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Abstract—Cooperative computation is a promising approach for localized data processing at the edge, e.g., for Internet of Things
(IoT). Cooperative computation advocates that computationally intensive tasks in a device could be divided into sub-tasks, and
offloaded to other devices or servers in close proximity. However, exploiting the potential of cooperative computation is challenging
mainly due to the heterogeneous and time-varying nature of edge devices. Coded computation, which advocates mixing data in
sub-tasks by employing erasure codes and offloading these sub-tasks to other devices for computation, is recently gaining interest,
thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a coded cooperative
computation framework, which we name Coded Cooperative Computation Protocol (C3P), by taking into account the heterogeneous
and time-varying resources of edge devices. C3P dynamically offloads coded sub-tasks to helpers and is adaptive to time-varying
resources. We show that (i) task completion delay of C3P is very close to optimal coded cooperative computation solutions, (ii) the
efficiency of C3P in terms of resource utilization is higher than 99%, and (iii) C3P improves task completion delay significantly as
compared to baselines via both simulations and in a testbed consisting of real Android-based smartphones.
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1 INTRODUCTION

D ATA processing is crucial for many applications at the edge
including Internet of Things (IoT), but it could be compu-

tationally intensive and not doable if devices operate individually.
One of the promising solutions to handle computationally inten-
sive tasks is computation offloading, which advocates offloading
tasks to remote servers or cloud. Yet, offloading tasks to remote
servers or cloud could be luxury that cannot be afforded by most
of the edge applications, where connectivity to remote servers can
be lost or compromised, which makes localized processing crucial.

Cooperative computation is a promising approach for edge
computing, where computationally intensive tasks in a device
(collector device) could be offloaded to other devices (helpers)
in close proximity as illustrated in Fig. 1. These devices could be
other IoT or mobile devices, local servers, or edge servers [1], [2].

However, exploiting the potential of cooperative computation
is challenging mainly due to the heterogeneous and time-varying
nature of the devices at the edge. Indeed, these end devices such
as smartphones, tablets, smartTV, smart meters, health monitoring
devices, etc., or edge servers may have different and time-varying
computing power and energy resources, and could be mobile. As
a result, the computing power allocated to a specific task may
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Fig. 1. Cooperative computation to compute y = Ax. (a) Matrix A is
divided into sub-matrices A1, A2, ..., AN . Each sub-matrix along with
the vector x is transmitted from the collector to one of the helpers. (b)
Each helper computes the multiplication of its received sub-matrix with
vector x and sends the computed value back to the collector.

change over time in these devices. For example, they may start
running tasks that are offloaded to themselves or the part of their
operating system. Thus, our goal is to develop a dynamic, adaptive,
and heterogeneity-aware cooperative computation framework by
taking into account the heterogeneity and time-varying nature of
devices at the edge.

We focus on the computation of linear functions. In particular,
we assume that the collector’s data is represented by a large
matrix A and it wishes to compute the product y = Ax, for a
given vector x, Fig. 1. In fact, matrix multiplication forms the
atomic function computed over many iterations of several signal
processing, machine learning, and optimization algorithms, such
as gradient descent based algorithms, classification algorithms,
etc. [3], [4], [5], [6].

In cooperative computation setup, matrix A is divided into
sub-matrices A1, A2, ..., AN and each sub-matrix along with the
vector x is transmitted from the collector to one of the helpers,
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Fig. 1(a). Helper n computes Anx, and transmits the computed
result back to the collector, Fig. 1(b), who can process all returned
computations to obtain the result of its original task; i.e., the
calculation of y = Ax.

Coding in computation systems is recently gaining interest
in large scale computing environments, and it advocates higher
reliability and smaller delay [3]. In particular, coded computation
(e.g., by employing erasure codes) mixes data in sub-tasks and
offloads these coded sub-tasks for computation, which improves
delay and reliability. The following canonical example inspired
from [3] demonstrates the effectiveness of coded computation.

Example 1. Let us consider that a collector device would like
to calculate y = Ax with the help of three helper devices
(helper 1, helper 2, and helper 3), where the number of rows
in A is 6. Let us assume that each helper has a different
runtime; helper 1 computes each row in 1 unit time, while
the second and the third helpers require 2 and 10 units of
time for computing one row, respectively. Assuming that these
runtimes are random and not known a priori, one may divide
A to three sub-matrices; A1, A2, and A3; each with 2 rows.
Thus, the completion time of these sub-matrices becomes 2, 4,
and 20 at helpers 1, 2, and 3, respectively. Since the collector
should receive all the calculated sub-matrices to compute its
original task; i.e., y = Ax, the total task completion delay
becomes max(2, 4, 20) = 20.
As seen, helper 3 becomes a bottleneck in this scenario,
which can be addressed using coding. In particular, A could
be divided into two sub-matrices A1 and A2; each with 3
rows. Then, A1 and A2 could be offloaded to helpers 1
and 2, and A1 + A2 could be offloaded to helper 3. In this
setup, runtimes become 3, 6, and 30 at helpers 1, 2, and 3,
respectively. However, since the collector requires reply from
only two helpers to compute y = Ax thanks to coding, the
total task completion delay becomes max(3, 6) = 6. As seen,
the task completion delay reduces to 6 from 20 with the help
of coding.1 □

The above example demonstrates the benefit of coding for co-
operative computation. However, offloading sub-tasks with equal
sizes to all helpers, without considering their heterogeneous and
time-varying resources is inefficient. Let us consider the same
setup in Example 1. If A1 with 4 rows and A2 with 2 rows are
offloaded to helper 1 and helper 2, respectively, and helper 3 is not
used, the task completion delay becomes max(4, 4) = 4, which
is the smallest possible delay in this example. Furthermore, the
resources of helper 3 are not wasted, which is another advantage
of taking into account the heterogeneity as compared with the
above example. As seen, it is crucial to divide and offload
matrix A to helpers by taking into account the heterogeneity of
resources. Furthermore, available resources could be time-varying.
For example, the runtime of helper 1 in Example 1 may increase
from computing each row in 1 unit time to 20 units of time (it
may start running another computationally intensive task), so it

1. We note that if there is no straggler among helpers, the uncoded compu-
tation results in the same or even better delay than the coded computation. For
example, let us assume that it takes 2 units of time for helper 3 to compute one
row. In this case, the task completion delay of uncoded computation becomes
max(2, 4, 4) = 4, while it is max(3, 6) = 6 for the coded computation if it
sends A1 to helper 1, A2 to helper 2 and A1 +A2 to helper 3.

However, in practice, straggler problem is widely observed and important
problem in distributed computing systems [3].

is crucial to divide and offload matrix A by taking into account
time-varying nature of resources.

A code design mechanism under a heterogeneous setup is
developed in [7], where matrix A is divided, coded, and offloaded
to helpers by taking into account heterogeneity of resources.
However, available resources at helpers are generally not known
by the collector a priori and may vary over time, which is not taken
into account in [7]. Thus, it is crucial to design a coded cooperation
framework, which is dynamic and adaptive to heterogeneous and
time-varying resources, which is the goal of this paper.

In this paper, we design a coded cooperative computation
framework for edge computing. In particular, we design a Coded
Cooperative Computation Protocol (C3P), which packetizes rows
of matrix A into packets, codes these packets using Fountain codes
[8], [9], and determines how many coded packets each helper
should compute dynamically over time. We provide theoretical
analysis of C3P’s task completion delay and efficiency, and
evaluate its performance via simulations as well as in a testbed
consisting of real Android-based smartphones as compared to
baselines. The following are the key contributions of this work:

• We formulate the coded cooperative computation prob-
lem as an optimization problem. We investigate the non-
ergodic and static solutions of this problem. As a dy-
namic solution to the optimization problem, we develop
a coded cooperative computation protocol (C3P), which
is based on Automatic Repeat reQuest (ARQ) mechanism.
In particular, a collector device offloads coded sub-tasks to
helpers gradually, and receives Acknowledgment (ACK)
after each sub-task is computed. Depending on the time
difference between offloading a sub-task to a helper and
its ACK, the collector estimates the runtime of the helpers,
and offloads more/less tasks accordingly. This makes C3P
dynamic and adaptive to heterogeneous and time-varying
resources at helpers.

• We characterize the performance of C3P as compared to
the non-ergodic and static solutions, and show that (i) the
gap between the task completion delays of C3P and the
non-ergodic solution is finite even for large number of sub-
tasks, i.e., R → ∞ , and (ii) the task completion delay of
C3P is approximately equal to the static solution for large
numbers of sub-tasks. We also analyze the efficiency of
C3P in each helper in closed form, where the efficiency
metric represents the effective utilization of resources at
each helper.

• We evaluate C3P via simulations as well as in a testbed
consisting of real Android-based smartphones and show
that (i) C3P improves task completion delay significantly
as compared to baselines, and (ii) the efficiency of C3P in
terms of resource utilization is higher than 99%.

The structure of the rest of this paper is as follows. Section 3
presents the coded cooperative computation problem formulation.
Section 4 presents the ergodic and static solutions to coded
cooperative computation problem and the design of C3P. Section
5 provides the performance analysis of C3P. Section 6 presents the
performance evaluation of C3P. Section 2 presents related work.
Section 7 concludes the paper.

2 RELATED WORK

Mobile cloud computing is a rapidly growing field with the goal
of providing extensive computational resources to mobile devices
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as well as higher quality of experience [10], [11], [12]. The initial
approach to mobile cloud computing has been to offload resource
intensive tasks to remote clouds by exploiting Internet connectivity
of mobile devices. This approach has received a lot of attention
which led to extensive literature in the area [13], [14], [15], [16],
[17]. The feasibility of computation offloading to remote cloud
by mobile devices [18] as well as energy efficient computation
offloading [19], [20] has been considered in the previous work.
As compared to this line of work, our focus is on edge computing
rather than remote clouds.

There is an increasing interest in edge computing by exploiting
connectivity among mobile devices [21]. This approach suggests
that if devices in close proximity are capable of processing tasks
cooperatively, then local area computation groups could be formed
and exploited for computation. Indeed, cooperative computation
mechanisms by exploiting device-to-device connections of mobile
devices in close proximity are developed in [21] and [22]. A
similar approach is considered in [23] with particular focus on
load balancing across workers. As compared to this line of work,
we consider coded cooperative computation.

Coded cooperative computation is shown to provide higher
reliability, smaller delay, and reduced communication cost in
MapReduce framework [24], where computationally intensive
tasks are offloaded to distributed server clusters [25].

Significant effort is being put on constructing codes for fast
and distributed matrix-vector multiplication [26], [27], matrix-
matrix multiplication [28], [29], [30], [31], dot product and convo-
lution of two vectors [32], [33], gradient descent [34], [35], [36],
distributed optimization [37], Fourier transform [38], and linear
transformations [39]. Coded computation is applied for cloud
computing [40], mobile edge computing [41], and fog computing
[42]. As compared to this line of work, we focus on designing an
adaptive algorithm to the time-varying resources of helpers.

Multi-message communication by employing Lagrange coded
computation is considered in [43] to reduce under-utilization due
to discarding partial computations carried out by stragglers as well
as over-computation due to inaccurate prediction of the straggling
behavior. A hierarchical coded matrix multiplication is developed
in [44] to utilize both slow and fast workers. Batch-processing
based coded computing is proposed in [45] to further speed up
computation by allowing each worker to return partial results
to master. An adaptive load allocation mechanism utilizing an
LSTM-based model to predict the computation capability of the
workers is developed in [46], but for fixed-rate codes. Fountain
codes are employed in [47] and [48] for coded computation, but for
homogeneous resources. [49] extends [47] to utilize partial work
completed by stragglers. In [7], a similar problem that we consider
in this paper is considered, but with the assumption that workers
are heterogeneous in terms of their resources. Compared to this
line of work, we develop C3P, a practical algorithm that is (i)
adaptive to the time-varying resources of helpers, and (ii) does not
require any prior information about the computation capabilities
of the helpers. As shown, our proposed method reduces the task
completion delay significantly as compared to prior work.

Most of the existing work on coded computation focuses
on linear functions including matrix-vector and matrix-matrix
multiplication [3], [7], [50] [32]. Yet, there are a few works
that take into account nonlinear operations. For example, [51]
considers logistic regression as a learning algorithm, and its
inherent sigmoid function is approximated with a polynomial.
In deep neural networks, the nonlinear activation (e.g., sigmoid,

ReLU) between layers poses a difficulty for coded computation;
to circumvent this issue, [52] codes the linear operations (matrix
multiplications) at each layer separately. On the other hand, [53]
develops a learning-based approach to designing codes that can
handle non-linear computations. Although our work focuses on
linear computations, our adaptive and heterogeneity-aware coded
computation framework is complementary to the line-of-work that
focuses on non-linear operations [51], [52], [53].

The preliminary version of this work is published at the 2018
IEEE International Conference on Network Protocols (ICNP) [54].
New materials compared with the conference version include (i)
developing a new practical method for estimating runtimes of
helpers for our Coded Cooperative Computation Protocol (C3P)
which has lower communication overhead (presented in Appendix
A), (ii) providing the proofs of Lemma 2 (presented in Appendix
B), Theorem 3 (presented in Appendix C), and Theorem 4 (pre-
sented in Appendix D).

3 PROBLEM FORMULATION

Setup. We consider a setup shown in Fig. 1, where the collector
device offloads its task to helpers in the set N (where N = |N |)
via device-to-device (D2D) links such as Wi-Fi Direct and/or
Bluetooth. In this setup, all devices could potentially be mobile, so
the encounter time of the collector with helpers varies over time,
i.e., the collector can connect to less than N helpers at a time.

Application. As we described in Section 1, we focus on com-
putation of linear functions; i.e., the collector wishes to compute
y = Ax where A = (ai,j) ∈ RR×R, and x = (xi,j) ∈ RR×1.
Our goal is to determine sub-matrix An = (ai,j) ∈ Rrn×R that
will be offloaded to helper n, where rn is an integer. Note that in
the system model that we decided to consider in this paper, matrix
A is partitioned row wise. However, our proposed C3P method
can be applied for other methods of matrix partitioning, which are
studied in literature for example, [50] where optimum partitioning
of matrix A is studied by dividing the matrix both row wise and
column wise.

Coding Approach. We use Fountain codes [8], [9], which are
ideal in our dynamic coded cooperation framework thanks to their
rateless property, low encoding and decoding complexity, and low
overhead. In particular, the encoding and decoding complexity of
Fountain codes could be as low as O(R log(R)) for LT codes and
O(R) for Raptor codes and the coding overhead could be as low
as 5% [55]. We note that Fountain codes perform better than (i)
repetition codes (i.e., , replicating each individual sub-task among
the helpers) thanks to randomization of sub-tasks by mixing them,
(ii) maximum distance separable (MDS) codes [56] as MDS codes
require a priori task allocation (due to their block coding nature)
and are not suitable for the dynamic and adaptive framework that
we would like to develop, and (iii) network coding as the decoding
complexity of network coding is too high [57], which introduces
too much computation overhead at the collector and obsoletes the
computation offloading benefit.

Packetization. In particular, we packetize each row of A into
a packet and create R packets; Γ = {ρ1, ρ2, . . . , ρR}. These
packets are used to create Fountain coded packets, where νi is the
ith coded packet. The coded packet νi is transmitted to a helper,
where the helper computes the multiplication of νix and sends the
result back to the collector. R + K coded computed packets are
required at the collector to decode the coded packets, where K is
the coding overhead. Let pn,i be the jth coded packet generated
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by the collector and the ith coded packet transmitted to helper n;
pn,i = νj , j ≥ i.

Delay Model. Each transmitted packet pn,i experiences trans-
mission delay between the collector and helper n as well as
computing delay at helper n. Also, the computed packet pn,ix
experiences transmission delay while transmitted from helper n
to the collector. The average round trip time (RTT) of sending
a packet to helper n and receiving the computed packet, is
characterized as RTT data

n . The runtime of packet pn,i at helper
n is a random variable denoted by βn,i.2 Assuming that rn
packets are offloaded to helper n, the total task completion delay
for helper n to receive rn coded packets, compute them, and
send the results back to the collector becomes Dn, which is
expressed as Dn = RTT data

n +
∑rn

i=1 βn,i. Note that RTT data
n

in this formulation is due to transmitting the first packet pn,1 and
receiving the last computed packet pn,rnx. The other packets can
be transmitted while helpers are busy with processing packets; it
is why we do not sum RTT data

n across packets.
Problem Formulation. Our goal is to determine the task of-

floading set R = {r1, . . . , rN} that minimizes the total task
completion delay, i.e., we would like to dynamically determine
R that solves the following optimization problem:

min
R

max
n∈N

Dn

subject to
N∑

n=1

rn = R, rn ∈ N, ∀n ∈ N . (1)

The objective of the optimization problem in (1) is to minimize the
maximum of per helper task completion delays, which is equal to
maxn∈N Dn, as helpers compute their tasks in parallel. The con-
straint in (1) is a task conservation constraint that guarantees that
resources of helpers are not wasted, i.e., the sum of the received
computed tasks from all helpers is equal to the number of rows of
matrix A. Note that this constraint is possible thanks to coding.3

As we mentioned earlier, R + K coded computed packets are
required at the collector to decode the coded packets when we use
Fountain codes. The constraint in (1) guarantees this requirement
in an idealized scenario assuming that K = 0. The constraint
rn ∈ N makes sure that the number of tasks rn is an integer. The
solution of (1) is challenging as (i) Dn = RTT data

n +
∑rn

i=1 βn,i

is a random variable and not known a priori, and (ii) it is an integer
programming problem.

4 PROBLEM SOLUTION & C3P DESIGN

In this section, we investigate the solution of (1) for non-ergodic,
static, and dynamic setups.

4.1 Non-Ergodic Solution
Let us assume that the solution of (1) is

T best = max
n∈N

(
RTT data

n +

rbest
n∑

i=1

βn,i

)
, (2)

2. Our framework is compatible with any delay distribution, but for the
sake of characterizing the efficiency of our algorithm, and simulating its task
completion delay, we use shifted exponential distribution in Sections 5.4 and
6.

3. We note that the optimal computation offloading problem, when coding
is not employed, is formulated as minΓn maxn∈N (RTT data

n +
∑|Γn|

i=1 βn,i)
subject to ∪N

n=1Γn = Γ where Γn ⊂ Γ is the set of packets offloaded
to helper n. As seen, the optimization problem in (1) is more tractable as
compared to this problem thanks to employing Fountain codes.

where rbest
n = argminrn∈N maxn∈N

(
RTT data

n +
∑rn

i=1 βn,i

)
.

We note that (2) is a non-ergodic solution as it requires the
perfect knowledge of βn,i a priori. Although we do not have
a compact solution of T best, the solution in (2) will behave as
a performance benchmark for our dynamic and adaptive coded
cooperative computation framework in Section 5.1.

4.2 Static Solution
We assume that RTT data

n becomes negligible as compared to∑rn
i=1 βn,i. This assumption holds in practical scenarios with large

R, and/or when transmission delay is smaller than processing
delay. Then, Dn can be approximated as

∑rn
i=1 βn,i, and the

optimization problem in (1) becomes

min
R

max
n∈N

rn∑
i=1

βn,i

subject to
N∑

n=1

rn = R, rn ∈ N, ∀n ∈ N . (3)

As a static solution, we solve the expected value of the
objective function in (3) by relaxing the integer constraint, i.e.,
rn ∈ N. The expected value of the objective function of (3)
is expressed as E[maxn∈N

∑rn
i=1 βn,i], which is greater than

or equal to maxn∈N
∑rn

i=1 E[βn] = maxn∈N rnE[βn] (noting
that max(.) is a convex function, so E[max(.)] ≥ max(E[.])),
where expectation is across the packets and βn is the random
variable with the outcomes of βn,i. Assuming that the average task
completion delay is T = E[maxn∈N

∑rn
i=1 βn,i] ≥ maxn∈N rn

E[βn], (3) is converted to

min
R

T

subject to rnE[βn] ≤ T, ∀n ∈ N
N∑

n=1

rn = R. (4)

We solve (4) using Lagrange relaxation (we omit the steps of the
solution as it is straightforward); the optimal task offloading policy
becomes

rstatic
n =

R

E[βn]
∑N

n=1
1

E[βn]

, (5)

and the optimal task completion delay becomes T static =
R∑N

n=1
1

E[βn]

. Although the solution in (5) is an optimal solution of

(4), the algorithm that offloads rstatic
n sub-tasks to helper n a priori

(static allocation) loses optimality as it is not adaptive to the time-
varying nature of resources (i.e., βn,i). Next, we introduce our
Coded Cooperative Computation Protocol (C3P) that is dynamic
and adaptive to time-varying resources and approaches to the
optimal solution in (5) with increasing R.

4.3 Dynamic Solution: C3P
We consider the system setup in Fig. 1, where the collector
connects to N helpers. In this setup, the collector device offloads
coded packets gradually to helpers, and receives two ACKs for
each packet; one confirming the receipt of the packet by the helper,
and the second one (piggybacked to the computed packet pn,ix)
showing that the packet is computed by the helper. Inspired by
ARQ mechanisms [58], the collector transmits more/less coded
packets based on the frequency of the received ACKs.
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Fig. 2. Different states of the system: (a) ideal case, (b) underutilized case, and (c) congested case.

In particular, we define the transmission time interval TTIn,i
as the time interval between sending two consecutive packets,
pn,i and pn,i+1, to helper n by the collector. The goal of our
mechanism is to determine the best TTIn,i that reduces the task
completion delay and increases helper efficiency (i.e., exploiting
the full potential of the helpers while not overloading them).

TTIn,i in an ideal scenario. Let Txn,i be the time that pn,i
is transmitted from the collector to helper n, Tcn,i be the time
that helper n finishes computing pn,i, and Trn,i be the time
that the computed packet (i.e., by abusing the notation pn,ix) is
received by the collector from helper n. We assume that the time
of transmitting the first packet to each helper, i.e., pn,1, ∀n ∈ N ,
is zero; i.e., Txn,1 = 0, ∀n ∈ N .

Let us first consider the ideal scenario, Fig. 2(a), where TTIn,i
is equal to βn,i for all packets that are transmitted to helper n.
Indeed, if TTIn,i > βn,i, Fig. 2(b), helper n stays idle, which
reduces the efficient utilization of resources and increases the task
completion delay.4 On the other hand, if TTIn,i < βn,i, Fig.
2(c), packets are queued at helper n. This congested (overloaded)
scenario is not ideal, because the collector can receive enough
number of packets before all queued packets in helpers are
processed, which wastes resources.

Determining TTIn,i in practice. Now that we know that
TTIn,i = βn,i should be satisfied for the best system efficiency
and smallest task completion delay, the collector can set TTIn,i
to βn,i. However, the collector does not know βn,i a priori as it
is the computation runtime of packet pn,i at helper n. Thus, we
should determine TTIn,i without explicit knowledge of βn,i.

Our approach in C3P is to estimate βn,i as E[βn], where
expectation is taken over packets. We will explain how to calculate
E[βn] later in this section, but before that let us explain how to
use estimated E[βn] for setting TTIn,i. It is obvious that if the
computed packet pn,ix is received at the collector before packet
pn,i+1 is transmitted from the collector to helper n, the helper
will be idle until it receives packet pn,i+1. Therefore, to better
utilize resources at helper n, the collector should offload a new
packet before or immediately after receiving the computed value
of the previous packet, i.e., TTIn,i ≤ Trn,i − Txn,i should be
satisfied as in Fig. 2. Therefore, if the calculated E[βn] is larger
than Trn,i − Txn,i, then we set TTIn,i as Trn,i − Txn,i to
satisfy this condition. In other words, TTIn,i is set to

TTIn,i = min(Trn,i − Txn,i, E[βn]). (6)

4. The efficiency of helper n is defined as the fraction of time the helper is
not idle. The efficiency achieved by C3P is characterized in Section 5.4.

Calculation of E[βn]. In C3P, E[βn] is estimated using
runtimes of previous packets:

E[βn] ≈
∑mn

j=1 βn,i

mn
, (7)

where mn is the number of computed packets received at the
collector from helper n before sending packet pn,i+1. In order to
calculate (7), the collector device should have βn,i values from
the previous offloaded packets. A straightforward approach would
be putting timestamps on sub-tasks to directly access the runtimes
βn,i at the collector. However, this approach introduces overhead
on sub-tasks. Thus, we also developed a mechanism, where the
collector device infers βn,i by taking into account transmission
and ACK times of sub-tasks. The details of this approach is
provided in Appendix A.

C3P in a nutshell. The main goal of C3P is to determine
packet transmission intervals, TTIn,i, according to (6), which
is summarized in Algorithm 1. Note that Algorithm 1 has also a
timeout value defined in line 7, which is needed for unresponsive
helpers. If helper n is not responsive or the ACK (acknowledging
the successful computation of a packet) is lost, TTIn,i is quickly
increased as shown in line 6 so that fewer and fewer packets could
be offloaded to that helper. In particular, C3P doubles TTIn,i
when the timeout for receiving ACK occurs. This is inspired by
additive increase multiplicative decrease strategy of TCP, where
the number of transmitted packets are halved to backoff quickly
when the system is not responding.

After TTIn,i is updated when a transmitted packet is ACKed
or timeout occurs, this interval is used to determine the trans-
mission times of the next coded packets. In particular, coded
packets are generated and transmitted one by one to all helpers
with intervals TTIn,i until (i) TTIn,i is updated with a new
ACK packet or when timeout occurs, or (ii) the collector collects
R+K computed packets. Next, we characterize the performance
of C3P.

5 PERFORMANCE ANALYSIS OF C3P
5.1 Performance of C3P w.r.t. the Non-Ergodic Solution
In this section, we analyze the gap between C3P and the non-
ergodic solution characterized in Section 4.1. Let us first charac-
terize the task completion delay of C3P as

T C3P = max
n∈N

(
RTT data

n +

rC3Pn∑
i=1

(βn,i + Tun,i)
)
, (8)
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Algorithm 1 C3P algorithm at the collector
1: Initialize: TOn = ∞, ∀n ∈ N .
2: while R+K calculated packets have not been received do
3: if Calculated packet pn,ix is received before timeout ex-

pires then
4: Calculate TTIn,i according to (7) and (6).
5: else
6: TTIn,i = 2× TTIn,i.
7: Update timeout as TOn = 2TTIn,i.

where rC3Pn = argminrn maxn∈N

(
RTT data

n +
∑rn

i=1(βn,i +

Tun,i)
)

, and Tun,i is per packet under-utilization time at helper
n, which occurs as C3P does not have a priori knowledge of
βn,i, but it estimates βn,i and accordingly determines packet
transmission times TTIn,i according to (6). The gap between
T C3P and T best in (2) is upper bounded by:

T C3P − T best = max
n∈N

(
RTT data

n +

rC3Pn∑
i=1

(βn,i + Tun,i)
)

−max
n∈N

(
RTT data

n +

rbest
n∑

i=1

βn,i

)

≤ max
n∈N

(
RTT data

n +

rbest
n∑

i=1

(βn,i + Tun,i)
)

−max
n∈N

(
RTT data

n +

rbest
n∑

i=1

βn,i

)

≤ max
n∈N

(
RTT data

n +

rbest
n∑

i=1

βn,i

)
+max

n∈N

rbest
n∑

i=1

Tun,i

−max
n∈N

(
RTT data

n +

rbest
n∑

i=1

βn,i

)

= max
n∈N

rbest
n∑

i=1

Tun,i, (9)

where the first inequality comes from rC3Pn = argminrn maxn∈N(
RTT data

n +
∑rn

i=1(βn,i + Tun,i)
)

5 and the second inequality
comes from the fact that max(f(x) + g(x)) ≤ (max(f(x)) +
max(g(x))).6 As seen, the gap between C3P and the non-ergodic
solution is bounded with the sum of Tun,i. The next theorem
characterizes Tun,i.

Theorem 1. Tun,i is monotonically decreasing with increasing
number of sub-tasks, and limi→∞ Pr(Tun,i > 0) → 0.

Proof: Let us first consider the following lemma that determines
the conditions for having a positive Tun,i+1.

5. Note that according to (2), rbest
n minimizes the delay by utilizing the full

potential of the helpers, i.e., Tun,i is equal to zero for all helpers and thus
rbest
n = argminrn maxn∈N

(
RTT data

n +
∑rn

i=1 βn,i

)
. While rC3Pn mini-

mizes T C3P, which contains non-zero (but small value) of Tun,i. Therefore,
the choice of rn’s that minimizes T best does not necessarily minimizes T C3P

and thus the first inequality in (9) is valid.
6. Note that in (9), we assume that the runtime of packet i at helper n is

the same in both the non-ergodic solution and C3P, which is necessary for fair
comparison.

Lemma 2. The necessary and sufficient conditions to satisfy
Tun,i+1 > 0 are

i∑
j=i+1−k

βn,j < kE[βn], ∀k = 1, 2, . . . , i (10)

Proof: The proof is provided in Appendix B. □
According to the conditions given in Lemma 2, the probability

of Tun,i > 0 is calculated as:

Pr(Tun,i > 0) =

∫ E[βn]

0

∫ 2E[βn]−xi

0
. . .

∫ iE[βn]−
∑i

j=2 βn,j

0
(11)

fβn(x1, . . . , xi)dx1 . . . dxi,

where fβn
(x1, . . . , xi) is the joint probability density function of

(βn,1, . . . , βn,i). With the assumption that βn,j , j = 1, 2, ..., i is
from an i.i.d distribution, the joint probability distribution function
of (βn,1, . . . , βn,i) is the product of i probability distribution
functions:

Pr(Tun,i > 0) =

∫ E[βn]

0

∫ 2E[βn]−xi

0
...

∫ iE[βn]−
∑i

j=2 xj

0

fβn
(x1)fβn

(x2)...fβn
(xi)dx1dx2...dxi

(12)

=

∫ E[βn]

0
fβn

(xi)

∫ 2E[βn]−xi

0
fβn

(xi−1)

...

∫ (i−1)E[βn]−
∑i

j=3 xj

0
fβn

(x2)∫ iE[βn]−
∑i

j=2 xj

0
fβn(x1)dx1dx2...dxi

(13)

<

∫ E[βn]

0
fβn(xi)

∫ 2E[βn]−xi

0
fβn(xi−1)

...

∫ (i−1)E[βn]−
∑i

j=3 xj

0
fβn

(x2)dx2...dxi

(14)

=

∫ E[βn]

0
fβn

(xi−1)∫ 2E[βn]−xi−1

0
fβn

(xi−2)...∫ (i−1)E[βn]−
∑i−1

j=2 xj

0
fβn

(x1)dx1...dxi−1,

(15)

where the strict inequality of (13)<(14) comes from the strict

inequality of 0 <
∫ iE[βn]−

∑i
j=2 xj

0 fβn
(x1)dx1 < 1. This

inequality comes from two facts: (i) The integral interval of∫ iE[βn]−
∑i

j=2 xj

0 fβn(x1)dx1 is non-empty, because we have
iE[βn] −

∑i
j=2 xj > 0 from Lemma 2, and (ii) The function

inside the integral of
∫ iE[βn]−

∑i
j=2 xj

0 fβn
(x1)dx1 is greater than

zero and less than or equal to one. The reason is that fβn
(x1)

is a probability density function, where fβn
(x1) is non-zero,

because the helpers’ computation runtimes of βn,i cannot be zero
in practice. In addition, the integral value of fβn

(x1) over the
entire range of (x1) is equal to one. Therefore, the integral value
of fβn

(x1) over the non-empty interval of [0, iE[βn]−
∑i

j=2 xj ]
is strictly between zero and one. The equality of (14) = (15)
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comes from a change of variables in the integrals. (15) is equal to
Pr(Tun,i−1 > 0) and thus Pr(Tun,i > 0) < Pr(Tun,i−1 >
0). Similarly, we can show that:

Pr(Tun,j > 0) < Pr(Tun,j−1 > 0), ∀j = 2, 3, . . . , i (16)

From the above equation, we can conclude that as i gets larger,
Pr(Tun,i > 0) gets smaller, and limi→∞ Pr(Tun,i > 0) → 0
is satisfied. This concludes the proof. □

We can conclude from Theorem 1 that the rate of the increase
in the gap between C3P and the non-ergodic solution decreases
with increasing the number of sub-tasks and eventually the rate
becomes zero for R → ∞. Therefore, the gap becomes finite
even for R → ∞.

5.2 Performance of C3P w.r.t the Static Solution
In this section, we analyze the performance of C3P as compared to
the static solution characterized in Section 4.2. The next theorem
characterizes the task completion delay of C3P as well as the
optimal task offloading policy.
Theorem 3. The task completion delay of C3P approaches to

T C3P ≈ R+K∑N
n=1

1
E[βn]

, (17)

with increasing R and the number of offloaded tasks to helper
n is approximated as

rC3Pn ≈ R+K

E[βn]
∑N

n=1
1

E[βn]

. (18)

Proof: Proof is provided in Appendix C. □
Theorem 3 shows that the task completion delay of C3P is

getting close to the static solution T static characterized in Sec-
tion 4.2 with increasing R. The gap between T static and T C3P

is K∑N
n=1

1
E[βn]

which is due to the coding overhead of Fountain

codes, which becomes negligible for large R.

5.3 Performance of C3P w.r.t. Repetition Codes
In this section, we demonstrate the performance of C3P as com-
pared to repetition coding with a dynamic and weighted Round
Robin (WRR) scheduling through an illustrative example. Rep-
etition codes with WRR scheduling works as follows. Uncoded
packets from the set Γ = {ρ1, ρ2, . . . , ρR} are offloaded to
helpers one by one (in a round robin manner, i.e., using TTIn,i
in (6) to determine when to send the next packet to helper n)
depending on their sequence in Γ. For example, ρ1 is offloaded
to helper 1, ρ2 is offloaded to helper 2, and so on. When all
the packets are offloaded from Γ, we start again from the first
packet in the set (so it is a repetition code). Note that whenever
a packet is computed and its corresponding ACK is received by
the collector, the packet is removed from Γ. Thus, this dynamic
WRR scheduling continues until Γ becomes an empty set. We
use TTIn,i in (6) to determine the next scheduling time for
helper n. This dynamic WRR is a good candidate to compare the
performance of our C3P as it offloads the sub-tasks to helpers
by taking into account the heterogeneity of helpers but using
repetition coding. The next example demonstrates the benefit of
C3P as compared to this repetition coding mechanism with WRR
scheduling.
Example 2. We consider the same setup in Example 1. We assume

that per-packet runtimes are β1,1 = 1, β1,2 = 1, β1,3 =

0.5, β1,4 = 1, β1,5 = 1.5, β2,1 = 1.5, β2,2 = 3.5, and
β3,1 = 3, β3,2 = 2.5, and the transmission times of packets
are negligible.
As seen in Fig. 3(a), dynamic WRR scheduler sends ρ1, ρ2,
and ρ3 to helpers 1, 2, and 3, respectively at time t = 0.
At time t = 1, the computed packet ρ1x is received at the
collector, and ρ4, which is the next packet selected by WRR
scheduler, is transmitted to helper 1. Similarly, at time t = 1.5,
ρ2x is received at the collector, and ρ5 is transmitted to helper
2. Similarly, the next packets are transmitted to helpers until
the results for all packets are received at the collector, which
is achieved at time t = 5. As seen, the resources of helper 1
is wasted while computing ρ3, because those resources could
have been used for computing a new packet. C3P addresses
this problem thanks to employing Fountain codes.
In particular, at time t = 0, three Fountain coded packets of
ν1, ν2, ν3 are created and transmitted to the three helpers, i.e.,
p1,1 = ν1, p2,1 = ν2, p3,1 = ν3. At time t = 1, a new coded
packet of ν4 is created and transmitted as a second packet
to helper 1, i.e., p1,2 = ν4. This continues until 6 computed
coded packets (assuming that the overhead of Fountain codes,
i.e., K is zero) are received at the collector, which is achieved
at time t = 3.5. □

Example 2 shows that the task completion delay is reduced
from 5 to 3.5 when we use Fountain codes, which is significant.
Section 6 shows extensive simulation results to support this
illustrative example.

5.4 Efficiency of C3P

In this section, we characterize the efficiency of C3P in the
worst case scenario when per task runtimes follow the shifted
exponential distribution. We call it the worst case efficiency,
because we take into account per packet under-utilization Tun,i

in efficiency calculation, but the fact that Tun,i is monotonically
decreasing, which is stated in Theorem 1, is not used.

Theorem 4. Assume that the runtime of each packet, i.e., βn,i,
is a random variable according to an i.i.d shifted exponential
distribution of

fβn
(t) = Pr(βn,i < t) = 1− e−µn(t−an), (19)

with mean an + 1/µn and shifted value of an. The expected
value of the duration that helper n is underutilized per packet
is characterized as:

E[Tun] =


1

(eµn)

(
1− e(µnRTT data

n )
)
+RTT data

n ,

if RTT data
n < 1

µn
1

(eµn)
, otherwise.

(20)

Proof: The proof is provided in Appendix D. □
We define the efficiency of helper n in the worst case as

γn = 1−E[Tun]/E[βn]. Note that E[Tun] is the expected time
that helper n is underutilized per packet in the worst case, while
E[βn] is the expected runtime duration, i.e., the expected time
that helper n works per packet. Thus, E[Tun]/E[βn] becomes
the under-utilization ratio of helper n in the worst case, so γn =
1 − E[Tun] / E[βn] becomes the worst case efficiency. From
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Fig. 3. Performance of C3P with respective to repetition codes with dynamic WRR
scheduling.

(20) and replacing E[βn] with an + 1/µn, γn is expressed as the
following:

γn =


1+anµn−µnRTT data

n −1/e+exp(µnRTT data
n −1)

1+anµn
,

if RTT data
n < 1/µn

e(1+anµn)−1
e(1+anµn)

, otherwise.

(21)

We show through simulations (in Section 6) that, (i) γn in (21)
is larger than 99%, which is significant as (21) is the worst case
efficiency, and (ii) C3P’s efficiency is even larger than γn as γn in
(21) is the efficiency in the worst case, where the under-utilization
time period has the maximum value.

6 PERFORMANCE EVALUATION OF C3P
In this section, we evaluate the performance of our algorithm;
Coded Cooperative Computation Protocol (C3P) via simulations
and using real Android-based smartphones.

6.1 Simulation Results
We consider two scenarios: (i) Scenario 1, where the system
resources for each helper vary over time. In this scenario, the
runtime for computing each packet pn,i, ∀i at each helper n is
an i.i.d. shifted exponential random variable with shifted value an
and mean an + 1/µn, and (ii) Scenario 2, where the runtime for
computing packets in helper n does not change over time, i.e.,
βn,i = βn, ∀i, and Bn, ∀n ∈ N is a shifted exponential random
variable with shifted value an and mean an + 1/µn.7

In our simulations, each simulated point is obtained by averag-
ing over 200 iterations for N = 100 helpers. The channel capacity
for sending each packet from the collector to each helper n and
from helper n to the collector is a Poisson random variable with
the average selected uniformly between 10 Mbps and 20 Mbps for
each helper n.

The size of a transmitted packet pn,i is set to Bx = 8R bits,
where R is the number of rows of matrix A, and it varies from
500 to 20, 000 in our simulations. The sizes of a computed packet
pn,ix and an acknowledgement packet are set to Br = 8 bits and
Back = 1 bit, respectively. These are the parameters that are used
for creating all plots unless otherwise is stated.

7. Most literature work in the area of coded computation [3], [7] including
HCMM (which is used as the main baseline for performance comparison in
simulation results), considers the shifted exponential distribution for comput-
ing runtimes of packets and proposed solutions for this specific distribution.
This choice of distribution for the simulation results in our paper is motivated
by the model proposed by authors in [10] and [11] for computing runtimes of
workers / helpers.
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Fig. 4. Task completion delay vs. number of rows/packets for (i) Scenario
1, and (ii) Scenario 2, where the runtime for computing one row by helper
n is selected from a shifted exponential distribution with an = 0.5, ∀n ∈
N and µn, which is selected uniformly from {1, 2, 4}.

Task Completion Delay vs. Number of Rows: We evaluate
C3P for Scenarios 1 and 2 and compare its task completion
delay with: (i) Static solution, which is the task completion delay
characterized in Section 4.2 for both Scenarios 1 and 2. (ii) Non-
ergodic solution, which is a realization of the non-ergodic problem
characterized in Section 4.1 by knowing βn,i a priori at the
collector and setting TTIn,i as βn,i. (iii) Uncoded: rn packets
without coding are assigned to each helper n, and the collector
waits to receive computed values from all helpers. The number
of assigned packets to each helper n is inversely proportional
to the mean of βn,i, i.e., rn ∝ 1

an+1/µn
. (iv) HCMM: Coded

cooperative framework developed in [7] using block codes. We
introduce 5% coding overhead for C3P, static, and non-ergodic
solutions.

Note that the running time values of helpers are set for
evaluating the performance of C3P only. The runtime values are
not known a priori by C3P. Indeed, no knowledge of the runtime
distributions is known by C3P. However, this is not the case for
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the baseline methods. More specifically, the static solution has the
knowledge of the means of all shifted exponential distributions,
i.e., , µn’s. The non-ergodic solution has the knowledge of all
runtime values a priori, i.e., , βn,i’s. The uncoded and HCMM
methods have the knowledge of means and shifted values of all
distributions, i.e., , µn’s and an’s.

Fig. 4(a) shows completion delay versus number of rows
for Scenario 1, where the runtime for computing each packet
by helper n, βn,i, ∀i, is a shifted exponential random variable
with shifted value of an = 0.5 and mean of an + 1/µn, where
µn is selected uniformly from {1, 2, 4}. As seen, C3P performs
close to the static and non-ergodic solutions. This shows the
effectiveness of our proposed algorithm. Static and non-ergodic
solutions are close to each other confirming the minimal impact of
the integer relaxation from (3) to (4). In addition, C3P performs
better than the baselines. In particular, in average, 30% and 24%
improvement is obtained by C3P over HCMM and no coding,
respectively. Fig. 4(b) considers the same setup but for Scenario
2, where the runtime for computing rn packets by helper n is
rnβn, where βn is selected from a shifted exponential distribution
with an = 0.5, ∀n ∈ N and µn, which is selected uniformly
from {1, 2, 4}. As seen, for this scenario, C3P performs close
to the static and non-ergodic solutions. C3P performs better than
HCMM, and HCMM performs better than no coding. In particular,
in average, 40% and 69% improvement is obtained by C3P over
HCMM and no coding, respectively. Note that uncoded performs
better than HCMM for Scenario 1, as HCMM is designed for
Scenario 2, so it does not work well in Scenario 1. C3P performs
well in both scenarios.

Fig. 5 shows completion delay versus number of rows for both
Scenarios 1 and 2, where the runtime for computing the rows
by each helper n, is from a shifted exponential distribution with
µn, n ∈ N selected uniformly from {1, 3, 9} and an = 1/µn

(different shifted values for different helpers). As seen, C3P
performs close to static and non-ergodic solutions and much better
than the baselines. In particular, for Scenario 1, more than 30%
and 15% improvement is obtained by C3P over HCMM and
no coding, respectively. Also, for Scenario 2, in average, 42%
and 73% improvement is obtained by C3P over HCMM and no
coding, respectively.

Efficiency: We calculated the efficiency of helpers for different
simulation setups and compared it with the theoretical efficiency
obtained in (21) for Scenario 1. For all simulation setups, the aver-
age efficiency over all helpers was around 99% and the theoretical
efficiency was a little lower than the simulated efficiency. E.g.,
for R = 8000 rows, where µn, n ∈ N is selected uniformly
from {1, 3, 9} and an = 1/µn, the average of efficiency over
all helpers is 99.7072% and the average of theoretical efficiency
is 99.4115%. This is expected as the theoretical efficiency is
calculated for the worst case scenario.

We also calculate the efficiency of helpers for Scenario 2. For
all simulation setups, the average efficiency over all helpers was
around 99%, e.g., for R = 8000 rows, where µn, n ∈ N is
selected uniformly from {1, 3, 9} and an = 1/µn, the average of
efficiency over all helpers was 99.9267%. Note that the theoretical
efficiency for Scenario 1 is 100%. The simulated efficiency is
lower than the theoretical one, because the simulation underuti-
lizes the helpers when transmitting the very first packet to each
helper, i.e., before the collector estimates the resources of helpers.

C3P as Compared to Repetition Coding and Round Robin
Scheduling: Fig. 6 shows the percentage of improvement of

0 2000 4000 6000 8000 10000

Number of Rows

0

20

40

60

80

T
a
s
k
 C

o
m

p
le

ti
o

n
 D

e
la

y C3P

Static solution

Non-ergodic solution

Uncoded

HCMM

(a) Scenario 1

0 2000 4000 6000 8000 10000

Number of Rows

0

50

100

150

T
a
s
k
 C

o
m

p
le

ti
o

n
 D

e
la

y

C3P

Static solution

Non-ergodic solution

Uncoded

HCMM

(b) Scenario 2

Fig. 5. Task completion delay vs. number of rows/packets for (i) Scenario
1, and (ii) Scenario 2, where the runtime for computing one row by
each helper n is selected from a shifted exponential distribution with
µn, which is selected uniformly from {1, 3, 9} for different helpers and
an = 1/µn, ∀n ∈ N
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Fig. 6. Percentage of improvement of C3P over repetition codes with
dynamic WRR scheduling in terms of the task completion delay.

C3P over repetition coding with a dynamic and weighted RR
scheduling in terms of task completion delay. The number of
rows is selected as R = 2000 with 5% overhead for C3P and
the number of helpers varies from N = 100 to N = 600. The
transmission rate for sending each packet from the collector to
each helper n and from helper n to the collector is a Poisson
random variable with the average selected uniformly between 0.1
Mbps and 0.2 Mbps for each helper n. The other parameters
are the same as the parameters used in Fig. 4(a). As seen, by
increasing the number of helpers, more improvement is gained
by C3P compared to the repetition coding with a dynamic WRR
scheduling.

6.2 Evaluation in a Testbed

We implemented a testbed of a collector and multiple helpers using
real mobile devices, specifically Android 6.0.1 based Nexus 6P
and Nexus 5 smartphones. All the helpers are connected to the
collector device using Wi-Fi Direct connections. We conducted
our experiments using our testbed in a lab environment where
several other Wi-Fi networks were operating in the background.
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Fig. 7. Task completion delay versus number of helpers.
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Fig. 8. Task completion delay versus per sub-task delay.

We located all the devices in close proximity of each other (within
a few meters distance).

We implemented both C3P and repetition coding with WRR
scheduling in our testbed. The collector device would like to
calculate matrix multiplication y = Ax, where A is a 1K ×
10K matrix and x is a 10K × 1 vector. Matrix A is divided into
20 sub-matrices, each of which is a 50 × 10K matrix. A sub-task
to be processed by a helper is the multiplication of a sub-matrix
with vector x. There is one collector device (Nexus 5) and varying
number of helpers (Nexus 6P).

Fig. 7 shows task completion delay versus number of helpers
for both C3P and repetition codes with WRR scheduling. In this
setup, each helper receives a sub-task, processes it, and waits
for a random amount of time (exponential random variable with
mean 10 seconds), which may arise due to other applications
running at smartphones, and then sends the result back to the
collector. As can be seen, the task completion delay reduces with
increasing number of helpers in both algorithms. When there is
one helper C3P performs worse, which is expected. In particular,
C3P introduces coding overhead, and the number of helpers is
very small to see the benefit of coding. On the other hand, when
the number of helpers increases, we start seeing the benefit of
coding. For example, when the number of helpers is 5, C3P
improves 14% over repetition codes with WRR scheduling. This
result confirms our simulation results in Fig. 6 in a testbed with
real Android-based smartphones.

Fig. 8 shows the task completion delay versus per sub-task
random delays at helpers. There are 5 helpers in this scenario. As
can be seen, C3P improves more over repetition codes with WRR
scheduling when delay increases, as it increases heterogeneity, and
C3P is designed to take into account heterogeneity.

7 CONCLUSION

In this paper, we designed a Computation Control Protocol (C3P),
where heterogeneous edge devices with computation capabilities
and energy resources are connected to each other. In C3P, a
collector device divides tasks into sub-tasks, offloads them to
helpers by taking into account heterogeneous resources. C3P is (i)
a dynamic algorithm that efficiently utilizes the potential of each
helper, and (ii) adaptive to the time-varying resources at helpers.
We analyzed the performance of C3P in terms of task completion
delay and efficiency. Simulation and experiment results in an
Android testbed confirm that C3P is efficient and reduces the
completion delay significantly as compared to baselines.
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Collector Helper n

Fig. 9. Demonstrating RTT data
n through an example.

APPENDIX A: CALCULATING E[βn] AT THE COL-
LECTOR

We define and use the parameters residual time XTTn,i and round
trip times of computed packets; RTT data

n,i to estimate E[βn]. Next,
we will first show how we characterize XTTn,i and RTT data

n,i , and
then present how we estimate E[βn] using XTTn,i and RTT data

n,i .
Characterization of XTTn,i. The collector side has the knowl-

edge of the transmission time Txn,i of packet pn,i, and time
Trn,i that the computed packet pn,ix is received. Thus, the time
between transmitting a packet and receiving its computed value,
defined as Ttn,i = Trn,i − Txn,i, can be calculated at the
collector. On the other hand, to better utilize resources at helper n,
the collector should offload a new packet before (or immediately
after) receiving the computed value of the previous packet, i.e., the
following condition should be satisfied: TTIn,i ≤ Ttn,i. Thus,
we can write TTIn,i = Ttn,i −XTTn,i+1, where XTTn,i+1 is
the residual time that the collector measures in our C3P setup and
is equal to:

XTTn,i+1 = Trn,i − Txn,i+1. (22)

Characterization of RTT data
n,i . We define RTT data

n,i as the round
trip time (RTT) of packet pn,i sent to helper n. More precisely,
RTT data

n,i is equal to transmission delay of packet pn,i from the
collector to helper n plus the transmission delay of the calculated
packet pn,ix from helper n to the collector. Although RTT data

n,i is
round trip time, it can not be directly measured in the collector,
as the collector only knows the time period between sending a
packet and receiving the computed packet, which is equal to the
sum of transmission and computing delay. Thus, in C3P, we cal-
culate RTT data

n,i using RTT ack
n,i , which is the time period between

sending packet pn,i and receiving its ACK at the collector. Fig. 9
demonstrates the difference between RTT data

n,i and RTT ack
n,i . Note

that RTT ack
n,i can be directly measured by employing ACKs. We

can represent RTT ack
n,i as RTT ack

n,i = Bx/C
up
n,i + Back/C

down
n,i ,

where Bx is the size of the transmitted packet, Back is the size
of the ACK packet, and Cup

n,i and Cdown
n,i are the uplink (from the

collector to helper n) and downlink (from helper n to the collector)
transmission rates experienced by packet pn,i and its ACK.

Note that RTT data
n,i is characterized as RTT data

n,i = Bx/C
up
n,i+

Br/C
down
n,i , where Br is the size of the computed packet; pn,ix.

Assuming that uplink and downlink transmission rates are the
same, which is likely in IoT setup, we can obtain RTT data

n,i as:

RTT data
n,i =

Bx +Br

Bx +Back
RTT ack

n,i . (23)

As we discussed earlier RTT ack
n,i can be directly measured by

the collector and used in (23) to determine RTT data
n,i . Next, we

characterize the average value of data round trip time of helper
n, i.e., RTT data

n as exponential weighted moving averages of per
packet round trip time, RTT data

n,i :

RTT data
n = αRTT data

n,i + (1− α)RTT data
n , (24)

where α is a weight satisfying 0 < α < 1.

Now that we characterized XTTn,i and RTT data
n and dis-

cussed how we can measure these parameters at the collector, we
explain how to use these parameters to calculate E[βn] at the
collector.

Calculation of E[βn]. We formulate E[βn] as follows:

E[βn] ≈
∑mn

j=1 βn,i

mn
=

Tcn,i − Tun

mn
, (25)

where Tcn,i is the time that helper n finishes computing pn,ix,
Tun is the estimate made at the collector about the total (cumula-
tive) time that helper n is underutilized, and mn is the number of
packets that helper n processed until (and including) packet pn,i.
Since Tcn,i is the time instance that helper n finishes computing
packet pn,ix, and Tun is the cumulative time that helper n is
underutilized, their difference gives us the total time that helper n
has been busy since the starting time. Total busy time of helper n,
i.e., Tcn,i − Tun is normalized by the total number of processed
packets mn to determine E[βn]. Next, we characterize Tcn,i and
Tun in terms of XTTn,i and RTT data

n .

The collector estimates Tcn,i as follows

Tcn,i ≈ Trn,i −
Br

Bx +Br
RTT data

n , (26)

where Trn,i is the time that the computed packet pn,ix is
received by the collector from helper n, so it is known by the
collector. Br

Bx+Br
RTT data

n is the backward trip time estimated by
the collector using (24) and packet sizes.

The next step is to characterize Tun, which is the estimate
made at the collector about the total (cumulative) time that helper
n is underutilized. Tun is the sum of all per packet under-
utilization times, shown by Tun,i. In particular, Tun,i is defined
as the time period that the helper is idle between computing
packet pn,i−1x and pn,ix. In order to calculate Tun,i, we should
determine the state of the system, i.e., if the system is in the
ideal, underutilized, or congested case, Fig. 2. As shown in
Fig. 2, XTTn,i ≥ RTT data

n in the ideal and congested cases.
Note that these cases occur when packet pn,i is received at the
helper meanwhile the helper is computing pn,i−1x or right after
the helper has computed pn,i−1x. In this setup, since there is
no under-utilization, Tun,i is equal to 0. On the other hand,
XTTn,i < RTT data

n in the underutilized case scenario. As
seen in Fig. 2(b), underutilized case occurs when packet pn,i is
received at the helper after a while that the helper has finished
computing packet pn,i−1x. In this setup, RTT data

n −XTTn,i is the
approximate duration that helper n is idle before calculating pn,ix,
i.e., Tun,i ≈ RTT data

n −XTTn,i. Therefore, Tun is updated after
pn,ix is received by the collector as the following:

Tun ≈ Tun +max{0, RTT data
n −XTTn,i}. (27)

As seen, E[βn] can be calculated from the parameters that are
known by the collector. The process of calculating E[βn] by the
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Algorithm 2 Calculating E[βn] by the collector

1: Initialize: Txn,1 = 0, RTT data
n = 0, ∀n ∈ N .

2: if An ACK for successful transmission of packet pn,i is
received from helper n then

3: Update RTT data
n according to (24).

4: if Calculated packet pn,ix and the corresponding computation
ACK is received then

5: if i == 1 then
6: Tun = 0.
7: else
8: XTTn,i = Trn,i−1 − Txn,i.
9: Update Tun according to (27).

10: Calculate E[βn] from (25).

collector is summarized in Algorithm 2.8

APPENDIX B: PROOF OF LEMMA 2
To prove Lemma 2, first we characterise Tun,i and then find the
closed form conditions for Tun,i > 0.

7.1 Characterising Tun,i

According to (6), in C3P the packets are transmitted from the
collector to helper n with the time interval equal to min(Trn,i −
Txn,i, E[βn]). We first provide the queuing model for the case
of TTIn,i equal to E[βn] and then show that the queueing model
for C3P is the same as this queue with the only difference that the
idle time in C3P is smaller than the idle time for the case with
TTIn,i equal to E[βn].

Queueing model for TTIn,i equal to E[βn]. The system of the
collector and helper n for the case with TTIn,i equal to E[βn]
can be modeled as a queue, where each packet pn,i is arrived at
helper n with the arrival rate of 1 packet per E[βn] and processed
with the service time of βn,i. In the steady state case, (i.e., the
case that the queue is empty at the time packet pn,i is received
at the helper), if the service time is larger than the arrival time,
i.e., βn,i > E[βn], the next received packet of pn,i+1 will be
queued at the helper for the time period equal to the difference
between the service time and the arrival time, i.e., βn,i − E[βn].
On the other hand, if the service time is smaller than the arrival
time, i.e., βn,i < E[βn], processing of the received packet
pn,i+1 will be delayed for the time period equal to the difference
between the arrival time and the service time, i.e., E[βn] − βn,i,
after computing the previous packet of pn,i. This is the idle
(underutilized) time period of the queue. Now let us consider the
general case where the queue is not empty when packet pn,i+1

is received at helper n with the queueing delay of Tqn,i, i.e., it
takes Tqn,i for helper n to start computing the last packet in its
queue. In this case, if βn,i < E[βn], then the underutilized time
period between computing packet pn,i and packet pn,i+1 at the
helper is equal to max(0, E[βn]− βn,i − Tqn,i) and thus Tun,i

is characterized as

Tun,i = max
(
max(0, E[βn]− βn,i)− Tqn,i, 0

)
. (28)

We will formulate Tqn,i later in this section, but before that let us
formulate Tun,i for C3P.

8. Note that if the ACK for receiving a packet pn,i by the helper is lost,
then (23) will not be updated at that round and thus the most recent value of
RTT data

n will be used for calculating E[βn] in (25).

Formulating Tun,i for C3P. The difference between C3P and
the case when TTIn,i is equal to E[βn], is that in C3P the idle
time is reduced. In particular, if the collector notices that the helper
is idle (by receiving the computed packet pn,ix before sending
packet pn,i+1), it reduces TTIn,i, the time interval between
sending packet pn,i and pn,i+1, to Trn,i − Txn,i. In this case,
from Fig. 2(b), the parameter XTTn,i becomes zero, which results
in reduced underutilized time of Tun,i to RTT data

n . Therefore,
Tun,i for C3P is equal to:

Tun,i = min
(
max

(
max(0, E[βn]− βn,i)− Tqn,i, 0

)
,

RTT data
n

)
. (29)

Formulating Tqn,i. The queueing delay Tqn,i is defined as
the period that packet pn,i should wait in the queue to be
computed by helper n. We consider two cases to calculate Tqn,i:
(i) βn,i−1 > E[βn]: this is the congested case scenario, where
pn,i is received at the helper while the helper is busy computing
the previously received packets. Therefore, packet pn,i should
be queued at the helper queue and its queueing delay is equal
to the summation of βn,i−1 − E[βn] and the queueing delay
for computing its previous packet pn,i−1, which is equal to
Tqn,i−1 and thus Tqn,i = βn,i−1 − E[βn] + Tqn,i−1. (ii)
βn,i−1 < E[βn]: this is the underutilized case scenario if there
is no packet in the queue when packet pn,i is received at the
collector. In this case, the helper will be idle for the time period of
E[βn] − βn,i−1 after it computes packet pn,i−1 until it receives
packet pn,i and starts computing it. However, if there are packets
in the queue at the time packet pn,i is received at helper n, then
two cases may occur: (a) Tqn,i−1 − (E[βn] − βn,i−1) > 0: in
this case, packet pn,i still should wait in the queue but its queueing
delay is reduced compared to the queueing delay for packet pn,i−1

by E[βn] − βn,i−1. (b) Tqn,i−1 − (E[βn] − βn,i−1) < 0: in
this case, the queueing delay for packet pn,i is zero and pn,i
will be computed by helper n as soon as it is received at the
helper. The reason is that helper n finishes computing the previous
packet pn,i−1 earlier than packet pn,i is received at the helper and
remains idle for the period of (E[βn]−βn,i−1)−Tqn,i−1 before
it starts computing packet pn,i. By considering all these cases,
Tqn,i can be formulated as:

Tqn,i = max(βn,i−1 − E[βn] + Tqn,i−1, 0). (30)

7.2 Finding The Closed Form Conditions For Tun,i > 0

From (29), for Tun,i+1 to be positive, i.e., max(max(0, E[βn]−
βn,i)−Tqn,i, 0) > 0, the following condition should be satisfied:

max(0, E[βn]− βn,i)− Tqn,i > 0 (31)

⇔ max(0, E[βn]− βn,i) > Tqn,i (32)

⇔ E[βn]− βn,i > Tqn,i (33)

By replacing Tqn,i from (30), we have:

E[βn]− βn,i > max(βn,i−1 − E[βn] + Tqn,i−1, 0) (34)

⇔
{

E[βn]− βn,i > 0 (35)

E[βn]− βn,i > βn,i−1 − E[βn] + Tqn,i−1 (36)

⇔
{

E[βn] > βn,i (37)

2E[βn]− βn,i − βn,i−1 > Tqn,i−1 (38)
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(37) generates the first condition of Lemma 2, i.e., k = 1. By
replacing Tqn,i−1 in (38), we have:

2E[βn]− βn,i − βn,i−1 > max(βn,i−2 − E[βn] + Tqn,i−2,

0) (39)

⇔
{

2E[βn] > βn,i + βn,i−1 (40)

3E[βn]− βn,i − βn,i−1 − βn,i−2 > Tqn,i−2 (41)

(40) generates the second condition of Lemma 2, i.e., k = 2.
Intuitively, we can prove all other conditions of Lemma 2 by
replacing Tqn,i−2 in (41). In the following, we give a formal
proof using the proof by induction.

First we prove by induction that (kE[βn] −∑i
j=i−k+1 βn,j) > Tqn,i−k+1 is satisfied for

∀k = 1, 2, . . . , i − 1 when Tun,i > 0; We already showed
in (33) that this is true for k = 1. If this inequality is true for
k = m, i.e., (mE[βn] −

∑i
j=i+1−m βn,j) > Tqn,i−m+1, then

by replacing Tqn,i−m+1 with its equivalent from (30), we have:

(mE[βn]−
i∑

j=i+1−m

βn,j) > (42)

max(βn,i−m − E[βn] + Tqn,i−m, 0)

⇒(mE[βn]−
i∑

j=i+1−m

βn,j) > (43)

(βn,i−m − E[βn] + Tqn,i−m)

⇒((m+ 1)E[βn]− βn,i−m)−
i∑

j=i+1−m

βn,j > Tqn,i−m

(44)

⇒((m+ 1)E[βn]−
i∑

j=i−m

βn,j > Tqn,i−m, (45)

and thus the inequality is true for k = m + 1. This proves
(kE[βn] −

∑i
j=i+1−k βn,j) > Tqn,i−k+1, ∀k = 1, 2, . . . , i

from which we conclude (kE[βn] >
∑i

j=i+1−k βn,j), ∀k =
1, 2, . . . , i as Tqn,i−k is positive. Therefore, we proved that the
i conditions of (kE[βn] >

∑i
j=i+1−k βn,j), ∀k = 1, 2, . . . , i is

necessary for Tun,i > 0.

Now, we prove the sufficiency of conditions in Lemma 2;
i.e., if (kE[βn] >

∑i
j=i+1−k βn,j), ∀k = 1, 2, . . . , i, then

Tun,i+1 > 0 or equivalently (E[βn] − βn,i) > Tqn,i. First
we prove by induction that (i − l)E[βn] −

∑i
j=l+1 βn,j >

Tqn,l+1 is satisfied for ∀l = 0, 1, . . . , i − 1, when (kE[βn] >∑i
j=i+1−k βn,j), ∀k = 1, 2, . . . , i; For l = 0, we just need

to make k equal to i in (kE[βn] >
∑i

j=i+1−k βn,j), as the
queueing delay for the first received packet at helper n, Tqn,1, is
zero. Now we assume that (i−l)E[βn]−

∑i
j=l+1 βn,j > Tqn,l+1

is satisfied for l = m:

(i−m)E[βn]−
i∑

j=m+1

βn,j > Tqn,m+1 (46)

⇒(i−m− 1)E[βn]−
i∑

j=m+2

βn,j >

βn,m+1 − E[βn] + Tqn,m+1 (47)

On the other hand, by replacing k = i − m − 1 in (kE[βn] >∑i
j=i+1−k βn,j), we have (i−m−1)E[βn]−

∑i
j=m+2 βn,j >

0, and thus we have:

(i−m− 1)E[βn]−
i∑

j=m+2

βn,j

> max(βn,m+1 − E[βn] + Tqn,m+1, 0) (48)

= Tqn,m+2. (49)

The above inequality shows that (i− l)E[βn]−
∑i

j=l+1 βn,j >
Tqn,l+1 is satisfied for l = m + 1. Therefore, from proof by
induction, (i − l)E[βn] −

∑i
j=l+1 βn,j > Tqn,l+1 is satisfied

for ∀l = 0, 1, . . . , i−1. By replacing l = i−1 in (i− l)E[βn]−∑i
j=l+1 βn,j > Tqn,l+1, we have (E[βn] − βn,i) > Tqn,i

or equivalently Tun,i+1 > 0. This proves the sufficiency of
conditions in Lemma 2.

This concludes the proof.

APPENDIX C: PROOF OF THEOREM 3
First we show that the queueing delay of Tqn,i is small and then
use this property to prove Theorem 3.

According to (30), the queueing delay Tqn,i, which is the de-
lay for packet pn,i to be computed by helper n, is equal to the sum
of (E[βn]−βn,i−1) and Tqn,i−1, if this sum is positive, otherwise
it is qual to zero. If we look at this equation more closely, we
observe that we can reformulate Tqn,i as

∑i−1
j=i′(E[βn]− βn,j),

where i′ < i − 1 corresponds to the last time that helper n has
been seen as underutilized, i.e., i′ is the largest j < i − 1, for
which Tqn,j−1 = 0. Therefore, the average of Tqn,i is equal to
E[Tqn,i] =E[

∑i−1
j=i′(E[βn]−βn,j)] = 0. Therefore, in average,

the queueing delay of C3P is zero. Next, we use this property to
prove Theorem 3.

C3P sends packets to each helper n with the time interval less
than or equal to E[βn] according to (6). Since the queueing delay
of C3P is small, this time interval will result in the delay of DC3P

n

less than or equal to rC3Pn E[βn] for calculating rC3Pn packets by
helper n. On the other hand, the collector stops sending packets
to helpers once it receives R + K packets collectively from all
helpers. Again, since the queueing delay of C3P is small, i.e.,
the period of time packets wait in the queue of helper n to be
computed is small, at the time that R+K packets are collected at
the collector, there might be only small number of packets waiting
at the queue of each helper and thus

∑N
n=1 r

C3P
n ≃ R + K . In

addition, with small queueing delay, all helpers will finish their
assigned tasks approximately at the same time; this results in (17)
and (18).

This concludes the proof. □

APPENDIX D: PROOF OF THEOREM 4
With the assumption that βn,i−1 is from a shifted exponential
distribution with shifted value of an and mean of an + 1/µn,
E[βn] in (29) can be replaced with an+1/µn. In addition, Tqn,i
is equal to zero as we consider the worst case scenario. Therefore,
we have:

Tun,i =



RTT data
n ,

if an < βn,i−1 < an + 1
µn

−RTT data
n

an + 1
µn

− βn,i−1,

if an + 1
µn

−RTT data
n < βn,i−1 < an + 1

µn

0, otherwise,
(50)
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where, the random variable βn,i−1 is always greater than its
shifted value, an, i.e., the condition βn,i−1 > an is always satis-
fied. From (50), the value of variable Tun,i changes depending on
the value of RTT data

n and the value of the distribution parameter
1/µn. We decompose (50) as follows:

Tun,i =

{
T̃n,i, if RTT data

n < 1/µn

Tn,i, otherwise,
(51)

where,

T̃n,i =



RTT data
n ,

if an < βn,i−1 < an + 1
µn

−RTT data
n

an + 1
µn

− βn,i−1,

if an + 1
µn

−RTT data
n < βn,i−1 < an + 1

µn

0, otherwise,
(52)

and,

Tn,i =

{
an + 1/µn − βn,i−1, if an ≤ βn,i−1 ≤ an + 1/µn

0, otherwise
(53)

To prove Theorem 4, we find the expected values of T̃n,i and Tn,i.
From (52), the average of T̃n,i is calculated as:

E[T̃n] =

∫
fβn,i−1

(t)T̃n,idt

=

∫ an+1/µn−RTT data
n

an

µn exp(−µn(t− an))RTT data
n dt

+

∫ an+
1

µn

an+
1

µn
−RTT data

n

µn exp(−µn(t− an))(an +
1

µn
− t)dt

= RTT data
n + 1/µn(exp(−1)− exp(µnRTT data

n − 1)).
(54)

Similarly, from (53), we can calculate the average of Tn,i:

E[Tn] =

∫
fβi−1(t)Tn,idt

=

∫ an+1/µn

an

µn exp(−µn(t− an))(an + 1/µn − t)dt

= 1/µn exp(−1). (55)

By replacing the obtained expected values of T̃n,i and Tn,i in
(51), we have:

E[Tun] =


RTT data

n + 1
µn

(e−1 − exp(µnRTT data
n − 1)),

if RTT data
n < 1

µn
1
µn

e−1, otherwise.
(56)

This concludes the proof.


