PolyDot Coded Privacy Preserving Multi-Party
Computation at the Edge

Elahe Vedadi
University of Illinois at Chicago
evedad2 @uic.edu

Abstract—We investigate the problem of privacy preserv-
ing distributed matrix multiplication in edge networks using
multi-party computation (MPC). Coded multi-party computa-
tion (CMPC) is an emerging approach to reduce the required
number of workers in MPC by employing coded computation.
Existing CMPC approaches usually combine coded computation
algorithms designed for efficient matrix multiplication with MPC.
We show that this approach is not efficient. We design a novel
CMPC algorithm; PolyDot coded MPC (PolyDot-CMPC) by
using PolyDot codes. We exploit “garbage terms” that naturally
arise when polynomials are constructed in the design of PolyDot-
CMPC to reduce the number of workers needed for privacy-
preserving computation. We show that entangled polynomial
codes, which are consistently better than PolyDot codes in coded
computation setup, are not necessarily better than PolyDot-
CMPC in MPC setting.

I. INTRODUCTION

Privacy-preserving distributed computing in edge networks
is crucial for Internet of Things (IoT) applications including
smart homes, self-driving cars, wearables, etc. Multi-party
computation (MPC), which is a privacy-preserving distributed
computing framework [1], is a promising approach. The main
goal of MPC is to calculate a function of data stored in
multiple parties such as end devices and edge servers in edge
computing systems. In this paper, we focus on BGW (Ben-
Or, Goldwasser and Widgerson) [2], an information theoretic
MPC solution due to its lower computing load as well as
quantum safe nature [3] rather than cryptographic solutions
[4], [5]. Despite its potential, BGW should adapt to the limited
resources of edge networks.

Coded-MPC (CMPC) [6], [7] aims to improve BGW and
make it adaptive to limited edge resources by employing coded
computation [8], [9]. Coded computation advocates splitting
computationally intensive tasks into smaller ones, coding these
sub tasks using error correcting codes, and distributively
processing coded tasks in parallel at workers (end devices or
edge servers in our setup). This idea turns out to address the
straggling workers problem [8], [9]. CMPC uses the coded
computation idea in MPC setup to reduce the required number
of workers, which is limited in edge systems.

This work was supported in parts by the Army Research Lab (ARL)
under Grant W911NF-2120272 and National Science Foundation (NSF) under
Grants CCF-1942878 and CNS-1801708.

Yasaman Keshtkarjahromi
Seagate Technology
yasaman.keshtkarjahromi @seagate.com

Hulya Seferoglu
University of Illinois at Chicago
hulya@uic.edu

Existing CMPC approaches [6], [7] usually combine coded
computation algorithms designed for efficient matrix multipli-
cation with MPC. In this paper, we show that this approach
is not efficient with regard to reducing the required number
of workers as it does not consider an important relationship
between coded computation and MPC. Actually, the required
number of workers (or efficiency of a code) is directly related
with the powers of the created polynomials in coded computa-
tion. For example, the efficiency of polynomial codes reduces
if there are gaps in the powers of the polynomials in coded
computation. On the other hand, our key observation shows
that such gaps help to reduce the required number of workers
in CMPC setup. In particular, when there are gaps among
powers of the coded terms, multiplication of the coded terms
may create additional terms that we name “garbage terms”,
which can be used to reduce the required number of workers.
The next example illustrates our key observation.

Example 1: MatDot-Coded MPC." Let us assume that there
are two end devices; source 1 and source 2 that own matrices
A and B, respectively. Our objective is to compute Y = A7 B,
which is a computationally exhaustive task for large A and B
matrices, while preserving privacy. To achieve this goal, end
users need the help of edge servers (workers). Assume that
matrices A and B are divided into two parts row-wise such
that: AT = [A; As] and BT = [B; By], where Y = ATB
is constructed as ATB = A1 B; + A3 Bs.

When the number of colluding workers is z = 2, source
1 and source 2 construct polynomials F4(z) = A; + Asx +
Azx?® + Ay2® and Fg(z) = Bix + By + Bza? + Bya3. The
first two terms, namely, coded terms in these polynomials are
determined by MatDot codes [10], and the second two terms,
i.e., secret terms, are designed by our proposed PolyDot-
CMPC method, which we explain later in the paper. We
note that the degree of the secret terms starts from two. The
reason is that the multiplication of the coded terms becomes
(A]_B]_ + AQBQ).Z’ + Al BQ + AgBl.’I}Q, where the only term we
need to recover Y = AT B is (A1 By + Ao By)x. Other terms,
namely, A, B, and A, B2, are called garbage terms.

After Fa(c,) and Fp(a,) are sent from source 1 and
source 2 to workers, worker n determines H(a,) =

! Although our PolyDot-CMPC mechanism uses PolyDot codes, we use
MatDot codes in this example to explain the “garbage terms” in a simple
way.

Falan)Fp (an), where H(z) = A1Bs + (AlB1 + AsBo)z +
2?22 H;x'. Next, each worker n computes the multiplication
of r, with H(w,) and creates the polynomial G, (z) as
Gn(z) = roH (o) + R{z + R{™ 22, where the selection
of r,’s, R™’s, and R{"s will be explained later in the
paper. Then, worker n sends G, (c,) to worker n’. After
all data exchanges, worker n’, knowing G, (), calculates
their sum and sends (o) = 22:1 G (o) to the master
(one of the edge devices that would like to get the calculated
value of Y = ATB), where I(v) = A;B; + A3By +
ST R™Mz + 327 R™a2. In the last phase, the master
reconstructs I(x) once it receives I(ay,) from 1 + 2z = 3
workers. After reconstructing I(x) and determining all co-
efficients, Y = ATB = A;B; + A3Bs is calculated in a
privacy-preserving manner. The number of terms with non-
zero coefficients in H(x) is equal to 7. Thus, 7 workers
are required for privacy-preserving computation. For the same
number of colluding workers and matrix partitions, polynomial
coded MPC [6], which divides matrices A and B into two
column-wise partitions, requires 11 workers.?]

The above example demonstrates the importance of the
garbage terms for the efficiency of CMPC algorithms. Based
on this observation and exploiting the garbage terms, we
design PolyDot-CMPC. We show that PolyDot-CMPC reduces
the required number of workers for several colluding workers
as compared to entangled polynomial coded MPC (Entangled-
CMPC) [7]. This result is surprising as entangled polynomial
codes are consistently better than PolyDot codes in coded
computation setup [11]. We also compare PolyDot-CMPC
with baselines; SSMM [12], and GCSA-NA [13]. We show
that PolyDot-CMPC performs better than SSMM [12] and
GCSA-NA [13] for a range of colluding workers.

The structure of the rest of this paper is as follows.
Section II presents our system model. Section III outlines the
attack model we consider in this work. Section IV presents our
PolyDot-CMPC algorithm as well as its performance analysis
as compared to baselines. Section V provides simulation
results of PolyDot-CMPC. Section VI concludes the paper.

II. SYSTEM MODEL

We consider an MPC system containing F sources, /N work-
ers, and a master node, where all of them are edge devices with
limited resources. There exists no connection among source
nodes, but there are connections between sources and workers.
All workers are connected to each other, and there exists a
connection between the master node and each worker. Private
data . is stored at source node e. The goal is to compute
Y = f(x1,-.-,xg) in a privacy-preserving manner. The
function f(.) stands for any polynomial function, but we focus
on the multiplication of two square matrices (which can be
easily extended to general matrices). In particular, we consider
X1 = A and x» = B, and calculate Y = f(A, B) = ATB.

2This example is a special case of both PolyDot-CMPC and Entangled-
CMPC [7], when matrices A and B are partitioned row-wise, but the idea of
garbage terms is not discussed in [7].

Given the above system model, we use the following
notation in the rest of this paper. Considering two arbitrary
sets I and J, with integer elements ¢, € Z, we have; (i)
I+J={i+j:iel, jedhI+j={i+j:iel}
and (i) |I| stands for the cardinality of I. We define] as
Q! ={i,...,j}. We show the divisibility with k|m, i.e., m is
divisible by k. Considering a polynomial f(z) = Y7, a;z’,
P(f(z)) is defined as the set of powers of the terms in f(z)
with non-zero coefficients, i.e., P(f(z)) ={i€Z:0<i<
n, a; # 0}. Finally, if a matrix A is divided into s row-wise
and ¢ column-wise partitions, it is represented as

Ao Apt—1

A= (1)

Asflﬁ Asfljfl
III. ATTACK MODEL

A semi-honest system model is considered in this paper
where all parties (master, workers, and sources) are honest and
follow the exact protocol defined by PolyDot-CMPC, but they
are eavesdropping and potentially spying about private data.
We design PolyDot-CMPC such that it is information theoret-
ically secure against z colluding workers, where z is less than
half of the total number of workers, ie, z < N/2. More
specifically, we provide privacy requirements from source,
worker and master nodes’ perspective next.

Sources: The private data of each source node, should be
kept private from all other sources. Our system model satisfies
this condition since, source nodes do not communicate. Also,
the worker nodes and the master node do not send data to any
of the source nodes.

Workers: There should not be any privacy violation
when workers receive data from sources, communicate with
other workers and the master. Such privacy requirement
should be satisfied if no more than z workers collude.
More formally, the following condition should be satisfied;

At x6l U ({Gulan),n' € O}, U Fulan))) =
~ neN, B e€fly
H(x1,...,XxE), where H is the Shannon entropy, «, is from

finite field and known by all workers, G- () is the data that
worker n gets from worker n’, F,(c,) is the data that worker
n gets from source e, and N, is a subset of {0,..., N} with
cardinality less than or equal to z.

Master: Everything, except the final result Y, should be kept
private from the master node. In particular, the following con-
dition should be satisfied; H(x1,...,xz|Y, U I(an)) =

neQ
H(x1,...,xelY), where I(,) is the data received from
worker n by the master node.

IV. PoLyDot CopeED MPC (PoLYDoT-CMPC)

In this section, we present our PolyDot coded MPC frame-
work (PolyDot-CMPC) that employs PolyDot coding [10] to
create coded terms. Our design is based on leveraging the
garbage terms that are not required for computing Y = AT B
and reusing them in the secret terms.

A. PolyDot-CMPC

Sources. Source 1 and source 2 divide matrices A € F™*™
and B € F"™*™ into s row-wise and ¢ column-wise partitions
as in (1), where s,t € N, and s|m and ¢|m hold. Using
the splitted matrices A;; € AT and By, € B, where
il € Qg_l, ik € Qg_l, they generate polynomials F(x)
and Fp(z), which consist of coded and secret terms, i.e.,
Fi(x) = Cy(z) + Si(x), i/ € {A, B}, where Cy/(z)’s are
the coded terms defined by PolyDot codes [10], and S;/ (z)’s
are the secret terms that we construct. Next, we discuss the
construction of Sy (), hence F4(z) and Fp(z) in detail.

Let P(Cy(x)) and P(Cp(x)) be sets of the powers of the
polynomials C'4(z) and Cg(x) with coefficients larger than
zero. P(C4(x)) and P(Cp(z)) are expressed as

P(Ca(z))={i+tjeN:ic Q" jei!
={0,...,ts — 1}, 2)
P(Cp(x)) ={t(s—1—k)+10 eN: k€ Q5 1€ Q) "}
={tqd +10' eN:¢q € Q57" 1€ Q'Y 3)

where s,t € N, and ¢’ = ¢(2s — 1).

As seen from (2) and (3), P(Ca(z)Cp(z)) is the set of
the powers of the polynomial C'4(x)Cp(z) with coefficients
larger than zero, and is expressed as P(Cy(x)Cp(z)) =
{i+ts—14+47—k +t2s—-1) € N : ¢l €
QL Gk € QS*I} Furthermore, we know from [10]
that Y;; Z —oAi;jBj;, which are the coefficients of

pitt(s— Dues T in Cy(x)Cp(x), are the elements of the
final result Y = AT B. Therefore, we define {i + (s — 1) +
tl(2s—1) € N:i,1 € Q5 ') as the set of important powers of
C4(xz)Cp(x). We define the secret terms S4(z) and Sp(z)
so that the important powers of Cy(x)Cp(x) do not have
common terms with P(C'4(z)Sg(x)), P(Sa(z)Cp(z)), and
P(Sa(z)Sp(x)). The reason is that Y;;’s should not have
any overlap with the other components for successful recovery
of Y. The following conditions should hold to guarantee this
requirement.

Cl:i+t(s—1)+tl(2s —1) € P(Sa(z)) + P(Cg(z)),

C2i+t(s—1)+t(2s—1) € P(Sa(z)) + P(Sp(z)),

C3:i+t(s—1)+tl(2s — 1) € P(Sp(x)) + P(Ca(z)),
“)

where i,1 € Q5" and s,¢ € N. We determine P(S4(z)) and
P(Sp(x)) according to the following set of rules; (i) deter-
mine all elements of P(S4(x)), starting from the minimum
possible element, satisfying C1 in (4), (ii) fix P(Sa(z)) in C2
of (4), and find all elements of the subset of P(Sp(x)), starting
from the minimum possible element, that satisfies C2; we call
this subset as P’(Sp(z)), (iii) determine all elements of the
subset of P(Sp(x)), starting from the minimum possible ele-
ment, that satisfies C3 in (4); we call this subset as P (Sg(z)),
and (iv) find the intersection of P’'(Sp(z)) and P”(Sp(z))
to form P(Sp(z)). In our PolyDot-CMPC mechanism, we

8
~—

)

define the polynomials F4(z) and F(z), based on the above
strategy as formalized in Theorem 1.

Theorem 1: With the following design of F4(x) and Fg(x)
in PolyDot-CMPC, the conditions in (4) are satisfied.

| Fa,(x) z>ts—tand s, t#1
FA(I){FAQ(x) s<ts—tori=lors=1
t—1 s—1 —1p—1
SYEES w W IELCRED ol e SRR
1=0 j=0
LC4(x) éSAl(ﬂC)

z—1—pt(s—1)

Y

u=0

Aurt(s—1) 40 (p1) P (6)

254, (z)

t—1s5—1 z—1

Fa () =)D Apye™ 43 At tirte)

i=0 j=0 u=0

204 (2) £54,(2)

z>Ttort=1ors=1
ez <rands,t#1 (8)
z< TH and s,t # 1

s—1t—1 z—1

= Z Z Bk,l{L‘t(S—l—k)-‘rG/l +ZBr$tS+9/(t_l)+r,

k=0 1=0 r=0

LCp(x) £S5, (z)

)

s—1t—1
FBQ (.13) — Z Z Bk7lxt(sflfk)+9’l
k=0 1=0

L£0p ()

T—2p'—1

+ Z Z B(d+0’l’)$ts+9/l/+d

d=0 I'=0

£Sp, ()
z2—1—p'(T—2+1)

o

v=0

D ts+0'p’+v
B(U+T—z+1+9’(p’—1))x P ;

é5’52 (ZE)
(10)

s—1t—1

z—1
FBg ZZBkll‘ s—1— k+0l+ZB ptstv a1

k=0 1=0 v=0

L£05(x)

min{ Lfs;_ltj,t —

£5p,(x)

where p = 1}, 7 = 0 — ts —

t, p = min{[EZ=5],t — 1}. Moreover, Ao,
A(u+t(s,1)+9/(p,1)), and A,, are selected independently
and uniformly at random in F%#*%, and B,, Bd+9/l/,
B(U+T—z+1+9’(p’—l))7 and B, are chosen independently and

m., m

uniformly at random in F’s %7
Proof: The proof is provided in Appendix A in [14]. (]
The degrees of secret terms in Theorem 1 are selected by
exploiting the “garbage terms”, which are all the terms coming
from the multiplication of C4(x) and Cpg(x), except for the
terms with indices i + t(s — 1) + 6'l, i, € Qf', as these
terms will be used to recover Y = AT B.
Workers. Worker n receives Fa(ay) and Fg(ay,)
from source 1 and source 2, and computes H(a,) =
Fa(a,)Fp(ay). Then, worker n calculates G, () as

t—1t—1 z—1
Gn(x) = Z ZTS’Z)H(O&n).’L‘i+tl + Z Rgl)xter“’, (12)
i=0 1=0 w=0

where Ri(f)’s are selected independently and uniformly at
random from F% %, and r{Y°s are obtained satisfying
Z;;é AyBjy = SN r,(f’l)H(an) using the Lagrange in-
terpolation rule, and known by all workers.

Next, worker n shares G, (/) with other workers n’. After
all the communications among workers, each worker n’ has
access to all G, (av,/)’s. Worker n’ computes the summation of
all G, (an/)’s, and sends this result, i.e., (v,), to the master
node, where I(z) = 25:1 G ().

Master. The master node can reconstruct the polynomial
I(z) by receiving deg(I(z))+1 = t>+z results from workers,
and it directly gives the desired output Y = A” B. The reason
is that the coefficients of the first ¢ terms of I(x) are exactly
equal to the elements of the final result Y = AT B.

Theorem 2: The required number of workers for multipli-
cation of two massive matrices A and B employing PolyDot-
CMPC, in a privacy preserving manner while there exist z
colluding workers in the system and due to the resource
limitations each worker is capable of working on at most i
fraction of each input matrix, is expressed as follows

Y1, ts<z ort=1

e, ts—t<z<tsandt,s#1
Nooybovcmre = 3, ts—2t<z<ts—tandt s#1

Yy, vV <z<ts—2tandt,s#1

vs, z<v andt,s#1

v, s=1landt>zandt#1

13)

where 11 = (p+2)ts+60' (t—1)+22—1, 1o = 2ts+6'(t—1)+
3z—1, 93 = 2ts+0'(t—1)+22—1, 14 = (t+1)ts+(t—1)(z+
t—1)+22—1,95 = 0't+z, and g = > + 2t +tz — 1, s|m,
and t|m are satisfied, p = min{| =% |, t — 1}, ¢/ = 2ts — ¢
and v’ = max{ts — 2t — s 4 2, LE=2t+1}

Proof: The proof is provided in Appendix B in [14]. (|

PolyDot-CMPC satisfies privacy requirements stated in Sec-
tion II. The proof directly follows from [6] (Theorem 3).

B. PolyDot-CMPC in Perspective

This section provides a theoretical analysis for the number
of workers required by PolyDot-CMPC as compared to the
baselines; Entangled-CMPC [7], SSMM [12] and GCSA-NA
[13]°.

Lemma 3: PolyDot-CMPC is more efficient than Entangled-
CMPC with regards to requiring smaller number of workers
in the following regions:

D z>ts, p< =L t#£1

2) ts—s<z<ts,t—1>s, s,t #1

3) (t—1)2<z<tt—1),s=t—1,st#1

4) ts —t —min{0,1 — 21‘/5__35}<z§t.sfs7 t>3, s#1

5) s=2,t=3, 2=4

6) t=2,s=2,2=1,2

7) max{st—t—s— 25, ts—2t} <z <ts—t, t>2, t>

s, s#1

) t<s<2 ts—s<z<ts—t, s,t#1

9 t=2,3<s5<4,2(5-2)<2z<2(s—-1)

10) st —2t<z<ts—s, t>2,t<s<2t

11) s>2t, ts—2t<z<ts—t, s,t#1

12) 2t > s, max{ts—2t —s+2, E=2H} < » < min{st—
2, 2ts —t2 +t —2s+ 1}, s,t #1
§s>2, ts—s<z<ts—2t t#1,2
d<s<z<2s—4,t=2
ts—2t—s+2<z<ts—s, 2t <s, s,t#1
st—25—t—ﬁ < z < max{ts — 2t — s +
2, =208 Fg f £ 1L
In all other regions for the values of the system parameters
s, t, and z, PolyDot-CMPC requires the same or larger number
of workers.

Proof: The proof is provided in Appendix C.A in [14]. O

Lemma 4: PolyDot-CMPC performs better than SSMM in
terms of requiring smaller number of workers in the following
two regions:

1) z > max{ts,ts —t+

2) (st —t) <z <ts.
In all other regions for the values of the system parameters
s,t, and z, PolyDot-CMPC requires the same or larger number
of workers.

Proof: The proof is provided in Appendix C.B in [14].]

Lemma 5: PolyDot-CMPC performs better than GCSA-
NA in terms of requiring smaller number of workers in the
following regions:

D z>tsp< Lt #1

2) s<t,ts—t<z<min{ts,t(t—1)—1}

3) z<ts—t

4) s=1,t >zt #2.

13)
14)
15)
16)

Fiht#1

3GCSA-NA is constructed for batch matrix multiplication. However, by
considering the number of batches as one, it becomes an appropriate baseline
to compare PolyDot-CMPC.

6000 T
—PolyDot-CMPC
5000 |—Entangles-cMPC| 7 |
--*SSMM .

GCSANA |
400~ - J

3000 Pt |

2000~

Required Number of Workers

1000 1

0
0 50 1 15 200 250 300
Number of Colluding Workers (z)

Fig. 1. Required number of workers versus number of colluding workers.

The parameters are set to s =4, t =15 and 1 < z < 300.

In all other regions for the values of the system parameters
s, t, and z, PolyDot-CMPC requires the same or larger number
of workers.

Proof: The proof is provided in Appendix C.C in [14]. (I

V. PERFORMANCE EVALUATION

In this section, the performance of PolyDot-CMPC is evalu-
ated via simulations and compared with the baseline methods,
(1) Entangled-CMPC [7], (ii) SSMM [12], and (iii)) GCSA-NA
[13]. In this setup we have m = 36000, i.e., both A and B
are square matrices with the size of 36000 x 36000.

Fig. 1 shows the number of workers required for computing
Y = AT B versus the number of colluding workers, where s =
4, t =15, and 1 < z < 300. For small number of colluding
workers, ie., 1 < z < 48, SSMM [12] performs the best
as it requires minimum number of workers. PolyDot-CMPC
performs better than all the baselines when 49 < z < 180.
On the other hand, GCSA-NA [13] and Entangled-CMPC [7]
have similar performance and perform better than the other
mechanisms when 181 < 2z < 300. These results confirm
Lemmas 3, 4, and 5 as PolyDot-CMPC performs better than
the baselines for a range of colluding workers.

Fig. 2 illustrates the required number of workers versus
s/t, the number of row partitions divided by the number
of column partitions, for fixed z = 42 and st = 36. As
seen, PolyDot-CMPC performs better than the other base-
line methods concerning the required number of workers
for (s,t) € {(2,18),(3,12),(4,9)}, since in this scenario
we have 42 = z > ts = 36, and for these values of
s,t, we have p equal to 2, 1 and 1, respectively. Thus,
conditions 1 in Lemmas 3, 4, and 5 are satisfied. However, for
(s,1) € {(1,36),(6.6),(9,4),(12,3), (18,2). (36, 1)}, these
conditions are no longer satisfied.

VI. CONCLUSION

We have studied the problem of privacy preserving matrix
multiplication in edge networks using MPC. We have proposed
a new coded privacy-preserving computation mechanism;
PolyDot-CMPC, which is designed by employing PolyDot
codes. We have used “garbage terms” that naturally arise
when polynomials are constructed in the design of PolyDot-
CMPC to reduce the number of workers needed for privacy-
preserving computation. We have analyzed and simulated

‘
©PolyDot-CMPC
¢ led-CMPC | |

2500F \;

2000 —

1500

-*-SSMM
GCSA-NA

1000

Required Number of Workers (N)

107 10° 10'

Fig. 2. Required number of workers versus s/t for fixed z = 42 and st = 36.

PolyDot-CMPC, and demonstrated that the garbage terms are
important in the design and efficiency of CMPC algorithms.

REFERENCES

[1] J. Saia and M. Zamani, “Recent results in scalable multi-party compu-
tation,” in SOFSEM 2015: Theory and Practice of Computer Science,
G. F. Italiano, T. Margaria-Steffen, J. Pokorny, J.-J. Quisquater, and
R. Wattenhofer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 24-44.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 351-371.

[3] U. Maurer, “Information-theoretic cryptography,” in Advances in Cryp-
tology — CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 47-65.

[4] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), 1986, pp.
162-167.

[5]1 S. M. O. Goldreich and A. Wigderson, “How to play any mental game,”
in Proc. of the 19th STOC, 1987, pp. 218-229.

[6] H. Akbari-Nodehi and M. A. Maddah-Ali, “Secure coded multi-party
computation for massive matrix operations,” IEEE Transactions on
Information Theory, vol. 67, no. 4, pp. 2379-2398, 2021.

[71 H. A. Nodehi, S. R. H. Najarkolaei, and M. A. Maddah-Ali, “Entangled
polynomial coding in limited-sharing multi-party computation,” in 2018
IEEE Information Theory Workshop (ITW), 2018, pp. 1-5.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, March 2018.

[9] S.Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-

puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.

109-128, Jan 2018.

M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and

P. Grover, “On the optimal recovery threshold of coded matrix multipli-

cation,” in 2017 55th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). 1EEE, 2017, pp. 1264-1270.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation

in distributed matrix multiplication: Fundamental limits and optimal

coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.

1920-1933, 2020.

[12] J. Zhu, Q. Yan, and X. Tang, “Improved constructions for secure multi-
party batch matrix multiplication,” IEEE Transactions on Communica-
tions, vol. 69, pp. 7673-7690, 2021.

[13] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “Gcsa codes with noise

alignment for secure coded multi-party batch matrix multiplication,”

IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1,

pp. 306-316, 2021.

E. Vedadi, Y. Keshtkarjahromi, and H. Seferoglu, ‘“Polydot coded

privacy preserving multi-party computation at the edge,” 2021. [Online].

Available: https://arxiv.org/abs/2106.08290

(10]

[11]

[14]

