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Abstract—EXxisting deep learning-based Text-to-Speech
(TTS) mechanisms are computationally intensive, which
puts a strain in their practical applications especially over
edge networks comprised of resource constrained devices.
Our focus is on distributing TTS tasks across multiple
devices (i.e., workers) at edge networks and providing TTS-
aware resiliency against straggling workers. In particular,
we design a REsilient DIstributed Tts (REDIT) framework
by exploiting the text summarization as redundancy to
provide resiliency for distributed TTS. We show analyt-
ically that REDIT improves the task completion time as
compared to the distributed TTS without resiliency. We
determine the optimum amount of redundancy/summary
based on our task completion time analysis. We implement
our REDIT framework in a real testbed consisting of
NVIDIA Jetson Nano cards, and show that our REDIT
algorithm improves the task completion delay as compared
to baselines.

I. INTRODUCTION

Text-to-speech (TTS), also known as speech synthesis,
converts text into human speech. The recent devel-
opments in deep-learning have increased speech qual-
ity of TTS significantly, even matching natural human
voice [1]-[3]. However, existing deep-learning-based
TTS mechanisms are computationally intensive, which
puts a strain in their practical applications especially
over edge networks comprised of resource constrained
devices. There are some approaches, e.g., [4]-[6] to re-
duce the time complexity of TTS by modifying learning
models. In this paper, we follow a complementary ap-
proach of distributing TTS tasks across multiple devices
(such as edge servers and end users) at edge networks.

Although distributed computing is a de facto approach
to speed up computationally intensive applications, its
potential diminishes when some workers (devices that
tasks are offloaded) are delayed or fails (known as
stragglers). Such stragglers become a bottleneck for

This work was supported in parts by the Army Research Lab
(ARL) under Grant W911NF-2120272 and National Science Foun-
dation (NSF) under Grants CCF-1942878 and CNS-2112471.

the completion time of the distributed task. Stragglers
problem, despite seen in cloud computing with dedicated
servers, is emphasized more in edge computing systems
where computing entities such as edge servers and end
users have heterogeneous and time-varying resources.

One promising solution to address the stragglers
problem is adding redundancy, where the replica of
some tasks are assigned to multiple workers [7], [8].
This approach will reduce the probability of stragglers
even if one worker is delayed or fails, another worker
that processes the same task could finish the task on
time. However, it is crucial to optimize the amount
of redundancy as too much redundancy will result in
under utilization of precious system resources. Coded
distributed computation is a recent area focusing on the
usage of error correcting codes to optimize the amount of
redundancy [9]. This area, although very promising, falls
short of dealing with non-linear computations, which is
inherent in TTS. In this paper, we consider a TTS-aware
redundancy adding mechanism to address straggling
workers in distributed TTS.

It is a fact that human language has some inherent
redundancy, which means that it is usually possible to
express the key information in a much shorter form.
Our goal is to use this redundancy in our resilient and
distributed TTS. In particular, we employ text summa-
rization [10] to reduce the redundancy in the text that is
supposed to be converted to speech. The summarization
is used as “joker” and converted to speech when the TTS
of the original text fails due to straggling workers.

In this paper, we design a REsilient DIstributed Tts
(REDIT) framework by exploiting the text summariza-
tion as redundancy. A master device splits a text into
smaller texts (sub-tasks), and offloads them to workers
for TTS, where workers perform TTS. Meanwhile, the
master device performs text summarization. The master
device performs TTS of the summarized text. If there
are straggling workers, which delays TTS, the master



device can use the TTS of the summary. We show
analytically that REDIT improves the task completion
time as compared to the distributed TTS which does not
have resiliency. We determine the optimum amount of
redundancy/summary based on our task completion time
analysis. We implement our REDIT framework in a real
test bed consisting of NVIDIA Jetson Nano cards [11].

The structure of the rest of this paper is as follows.
Section II presents the related work. Section III presents
our system model. Section IV presents our resilient and
distributed TTS (REDIT) framework with task comple-
tion time analysis and the redundancy/summary opti-
mization. Section V provides experimental evaluation of
REDIT in real devices. Section VI concludes the paper.

II. RELATED WORK

The state-of-the-art TTS methods, especially deep-
learning-based methods, are computationally intensive.
For example, [12] provides a performance test on TTS
frameworks Tacontron2 and WaveGlow, and shows that
their inference tasks introduce heavy workloads for high-
performance GPUs like NVIDIA T4. It becomes very in-
efficient to run such large-scale TTS algorithms on edge
devices such as NVIDIA Jetson Nano or smartphones.
Task distribution is a straightforward idea to improve the
speed of TTS over edge networks.

There are some distributed Natural Language Process-
ing (NLP) mechanisms in the literature. A distributed
learning algorithm to speed up the training of NLP
models, which is based on asynchronous mini-batch
learning is designed in [13]. However, it focuses on the
training phase and ignores the distributed inference or
deployment. TextImager [14] designs distributed NLP
solutions, but it is not based on deep learning and did not
have resiliency aspects. A distributed TTS framework on
embedded devices is built in [15]. The basic idea is to
divide a TTS pipeline into the front-end and the back-
end, and send them to server and clients separately.

Straggling workers is an important challenge for dis-
tributed systems [7]. This problem is usually addressed
with replication-based redundancy such as replicating
tasks over multiple workers [7], [8], which may po-
tentially introduce too much redundancy and leads to
under utilization of resources. In this paper, we consider
a TTS-aware redundancy adding mechanism to address
straggling workers in distributed TTS.

III. MODEL

Setup. We consider a distributed computing system
formed of connected computing entities; end devices,

edge servers, and cloud. We divide these computing en-
tities into (i) masters who want to perform intensive TTS
conversions; or (ii) workers who are willing to dedicate
some of their resources to help in the computations.
There could be multiple masters and workers in the
system, which may overlap.

Master/Worker Model. We focus on a master/worker
setup, where the master device offloads its computa-
tionally intensive TTS tasks to Worker n € N (where
N 2 {1,...,N} is the set of all workers) via device-
to-device (D2D) links such as Wi-Fi Direct.

The workers have the following properties: (i) Workers
may fail or “sleep/die” or leave the network before
finishing their assigned computational tasks. (ii) Workers
incur delays in responding to the master, where delay has
two components; (i) transmission delay for exchanging
text and speech, and (ii) computation delay.

Text-to-Speech (TTS). The master device divides a
long text message into smaller texts, and offloads them to
workers. The workers convert text to speech using TTS
model. Our work is compatible with any TTS model,
but we focus on Tacotron [3] in this paper. Tacotron is
a learning-based end-to-end generative model for TTS
and can be applied to many languages, like English,
Chinese Mandarin, Korean, etc. With “end-to-end”, we
mean that it can be trained by <text, audio> pairs, also
with the input of texts and output of generated speeches,
which makes it easier to train and use. Tacotron achieves
very good voice quality [3]; it achieves a higher Mean
Opinion Score (MOS), a common metric for evaluating
speech quality, than its competitors. One of the disadvan-
tages of Tacotran is that it is not distributed. Therefore,
in this paper, we first focus on implementing Tacotron
in a distributed manner, then we focus on resiliency.

Text Summarization. We use TS5, which is a natural
language processing (NLP) framework based on transfer
learning, designed with the goal of dealing with all text-
based language problems including text summarization,
question answering, machine translation, etc. In this
paper, we choose a small size TS model, T5-small, as the
summarizer. TS-small has around 60 million parameters
and is a more suitable choice in our edge network setup.
The T5-small used in our project is pre-trained using
C4 dataset [16], [17]. We note that REDIT is able to
work with other summary models, including learning-
and non-learning-based, like BERT [18], [19] and BERT-
based improvements [20]-[22].

IV. REDIT: RESILIENT AND DISTRIBUTED TTS

Design of REDIT. We develop a REDIT algorithm,
where the master device pre-processes the original text
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Fig. 1: Resilient Distributed TTS. The master device is respon-
sible for TTS of the summary.

and splits it into multiple subtexts. The created subtexts
are kept in a waitlist in the master device.

The master device and workers always have an open
connection, i.e., the master device detects when a worker
is idle. The subtexts are transmitted from the waitlist in
the master device one by one to idle workers. In other
words, when a worker is idle, it requests a task from the
master, and a new subtext is taken from the waitlist and
transmitted to that worker. This continues until all the
subtexts are offloaded to workers.

Meanwhile, the master device sets up another thread
for text summarization and TTS of the original text.
The master device runs two threads in parallel; (i)
text splitting and offloading to workers, and (ii) text
summarization and TTS of the summarized text. When
offloading of subtexts is finished, the master device waits
for receiving either (i) the audios corresponding to all
offloaded subtexts, or (ii) the audio of the summarized
text. If one of these events is realized, then TTS tasks
end. If the audios of the subtexts are received, the master
device stitches them to one single audio.

In REDIT, even if the master device cannot get the au-
dio of the original text, it can still get the summary. The
audio of the summary still carries important information
thanks to redundancy in human speech.

Analysis of REDIT. Assume that Worker n processes
all of its subtexts in Y,, time duration, which follows
exponential distribution with rate A\, which is a common
assumption in distributed computation with stragglers
[9]. The time it takes for text summarization and con-
verting the summary to speech at the master device takes
X (s) time duration following an exponential distribution
with rate p(s), where s is the summary rate. The
summary rate 0 < s < 1 increases with the summary
size, and becomes 1 when the summary size equals to
the size of the original text.

Theorem 1: The task completion time of REDIT is Z,

Fig. 2: Experiment setup.

and its expected value is
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We can now calculate the expected value of Z as E[Z] =
fooo 2fz(2)dz. To evaluate the integral, we first expand
powers of (1 —e~*#) that appear in (5) via the binomial
theorem, and use the fact that fooo ze~ Y = a2, a>0
for different values of «. After these cumbersome but
straightforward calculation steps, we arrive at
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The last equality can be obtained after some straightfor-
ward algebraic manipulations and the binomial theorem.
This concludes the proof. |

On the other hand, the task completion of the dis-
tributed TTS without text summarization is W, where
W =Y £ max; Y;. It is well-known (see e.g. [23, Eq.
7.10]) that AE[W] = 143+ -+ =log N+y+0(1),



where the second equality holds as N — oo, and
v = 0.577 - - - is the Euler-Mascheroni constant. As seen,
REDIT improves the task completion delay on the order
of log N as compared to the distributed TTS scenario
without text summarization, which is significant.

Optimization of REDIT. It is crucial to determine
the summary rate s in REDIT framework. The quality of
experience will be higher for large s values, because the
summary will provide more information when s is large.
On the other hand, this will increase the task completion
time. We use our task completion time analysis in (1) to
determine the summary rate when there is constraint on
task completion time. The optimization problem is

Bl7) - i Vi (N ) < Ziw, ®)

.t
max s § 2 MOESUAS

where Zy, is a task completion delay constraint. It
is straightforward to see that E[Z] is a monotoni-
cally non-decreasing function of s, because X (s) and
Z = min{X(s),Y} are monotonically non-decreasing
functions of s. Thus, we can use binary search to solve

(®).
V. EXPERIMENTAL EVALUATION

Setup: The experiment platform comprises multiple
computation nodes equipped with different types of hard-
ware. The master device is a high-end PC equipped with
AMD Ryzen 3900x 12-cores CPU @3800Mhz, which is
CPU-only; in other words, all services are processed by
CPU in the master. The worker nodes are based on Jetson
Nano Developer Kits, which are implemented with ARM
AS57 4-cores CPU@1479MHz and 128-core Maxwell
GPU @921.6 Mhz. Different from the master device,
the GPU will accelerate the services at the workers if
the service supports GPUs. In our experiments, we have
three workers.

Dataset. We use a pre-trained Tacotron model, which
is trained by using the LJ speech dataset [24]. We
assembled a dataset based on CNN and BBC news [25]
as the experiment input. The dataset includes texts with
100 to 500 characters. We set the subtext size roughly
to 100 characters as we observed that Tacotron gives the
best performance when the input text size is 100 when
it is trained by the LJ speech dataset. For example a
600 character text is divided into 6 subtexts, where each
subtext is around 100 characters.

Delay Model. One of the workers is randomly selected
and acts as a straggler, which performs additional com-
putationally intensive tasks (performs TTS of a randomly
generated text) to introduce delay.
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Fig. 3: Task completion time versus text length when (a) one of the
workers is a straggler, (b) none of the workers is a straggler.

Baselines. We consider two baselines; (i) Local: The
master device performs the TTS of the original text
without any task offloading. (ii) DistTTS: Distributed
TTS similar to REDIT without text summarization.

Fixed Summary Size. Fig. 3(a) shows the average
task completion time (averaged over 50 experiments)
versus the text length. One of the workers is randomly
selected as a straggler. We set the maximum length of the
text summary to be 15 words for all text sizes. In this sce-
nario, DistTTS performs worse than REDIT and Local as
one of the workers is a straggler and creates a bottleneck
for DistTTS. Local improves on DistTTS as it does not
rely on any workers for TTS. In other words, the task
completion time of Local is not affected by straggling
workers. The completion time of Local increases linearly
with increasing text length as there is no distribution in
this setup, and there is a linear relationship with the time
complexity of TTS with input text size. REDIT performs
better than both Local and DistTTS thanks to using text
summarization and its TTS. As seen, the task completion
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time of REDIT increases linearly first, then stays the
same. The reason is that it uses distributed TTS and text
summarization alternatingly depending on the delay the
straggling worker imposes when text length is smaller.
However, it uses text summarization when text length
increases as TTS of the original text becomes costly, so
we see a flat curve for larger text lengths.

We consider the same setup in Fig. 3(b), but we
consider an ideal scenario that workers do not strag-
gle. Fig. 3(b) shows the average task completion time
versus text length. Local performs worse than REDIT
and DistTTS as workers are operating in their full
performance without any delay. REDIT and DistTTS
have the same performance when the text lengths are
smaller, because TTS of the original text is the most
efficient scenario in this case and REDIT and DistTTS
are doing exactly the same operations; i.e., offloading
subtexts, receiving corresponding audios, and stitching
them. On the other hand, when the text lengths increase,
text summarization and its TTS becomes more efficient,
so REDIT resorts to this option and performs better than
DistTTS. We see almost a flat curve for REDIT and
DistTTS when text lengths are 100, 200, and 300. Noting
that the size of sub-texts is 100, only one worker is used
when text length is 100, two parallel workers are used
when text length is 200, and three parallel workers are
used when the text length is 300. In all these cases, the
task completion time is the same as workers operate in
parallel and in their full capacity. We see a jump when
text length is 400 as three subtexts are processed first,
and then another subtask is processed, which increases
the task completion time.

Fig. 4 considers the same setup as in Fig. 3(a),
except the summary size. We arrange the summary size
proportional to the length of the actual summary. In
particular, the ratio of summary size (words) to text

length (characters) is 0.05. This means that the summary
size is 25 words when the text length is 500 characters.
The resulting task completion time versus text length
is shown in Fig. 4. REDIT performs better than both
DistTTS and Local. This is similar to Fig. 3(a), which
shows that REDIT works with different summary sizes.
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Optimum Summary Size. Now we determine the
optimum summary rate as a solution to (8). In particular,
We determine A and p(s) based on our experiments, and
determine s by solving (8). We consider the same setup
in Fig. 3 with one straggler. We measured A = 0.116.
We fitted ﬁ to a polynomial a -+ bs + cs? as seen in
Fig. 5, where a = 8.8682,b = 3.3701,c = —1.5587. We
can use this polynomial for the solution of (8).

The summary rate as a solution of (8) for different
Ze 1s shown in Fig. 6. As seen, the optimum summary
rate increases with increasing Zy,. The solutions of the
polynomial 8.8682+3.3701s — 1.5587s are 6.5702 and
7.3460, which is also observed in Fig. 6.

Mean Opinion Score (MOS) Experiments. We also
conducted Mean Opinion Score (MOS) survey based on



TABLE I: MOS Scores of REDIT and Non-distributed Tacotron

MOS with 95% Confidential Interval
3.519+0.358
3.675+0.505

REDIT
Non-distributed Tacotron

Absolute Category Rating (ACR) to evaluate the quality
of speech synthesis of REDIT as compared to Tacotron.
In our survey, we created ten groups of speech samples,
where each group has different speech samples (each of
them corresponds to the TTS of 200 character texts).
There are three clips in each group (same speech sam-
ple), where two are generated by REDIT via ‘stitching
the portions together”, while the other clip is generated
by the pre-trained Tacotron without any splitting and
stitching. The order of each speech generator within
each group is shuffled randomly across different groups.
Within each group, the responder is asked to evaluate
the quality of speech for each sample from best (5) to
worst (1), and is blind to any remaining information. Our
MOS scores are shown in Table I.

The table shows that the MOS score of REDIT is
very close to Tacotron. The slight performance reduction
is due to stitching the portions together in REDIT and
expected. The results shows the effectiveness of our
stitching mechanism. Besides, REDIT is a general frame-
work that can be suitable for other TTS models including
learning-based and non-learning-based models. In our
project, we used Tacotron as an example. Other models,
such as Tacotron2, Transformer TTS, FastSpeech can
also be used. Obviously, the synthesis quality highly
depends on the chosen model. We believe that, by
replacing the simple pre-trained Tacotron with other TTS
methods, the MOS can be improved significantly.

VI. CONCLUSION

We design a REsilient DIstributed Tts (REDIT) frame-
work by exploiting the text summarization as redundancy
to provide resiliency for distributed TTS. In REDIT, the
master device splits a text into smaller texts (sub-tasks),
and offloads them to workers for TTS. Meanwhile, the
master device performs text summarization as well as the
TTS of the summarized text. If there are straggling work-
ers, which delays TTS, the master device can use the
TTS of the summary. We showed through analysis and
implementation in a real testbed that REDIT improves
the task completion delay as compared to baselines.
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