABW layer, as part of the Weddell Gyre southern limb, and 

the smaller AABW layer outflow across 24°S of 2.6±0.5 Sv is, at least, partially offset by 

6.3±1.0 Sv of diapycnal upwelling to the densest LCDW layers. This contributes to a 

6.7±2.2 Sv northward flow, below the 2 °C isotherm, west of the Mid-Atlantic Ridge 
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(10°W), whilst the remaining AABW layer is hypothesised to recirculate within the 

South Atlantic box. 

 

4.2.3 Overturning and gyre circulation for heat and freshwater 

The overturning component (Table 6a) is particularly sensitive to the Ekman transport 

(assumed uniform across the section initially) and initial constraints on the Brazil Current 

transport. Both components of the total heat transport were similar to those estimated by 

Bryden et al. (2011).  

 

The Mov estimates (Table 6b, Figure 5a) are similar to Bryden et al. (2011) and indicate a 

net southward freshwater transport. Positive Maz in this study and Bryden et al. (2011), 

corresponds with the gyre and the flow near the boundaries transporting freshwater out of 

the South Atlantic box (Figure 5b). 

 

4.3 Anthropogenic Carbon 

4.3.1 Distributions 

The Drake Passage Cant distributions in Figure 10 are calculated using the ΔC* method, 

with the Cant transports in section 4.3.2 all calculated using the 2009 transect. This 

transect indicates Cant concentrations markedly shallow from north to south, partly 

following the general trend of the neutral density isopycnals. The transect maximum of 

>30 μmol kg-1 is primarily within surface, SAMW and AAIW neutral density classes 

with negligible Cant for the AABW neutral density class. Across 30°E (Figure 11), higher 

concentrations (>25 μmol kg-1)  are either found within the Agulhas regime down to 1000 

dbar or within the upper 200 dbar, south of the Agulhas regime. Cant transports in this 

study, all make use of the 2008 transect across 30°E. Across 24°S (Figure 12), lower 

concentrations (<10 μmol kg-1) are predominately below 1000 dbar.  

 

4.3.2 Transports 

Total Cant fluxes of individual neutral density classes are controlled by the underlying 

volume transport. Net imports of Cant into the South Atlantic box occur only through 

Drake Passage (Table 7, Figure 13). Across 24°S, although total net DIC flow is 
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southward (Gruber et al., 2009), the large surface-to-deep Cant gradient causes a net 

northward transport, in line with previous estimates  (Holfort et al., 1998). A Cant 

overturning estimate of 0.11 PgC yr-1, associated with the 20.2 Sv overturning, is 

calculated based on the southward transport of Cant-poor deep water (layers 13-18 

following Section 4.1.1.2). A net eastward Cant transport within the Agulhas regime is 

caused by ventilation within the highly energetic South Atlantic sector of the Agulhas 

regime and Cant increase in the upper ocean, prior to the eastward return flow.  

 

The mean transport-weighted (TW) Cant is calculated for each neutral density class at the 

box boundaries by dividing the total Cant transport by the total volume transport (Table 8). 

Transport-weighted values are most heavily weighted at the location of the transport 

maximum, and hence are directly influenced by changes in the transport profile (Georgi 

and Toole, 1982; Tillinger and Gordon, 2010). Neutral density classes with the largest 

volume transports along both Drake Passage and the 30°E ACC regime, particularly 

UCDW and LCDW layers (Figure 8), therefore contribute significantly to the observed 

Cant divergence (Figure 13). Small systematic biases within these low Cant waters, below 

the level of the adjustments calculated as part of GLODAPv2, could contribute towards 

the significant Cant divergence. The Cant divergence shown by larger eastward-flowing 

TW Cant at 30°E, compared to either eastward-flowing TW Cant at Drake Passage or 

southward-flowing Cant at 24°S is suggestive of an air-sea Cant input requirement.   

 

Storage rate is calculated using MPD estimates from Drake Passage, 24°S and 30°E 

multiplied by the mean rate of Cant increase in the mixed layer (Table 9). As listed in 

Table 9, MPD from Drake Passage and 30°E are notably shallower than 770m for the 

region between 10°S and 30°S (Holfort et al., 1998), and 790 m at 24.5°N (Rosón et al., 

2003). As described in Álvarez et al. (2003), areas with higher stratification yield 

shallower MPD, with comparatively lower penetration of Cant below the upper 2000 dbar 

at Drake Passage, compared to 30°E, resulting in the shallower MPD. Increased 

convection, therefore leads to increased uncertainty in the time variability of the MPD 

(Khatiwala et al., 2013; Pérez et al., 2008).   
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Storage rates of 0.22±0.29 mol m-2 yr-1 along Drake Passage, 0.81±0.53 mol m-2 yr-1 

along 24°S and 0.29±0.18 mol m-2 yr-1 along 30°E extend the range of previous South 

Atlantic storage rate estimates from repeat hydrography (Table 10). The values show 

similarities with the time-averaged  reen’s  unction  nversion in Khatiwala et al. (2013) 

(their Figure 7). The Drake Passage estimate reflects its shallower MPD of 259.8 m than 

for other parts of the Southern Ocean, given that less Cant has penetrated into deeper 

neutral density classes based on the lower TW Cant estimates for UCDW, LCDW and 

AABW (Table 8). Along 30°E, the Cant values are normalised by temperature to remove 

biases caused by cooler temperatures within the mixed layer in the 2008 occupation 

compared to the 1996 occupation. The temperature normalisation reduced the initial high 

 Cml
ant estimate of  .52 μmol kg-1 yr-1 along 30°E to 0.45 μmol kg-1 yr-1. The 0.45 μmol 

kg-1 yr-1 estimate is at the lower range of previous South Atlantic estimates of CO2 uptake 

(0.6-1.0 μmol kg-1 yr-1) (Murata et al., 2008; Peng and Wanninkhof, 2010; van Heuven, 

2013). The 24°S estimate is similar to Holfort et al. (1998)’s estimate of 0.59±0.12 μmol 

kg-1 yr-1 for the 10°S and 30°S region and within their 20% uncertainty estimate. 

 

For the South Atlantic box, the mean storage rate for Drake Passage, 24°S and 30°E 

(Table 10), calculated from the mean MPD, mean  Cml
ant and mean  ml (Table 9) and 

integrated over the ocean surface area (estimated as 3.3 × 1013 m2 assuming a 

parallelepiped ocean) yields a basin-wide Cant storage of 0.18±0.12 Pg C yr-1. Application 

of the TSR-based Cant storage estimation method, which makes use of additional 

historical hydrographic cruise data from the interior of the South Atlantic Ocean sector, 

generates a storage term of 0.21±0.06 Pg C yr-1 (van Heuven, S. (2016), manuscript in 

preparation). The two estimates compare well despite substantially different 

methodologies. The smaller TSR uncertainty represents its greater robustness as a 

calculation approach, due to the additional data and lack of structural assumptions 

compared with the MPD method (transient steady state, parallelepiped ocean). Historical 

storage estimates for the South Atlantic regions show slightly higher values: 0.30 Pg C 

yr-1 between 2°S-58°S based on decadal hydrographic observations (Peng and 

Wanninkhof, 2010) and 0.29 Pg C yr-1 between 0°S-58°S from multiple global ocean 

inversions based on hydrographic section data (Mikaloff Fletcher et al., 2006). Based on 
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this study, usage of MPD calculations appear to have some value in providing a 

reasonable estimate for Cant storage in the absence of full basin-scale historical data. 

However, greater uncertainty will be assigned to estimates if the sampling pattern of the 

hydrographic cruises chosen does not fully capture the north-south variability within the 

Southern  cean of the column inventory of ΔCant (see Figure 7.13 from van Heuven, 

(2013)). Similarly, MPD calculations are also dependent upon the shape of the Cant 

profile, such that the presence of increasing amounts of Cant within bottom water layers 

(due to proximity to bottom water ventilation locations) may compromise the MPD 

assumption (Khatiwala et al., 2013; Pérez et al., 2008). However, the sections used here 

are not thought to suffer from this at this stage, with negligible bottom-water Cant change 

identified (Evans, 2013).  

   

4.3.3 Anthropogenic CO2 air-sea flux 

The Cant budget for the South Atlantic box - comprising storage and divergent flux terms 

at the box boundaries (Figure 13) - is balanced by a 0.51±0.37 Pg C yr-1 air-sea flux term. 

This compares to a global anthropogenic CO2 uptake of 2.2 to 2.6±0.3 Pg C yr-1 

estimated from ocean inverse and biogeochemical models (DeVries, 2014; Gruber et al., 

2009), or more generally 2 Pg C yr-1 from a range of oceanic and atmospheric 

observations (Wanninkhof et al., 2013). The Southern Ocean is the largest annual sink 

region of total (natural and anthropogenic) CO2 of more than 0.42 Pg C yr-1 south of 44°S 

(Lenton et al., 2013). Regional observations and model outputs for its Atlantic sector 

combined within the South Atlantic from 18-58°S, broadly similar to our South Atlantic 

box but excluding the small sea-air CO2 flux south 58°S (Lenton et al., 2013; van 

Heuven, 2013), suggest a net annual mean total (natural and anthropogenic) CO2 flux of 

0.19 – 0.38 Pg C yr-1 (Lenton et al., 2013; Schuster et al., 2013). This is smaller than the 

air-sea uptake estimate derived here that only quantifies the anthropogenic component. 

However, large outgassing of natural carbon identified in the Southern Ocean (Mikaloff 

Fletcher et al., 2007) suggests that any estimates of regional CO2 uptake here will be 

disproportionately of anthropogenic origin. A global ocean circulation inverse model 

assimilating potential temperature, salinity, CFC-11 and radiocarbon observations 

(DeVries, 2014) supports the distinction between natural and anthropogenic CO2 uptake, 
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with an estimated total (natural and anthropogenic) CO2 uptake for the South Atlantic 

box of 0.43 Pg C yr-1 of which 0.38 Pg C yr-1 is anthropogenic CO2. Although the air-sea 

Cant uptake estimate here is larger than other observational and model estimates this is not 

entirely unexpected, as a seasonal bias may exist in the input Cant estimates due to the 

austral summer-based cruise timings: increased stratification and intense biological 

production draw down surface carbon levels and increase the air-sea ΔpCO2 difference. 

Combined with a temperature-related increase in the Revelle factor (Sabine et al., 2004) 

that enables greater anthropogenic carbon loadings, the associated uptake reaches its  

maximum during the summer months and is a likely major contributor to the large budget 

residual.  

 

Differences from alternative estimates may also be partially methodological in nature. 

Given the large volume transports associated with the UCDW and LCDW neutral density 

classes in this study, systematic biases within these deep waters could potentially 

contribute to large differences in Cant between Drake Passage and 30°E, which are 

inferred as being balanced by the air-sea flux. The differences between volume transport-

weighted Cant estimates at Drake Passage and 30°E (Table 8) also imply that these deeper 

neutral density classes must be gaining Cant within the South Atlantic. Khatiwala et al., 

(2013) describe a key difference between the ‘ocean inversion’ method, where 

hydrographic section estimates of Cant are combined with Ocean General Circulation 

Models (OGCMs), first applied in Gloor et al. (2003) and later in further depth in 

Mikaloff Fletcher et al. (2006, 2007), Gruber et al. (2009) and Khatiwala et al., (2013), 

and Cant flux estimates from ship transects. Hydrographic occupations are accurate for a 

single point in time and thus subject to sampling biases, whilst the ocean inversion 

method represents a transport integrated in time since the industrial revolution, and 

typically scaled to any selected year (e.g. 1995 in Mikaloff Fletcher et al. (2006)). 

Additionally, seasonal variability affects hydrographic fluxes (Wilkin et al., 1995) with 

Lachkar et al. (2009) suggesting that subtropical South Atlantic seasonal variability 

corresponds to up to 20% of the annual mean transport of Cant. The inverse model in the 

current study is designed to create a 2008-2009 ocean mean such that the calculated 

divergence within the South Atlantic Ocean is representative of that time period.  
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5 Conclusions 

An inverse box model was used to examine net exchange between the South Atlantic 

Ocean and surrounding basins, inspired by the work of Rintoul (1991). We revisit this 

study with newer data and the inclusion of Cant.  The key findings include:  

 The 15.9 Sv of westward Weddell Gyre return flow at 30°E contains 8.8±0.5 Sv of 

the AABW layer, contributing to a net 13.8±1.0 Sv inflow of the AABW layer to the 

box across all sections. Diapycnal upwelling of 6.3±1.0 Sv from the AABW layer to 

the LCDW layer within the box, leads to a net AABW recirculation within the South 

Atlantic of 7.5±1.4 Sv. 

 A Meridional Overturning Circulation of 20.2 Sv with a net mass transport of 0.7±0.3 

Sv southward and a freshwater transport associated with the overturning component 

Mov of 0.09 Sv southward across 24°S. This southward overturning freshwater flux of 

0.09 Sv supports the notion of MOC bistability.  

 Agulhas leakage, defined as westward flow above the 3.5 °C isotherm, is 10.7±1.7 

Sv. Total eastward transport of Circumpolar Deep Water is 5.9±2.2 Sv beneath the 

Agulhas Current system, north of the Subtropical Front. Agulhas leakage contributes 

towards the northward flowing upper ocean water across 24°S, whilst up to one-third 

of southward-flowing deep water across 24°S, exits the South Atlantic underneath the 

net westward-flowing Agulhas leakage. 

 The Cant divergence from the South Atlantic box of 0.33±0.31 Pg C yr-1 and 

0.18±0.12 Pg C yr-1 of Cant storage correspond to a Cant air-sea uptake of 0.51±0.37 Pg 

C yr-1. While 0.18±0.12 Pg C yr-1 of anthropogenic carbon is stored within the box, 

89% of Cant input to the South Atlantic box is exported from the South Atlantic. Cant 

export from the South Atlantic occurs across both the 24°S section (0.28±0.16 Pg C 

yr-1), and across 30°E, associated with the 1.04±0.42 Pg C yr-1 ACC and the 

0.08±0.07 Pg C yr-1 Agulhas Current and its return flow. 

 Significant Cant divergence within the South Atlantic box is only sustainable with 

significant Cant uptake from the atmosphere. Cant uptake of 0.51±0.37 Pg C yr-1 

equivalent to approximately 25% of previous estimates of global Cant uptake may be 
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caused through the upwelling of Cant-poor NADW as part of the MOC, which 

subsequently absorbs atmospheric CO2 into the ocean surface layers. 

In conclusion, the South Atlantic circulation diagnosed in this study is characterised by 

inflow through Drake Passage, overturning south of 24°S consistent with southward-

flowing UCDW and LCDW and conversion to lighter neutral density classes through 

diapycnal processes. Northward flows of surface water, SAMW and AAIW layers merge 

with a net westward Agulhas leakage from the Agulhas system to complete the MOC 

upper cell. AAIW, UCDW and LCDW flow eastward below the Agulhas system, whilst 

further south, eastward transport in the ACC dominates. Near the Antarctic continental 

margin, a westward flow supplies AABW to the Weddell Sea.  

 

Ventilation and transformation within the Weddell Sea precedes the northward flow of 

the renewed AABW layer out of the Weddell Sea, whereupon significant diapycnal 

processes convert the AABW layer to the LCDW layer, limiting the volume of AABW 

exiting the South Atlantic. There is net SAMW production, LCDW layer creation and 

AABW layer destruction in the South Atlantic. For Cant, an imbalance between the 

transport-weighted inflow and outflow for each neutral density class indicates significant 

uptake of CO2 from the atmosphere within the South Atlantic, subsequently supplying the 

Atlantic Ocean north of 24°S and the Indian sector of the Southern Ocean with Cant. Inter-

basin exchange within the South Atlantic therefore ventilates CDW, receives, modifies 

and then consumes AABW, and supplies Cant to the rest of the global ocean.   
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Appendix A 

Constraint weighting 

Each constraint has an associated uncertainty. As each constraint is represented by a row 

in E, each row is weighted according to the constraint’s uncertainty.  or the layer volume 

constraints, larger a priori uncertainties (εj) are applied to the upper ocean than the deep 

ocean following Ganachaud (2003) for the neutral density classes: Surface (±4Sv), 

SAMW (±4Sv), AAIW (±3Sv), UCDW (±2Sv), LCDW (±1Sv) and AABW (±0.5Sv). 

For volume transport constraints, the reciprocal of the a priori uncertainty is applied as 

the row weighting whilst for property transports, the reciprocal of the a priori uncertainty 

multiplied by 2, and multiplied by the larger of either the property standard deviation or 

property mean is applied for each layer/row. Typically a property standard deviation is 

applied, however, the property mean is included to cope with excessively small standard 

deviation values, and to better weight higher temperature anomalies within the surface 

waters across the box. For full depth salinity anomaly transport around the box boundary, 

a small a priori uncertainty (0.2 Sv psu) is applied to better constrain the system, making 

use of well-constrained values for Drake Passage (Cunningham et al., 2003; Meredith et 

al., 2011) and 24°S (Coachman and Aagaard, 1988; Woodgate and Aagaard, 2005), 

following the constraint for full depth boundary salinity transport applied to the initial 

field. The small uncertainty improves the zero salinity convergence constraint for the 

inverse box, rather than reflecting actual uncertainty. Only small full-depth residual 

imbalances for volume of -0.47 Sv and salinity anomaly of -1.08 Sv psu remain after 

applying the inverse box model.  

Weightings for unknown velocities 

The accuracy of the depth-independent velocities is affected by the inclusion of a priori 

uncertainties for weighting each column in E, and designed to optimally weight the 

different components of the solution. Column weighting takes the general form of the a 

priori uncertainty divided by the appropriate area and subsequently square rooted.  

 

Appendix B 
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Historical surface data from five meridional cruises that intersect the 2009 24°S section 

across its full extent have been used to generate estimates of the change of anthropogenic 

carbon within the mixed layer ( Cml
ant) and thus Cant storage rates across 24°S, as detailed 

in Sections 2.1 and 4.3. Each meridional cruise provides a single intersection for 

comparison to the 24°S zonal transect. Cant was calculated in an identical manner to the 

other box sections. The Cant profile of the nearest station, in terms of latitude and 

longitudes coordinates, along each of the meridional sections is matched to the nearest 

station along the 24°S zonal transect to help determine  Cml
ant. Historical cruises used 

were as follows: A14 (35A3CITHER3_1) occupying a longitude of 9°W at 24°S between 

January-February 1995 (Mercier and Arhan, 1995); A13 (35A3CITHER3_2) crossing 

through 24°S at 8°E between February-April 1995 (Mercier and Arhan, 1995); 

A15/AR15 (316N142_3) crossing 24°S at 19°W in May 1994 (Smethie and Weatherly, 

1994); A16 (318HYDROS4) crossing 24°S at 25°W in March 1989 (Talley et al., 1989); 

and A17 (3230CITHER2_1-2) intersecting 24°S at 33°W in February 1994 (Mémery, 

1994). Data from each of these cruises is accessible from the Carbon Hydrographic Data 

Office (CCHDO). 
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Figure 1: Map of the hydrographic sections that form the boundaries to the South Atlantic 

inverse box model. Sections are A21 (Drake Passage), I6S (30°E) and 24°S. The 

Subtropical Front (STF), Subantarctic Front (SAF), North Polar Front (NPF), South Polar 

Front (SPF) and Southern Antarctic Circumpolar Current Front (SACCF) are indicated. 

Major topographical and circulation features are: Vitoria-Trinidade seamounts VT, Vema 

Channel VC, Hunter Channel HC, Brazil Malvinas Confluence BMC, Malvinas Current 

MC, South Georgia SG and the Agulhas Return Current ARC. 
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Figure 2: Geostrophic velocities (barotropic plus baroclinic velocities from the final 

solution) on the box boundary in units of m s-1. Into (out of) the box is shown by red 

(blue). The dashed lines indicate frontal positions along the Drake Passage section from 

south to north: SACCF, SPF, NPF and SAF, and along the 30°E section from north to 

south: STF, SAF, PF, SACCF. 
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Figure 3: Cumulative transport along the box boundary for the final solution for each 

neutral density class in units of Sv. The total cumulative transport for each neutral density 

class is shown. Positive transports refer to a net gain by the box, whilst negative 

transports refer to a net loss. Vertical dashed lines indicate fronts. 
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Figure 4: Heat transport (red; petawatts (PW)) for zero net mass transport across 24°S. 

Additional hydrographic estimates and errors (grey bars) are shown together with 

meridional heat transport (from Piecuch and Ponte (2012)) with an average time-mean 

ECCO (Estimating the Circulation and Climate of the Ocean; black solid thick line) 

estimate from model-observation syntheses. The uncertainty interval is given as the 

standard deviation of the heat transport time series (black thin lines).  
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Figure 5: a) Cumulative Mov as a function of pressure for the 24°S section (blue), and for 

west of 35°W, inclusive of the Brazil Current (red). Positive (negative) Mov is northward 

(southward). Units of Sv. b) Cumulative Maz as a function of longitude. Positive 

(negative) Maz is northward (southward). Units of Sv.  
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Figure 6: a) Diapycnal volume velocity (m s-1) and b) volume flux (Sv), c) diapycnal 

salinity velocity (m s-1) and d) salinity flux (kg s-1) and e) diapycnal temperature velocity 

(m s-1) and f) temperature flux (W) across each layer interface within the South Atlantic 

box. A positive (negative) velocity or transport represents an upward (downward) flow. 

The dashed lines represent one standard deviation. Neutral density class boundaries are 

marked (solid black line), and neutral density classes labelled. 
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Figure 7: Air-sea interaction induced diapycnal a) volume flux, b) freshwater flux and c) 

heat flux within the South Atlantic box. Diapycnal volume flux is estimated at the layer 

interface, freshwater flux and heat flux induced by air-sea interaction is into each 

individual layer. Positive (negative) values indicate a flux towards lighter (heavier) 

neutral density classes. Neutral density class boundaries are marked (solid black line), 

and neutral density classes labelled.  
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Figure 8: Schematic circulation for the inverse model solution. The length of each bar is 

proportional to the net transport associated with each neutral density class. Neutral 

density classes shown are a) surface water (red), SAMW (blue), and AAIW (yellow) and 

b) UCDW (pink), LCDW (green) and AABW (orange). Numbers at the end of each bar 

give transports in Sv. A priori uncertainties for transport in each neutral density class 
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transport are: surface water 4 Sv, SAMW 4 Sv, AAIW 3 Sv, UCDW 2 Sv, LCDW 1 Sv 

and AABW 0.5 Sv. 

 

Figure 9: Schematic circulation for the NADW from the inverse model solution, defined 

as at the UCDW/LCDW interface (27.90<γn<28.10), equal to layers 16 and 17 (Table 4). 

The length of each bar is proportional to the net transport. Numbers at the end of each bar 

give transports in Sv with an uncertainty of 2 Sv.  
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Figure 10: ΔC*-derived distribution across Drake Passage of Cant for Left: 1990 and 

Right: 2009. The neutral density:geopotential height interpolation scheme mentioned in 

Section 2.1 uses a 0.02 geopotential height (φ) grid across Drake Passage. Neutral density 

classes are labelled following the neutral density interfaces in Table 4.  nits of μmol kg-

1. 
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Figure 11: ΔC*-derived distribution across 30°E of Cant for Left: 1996 and Right: 2008. 

The neutral density:geopotential height interpolation scheme mentioned in Section 2.1 

uses a 0.02 geopotential height (φ) grid across 30°E between 35°S and 58°S and a 0.002 

φ grid south of 58°S. Neutral density classes are labelled following the neutral density 

interfaces in Table 4.  nits of μmol kg-1. 
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Figure 12: ΔC*-derived distribution across 24°S of Cant in 2009. Neutral density classes 

are labelled following the neutral density interfaces in Table 4.  nits of μmol kg-1. 
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Table 1: GLODAP/CARINA correction factors as detailed in Gouretski and Jancke 

(2000), Wanninkhof et al. (2003), Key et al. (2004) and Hoppema et al. (2009). 

GLODAPv2 correction factors are detailed in Lauvset et al. (2016) and Olsen et al. 

(2016). Adjustments applied to hydrographic cruises along A13, A14, A15, A16 and A17 

are required for section 2.1. Nitrate, phosphate, silicate and alkalinity are in units of μmol 

kg-1. Salinity is listed as an addition in parts per million. Oxygen is listed in units of ml/l 

requiring multiplication by a factor of 43.55 to convert to μmol kg-1 for all cruises apart 

from A21 (Drake Passage 2009) and 24°S 2008 where the multiplicative factors have 

already been optimised for μmol kg-1. 

 Salinity Nitrate Phosphate Oxygen Silicate Alkalinity 

A21 (Drake 

Passage 1990) 

+1.1 +0.04 -0.06 +0.03 +4.9 ×1.0 

A21 (Drake 

Passage 2009) 

×1.0 ×0.975 ×1.0 ×1.035 ×1.0 -6.0 

I6S (30°E 1996) ×1.0 ×0.96 ×0.97 ×1.0 ×0.9 ×1.0 

24°S 2008 ×1.0 ×0.99 ×1.0 ×1.035 ×0.95 ×1.0 

A13 (8°E 1995) +2.8 -1.3 -0.153 +0.003 -3.0 ×1.0 

A14 (9°W 1995) +2.3 -0.19 -0.033 +0.016 -1.9 ×1.0 

A15 (19°W 1994) +0.3 -0.3 -0.023 -0.001 -1.5 ×1.0 

A16 (25°W 1989) -0.5 -0.28 -0.029 +0.019 +0.3 ×1.0 

A17 (33°W 1994) +1.8 +0.06 -0.024 +0.001 +1.6 ×1.0 

 



  

18/11/2016 48 

Table 2: Reference levels for each of the box boundaries. The 30°E section has been split 

by the Subtropical Front (42.9°S) into an Agulhas and ACC regime. 

Section Reference 

Level 

Reference 

Drake Passage Bottom Meredith et al., (2011), (King & 

Jullion, in prep.,). 

24°S 1300 dbar Bryden et al., (2011), Warren and 

Speer, (1991) 

30°E Agulhas regime (North of 40°S) 2000 dbar Arhan et al., (2003; Bryden et al., 

(2005) 

30°E Agulhas regime (40°S – 42.9°S) Bottom Arhan et al., (2003) 

30°E ACC regime (South of 42.9°S) Bottom Park et al., (2001) 

Table 3: Constraints applied to better construct the initial field for each of the sections 

along the box boundary. Positive (negative) values indicate a transport into (out of) the 

box. The boundary salinity transport refers to the net inflow of salinity transport across 

Drake Passage, 24°S and the 30°E Agulhas regime combined to equal the net outflow of 

salinity transport through the ACC regime at 30°E. All constraints are applied to better 

constrain the initial field. The Ekman transport and the ACC regime boundary salinity 

transport are not included as explicit constraints within the box inversion. Stated errors 

are the residual noise terms from the conservation equations. 

 Reference Property Vertical extent Constraint Solution 

Drake 

Passage 

Cunningham et al. 

(2003), Meredith 

et al. (2011) 

Volume Full depth 136.7±10 Sv 128.4±8.3 Sv 

24°S:       

    Full 

section 

Coachman and 

Aagaard, (1988) 

Salinity Full depth 26±0.2 Sv 

psu 

25.8±0.2 Sv 

psu 
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    Vema 

and Hunter 

Channel 

Hogg et al. (1999), 

McDonagh et al. 

(2002), Zenk et al. 

(1999) 

Volume θ < 2 °C -6.9±2 Sv -6.7±1.9 Sv 

    Brazil 

Current 

Bryden et al. 

(2011) 

Volume Above 300 dbar 4.9±5 Sv 5.8±0.1 Sv 

    Cape 

Basin (East 

of 6°E) 

Arhan et al. 

(2003), 

McDonagh and 

King (2005) 

Volume θ < 2 °C 0±1 Sv 0.2±0.1 Sv 

    Ekman 

transport 

Bryden et al. 

(2011) 

Volume Above 80 dbar 3.3 Sv  

30°E:      

    Agulhas 

regime 

McDonagh et al. 

(1999) 

Volume θ > 3.5 °C 9±3 Sv 10.7±1.3 Sv 

    ACC 

regime 

This study Salinity Full depth Salinity 

transport 

inflow to box 

(4773.64 Sv 

psu) 
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Table 5: Meridional property transport from inverse studies and empirical analysis across 

24°S, 30°S (WOCE A10) and nominally at 45°S (WOCE A11), adapted from McDonagh 

and King (2005) and Williams (2007). The MOC strength in this study, is interpreted as 

the southward flow of deep water, primarily NADW. The MOC strength estimate in 

Dong et al. (2009) is an average of 17 hydrographic occupations. A northward net flux is 

positive. 

Source Section Freshwater 

(Sv) 

Heat (PW) Salt (Gg s
-1

 

or Sv psu) 

MOC 

strength (Sv) 

Ganachaud (1999) A11  - 0.66±0.12 - 18±4 

Holfort and Siedler (2001) A11  -0.55±0.02 0.37±0.02 -26.37±0.73 21.7 

McDonagh and King (2005) A11 -0.7 0.43±0.08 -26 21.0±2 

Naveira Garabato et al. (2014) A11 -0.7±0.48 0.14±0.06 -29.2±17.2 15.8 

Dong et al. (2009) 35°S - 0.55±0.14 - 17.9 

Rintoul (1991) 32°S - 0.25 - - 

Lumpkin and Speer (2007) 32°S - 0.60±0.08 - - 

Ganachaud (1999) 30°S - 0.35±0.15 - 23±3 

Holfort and Siedler (2001) 30°S -0.51±0.02 0.29±0.05 -26.75±0.77 22.7 

Ganachaud and Wunsch (2003) 30°S -0.5±0.1 - -26.7 - 

McDonagh and King (2005) 30°S -0.5±0.1 0.22±0.08 -26 19.9±2 

Naveira Garabato et al. (2014) 30°S -0.58±0.48 0.31±0.04 -13.8±17.1 13.7 

Bryden et al. (2011) 24°S -0.34/-0.29 0.7 -26 21.5 / 16.5 

This study 24°S -0.7±0.3 0.40±0.08 -25.8±0.2 20.2±2 
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Table 6: a) Net heat flux across 24°S separated into overturning and gyre components. b) 

Overturning component of the salinity transport and associated Mov and Maz transports. 

Positive (negative) transport is defined as northwards (southwards) for compatibility with 

Bryden et al. (2011). 

a) Overturning (PW) Gyre (PW) Total (PW) 

This study 0.52 -0.12 0.40 

 Bryden et al. (2011) 2009 section 0.76 -0.07 0.68 

 Bryden et al. (2011) 1983 section 0.53 -0.14 0.38 

 

 

b) Overturning (Sv psu) Mov  (Sv) Maz  (Sv) 

This study 3.3 -0.09 0.16 

 Bryden et al. (2011) 2009 section 4.6 -0.13 0.12 

 Bryden et al. (2011) 1983 section 3.3 -0.09 0.21 
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 Table 7: Cant transports at the box boundary, Cant storage within the box and Cant air-sea 

flux in PgC yr-1. Positive (negative) values indicate a transport into (out of) the box. 

Section C
ant

 Transport (Pg C yr
-1

) 

Drake Passage +1.07±0.44 

24°S -0.28±0.16 

30°E: Agulhas -0.08±0.07 

30°E: ACC -1.04±0.42 

Total -0.33±0.31 

Storage +0.18±0.12 

Air-Sea flux +0.51±0.37 
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Table 8: Transport-weighted Cant (μmol kg-1) at each box boundary. For 24°S and 30°E 

(Agulhas), the transports are separated into north-south, or east-west components 

respectively, given the substantial flow in both directions. Uncertainties are the standard 

error of the mean with units of μmol kg-1.  

Neutral Drake 

Passage 

24°S 30°E (Agulhas) 30°E 

density 

class 

North South West East  

Surface 34.9±0.4 65.2±0.3 63.2±0.4 48.2±0.3 49.7±0.2 50.0±0.5 

SAMW 39.2±0.3 51.9±0.4 50.8±0.4 29.2±0.6 35.6±0.7 40.9±0.6 

AAIW 36.0±0.5 26.9±0.3 25.8±0.3 16.8±0.5 17.8±0.4 31.8±0.5 

UCDW 16.3±0.2 14.3±0.1 13.9±0.1 16.5±0.1 16.3±0.1 16.6±0.2 

LCDW 6.9±0.1 10.2±0.1 10.8±0.1 11.1±0.1 12.6±0.1 10.3±0.1 

AABW 2.2±0.1 12.6±0.2 11.1±0.2 10.1±0.1 11.7±0.1 11.1±0.1 

Total 20.9±0.2 30.1±0.2 25.6±0.2 33.8±0.3 35.1±0.3 18.8±0.1 
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Table 9: Mean Penetration Depth (MPD), mean  Cml
ant (μmol kg-1 yr-1) within mixed layer 

and mean in-situ density  ml (kg m-3) within mixed layer for Drake Passage, 30°E, and 

24°S and a mean of the hydrographic sections. Along 30°E, Cant is normalised to a mean 

temperature.  PD is estimated to have a 20% uncertainty, and a ±0.5 μmol kg-1 yr-1 

 Cml
ant uncertainty. 

 MPD (m)  Cml
ant

 ( μmol kg-1
  yr

-1
) ρml (kg m

-3
) 

Drake Passage 259.8 0.84 1027.0 

24°S 933.2 0.85 1024.8 

30°E 624.3 0.45 1026.2 

Mean 605.8 0.71 1025.9 

Table 10: Comparison of Cant storage rate (mol m-2 yr-1) for the South Atlantic (south of 

15°S), and South Atlantic sector of the Southern Ocean. For Peng and Wanninkhof 

(2010), the two estimates derive from two different calculation methods. 

Author Region Storage rate 

(mol m
-2

 yr
-1

) 

Holfort et al. (1998) 10°S -30°S  0.59±0.12  

Murata et al. (2008) Along 30°S 0.6±0.1  

Peng and Wanninkhof (2010) South of 15°S 0.56/0.35±0.3  

Wanninkhof et al. (2010) South of 15°S 0.76  

Ríos et al. (2012) 10°N-55°S,  

western basin 

0.92±0.13  

This study Drake Passage 0.22±0.29  

This study 24°S 0.81±0.53  

This study 30°E 0.29±0.18  

This study Mean 0.44±0.30  
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