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Abstract—Multi-party computation (MPC) is promising for
designing privacy-preserving machine learning algorithms at
edge networks. An emerging approach is coded-MPC (CMPC),
which advocates the use of coded computation to improve the
performance of MPC in terms of the required number of
workers involved in computations. The current approach for
designing CMPC algorithms is to merely combine efficient coded
computation constructions with MPC. Instead, we propose a
new construction; Adaptive Gap Entangled polynomial (AGE)
codes, where the degrees of polynomials used in computations
are optimized for MPC. We show that MPC with AGE codes
(AGE-CMPC) perform better than existing CMPC algorithms
in terms of the required number of workers as well as storage,
communication and computation load.

I. INTRODUCTION

MASSIVE amount of data is generated at edge networks.
For example, the data generated by IoT devices are

expected to reach 73.1 ZB by 2025, growing from 18.3 ZB
in 2019 [1]. This vast data is expected to be processed in
real-time in many time sensitive edge applications, which is
extremely challenging if not impossible with existing central-
ized cloud due to limited bandwidth between an edge network
and centralized cloud [2]–[4].

We consider a distributed computing system at the edge,
where data is generated and collected by end devices, Fig. 1.
Computationally intensive aspects are distributively processed
by edge servers and a central server collects the outcome of
the processed data. In this context, it is crucial to design
efficient computation mechanisms at edge servers by taking
into account the limited resources, including the number of
edge serves, computing power, storage, and communication
cost, while preserving privacy of data at end devices.

Multi-party computation (MPC) is a privacy-preserving dis-
tributed computing framework [5]. In MPC, several parties
(end devices in Fig. 1) have private data and the goal is to
compute a function of data collectively with the participation
of all parties, while preserving privacy, i.e., each party only
knows its own information. MPC can be categorized into cryp-
tographic solutions [6], [7] and information-theoretic solutions
[8]. In this paper, our focus is on the information-theoretic
MPC solution; BGW (Ben-Or, Goldwasser and Widgerson)
[8] using Shamir’s secret-sharing scheme [9] thanks to its
lower computational complexity and quantum safe nature [10].
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Fig. 1. An edge computing system. End devices generate and/or collect data,
edge servers process data, and a central server collects the outcome of the
processed data.
Despite its potential, BGW does not take into account the
limited resources at the edge.

An emerging approach is coded-MPC (CMPC), which ad-
vocates the use of coded computation [11], [12] to improve
the performance of BGW in terms of the required number of
workers (edge servers in Fig. 1) involved in computationally
intensive computations. For example, there may be two end
devices in Fig. 1 possessing private matrices A and B. The
goal is to calculate Y = ATB with the help of edge servers,
while preserving privacy. This multiplication is a computation-
ally intensive task when the sizes of A and B are large.

The common approach for designing CMPC algorithms is
to merely combine efficient coded computation constructions
with MPC. This approach fails short of being efficient as
it does not take into account the interaction between coded
computation and MPC [13]. Indeed, CMPC mechanisms based
on Shamir’s secret shares create a polynomial for each matrix
for matrix multiplication with two parts; coded and secret
terms [14]–[16]. The multiplication of matrices, i.e., the mul-
tiplication of these polynomials create cross terms of coded
and secret terms, some of which are not used in the decoding
process, so named garbage terms [13].

The garbage terms are crucial for the performance of
CMPC. In fact, even if a construction is optimized for coded
computation, it may not perform well in CMPC. PolyDot
coded MPC [13] is better than entangled polynomial coded
MPC (Entangled-CMPC) [14] in terms of the required number
of workers for a range of colluding workers. This result is
surprising as entangled polynomial codes always outperform



PolyDot codes in terms of the number of required workers
for coded computation [17]. Motivated by this observation,
we propose a new construction in this paper; Adaptive Gap
Entangled (AGE) codes, where the degrees of polynomials
used in computations are optimized for MPC. We show
through analysis and simulations that MPC with AGE codes
performs better than existing CMPC algorithms including
PolyDot-CMPC [13], Entangled-CMPC [14], SSMM [15], and
GCSA-NA [16] in terms of the required number of workers
as well as storage, communication and computation load.

II. RELATED WORK
Coded computation advocates higher reliability and smaller

delay in distributed computation by introducing redundancy in
the offloaded sub-tasks to the workers [18]. Significant effort is
being put on constructing codes for fast and distributed matrix-
vector multiplication [18], [19], matrix-matrix multiplication
[17], [20]–[22], dot product and convolution of two vectors
[23], [24], gradient descent [25]–[27], distributed optimization
[28], Fourier transform [29], and linear transformations [30].
As compared to this line of works, we consider privacy-
preserving computation at edge networks.

Privacy is studied in coded computation. In [31]–[33], the
problem of matrix-matrix multiplication is considered for
the case that a master possesses the input data and would
like to perform multiplication on the data with the help of
parallel workers, while the data is kept confidential from the
workers. In [34] and [35], privacy is addressed for the same
system model of master-worker setup, but for matrix-vector
multiplication. As compared to this line of work, we focus on
the MPC system setup, where there are multiple sources each
having private input data, and the goal is that a master learns
the result of computation of matrix multiplication on the input
data with the help of parallel workers. The input data should
be kept confidential from workers and the master according to
the information-theoretic security.

There is a line of work investigating CMPC. Lagrange
Coded Computing (LCC) is designed [36] in a coded compu-
tation setup for security and privacy. This work is extended for
MPC setup [37]. The problem of limited memory at each party
in MPC setup is addressed in [38] by leveraging polynomial
coded computation. This work is generalized using entangled
polynomial codes for block-wise matrix multiplication [14].
Secure multi-party batch matrix multiplication is considered in
[15], [16], which modify the MPC system setup by employing
the idea of noise alignment to reduce the communication load
among workers. As compared to this line of work, we design
AGE-CMPC by taking into account the interaction of coded
computation and MPC for the limited edge resources.

III. SYSTEM MODEL

Notations. Set of polynomial degrees: The set of powers
of the terms in a given polynomial f(x) =

∑n
i=0 aix

i with
non-zero coefficients is denoted by P(f(x)), i.e., P(f(x)) =
{i ∈ Z : 0 ≤ i ≤ n, ai ̸= 0}.

Set definitions and operations: We use the following stan-
dard notations for arbitrary sets A and B, where the elements

of A, B are integers, i.e., a, b ∈ Z; (i) A+B = {a+ b : a ∈
A, b ∈ B}, and (ii) A+ b = {a+ b : a ∈ A}. The cardinality
of A is shown by |A|. The set of integers between a and b is
represented by Ωb

a, i.e., Ωb
a = {a, . . . , b}. Furthermore, k|m

means that m is divisible by k, i.e., mod {m, k} = 0.
Matrix splitting: If a matrix A is divided into s row-wise

and t column-wise partitions, it is represented as

A =

 A0,0 . . . A0,t−1

...
. . .

...
As−1,0 . . . As−1,t−1

 , (1)

where for A ∈ Fm×m, Aj,i ∈ Fm
s ×m

t for j ∈ Ωs−1
0 and

i ∈ Ωt−1
0 .

Setup. We consider a system setup with E end devices
(sources), N edge servers (workers), and a central server
(master) as shown in Fig. 1. Each source e ∈ E , where
E = |E|, has private data Xe ∈ Fµ×ν , where F is a finite
field. Each source is connected to all workers, and offloads
its data to workers for privacy-preserving computation. Each
worker Wn, n ∈ N (|N | = N ) is connected to other workers
as well as the master. The sources, workers, and the master
are all edge devices with limited available resources.

Application. The goal is to calculate a function of per
source data; Y = γ(X1, . . . , XE), while the privacy of
data X1, . . . , XE is preserved. While function γ(.) could
be any polynomial function in MPC setup, we focus on
matrix multiplication as (i) we would like to present our
ideas in a simple way, and (ii) matrix multiplication forms
an essential building block of many signal processing and
machine learning algorithms (gradient descent, classification,
etc.) [11]. In particular, we consider Y = γ(A,B) = ATB,
where X1 = A, X2 = B, A ∈ Fm×m, B ∈ Fm×m. We
note that we use square matrices from two sources for easy
exposition, and it is straightforward to extend our results for
more general matrices and larger number of sources.

Attack Model. We assume a semi-honest system model,
where the sources, the workers, and the master follow the
defined protocols, but they are curious about the private data.
We assume that z among N workers can collude to maximize
the information that they can access. We design our AGE-
CMPC mechanism against z colluding workers to provide
privacy-preserving computation.

Privacy Requirements. We define the privacy requirements
from the perspective of the sources, workers, and the master.

Source perspective: Source devices should not learn any-
thing about the private data of any other sources. This require-
ment is satisfied in our system as there is no communication
among the source devices. Also, the workers and the master
do not send any information to sources.

Worker perspective: Workers should not learn
anything when they communicate with each other as
well as when they receive data from the sources, i.e.,
H̃(χ1, . . . , χE |

⋃
n∈Nc

({Gn′(αn), n
′ ∈ ΩN

1 }, ∪
e∈ΩE

1

Fe(αn))) =

H̃(χ1, . . . , χE), where H̃ denotes the Shannon entropy, αn



is a a priori parameter associated by worker Wn, Gn′(αn) is
the data each worker Wn receives from another worker Wn′ ,
Fe(αn) is the data received by each worker Wn from source
e for n ∈ Nc, and Nc is any subset of N satisfying |Nc| ≤ z.

Master perspective: The master node should not
learn anything more than the final result Y , i.e.,
H̃(χ1, . . . , χE |Y,

⋃
n∈N

I(αn)) = H̃(χ1, . . . , χE |Y ), where

I(αn) is the data that the master receives from Wn.

IV. ADAPTIVE GAP ENTANGLED POLYNOMIAL CODING

In this section, we introduce Adaptive Gap Entangled poly-
nomial (AGE) codes and present our CMPC design with AGE
codes; AGE-CMPC. We provide the proofs of all our theorems
and lemmas in the extended version of this paper [39].

A. AGE Codes

We consider the generalized formulation [17] for coded
computation of matrices A and B, where A and B are
represented with the following polynomials.

CA(x) =
t−1∑
i=0

s−1∑
j=0

Ai,jx
jα+iβ ,

CB(x) =

s−1∑
k=0

t−1∑
l=0

Bk,lx
(s−1−k)α+θl (2)

where α, β, θ ∈ N, Ai,j ∈ AT and Bk,l ∈ B. In this setup,
instead of multiplying Y = ATB, we can multiply CA(x)
and CB(x), which can be decomposed to support distributed
computing. Several codes that have been designed for coded
computation can be considered as the special case of (2) by
considering different values of (α, β, θ). For example, PolyDot
codes [22] correspond to (α, β, θ) = (t, 1, t(2s − 1)), while
Generalized PolyDot codes [40] and entangled polynomial
codes [17] follow (α, β, θ) = (1, s, ts), where t is the number
of column-wise partitions and s is the number of row-wise
partitions of matrices A and B.

We design our AGE codes by considering (α, β, θ) =
(1, s, ts+λ), where λ is a parameter in the range of 0 ≤ λ ≤ z,
which we optimize to achieve the minimum required number
of workers for MPC. We note that entangled polynomial codes
[17] also follows (2) for α = 1 and β = s, but as they are
designed for coded computation, θ is optimized to achieve the
minimum recovery threshold, so θ is set to θ = ts. Instead, we
set θ = ts+λ and optimize λ. Next, we prove the decodability
of our AGE codes.

Theorem 1: AGE code guarantees the decodability of Y =
ATB from the polynomial CY (x) = CA(x)CB(x). □

B. AGE-CMPC

Phase 1 - Sources Share Data with Workers. In the first
phase, sources split their matrices A and B into s ≥ 1 row-
wise and t ≥ 1 column-wise partitions, where s|m and t|m
are satisfied. We note that in AGE-CMPC, we exclude the
case of no partitioning, i.e., s = t = 1, where coding is
not required. Assuming Ai,j ∈ AT and Bk,l ∈ B, where

i, l ∈ Ωt−1
0 , j, k ∈ Ωs−1

0 , the sources create polynomials
FA(x) and FB(x), which comprise coded and secret terms;
i.e., Fi′(x) = Ci′(x) + Si′(x), i′ ∈ {A,B}, where Ci′(x)’s
are the coded terms defined by AGE codes and Si′(x)’s are
the secret terms which are defined by our AGE-CMPC design,
which we explain next.

Let P(CA(x)) and P(CB(x)) be the set of all powers in the
polynomials CA(x) and CB(x), with non-zero coefficients.

P(CA(x)) ={j + si : i ∈ Ωt−1
0 , j ∈ Ωs−1

0 }
={0, . . . , ts− 1}, (3)

P(CB(x)) ={(s− 1− k) + l(ts+ λ) : k ∈ Ωs−1
0 , l ∈ Ωt−1

0 },
(4)

where, s, t ∈ N and λ ∈ Ωz
0. SA(x) and SB(x) are

defined such that P(CA(x)SB(x)), P(SA(x)CB(x)), and
P(SA(x)SB(x)) do not have common terms with the im-
portant powers of P(CA(x)CB(x)), which are equal to (s −
1) + si + (ts + λ)l for i, l ∈ Ωt−1

0 . The reason is that
{(s− 1− k + j)α+ iβ + θl : i, l ∈ Ωt−1

0 , j, k ∈ Ωs−1
0 s, t ∈

N} is the set of powers of polynomial CA(x)CB(x). The
components of the desired product Y = ATB are equal to
Yi,l =

∑s−1
j=0 AijBjl, for i, l ∈ Ωt−1

0 , that are the summation
of the coefficients of the terms with j = k ∈ Ωs−1

0 . Therefore
{(s − 1)α + iβ + θl : i, l ∈ Ωt−1

0 , s, t ∈ N} is the set of
important powers of CA(x)CB(x), and for successful recovery
of Y , these components should not have any overlap with
the other components, i.e., garbage terms. In other words, the
following conditions should be satisfied:

C1: (s− 1) + si+ (ts+ λ)l ̸∈ P(SB(x)) +P(CA(x)),

C2: (s− 1) + si+ (ts+ λ)l ̸∈ P(SA(x)) +P(CB(x)),

C3: (s− 1) + si+ (ts+ λ)l ̸∈ P(SA(x)) +P(SB(x)). (5)

Our strategy for determining P(SA(x)) and P(SB(x)) is as
follows. First, we set the elements of P(SB(x)) as z consec-
utive elements starting from the maximum important power,
i.e., s− 1+ s(t− 1)+ (ts+ λ)(t− 1) plus one; P(SB(x)) =
{ts + (ts + λ)(t − 1), . . . , ts + (ts + λ)(t − 1) + z − 1} or
equivalently: P(SB(x)) = {ts + θ(t − 1) + r, r ∈ Ωz−1

0 }.
We note that the elements of P(CA(x)) and P(SA(x)) are
powers of polynomials, so they are non-negative. Therefore,
by starting the elements of P(SB(x)) from the maximum
important power plus one, C1 and C3 are satisfied. Then, we
find all elements of the subset of P(SA(x)), starting from the
minimum possible element, that satisfies C2 in (5). Using this
rule, we can determine SA(x) and SB(x) as

SA(x) =

{
SA1

(x) z > λ, and t ̸= 1
SA2(x) z = λ, or t = 1

(6)

where SA1
(x) =

∑λ−1
w=0

∑q−1
l=0 Ā(w+θl)x

ts+θl+w +∑z−1−qλ
u=0 Ā(u+λ+θ(q−1))x

ts+θq+u, SA2
(x) =

∑z−1
u=0

Āux
ts+u, and Ā(w+θl), Ā(u+λ+θ(q−1)), and Āu are chosen

independently and uniformly at random in Fm
t ×m

s , and



q = min{⌊ z−1
λ ⌋, t− 1}.

SB(x) =
z−1∑
r=0

B̄rx
ts+θ(t−1)+r, (7)

where B̄r is chosen independently and uniformly at random
in Fm

s ×m
t .

Theorem 2: The polynomials SA(x) and SB(x) defined in
(6) and (7) satisfy the conditions in (5). □

In phase 1, source 1 shares FA(αn) and source 2 shares
FB(αn) with each worker Wn. Due to using z random terms
in constructing FA(x) and FB(x), no information about A and
B is revealed to any workers.

Phase 2 - Workers Compute and Communicate. The
second phase consists of workers processing data received
from the sources and sharing the results with each other. In this
phase, each worker Wn calculates H(αn) = FA(αn)FB(αn),
where H(x) is defined as:

H(x) =

deg(FA(x))+deg(FB(x))∑
n=0

Hnx
n = FA(x)FB(x), (8)

where Hu =
∑s−1

j=0 Ai,jBj,l are the coefficients that are
required for calculating ATB, i.e., u = si + (s − 1) + θl for
i, l ∈ Ωt−1

0 . Each worker Wn has the knowledge of one point
from H(x) through calculation of H(αn) = FA(αn)FB(αn).
By applying Lagrange interpolation on (8), there exist r(i,l)n ’s
such that

Hu =
s−1∑
j=0

AijBjl =
N∑

n=1

r(i,l)n H(αn). (9)

Thus, each worker Wn multiplies r
(i,l)
n ’s with H(αn) and

shares them with the other workers, securely. In particular, for
each worker Wn, there are t2 coefficients of r(i,l)n . Therefore,
each worker Wn creates a polynomial Gn(x) with the first t2

terms allocated to multiplication of r(i,l)n with H(αn) and the
last z terms allocated to random coefficients to keep H(αn)
confidential from z colluding workers:

Gn(x) =
t−1∑
i=0

t−1∑
l=0

r(i,l)n H(αn)x
i+tl +

z−1∑
w=0

R(n)
w xt2+w, (10)

where R
(n)
w , w ∈ Ωz−1

0 are chosen independently and uni-
formly at random from Fm

t ×m
t . Each worker Wn sends

Gn(αn′) to all other workers Wn′ . After all the data ex-
changes, each worker Wn′ has the knowledge of Gn(αn′),
which sums them up and sends it to the master in the last
phase. The following equation represent the polynomial that
is equal to the summation of Gn(x):

I(x) =
N∑

n=1

Gn(x), (11)

which can be equivalently written as:

I(x) =
t−1∑
i=0

t−1∑
l=0

N∑
n=1

r(i,l)n H(αn)x
i+tl +

z−1∑
w=0

N∑
n=1

R(n)
w xt2+w

=
t−1∑
i=0

t−1∑
l=0

s−1∑
j=0

AijBjlx
i+tl +

z−1∑
w=0

N∑
n=1

R(n)
w xt2+w. (12)

Phase 3 - Master Node Reconstructs Y = ATB. As seen
in (12), the coefficients for the first t2 terms of I(x) represent
the components of the matrix Y = ATB. On the other hand,
the degree of I(x) is t2 + z − 1, therefore, the master can
reconstruct I(x) and extract Y = ATB after receiving I(αn)
from t2 + z workers.

Theorem 3: The total number of workers required to com-
pute Y = ATB using AGE-CMPC, when there exist z
colluding workers and each worker can work on at most 1

st
fraction of data from each source due to the computation or
storage constraints, is expressed as

NAGE-CMPC =

{
min
λ

Γ(λ) t ̸= 1

2s+ 2z − 1 t = 1
(13)

where Γ(λ) is defined as

Γ(λ) =



Υ1(λ), z > ts− s, λ = 0

Υ2(λ), z ≤ ts− s, λ = 0

Υ3(λ), λ = z

Υ4(λ), z > ts, 0 < λ < z

Υ5(λ), z ≤ ts, 0 < λ < z, ts < λ+ s− 1

Υ6(λ), λ+ s− 1 < z ≤ ts, 0 < λ < z, qλ ≥ s

Υ7(λ), λ+ s− 1 < z ≤ ts, 0 < λ < z, qλ < s

Υ8(λ), z ≤ λ+ s− 1 ≤ ts, 0 < λ < z, qλ ≥ s

Υ9(λ), z ≤ λ+ s− 1 ≤ ts, 0 < λ < z, qλ < s,

(14)

and Υ1(0) = 2st2+2z−1, Υ2(0) = st2+3st−2s+t(z−1)+1,
Υ3(z) = 2ts + (ts + z)(t − 1) + 2z − 1, Υ4(λ) = (q +
2)ts + θ(t − 1) + 2z − 1, Υ5(λ) = 3ts + θ(t − 1) + 2z − 1,
Υ6(λ) = 2ts + θ(t − 1) + (q + 2)z − q − 1, Υ7(λ) = θ(t +
1)+ q(z − 1)− 2λ+ z + ts+min{0, z + s(1− t)− λq− 1},
Υ8(λ) = 2ts+θ(t−1)+3z+(λ+s−1)q−λ−s−1, Υ9(λ) =
θ(t+1)+q(s−1)−3λ+3z−1+min{0, ts−z+1+λq−s},
s ≥ 1, t ≥ 2, s|m, t|m are satisfied, θ = ts+ λ. □

AGE-CMPC satisfies privacy requirements stated in Sec-
tion III. The proof directly follows from [38] (Theorem 3).

C. AGE-CMPC in Perspective

In this section we compare AGE-CMPC with Entangled-
CMPC [14], SSMM [15], GCSA-NA [16] (considering batch
size as one), and PolyDot-CMPC [13] in terms of the number
of required workers.

Lemma 4: NAGE-CMPC is always less than or equal to the
number of workers required by Entangled-CMPC [14], SSMM
[15], GCSA-NA (for one matrix multiplication) [16], and
PolyDot-CMPC [13].
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Fig. 2. Required number of workers.

V. PERFORMANCE EVALUATION

We evaluate the performance of our algorithm, and compare
with the baselines, (i) PolyDot-CMPC [13], (ii) Entangled-
CMPC [14], (iii) SSMM [15], and (iv) GCSA-NA [16]. The
system model parameters are considered as follows: the size of
each matrix A and B is m×m = 36000×36000, the number
of colluding workers is z = 42, the number of partitions of
matrices A and B is st = 36.

Fig. 2 shows the required number of workers needed to
compute Y = ATB versus s/t, the number of row partitions
over the number of column partitions. As seen, the required
number of workers of AGE-CMPC is less than or equal to the
other baselines, which confirms our Lemmas 4.

Fig. 3(a) shows the storage cost per worker, where the
size of each stored scalar is 1 Byte, versus s/t. We note
that the detailed calculations of storage, computation, and
communication load is provided in the extended version of
this paper [39]. AGE-CMPC reduces the storage load per
worker as compared to baselines. The reason is that there is
a direct relationship between the required number of workers
and storage load per worker in CMPC setup when we fix s
and t. As we described in phase 2, each worker n needs to
compute polynomial Gn(αn′) and send it to workers n′ for
n′ ∈ {0, . . . , N} \ {n}, also it needs to receive Gn′(αn) from
worker n′. Therefore, the smaller required number of workers
of AGE-CMPC results in the smaller storage load per worker
as compared to PolyDot-CMPC and Entangled-CMPC.

Fig. 3(b) shows the computation cost per worker versus
s/t. Similar to the discussion in Fig. 3(a), for the fixed
amounts of s and t, required number of workers has a direct
relation with computation load per worker, i.e., larger amounts
of workers results in larger computation load per worker.
Therefore, computation load per worker of AGE-CMPC is
less than or equal to the other methods. However, as seen
in Fig. 3(b), computation load per worker does not have a
monotonic behavior as different s and t partitions lead to
different amount of computations.

Fig. 3(c) shows the communication overhead versus s/t.
The communication overhead consists of; (i) from sources
to workers in phase 1, (ii) among workers in phase 2, and
(iii) from workers to the master in phase 3. We consider the
communication cost among workers as it is the dominating
communication cost in this system. We assume that each
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Fig. 3. (a) Storage, (b) computation, and (c) communication loads.

scalar that is transmitted among workers is 1 Byte. Similar
to our discussions for storage and computation, for the fixed
amounts of s and t, required number of workers has a direct
relationship with the communication load among workers, i.e.,
larger amounts of workers results in larger communication
load. Therefore, communication load among workers of AGE-
CMPC is less than or equal to the other methods.

VI. CONCLUSION

We have investigated coded privacy-preserving computation
using Shamir’s secret sharing. We have designed a novel
coded computation method; AGE codes that can be customized
for coded privacy-preserving computations. We also designed
a coded privacy-preserving computation mechanism; AGE
coded MPC (AGE-CMPC) by employing AGE codes. We
designed our algorithm such that it takes advantage of the
“garbage terms”. Also, we have analyzed AGE-CMPC in terms
of the required number of workers as well as its computation,
storage, and communication overhead, and shown that AGE-
CMPC provides significant improvement.



REFERENCES

[1] R. Swearingen, “Idc report 2020: Iot growth demands rethink of long-
term storage strategies, says idc,” 2020.

[2] L. Peterson, T. Anderson, S. Katti, N. McKeown, G. Parulkar, J. Rexford,
M. Satyanarayanan, O. Sunay, and A. Vahdat, “Democratizing the
network edge,” SIGCOMM Comput. Commun. Rev., vol. 49, no. 2,
pp. 31–36, May 2019. [Online]. Available: http://doi.acm.org/10.1145/
3336937.3336942

[3] P. Levine and A. Horowitz, “Return to the edge and the end of
cloud computing,” 2017. [Online]. Available: https://www.youtube.com/
watch?v=-QRXQTSZxdQ

[4] G. M. Research, “The edge will eat the cloud,” 2017.
[5] J. Saia and M. Zamani, “Recent results in scalable multi-party compu-

tation,” in SOFSEM 2015: Theory and Practice of Computer Science,
G. F. Italiano, T. Margaria-Steffen, J. Pokorný, J.-J. Quisquater, and
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