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Abstract— An (n, r, h, a, q)-Local Reconstruction Code
(LRC) is a linear code over Fq of length n, whose codeword
symbols are partitioned into n/r local groups each of size r.
Each local group satisfies ‘a’ local parity checks to recover from
‘a’ erasures in that local group and there are further h global
parity checks to provide fault tolerance from more global erasure
patterns. Such an LRC is Maximally Recoverable (MR), if it
offers the best blend of locality and global erasure resilience—
namely it can correct all erasure patterns whose recovery is
information-theoretically feasible given the locality structure
(these are precisely patterns with up to ‘a’ erasures in each local
group and an additional h erasures anywhere in the codeword).
Random constructions can easily show the existence of MR
LRCs over very large fields, but a major algebraic challenge is to
construct MR LRCs, or even show their existence, over smaller
fields, as well as understand inherent lower bounds on their field
size. We give an explicit construction of (n, r, h, a, q)-MR LRCs

with field size q bounded by (O (max{r, n/r}))min{h,r−a}
.

This significantly improves upon known constructions in many
practically relevant parameter ranges. Moreover, it matches the
lower bound from Gopi et al. (2020) in an interesting range of
parameters where r = Θ(

√
n), r − a = Θ(

√
n) and h is

a fixed constant with h � a + 2, achieving the optimal field
size of Θh(nh/2). Our construction is based on the theory of
skew polynomials. We believe skew polynomials should have
further applications in coding and complexity theory; as a small
illustration we show how to capture algebraic results underlying
list decoding folded Reed-Solomon and multiplicity codes in a
unified way within this theory.

Index Terms— Erasure coding, distributed storage, local recon-
struction codes, maximally recoverable codes, skew polynomials.

I. INTRODUCTION

W
E PRESENT an approach to construct Maximally
Recoverable Local Reconstruction Codes (MR LRCs)

based on the theory of skew polynomials. Our construction
matches or improves the field size of MR LRCs for most
parameter regimes. We now describe the motivation of MR
LRCs in the context of coding for distributed storage, and
then formally define them and describe our results.
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In modern large-scale distributed storage systems (DSS),
data is partitioned and stored in individual servers, each with
a small storage capacity of a few terabytes. A server can crash
any time losing all the data it contains. Less catastrophically,
a server often tends to become temporarily unavailable either
due to system updates, network bottlenecks, or being busy
serving requests of other users. There are thus two design
objectives for a DSS. The first one is to never lose user data
in the event of crashes (or at least make it highly improbable).
The second is to service user requests with low latency despite
some servers becoming temporarily unavailable. As the simple
approach of replicating data is prohibitive in terms of storage
costs, erasure codes are employed in DSS. Using a Reed-
Solomon code, if we add n− k parity check servers to k data
servers, we can recover user data from any k available servers.
But as k gets larger, this does not meet our second objective of
servicing user requests with low latency. Local Reconstruction
Codes (LRCs) were invented precisely for achieving both the
objectives while still maintaining storage efficiency. These
codes have locality which means that for a small number of
erasures, any codeword symbol can be recovered quickly based
on a small number of other codeword symbols. At the same
time, they can also recover the missing codeword symbols in
the unlikely event of a larger number of erasures (but can do
so less efficiently). Locality in distributed storage was first
introduced in [2], [3], but LRCs were first formally defined
and studied in [4] and [5]. Suitably optimized LRCs have been
implemented in several large scale systems such as Microsoft
Azure [6] and Facebook [7], leading to enormous savings in
storage costs and improved system reliability.

An (n, r, h, a, q)-LRC is a linear code over Fq of length n,
whose codeword symbols are partitioned into n/r local groups
each of size r. The coordinates in each local group satisfy ‘a’
local parity checks and there are further h global parity checks
that all the n coordinates satisfy. The local parity checks are
used to recover from up to ‘a’ erasures in a local group by
reading at most r−a symbols in that local group. The h global
parities are used to correct more global erasure patterns which
involve more than a erasures in each local group. The parity
check matrix H of an (n, r, h, a, q)-LRC has the structure
shown in Equation 1.

H =




A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · Ag

B1 B2 · · · Bg




. (1)
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Fig. 1. An LRC with k data symbols, h heavy parities and ‘a’ local parities
per local group. The length of the code n = k + h + a · k+h

r−a
.

Here g = n/r is the number of local groups. A1, A2, . . . , Ag

are a×r matrices over Fq which correspond to the local parity
checks that each local group satisfies. B1, B2, . . . , Bg are h×
r matrices over Fq and together they represent the h global
parity checks that the codewords should satisfy.

Equivalently, from an encoding point of view,
an (n, r, h, a, q)-LRC is obtained by adding h global
parity checks to k data symbols, partitioning these k + h
symbols into local groups of size r − a, and then adding ‘a’
local parity checks for each local group. As a result we have
n = k + h + a · k+h

r−a codeword symbols. This is shown in
Figure 1.

Information-theoretically, one can show that we can at best
hope to correct an additional h erasures distributed across
global groups on top of the ‘a’ erasures in each local group.
LRCs which can correct all such erasure patterns which
are information-theoretically possible to correct are called
Maximally Recoverable (MR) LRCs. The notion of maximal
recoverability was first introduced by [2], [3] and extended to
more general settings in [8]. But MR LRCs were specifically
studied first by [9], [10] where they are called Partial-MDS

(Maximum Distance Separable) codes.
Definition 1: Let C be an arbitrary (n, r, h, a, q)-local

reconstruction code. We say that C is maximally recoverable
if:

1) Any set of ‘a’ erasures in a local group can be corrected
by reading the rest of the r − a symbols in that local
group.

2) Any erasure pattern E ⊆ [n], |E| = ga + h, where
E is obtained by selecting a symbols from each of
g local groups and h additional symbols arbitrarily,
is correctable by the code C.

For a code C with parity check matrix H , an erasure pattern
E is correctable iff the submatrix of H formed by columns
corresponding the coordinates in E has full column rank.
Therefore, we have the following characterization of an MR
LRC in terms of its parity check matrix.

Proposition 1: An (n, r, h, a, q)-LRC with parity check
matrix given by H from Equation 1 is maximally recoverable
iff:

1) Each of the local parity check matrices Ai are the parity
check matrices of an MDS code, i.e., any a columns of
Ai are linearly independent.

TABLE I

TABLE SHOWING THE BEST KNOWN UPPER BOUNDS ON

THE FIELD SIZE OF (n, r, h, a, q)-MR LRCS

2) Any submatrix of H which can be formed by selecting
a columns in each local group and additional h columns
has full column rank.

It is known that MR-LRCs exist over exponentially large
fields [4]. This can be easily seen by instantiating the par-
ity check matrix H from Equation 1 randomly from an
exponentially large field and verifying that the condition in
Proposition 1 is satisfied with high probability by Schwartz-
Zippel lemma. But codes deployed in practice require small
fields for computational efficiency, typically fields such as F28

or F216 are preferred. Therefore a lot of prior work focused
on explicit constructions of MR LRCs over small fields.

A. Prior Work

1) Upper Bounds: There are several known constructions
of MR LRCs which are incomparable to each other in terms
of the field size [1], [8], [10]–[18]. Some constructions are
better than others based on the range of parameters. Since there
are too many parameters and there is no dominant regime of
interest, it is helpful to think about what are the typical ranges
of parameters that are useful in deployments of MR LRCs in
practice.

2) Parameter Ranges Useful in Practice: One should think
of the number of local groups (g) as a constant and n as
growing. So r = n/g is growing linearly with n. Typical
values of g used in practice are g = 2, 3, 4. The number
of global parities (h) should also be thought of as a small
constant and the number of local parities a is usually 1 or
2. The length n of the code can range from 14 to 60. For
example, an early version of Microsoft’s Azure storage used
(n = 14, r = 7, h = 2, a = 1)-MR LRCs with g = 2 local
groups [6]. These choices are mostly guided by the need to
maximize storage efficiency (rate of the code) while balancing
durability and fast reconstruction. This is different from the
parameters of interest from a theoretical point of view, where
to get locality we set r to be sublinear in n.

A few of the important prior constructions that work for
all parameter ranges are shown in Table I. The first bound
by [11] is good when r is close to n. The second bound by [12]
is better when h � r � n. The bound by [13] is better
when r− a � h. The construction in [13] is also significantly
different from the previous constructions and our construction
is inspired by the construction in [13].

In some special cases, there are better constructions. [8]
construct MR LRCs over fields of size Or

(
nd(h−1)(1−1/2r)e)

when a = 1 and r = O(1). In the special case when h = 2,
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a construction over linear sized fields for all ranges of other
parameters is given in [1].

3) Lower Bounds: The best known lower bounds on the
field size required for (n, r, h, a, q)-MR LRCs (with g = n/r
local groups) is from [1] who show that for h � 2,

q � Ωh,a (n · rα) where α =
min {a, h − 2dh/ge}

dh/ge . (2)

The lower bound (2) simplifies to

q � Ωh,a



nrmin{a,h−2}

�
(3)

when g = n/r � h. When 2 � h � min{a + 2, g}, we have:

q � Ωh

�
n(r − a)h−1

r



. (4)

Note that the hidden constant in (4) only depends on h.

B. Our Results

We are now ready to present our main result.
Theorem 1 (Main): Let q0 � max{g + 1, r − 1} be any

prime power where g = n/r is the number of local groups.
Then there exists an explicit (n, r, h, a, q)-MR LRC with q =

q
min{h,r−a}
0 . Asymptotically, the field size satisfies

q �
(
O
(
max{r, n/r}

))min{h,r−a}
. (5)

Our construction is better than (or matches) the first three
bounds in Table I for all parameter ranges. Moreover when
h is a fixed constant with h � a + 2 and r = Θ(

√
n) and

r−a = Θ(
√

n), our construction matches the lower bound (4),
achieving the optimal field size of Θh(nh/2). This is the first
non-trivial case (other than when h = 2 [1]) where we know
the optimal field size for MR LRCs.

Corollary 1: Suppose r = Θ(
√

n), r−a = Θ(
√

n) and h is
a fixed constant independent of n such that h � a+2. Then the
optimal field size of an (n, r, h, a, q)-LRC is q = Θh(nh/2).

We also remark that the h that appears in the field size
upper bound in Theorem 1 can be replaced with hlocal, if we
only want to correct erasure patterns formed by erasing ‘a’
erasures in each local group and h additional erasures, which
are distributed in such a way that no local group has more
than a + hlocal erasures in total.

MR LRCs used in practice typically have only a small
constant number of local groups i.e. g = n/r is typically a
small constant such as g = 2, 3, 4 [6] and the number of local
parities a = 1. We can further improve the construction from
Theorem 1 in this important regime.

Theorem 2: Suppose the number of local parities a = 1 and
g = n/r is the number of local groups. Let q0 � g + 1 be
any prime power and let C0 be any [r, r − s, d]Fq0

-code such
that its parity check matrix contains a full weight row and
it has distance d � min{h, r − 1} + 2.1 Then there exists
an explicit (n, r, h, a = 1, q)-MR LRC with field size q =
qs−1
0 . Asymptotically, by instantiating C0 with BCH codes,

we obtain a field size of

q �
(
O(n)

)dmin{h,r−1}(1−1/q0)e
.

1Equivalently, the dual code C⊥

in has a full weight codeword.

We also remark that our constructions can be easily modi-
fied to the variant of MR LRCs where the global parities are
not protected by the local parity checks. Since we did not
define this variant of MR LRCs in this paper, we omit these
constructions.

1) Related Work: Shortly before we published our results,
we learned that [19] have independently obtained a result
analogous to Theorem 1 with a very similar construction. They
construct (n, r, h, a, q)-MR LRCs with a field size of

q =
(
O
(
max{r, n/r}

))h
. (6)

Compared to this, we have a min{h, r−a} in the exponent in
our field size bound (5). The construction in the independent
work [19] is very similar to ours, we get min{h, r−a} in the
exponent by being more careful in our analysis.

Soon after [19], two more constructions of MR LRCs were
published by [20] with the following field sizes:

q �



max

n
(2r)r−a,

g

r

o�min{h,bg/rc}
, (7)

q � (2r)r−a

jg

r

k
+ 1
�h−1

. (8)

The constructions in (7) and (8) are incomparable to our
construction in (5). For example when r = O(1), the construc-
tion (8) achieves O(n)h−1 field size, whereas our construction
achieves O(n)min{h,r−a} field size. In the regime when r =
Θ(

√
n) and r − a = Θ(

√
n) and h � a + 2 is a fixed

constant, our construction achieves the optimal field size of
Θh(nh/2), whereas the constructions from [20] require fields
of size nΘ(

√
n).

C. Our Techniques

Our constructions are based on the theory of skew polyno-
mials and is inspired by the construction from [13]. Skew poly-
nomials are a non-commutative generalization of polynomials,
but they retain many of the familiar and important properties
of polynomials. Just as Reed-Solomon codes are constructed
using the fact that a degree d polynomial can have at most d
roots, our codes will use an analogous theorem that a degree
d skew polynomial can have at most d roots when counted

appropriately (see Theorem 3). Unlike the roots of the usual
degree d polynomials which do not have any structure, the
roots of degree d skew polynomials have an interesting linear-
algebraic structure which we exploit in our constructions. The
roots in Fqm of a degree d skew polynomial over Fqm can
be partitioned into conjugacy classes such that the roots in
each conjugacy class form a subspace over the base field Fq.
Moreover the sum of dimensions of these subspaces across
conjugacy classes is at most d.

To exploit this root structure of skew polynomials in an MR
LRC construction, we associate each local group with a conju-
gacy class, and the matrices Bi in (1) are chosen so that λT Bi

is the evaluation of a skew polynomial of degree d (with coef-
ficients given by λ) over different points in the same conjugacy
class. Across different local groups, we automatically get
linear independence of columns of matrices B1, B2, . . . , Bg

as these are associated with different conjugacy classes. Inside
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each local group, to argue linear independence, the local
parities Ai will be chosen as a Vandermonde matrix over
the base field Fq (we can choose all the Ai’s to be equal),
and the Bi will be chosen carefully to combine well with
the Vandermonde matrix A (see Equations (12), (13), (14)).
In particular, we choose Bi so that the (a + m) × r matrix
formed by adding the first row of Bi with entries in Fqm (but
interpreted as an m × r matrix over the base field Fq) to Ai

is an MDS matrix. This allows us to argue that any a + m
erasures in that local group can be corrected and we choose
m = min{h, r− a}. This is also the main difference between
our work and [13], which is also implicitly based on skew
polynomials.

In this paper, we make this connection explicit in the
hope that the theory of skew polynomials will lead to further
developments in the constructions of MR LRCs and coding
theory more broadly. As an illustration, in Appendix E we
show how skew polynomials can give an explanation of
algebraic results concerning (generalizations of) Wronskian
and Moore matrices that have recently been used in the context
of list decoding algorithms for folded Reed-Solomon and uni-
variate multiplicity codes [21], rank condensers [22]–[24], and
subspace designs [25], [26]. We also reproduce a construction
of maximum sum-rank distance (MSRD) codes due to [27]
using the framework of skew polynomials in Appendix F.
Skew polynomials have also been explicitly used before to
define skew Reed-Solomon codes in [28]. Readers familiar
with the theory of skew polynomials or who directly want to
get to the construction can skip most of the preliminaries in
Section II except for Section II-D.

II. PRELIMINARIES

A. Skew Polynomial Ring

Skew polynomials generalize polynomials while inheriting
many of the nice properties of polynomials. Skew polynomials
can be defined over division rings2 and most of the results
about skew polynomials are true in this more general setting.
It is known that every finite division ring is a field. Since we
will only work with skew polynomial rings defined over fields,
we will only define them over fields for simplicity. Most of the
theory of skew polynomials presented here is from [29], [30],
but we reprove the main results in a more accessible way. Skew
polynomials were first defined by Ore [31] in 1933 where
it was shown that they are the unique non-commutative
generalization of polynomials which satisfy (1) associativity
(2) distributivity on both sides and (3) the fact that the degree
of product of two polynomials is the sum of their degrees.
Let K be a field. We will first define the key concepts of
‘endomorphism’ and ‘derivation’.

Definition 2 (Endomorphism): A map σ : K → K is called
an endomorphism if:

1) σ is a linear map i.e. σ(a + b) = σ(a) + σ(b) for all
a, b ∈ K and

2) σ(ab) = σ(a)σ(b) for all a, b ∈ K .

2Rings where every non-zero element has a multiplicative inverse, but
multiplication may not be commutative.

For example, if K = Fqm , then σ(x) = xq is an endomor-
phism called the Frobenius endomorphism. If K = F(x) is the
field of rational functions and γ ∈ F

∗, then σ(f(x)) = f(γx)
is an endomorphism.

Definition 3 (Derivation): A map δ : K → K is called a
σ-derivation if:

1) δ is a linear map i.e. δ(a + b) = δ(a) + δ(b) for all
a, b ∈ K and

2) δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ K .
We will now define the skew polynomial ring.
Definition 4 (Skew polynomial ring): Let σ be an endomor-

phism of K and δ be a σ-derivation. The skew polynomial
ring in variable t, denoted by K[t; σ, δ], is a non-commutative
ring of skew polynomials in t of the form {Pd

i=0 ait
i : d �

0, ai ∈ K} (where we always write the coefficients to the left).
Degree of a polynomial f(t) =

P
i ait

i, denoted by deg(f),
is the largest d such that ad 6= 0.3 Addition in K[t; σ, δ] is
component wise. But multiplication is distributive and done
according to the following rule:

For a ∈ K, t · a = σ(a)t + δ(a). (9)

To multiply f(t)g(t), we can first use distributivity to get
f(t)g(t) =

P
ij fit

i · gjt
j where fi, gj ∈ K are coefficients

of f, g respectively. Then we use the rule (9) for i times to
move the coefficient gj to the left of ti. This multiplication
turns out to be associative, but may not be commutative. Also
deg(f ·g) = deg(f)+deg(g). Therefore the skew polynomial
ring has no zero divisors. We will now give some examples
of skew-polynomials.

The simplest derivation is the zero map i.e. δ(a) = 0 for all
a ∈ K. In this case, the skew polynomial ring is denoted
by K[t; σ] and is said to be of endomorphism type. Skew
polynomials are interesting even in this case, and in fact the
constructions in this paper only use skew polynomials with
δ ≡ 0. So the reader can imagine that the derivation is the
zero map on a first reading. We include the general case to
discuss the applications of skew polynomials to coding and
complexity theory later in Appendix E and in the hope that
skew polynomial rings with non-zero derivations will find
applications in future. For more interesting examples of skew
polynomial rings, see Appendix A

We will now collect some simple facts about skew polyno-
mials rings. Let K[t; σ, δ] be a skew polynomial ring.

Lemma 1 ( [29]): tna =
Pn

i=0 fn
i (a)ti where fn

0 =
δn, fn

1 = δn−1σ + δn−2σδ + · · · + σδn−1, . . . , fn
n = σn

are linear maps.
It turns out that the skew polynomial ring has Euclidean

algorithm for right division.
Lemma 2 (Euclidean algorithm for right division [29]): For

every two polynomial f, g ∈ K[t; σ, δ], there exist unique
polynomials q(t), r(t) such that f = q · g + r where deg(r) <
deg(g) or r = 0.

This brings us to the most important definition about skew
polynomial rings. In the usual polynomial world, we can
define the evaluation of a polynomial f(t) =

P
i fit

i at
t = a as

P
i fia

i. With this definition, it is true that

3We will define the degree of the zero polynomial to be ∞.
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f(t) = q(t)(t − a) + f(a). But for skew polynomials, these
two notions of evaluation differ with each other and the right
definition is the second one.

Definition 5 (Evaluation): The evaluation of a polynomial
f ∈ K[t; σ, δ] at a point a ∈ K, denoted by f(a), is defined
as the remainder obtained when we divide f by t − a on the
right i.e. f(t) = q(t)(t − a) + f(a).

Note that evaluation is a linear map i.e. (f + g)(a) =
f(a)+g(a). But it is not always true that (fg)(a) = f(a)g(a).
We will see shortly how to compute (fg)(a). The evaluation
map can be expressed using “power functions,” which are the
evaluations of monomials of the form ti.

Definition 6 (Power functions): The power functions are
defined inductively as follows. For every a ∈ K

1) N0(a) = 1 and
2) Ni+1(a) = σ(Ni(a))a + δ(Ni(a)).

When δ ≡ 0, we have Ni(a) = σi−1(a)σi−2(a) · · ·σ(a)a.
Additionally if σ ≡ Id, then Ni(a) = ai which explains the
terms “power functions.”

Lemma 3: Let f =
P

i fit
i. Then f(a) =

P
i fiNi(a).

Proof: It is easy to prove by induction that evaluation of
ti at a is Ni(a). The general claim follows by linearity of
evaluation.

We now come to the problem of evaluating (fg)(a). For
this, it is useful to define the notion of conjugates, which play
a big role in this theory.

B. Conjugation and Product Rule

Definition 7 (Conjugation): Let a ∈ K and c ∈ K
∗.

We define the c-conjugate of a, denoted by ca, as

ca = σ(c)ac−1 + δ(c)c−1.

We say that b is a conjugate of a if there exists some c ∈ K
∗

such that b = ca.
We have the following lemma which shows that conjugacy

is an equivalence relation, we prove it in Appendix B.
Lemma 4: 1) d(ca) = dca
2) Conjugacy is an equivalence relation, i.e., we can par-

tition K into conjugacy classes where elements in each
part are conjugates of each other, but elements in differ-
ent parts are not conjugates.

So K will get partitioned into conjugacy classes. To under-
stand the structure of each conjugacy class, we need the notion
of centralizer.

Definition 8 (Centralizer): The centralizer of a ∈ K is
defined as:

Ka = {c ∈ K
∗ : ca = a} ∪ {0}.

The following lemma shows that centralizers are subfields,
we prove it in Appendix B.

Lemma 5: 1) Ka is a subfield of K.4

2) If a, b ∈ K are conjugates, then Ka = Kb. 5

Because of the above lemma, we can associate a centralizer
subfield to each conjugacy class.

4When K is a division ring, Ka will be a sub-division ring of K.
5When K is a division ring and not a field, we have K(xa) = xKax−1.

Example 1: Let K = Fqm , σ(a) = aq and δ ≡ 0. Then
ca = cq−1a. Suppose γ is a generator for F

∗
qm . There are

q equivalence classes, E−1, E0, E1, . . . , Eq−2, where E` =
{γi : i ≡ ` mod (q − 1).} and E−1 = {0}. The centralizer
of an element a ∈ K

∗ is

Ka = {c : cq−1a = a} ∪ {0} = {c : cq−1 = 1} ∪ {0} = Fq.

Therefore the centralizer of every non-zero element is Fq and
the centralizer of 0 is K0 = K.

We will now show how to evaluate (fg)(a) using conjuga-
tion which plays a key role. The proof of this really important
lemma is given in Appendix B.

Lemma 6 (Product evaluation rule [29], [30]): If g(a) = 0,
then (fg)(a) = 0. If g(a) 6= 0 then

(fg)(a) = f



g(a)a
�

g(a).

Using the product rule, one can prove an interpolation
theorem for skew polynomials just like ordinary polynomials.
For any A ⊂ K be of size n, there exists a non-zero degree
� n skew polynomial f ∈ K[t; σ, δ] which vanishes on A [29].
We will later need the following lemma.

Lemma 7: Let f be any skew polynomial. Fix some a ∈ K.
Then Df,a(y) = f(ya)y is an Ka-linear map from K → K.

Proof: Linearity follows since f(ya)y is equal to the
evaluation of the polynomial f(t)y at a by Lemma 6. And
clearly the evaluation is linear in y. Ka-linearity follows since
∀c ∈ Ka,

Df,a(yc) = f(yca)yc = f(y(ca))yc = f(ya)yc = Df,a(y)c.

C. Roots of Skew Polynomials

The most important and useful fact about usual polynomials
is that a degree d non-zero polynomial can have at most
d roots. It turns out that this statement is false for skew
polynomials! A skew polynomial can have many more roots
than its degree. But when counted in the right way, we can
recover an analogous statement for skew polynomials. In this
section, we will prove the “fundamental theorem” about roots
of skew polynomials which shows that a degree d skew
polynomial cannot have more than d roots when counted the
right way. Before we state the fundamental theorem, let us
try to understand the roots of a skew polynomial in the same
conjugacy class. The following lemma shows that they form
a vector space over a subfield of K.

Lemma 8: Let f ∈ K[t; σ, δ] be a non-zero polynomial and
fix some a ∈ K and let F = Ka be the centralizer of a (which
is a subfield of K). Define Vf (a) = {y ∈ K

∗ : f(ya) =
0} ∪ {0}. Then Vf (a) is a vector space over F.

Proof: For any λ ∈ F and y ∈ Vf (a), f(λya) =
f(y(λa)) = f(ya) = 0. Therefore λy ∈ Vf (a). If y1, y2 ∈
Vf (a) where y1 + y2 6= 0, then by Lemma 7, f(y1+y2a) = 0.
Therefore y1 + y2 ∈ Vf (a).

We are now ready to state the “fundamental theorem” about
roots of skew polynomials, the proof appears in Appendix C.

Theorem 3 ( [29], [30]): Let f ∈ K[t; σ, δ] be a degree d
non-zero polynomial. Let A be the set of roots of f in K and
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let A = ∪iAi be a partition of A into conjugacy classes. Fix
some representatives ai ∈ Ai. Let Vi = {y : yai ∈ Ai} ∪ {0}
which is a linear subspace over Fi = Kai

by Lemma 8. Then
X

i

dimFi
(Vi) � d.

In particular, this implies that a non-zero degree d polyno-
mial can have roots in at most d distinct conjugacy classes.
And the dimension (over the centralizer subfield) of the
subspace of roots in a single conjugacy class is at most d.

D. Vandermonde Matrix

Definition 9 (Vandermonde matrix): Let A = {a1, . . . ,
an} ⊂ K. The d × n Vandermonde matrix formed by A,
denoted by Vd(a1, . . . , an), is defined as:

Vd(a1, . . . , an) =



N0(a1) N0(a2) · · · N0(an)
N1(a1) N1(a2) · · · N1(an)

...
...

...
Nd−1(a1) Nd−1(a2) · · · Nd−1(an)


 .

When the order of a1, a2, . . . , an is not important, we some-
times denote Vd(a1, a2, . . . , an) be Vd(A). If f(t) =Pd−1

i=0 fit
i is a skew polynomial of degree at most d − 1,

then by Lemma 3,

[f0f1 · · · fd−1] · Vd(a1, a2, . . . , an) = [f(a1)f(a2) · · · f(an)].
(10)

Lemma 9: Let A ⊂ K of size d. Let A = A1∪A2∪· · ·∪Ar

be the partition of A into different conjugacy classes. Let ni =
|Ai| and let Ai = {cij ai : j ∈ [ni]}. Then Vd(A) is full rank
if for each i ∈ [r], {cij : j ∈ [ni]} are linearly independent
over the centralizer subfield Kai

.
Proof: If Vd(A) is not full rank then there exists

some non-zero row vector [f0 f1 . . . fd−1] such that
[f0 f1 . . . fd−1] · Vd(A) = 0. Therefore the non-zero skew
polynomial f(t) =

Pd−1
i=0 fit

i, with degree at most d− 1, has
roots at all points of A. This violates Theorem 3.

We will now see two corollaries of Lemma 9 which are
useful for our MR LRC construction.

Corollary 2: Let γ ∈ F
∗
qm be a generator of the multiplica-

tive group. Let d � q− 1 and `1, . . . , `d ∈ {0, 1, 2, . . . , q− 2}
be distinct. Then the following matrix M is full rank.

M =




1 1
γ`1 γ`2

γ`1(1+q) γ`2(1+q)

...
...

γ`1(1+q+···+qd−2) γ`2(1+q+···+qd−2)

· · · 1
· · · γ`d

...
· · · γ`d(1+q+···+qd−2)


 .

Proof: Let K = Fqm , σ(a) = aq and δ ≡ 0. Then
Ni(a) = a1+q+q2+···+qi−1

. By Lemma 9, it is enough to show

that `1, . . . , `d fall in distinct conjugacy classes. This is shown
in Example 1.

Note that when m = 1, the matrix in the above corollary
reduces to the usual Vandermonde matrix one is familiar with.

Corollary 3: Let γ ∈ F
∗
qm be a generator of the multiplica-

tive group and let ` ∈ {0, 1, . . . , q−2}. Let β1, . . . , βm ∈ Fqm

be linearly independent over Fq . Then the following matrix M
is full rank.

M =




1 1

γ`βq−1
1 γ`βq−1

2

γ`(1+q)βq2−1
1 γ`(1+q)βq2−1

2
...

...

γ`(1+q+···+qm−2)βqm−1−1
1 γ`(1+q+···+qm−2)βqm−1−1

2

· · · 1
· · · γ`βq−1

m

· · · γ`(1+q)βq2−1
m

...
· · · γ`(1+q+···+qm−2)βqm−1−1

m




.

Proof: Let K = Fqm , σ(a) = aq and δ ≡ 0.
Then Ni(a) = a1+q+q2+···+qi−1

. Let a = γ` then M =
Vm(β1a, . . . , βma). Therefore M is full rank by Lemma 9.

III. SKEW POLYNOMIALS BASED MR
LRC CONSTRUCTIONS

Let us recall that an (n, r, h, a, q)-LRC admits a parity check
matrix H of the following form

H =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ag

B1 B2 · · · Bg




. (11)

Here A1, A2, · · · , Ag are a× r matrices over Fq which repre-
sent the local parity checks, B1, B2, · · · , Bg are h×r matrices
over Fq which together represent the h global parity checks.
The rest of the matrix is filled with zeros. By Proposition 1,
C is an MR LRC iff (1) any ‘a’ columns of each matrix Ai are
linearly independent and (2) any submatrix of H formed by
selecting a columns in each local group and any h additional
columns is full rank.

A. Construction: Proof of Theorem 1

In this section, we will prove Theorem 1 by present-
ing a construction of MR LRCs over fields of size q =
O (max(g, r))

min{h,r−a}
. The construction presented here

is inspired from [13], where they achieve a field size of
O (max(g, r))

r−a.
Let q0 � max{g + 1, r} be a prime power. Choose

α1, α2, . . . , αr ∈ Fq0 to be distinct. Define

A` =




1 1 . . . 1
α1 α2 . . . αr

α2
1 α2

2 . . . α2
r

...
...

...
αa−1

1 αa−1
2 . . . αa−1

r




. (12)
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Note that A1 = A2 = · · · = Ag . Let m = min{r − a, h} and
let γ be a generator for F

∗
qm
0

. Our codes will be defined over
the field Fq = Fqm

0
. Define β1, β2, . . . , βr ∈ Fqm

0
as

βi =




αa
i

αa+1
i
...

αa+m−1
i


 , (13)

where we are expressing βi in some basis for Fqm
0

(which
is a Fq0 -vector space of dimension m). The improvement in
our construction over [13] comes from choosing βi carefully
in our construction. In [13], βi are chosen independently
of the local parity check matrix Ai and they are chosen to
satisfy (r − a)-wise independence over the base field Fq0 .
By choosing them carefully in combination with the local
parity check matrix Ai, we only require m = min{h, r − a}-
wise independence of β1, β2, . . . , βr. Moreover [13] constructs
a generator matrix for the code, whereas we construct a parity
check matrix.

Define

B` =




β1 β2

γ`βq0

1 γ`βq0

2

γ`(1+q0)β
q2
0

1 γ`(1+q0)β
q2
0

2
...

...

γ`(1+q0+···+qh−2
0 )β

qh−1
0

1 γ`(1+q0+···+qh−2
0 )β

qh−1
0

2

· · · βr

· · · γ`βq0
r

· · · γ`(1+q0)β
q2
0

r

...

· · · γ`(1+q0+···+qh−2
0 )β

qh−1
0

r




. (14)

To prove that the above construction is an MR LRC, we will
use properties of the skew field Fqm

0
[x; σ] where σ(a) = aq0 .

We know that Fqm
0

will get partitioned into q0 − 1 conjugacy
classes as shown in Example 1. If γ ∈ F

∗
qm
0

is a generator
of F

∗
qm
0

, then {1, γ, γ2, . . . , γq0−2} fall in distinct conjugacy
classes. Intuitively, in the construction each local group cor-
responds to one conjugacy class. This is possible since we
chose q0 � g + 1. The stabilizer subfield of each conjugacy
class is Fq0 as shown in Example 1. Therefore we choose
the matrices Bi for local group i as a (skew) Vandermonde
matrix where the evaluation points β1, · · · , βr are from the
conjugacy class of γi, but are linearly independent over the
stabilizer subfield Fq0 .

Claim 1: The above construction is an MR LRC over fields
of size q = q

min{h,r−a}
0 .

Proof: For a matrix M and a subset X of its columns,
we will use M(X) to denote the submatrix of M formed by
columns in X. Given an erasure pattern E of size |E| = ag+h,
composed of a erasures in each local group and h additional
erasures, we want to argue that the submatrix H(E) is full
rank. WLOG, assume that the h additional erasures happen in
local groups 1, 2, . . . , t ∈ [g] for t � h. Let Ei be the set of
erasures that happen in the ith local group. Let Si ⊂ Ei be
an arbitrary subset of size |Si| = a and let Ti = Ei \Si. Note

that |Ti| � m for all i. We need to show that H(E) (which
is an (ag + h) × (ag + h) matrix) is full rank where

H(E) =



A1(S1 ∪ T1) 0 · · · 0
0 A2(S2 ∪ T2) · · · 0
...

...
. . .

...
0 0 · · · Ag(Sg ∪ Tg)

B1(S1 ∪ T1) B2(S2 ∪ T2) · · · Bg(Sg ∪ Tg)




.

Note that A1(S1), A2(S2), · · · , Ag(Sg) are a × a matrices
of full rank. By doing column operations on H(E), in each
local group we can use the columns of Ai(Si) to remove the
columns of Ai(Ti). This results in the lower block Bi(Ti) to
change into a Schur complement as follows:
�

Ai(Si) Ai(Ti)
Bi(Si) Bi(Ti)

�
→

�
Ai(Si) 0
Bi(Si) Bi(Ti) − Bi(Si)Ai(Si)

−1Ai(Ti)

�
.

Note that Ti = φ for i > t. So by doing row and column oper-
ations on H(E), we can set it in a block diagonal form, where
the diagonal blocks are given by A1(S1), A2(S2), . . . , Ag(Sg)
and one additional h × h block given by

C =
�

B1(T1) − B1(S1)A1(S1)
−1A1(T1) · · ·

· · · Bt(Tt) − Bt(St)At(St)
−1At(Tt)

�
.

Note that all the entries in A(Si)
−1Ai(Ti) are in the base

field Fq0 . Also column operations on Bi with Fq0 coefficients
retain its structure with β’s replaced by their corresponding
Fq0-linear combinations. Therefore by Lemma 9, it is enough
to show that the following t matrices D1, D2, . . . , Dt are full
rank:

Di =
�
β(Ti) − β(Si)Ai(Si)

−1Ai(Ti)
�

where β = [β1, . . . , βr] is a m× r matrix over Fq0 . Note that
[D1|D2| . . . |Dt] is just the first row of C (with entries in Fqm

0
)

expressed as a matrix over Fq0 . Consider following matrices
given by

Fi =

�
Ai(Si) Ai(Ti)
β(Si) β(Ti)

�

where each Fi is of size (a + m) × (a + |Ti|). Each Fi is
a Vandermonde matrix by construction. Since |Ti| � m, each
Fi is full rank. Now if we do column operations to get Fi into
block diagonal form we get:

�
Ai(Si) 0
β(Si) β(Ti) − β(Si)Ai(Si)

−1A(Ti)

�

=

�
Ai(Si) 0
β(Si) Di

�
.

This implies that D1, D2, . . . , Dt are full rank over Fq0 which
completes the proof.
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A slightly better construction which only requires q0 �

max{g + 1, r − 1} can be obtained by choosing

A` =




1 αm+a−1
2 αm+a−1

3 . . . αm+a−1
r

0 αm+a−2
2 αm+a−2

3 . . . αm+a−2
r

...
...

...
...

0 αm+1
2 αm+1

3 . . . αm+1
r

0 αm
2 αm

3 . . . αm
r




and β1, β2, . . . , βr ∈ F
m
q0

as:

β1 =




0
...
0
0


 and βi =




αm−1
i
...

αi

1


 for i ∈ {2, 3, . . . , r}.

B. Construction: Proof of Theorem 2

When a = 1 and g is a fixed constant, we can improve the
construction from the previous section using ideas from BCH
codes. Let q0 � g + 1 be a prime power. Define

A` =
�
1 1 · · · 1

�
.

Note that A1 = A2 = · · · = Ag . Let Hs×r be the parity
check matrix of the [r, r − s, d]Fq0

-code C0. By scaling the
columns of H and permuting the rows (which doesn’t change
the distance of C0), we can assume that the first row of H
is [11 · · ·1]. Let H̃(s−1)×r be the submatrix of H formed by
removing the first row. Now define β1, β2, . . . , βr ∈ F

s
q0

as
the columns of H̃ , i.e.,

�
β1 β2 · · · βr

�
= H̃.

Here we are expressing βi in some basis for Fqs−1
0

(which
is a Fq0 -vector space of dimension s−1). Let γ be a generator
of F

∗
qs−1
0

. Define B` as in (14).
Claim 2: The above construction is an MR LRC over fields

of size q = qs−1
0 .

Proof: The proof is analogous to the proof of Claim 1. Let
m = min{h, r − 1}. We only need Fq0-linear independence
of any m + 1 columns of

H =

�
1 1 · · · 1
β1 β2 · · · βr

�
.

This follows from the fact that the code C0 has minimum
distance at least m + 2, and therefore any m + 1 columns of
the parity check matrix H must be linearly independent.

To get the asymptotic field size bound, we instantiate the
code C0 with BCH codes.

Proposition 2: There exist [r, r − s, d]Fq0
BCH code with

s = 1 +
(
(d − 2) − b(d − 2)/q0c

)
dlogq0

re.

Proof: Let ` = dlogq0
re so that q`

0 � r. Choose distinct
θ1, θ2, . . . , θr ∈ Fq`

0
. The parity check matrix of the BCH code

is given by:

Hin =




1 1 . . . 1
θ1 θ2 . . . θr

...
...

. . .
...

θq0−1
1 θq0−1

2 . . . θq0−1
r

θq0+1
1 θq0+1

2 . . . θq0+1
r

...
...

. . .
...

θd−2
1 θd−2

2 . . . θd−2
r




,

where we removed powers which are multiples of q0. Each
row of H other than the first row of 1’s should be thought of
as ` rows over the base field Fq0 . Therefore the codimension
of the code is s � 1 + `((d − 2) − b(d − 2)/q0c). Finally,
the distance of the code is at least d. This is because to argue
about Fq0 linear independence of any d − 1 columns, we can
add back the rows whose powers are multiples of q0 to H
which is a Vandermonde matrix over Fq`

0
.

Therefore we can choose s = 1 +
(
m − bm/q0c

)
dlogq0

re
where m = min{h, r − 1}. Therefore we get a field size of

q = qs−1
0 � (O (n))m−bm/q0c.

APPENDIX A
EXAMPLES OF SKEW POLYNOMIAL RINGS

In Section II, we discussed a few examples of skew poly-
nomial rings such as when the derivation is the zero map, i.e.,
δ(a) = 0 for all a ∈ K. In this case, the skew ring is denoted
by K[t; σ] and is said to be of endomorphism type. Here we
give a few more interesting examples.

Example 2 (Skew Polynomial Rings): 1) Let K be any
field and let σ : K → K be an endomorphism. Then for
any λ ∈ K, δ(a) = λ(σ(a)−a) is a σ-derivation.6 These
are called inner-derivations and the skew polynomial
ring defined using such a derivation is isomorphic to
the skew polynomial ring over K with the same σ
and δ = 0.7 The concept of q-derivatives [32] is a
special case of this for K = F(x). For some fixed
q ∈ F \ {1}, the q-derivative f ∈ F(x) is defined as
(f(qx)− f(x))/(qx− x). This is a derivation w.r.t. the
endomorphism σ : f(x) → f(qx).

2) Let K = F(x) and σ be the identity map. Then δ(f(x))
defined as the formal derivative of f(x) is a σ-derivation.
This can be extended to rational functions in a consistent
way using power series. When σ is the identity map,
the skew ring is denoted by K[t; δ] and is said to be of
derivation type.

3) Let K be the set of smooth real-valued functions over R

and σ be the identity map. Then δ(f(x)) defined as the
derivative f 0(x) is a σ-derivation. This is an important
skew polynomial ring for the study of linear differential
equations. For a skew polynomial g(t) = gdt

d + · · · +
g1t + g0 ∈ K[t; δ] and a smooth function f : R → R,

6If K is a division ring, then δ(a) = σ(a)λ − λa is a σ-derivation.
7The isomorphism is φ : K[t; σ, δ] → K[t̃; σ] defined as φ(t) = t̃− λ and

φ|K ≡ Id.
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f0 is a root of g(t) iff f satisfies the linear differential
equation

gdD
df + · · · + g1Df + g0f = 0

where D = d
dx is the derivative operator. Theorem 3

implies that the set of roots to g(t) forms a vector space
of dimension at most d over the centralizer subfield
K0 = {f : f0 = 0} = {f : f 0 = 0} ∼= R. This is
consistent with the well-known fact that the space of
solutions of a degree d homogeneous linear differential
equation has dimension at most d.

The following two propositions classify skew polynomial
rings over fields and finite fields.

Proposition 3: When K is a field (as opposed to being a
division ring), up to isomorphisms, the only possible skew
polynomial rings over K are either of endomorphism type (i.e.,
δ ≡ 0) or derivation type (i.e., σ ≡ Id).

Proof: This is because if σ 6= Id, then there exists
some element a0 ∈ K such that σ(a0) 6= a0. Now using
commutativity of K, we have δ(aa0) = δ(a0a) for any
a ∈ K. Expanding both sides, we get that for any a ∈ K,
δ(a) = λ(σ(a) − a) where λ = δ(a0)/(σ(a0) − a0) is a
fixed constant, i.e., δ is an inner-derivation. As we discussed
above, this skew polynomial ring is isomorphic to the skew
polynomial ring with δ ≡ 0 and the same endomorphism σ.

Proposition 4: When K = Fq is a finite field, up to
isomorphisms, the only possible skew polynomial rings are
of the endomorphism type (i.e., δ ≡ 0).

Proof: By Proposition 3, we already know that the skew
polynomial ring has to be either of endomorphism type or
derivation type. So we just have to rule out the derivation
type. Suppose there is a skew polynomial ring of derivation
type, i.e., σ ≡ Id and δ 6= 0. Suppose char(Fq) = p. Then by
repeatedly applying chain rule for δ, for any a ∈ K,

δ(ap) = aδ(ap−1) + δ(a)ap−1 = · · · = pδ(a)ap−1 = 0.

This is a contradiction.

APPENDIX B
MISSING PROOFS FROM SECTION II

Lemma 10 (Lemma 4): 1) d(ca) = dca
2) Conjugacy is an equivalence relation, i.e., we can par-

tition K into conjugacy classes where elements in each
part are conjugates of each other, but elements in differ-
ent parts are not conjugates.

Proof: (1) follows easily from the definition of conjuga-
tion and the using the fact that δ(cd) = σ(c)δ(d) + δ(c)d.

d(ca) = σ(d) · ca · d−1 + δ(d)d−1

= σ(d)(σ(c)ac−1 + δ(c)c−1)d−1 + δ(d)d−1

= σ(dc)ac−1d−1 + σ(d)δ(c)c−1d−1 + δ(d)d−1

= σ(dc)a(dc)−1 + (σ(d)δ(c) + δ(d)c)c−1d−1

= σ(dc)a(dc)−1 + δ(dc)(dc)−1

= dca.

We now prove (2). Suppose a is a conjugate of b, i.e., a =
xb for some x ∈ K

∗. Then x−1

a = x−1

(xb) = x−1xb = b.

Therefore b is a conjugate of a. Suppose a is a conjugate of
b, with a = xb, and c is a conjugate of b, with b = yc. Then
a = xb = x(yc) = xyc. So a is a conjugate of c.

Lemma 11 (Lemma 5): 1) Ka is a subfield of K.8

2) If a, b ∈ K are conjugates, then Ka = Kb. 9

Proof: (1) Let x, y ∈ Ka \ {0} i.e. xa = ya = a. Then

x+ya(x + y) = σ(x + y)a + δ(x + y)

= σ(x)a + σ(y)a + δ(x) + δ(y)

= xax + yay

= ax + ay = a(x + y).

Therefore x+ya = a. Also yxa = y(xa) = a. And finally
x−1

a = x−1

(xa) = x−1xa = a.
(2) Suppose b = da and let c ∈ Ka.Then cb = c(da) =

cda = dca = d(ca) = da = b. Therefore Ka ⊂ Kb.
By symmetry, Kb ⊂ Ka.

Lemma 12 (Product evaluation rule (Lemma 6)): If g(a) =
0, then (fg)(a) = 0. If g(a) 6= 0 then

(fg)(a) = f



g(a)a
�

g(a).

Proof: If g(a) = 0, then g(t) = b(t)(t − a) for some
b(t) ∈ K[t; σ, δ]. Therefore f(t)g(t) = f(t)b(t)(t− a), and so
(fg)(a) = 0. Suppose g(a) 6= 0. Let g(t) = b(t)(t−a)+g(a)
and f(t) = a(t)

(
t − g(a)a

)
+ f

(
g(a)a

)
. Then

f(t)g(t)

= f(t) · (b(t)(t − a) + g(a))

= f(t)b(t)(t − a) + f(t)g(a)

= f(t)b(t)(t − a) +


a(t)



t − g(a)a

�
+ f



g(a)a

��
g(a)

= f(t)b(t)(t − a) + a(t)


tg(a) − g(a)a · g(a)

�

+ f



g(a)a
�

g(a)

= f(t)b(t)(t − a)

+ a(t) (σ(g(a))t + δ(g(a)) − σ(g(a))a − δ(g(a)))

+ f



g(a)a
�

g(a)

= f(t)b(t)(t − a) + a(t)σ(g(a))(t − a) + f



g(a)a
�

g(a)

= (f(t)b(t) + a(t)σ(g(a))) (t − a) + f



g(a)a
�

g(a).

Therefore (fg)(a) = f
(
g(a)a

)
g(a).

APPENDIX C
ROOTS OF SKEW POLYNOMIALS

The most important and useful fact about usual polynomials
is that a degree d non-zero polynomial can have at most
d roots. It turns out that this statement is false for skew
polynomials! A skew polynomial can have many more roots
than its degree. But when counted in the right way, we can
recover an analogous statement for skew polynomials. In this
section, we will prove the “fundamental theorem” about roots
of skew polynomials which shows that a degree d skew

8When K is a division ring, Ka will be a sub-division ring of K.
9When K is a division ring and not a field, we have K(xa) = xKax−1.
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polynomial cannot have more than d roots when counted the
right way. We will begin with showing that any non-zero
degree d skew polynomial can have at most d roots in distinct
conjugacy classes.

Lemma 13: Let f ∈ K[t; σ, δ] be a degree d non-zero
polynomial. Then f can have at most d roots in distinct
conjugacy classes.

Proof: We will prove it using induction on the degree.
For the base case, it is clear that a degree 0 polynomial
which is a non-zero constant cannot have any roots. Suppose
a0, a1, . . . , ad ∈ K be roots of f in distinct conjugacy classes.
Since f(a0) = 0, we can write f(t) = h(t)(t − a0) where
deg(h) = d − 1. By Lemma 6, f(ai) = h(ai−a0ai)(ai − a0).
Therefore bi = ai−a0ai for i ∈ {1, . . . , d} are d roots of h and
they lie in distinct conjugacy classes because ai lie in distinct
conjugacy classes. Thus by induction h = 0 and therefore
f = 0 which is a contradiction.

Now let us try to understand, the roots of a skew polynomial
in the same conjugacy class. Let f ∈ K[t; σ, δ] be a non-zero
polynomial and fix some a ∈ K and let Ka be the centralizer
of a (which is a subfield of K). Define Vf (a) = {y ∈ K

∗ :
f(ya) = 0} ∪ {0}. Lemma 8 shows that Vf (a) is a vector
space over Ka. The next lemma shows that the dimension of
Vf (a) can be at most deg(f).

Lemma 14: Let f ∈ K[t; σ, δ] be a degree d non-zero
polynomial and fix some a ∈ K and let F = Ka be the
centralizer subfield of a. Define Vf (a) = {y ∈ K

∗ : f(ya) =
0} ∪ {0}. Then Vf (a) is a vector space over F of dimension
at most d.

Proof: We will use induction on the degree. For the base
case, it is clear that for a degree 0 polynomial, which is a non-
zero constant, dimF(Vf (a)) = 0. Suppose for contradiction
that there exists y0, y1, . . . , yd ∈ Vf (a) which are linearly
independent over F. WLOG, we can assume that y0 = 1
(by redefining a to be equal to y0a). Since f(a) = 0, we
can write f(t) = h(t)(t − a) where deg(h) = d − 1. By
Lemma 6, f(yia) = h(yi(

yia−a)a)(yia−a). Since y0 = 1 and
yi is linearly independent from y0 over F, yi /∈ F. Therefore
yia − a 6= 0, and so bi = yi(

yi a−a)a for i ∈ {1, . . . , d} are d
roots of h. If we show that yi(

yia− a) for i ∈ {1, . . . , d} are
linearly independent over F, then we are done by induction.

Suppose they are not independent. Then there exists
c1, . . . , cd ∈ F s.t.

Pd
i=1 ciyi(

yia − a) = 0. Therefore,

a

dX

i=1

ciyi =

dX

i=1

ciyi · yia

=

dX

i=1

ciyi · ciyia (ci ∈ F = Ka)

=

 
dX

i=1

ciyi

!
(
�d

i=1 ciyi)a

(x+ya(x + y) = xax + yay for all x, y ∈ K
∗)

Since y1, . . . , yd are independent over F,
Pd

i=1 ciyi 6= 0.

Therefore (
�

d
i=1 ciyi)a = a i.e.

Pd
i=1 ciyi ∈ Ka = F. But

this contradicts the fact that {y0 = 1, y1, . . . , yd} are linearly
independent over F.

We will now prove the “fundamental theorem” about roots
of skew polynomials. It immediately implies Lemma 13 and
Lemma 14 as corollaries. But we have proved them before,
just to convey some intuition.

Theorem 4 (Theorem 3): Let f ∈ K[t; σ, δ] be a degree d
non-zero polynomial. Let A be the set of roots of f in K and
let A = ∪iAi be a partition of A into conjugacy classes. Fix
some representatives ai ∈ Ai. Let Vi = {y : yai ∈ Ai} ∪ {0}
which is a linear subspace over Fi = Kai

by Lemma 8. Then

X

i

dimFi
(Vi) � d.

Proof: We will use induction on the degree. For the base
case, it is clear that for a degree 0 polynomial, which is a
non-zero constant, dimFi

(Vi) = 0 for every i. We will now
show the induction step.

For each i, let di = dimFi
(Vi). Fix some basis

y(i, 1), y(i, 2), . . . , y(i, di) ∈ K
∗ which span Vi with coeffi-

cients in Fi = Kai
. WLOG, we can assume that y(i, 1) = 1 for

every i, by reassigning ai = y(i,1)ai.
Fix some conjugacy class i∗ s.t. di∗ � 1. Since f(ai∗) = 0,

we can write f(t) = h(t)(t−ai∗) where deg(h) = d−1. Now
let A0

i be the roots of h in conjugacy class i and V 0
i = {y :

yai ∈ A0
i} ∪ {0}. We claim that dimFi

(V 0
i ) � dimFi

(Vi) for
every i 6= i∗ and dimFi∗

(V 0
i∗) � dimFi∗

(Vi∗)−1. By inductionP
i dimFi

(V 0
i ) � d−1. Therefore we have

P
i dimFi

(Vi) � d.
We will now prove the claim in two parts.

Claim 3: dimFi
(V 0

i ) � dimFi
(Vi) for every i 6= i∗.

Proof: Fix some conjugacy class i 6= i∗. By Lemma 6,

f



y(i,j)ai

�
= h



y(i,j)(y(i,j)ai−ai∗)ai

�

y(i,j)ai − ai∗

�
.

Since ai, ai∗ are in different conjugacy classes, y(i,j)ai−ai∗ 6=
0. So bj = y(i,j)(y(i,j)ai−ai∗ )ai for j ∈ {1, . . . , di} are
di roots of h in the ith conjugacy class A0

i. If we show
that y(i, j)(y(i,j)ai − ai∗) for j ∈ {1, . . . , di} are linearly
independent over Fi, then this proves the claim.

Suppose they are not independent. Then there exists
c1, . . . , cdi

∈ Fi s.t.
Pdi

j=1 cjy(i, j)(y(i,j)ai − ai∗) = 0.
Therefore,

ai∗

diX

j=1

cjy(i, j) =

diX

j=1

cjy(i, j) · y(i,j)ai

=

diX

j=1

cjy(i, j) · cjy(i,j)ai (cj ∈ Fi = Kai
)

=

 
diX

i=1

cjy(i, j)

! ��di
j=1 cjy(i,j)

�
ai

(x+ya(x + y) = xax + yay for all x, y ∈ K
∗)

Since y(i, 1), . . . , y(i, di) are independent over Fi,
Pdi

j=1 cjy(i, j) 6= 0. Therefore
��di

j=1 cjy(i,j)
�
ai = ai∗ .

This is a contradiction because ai, ai∗ are in different
conjugate classes.

Claim 4: dimFi∗
(V 0

i∗) � dimFi∗
(Vi∗) − 1.
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Proof: The proof is exactly similar to that of the previous
claim, up until the last. Let j ∈ {2, 3, . . . , di∗}. By Lemma 6,

f


y(i∗,j)ai∗

�
=h

�
y(i∗,j)

�
y(i∗,j)ai∗−ai∗

�
ai∗




y(i∗,j)ai∗−ai∗

�
.

Since y(i∗, 1) = 1 and y(i∗, j) are linearly independent
over Fi∗ , y(i∗, j) /∈ Fi∗ . Therefore y(i∗,j)ai∗ − ai∗ 6= 0.
So bj = y(i∗,j)(y(i∗ ,j)ai∗−ai∗ )ai∗ for j ∈ {2, . . . , di∗} are
di∗ − 1 roots of h in the i∗th conjugacy class A0

i∗ . If we
show that y(i∗, j)(y(i∗,j)ai∗ − ai∗) for j ∈ {2, . . . , di∗} are
linearly independent over Fi∗ , then this proves the claim.

Suppose they are not independent. Then there exists
c2, . . . , cdi∗

∈ Fi∗ s.t.

di∗X

j=2

cjy(i∗, j)(y(i∗,j)ai∗ − ai∗) = 0 .

Therefore,

ai∗

di∗X

j=2

cjy(i∗, j) =

di∗X

j=2

cjy(i∗, j) · y(i∗,j)ai∗

=

di∗X

j=2

cjy(i∗, j) · cjy(i∗,j)ai∗

(cj ∈ Fi∗ = Kai∗
)

=




di∗X

j=2

cjy(i∗, j)



��di∗

j=2 cjy(i∗,j)
�
ai∗

(x+ya(x + y) = xax + yay for all x, y ∈ K
∗)

Since y(i∗, 1), . . . , y(i∗, di∗) are independent over Fi∗ ,Pdi∗

j=2 cjy(i∗, j) 6= 0. Therefore
��di∗

j=2 cjy(i∗,j)
�
ai∗ = ai∗ ,

and thus
Pdi∗

j=2 cjy(i∗, j) ∈ Kai∗
= Fi∗ . But this contradicts

the fact that

{y(i∗, 1) = 1, y(i∗, 2), . . . , y(i∗, di∗)}

are linearly independent over Fi∗ .
The above two claims finish the proof of Theorem 3.

APPENDIX D
CONSTRUCTIONS OF MR LRCS WHERE GLOBAL

PARITIES ARE OUTSIDE LOCAL GROUPS

Sometimes, it is better to keep the global parities outside the
local groups, i.e., the global/heavy parities do not participate
in any local groups. For a given length of the code, this
reduces the size of local groups and therefore improves the
reconstruction performance (at the cost of slight decrease in
durability). Figure 2 shows such an MR LRC. The encoding
is done by partitioning the k data symbols into g local
groups of size r − a each and adding ‘a’ local parities per
local group. There are a total of g local groups. Further an
additional h global parity checks are added which are placed
outside the local groups. The length of the code is therefore
n = k+h+a· k

r−a . The parity check matrix of an (n, r, h, a, q)-

Fig. 2. An LRC with k data symbols, h global/heavy parities and ‘a’ local
parities per local group. The global parities are outside the local groups. The
length of the code n = k + h + a · k

r−a
.

MR LRC where the global parities are outside local groups is
of the following form:

H =




A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ag 0
B1 B2 · · · Bg Bglobal




. (15)

Here g = n/r is the number of local groups. A1, A2, . . . , Ag

are a×r matrices over Fq which correspond to the local parity
checks that each local group satisfies. B1, B2, . . . , Bg are h×r
matrices over Fq and Bglobal is a h× h matrix; together they
represent the h global parity checks that the codewords should
satisfy.

The set of correctable erasure patterns correctable by such
an MR LRC are exactly those obtained by erasing ‘a’ symbols
per local group and h additional symbols arbitrarily. Our con-
structions can be easily modified to obtain the constructions
in this setting as well. For simplicity, we will only state the
theorems for the case when h � r−a, since this is the regime
that is commonly used in practice. The constructions can be
easily modified to also work when h > r − a.

Theorem 5: Suppose h � r−a. Let q0 be any prime power
such that one of the following is true:

1) q0 � max{g + 2, r − 1} or
2) q0 � max{g + 1, r + d(h − 1)/ge − 1}

where g = n/r is the number of local groups. Then there
exists an explicit (n, r, h, a, q)-MR LRC with q = qh

0 .
MR LRCs used in practice typically have only one local

parity per local group, i.e., a = 1 [6]. We can further improve
the construction from Theorem 5 in this regime.

Theorem 6: Suppose h � r − a and the number of local
parities a = 1. Choose a prime power q0 and a positive integer
n0 such that one of the following is true:

1) q0 � g + 2 and n0 = r or
2) q0 � g + 1 and n0 = r + dh−1

g e.

Suppose there exists an [n0, n0−c, d]Fq0
linear code C0 where

c is its codimension and minimum distance d � h +
2. Further we need the dual code C⊥

0 to have a code-
word of weight exactly r.10 Then there exists an explicit

10This is equivalent to C0 having a parity check matrix containing a row
with exactly r non-zero entries.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:44:38 UTC from IEEE Xplore.  Restrictions apply. 



GOPI AND GURUSWAMI: IMPROVED MAXIMALLY RECOVERABLE LRCS USING SKEW POLYNOMIALS 7209

(n, r, h, a = 1, q)-MR LRC with field size

q = qc−1
0

where the global parities are outside the local groups.

A. Construction: Proof of Theorem 5

Let us recall the parity check matrix of an (n, r, h, a, q)-
LRC where the global parities are outside local groups is of
the form given in (15). By Proposition 1, C is an MR LRC iff
(1) any ‘a’ columns of each matrix Ai are linearly independent
and (2) any submatrix of H formed by selecting a columns
in each local group and any h additional columns is full rank.

Case 1: Let q0 � max{g + 2, r − 1} be a prime power.
Since we have one extra conjugacy class (note that q0−1 �

g+1), we will use it to define Bglobal. Let H0 be an (a+h)×r
MDS matrix over Fq0 which can be constructed using a Reed-
Solomon code. Partition H0 as follows:

H0 =

�
Aa×r

βh×r

�
.

Define A1, A2, . . . , Ag = A where A is formed by the first a
rows of H0. Let β1, β2, . . . , βr ∈ F

h
q0

be the columns of βh×r,
i.e.,

β =
�
β1 β2 · · · βr

�
.

Let eβi = ei ∈ Fh
q0

for 1 � i � h where e1, e2, . . . , eh are
coordinate basis vectors. Note that β1, . . . , βr and eβ1, . . . , eβh

can also be thought of as elements of Fqh
0

by fixing some basis
of Fqh

0
as a vector space over Fq0 .

Define for 1 � ` � g,

B` =




β1 β2

γ`βq0

1 γ`βq0

2

γ`(1+q0)β
q2
0

1 γ`(1+q0)β
q2
0

2
...

...

γ`(1+q0+···+qh−2
0 )β

qh−1
0

1 γ`(1+q0+···+qh−2
0 )β

qh−1
0

2

· · · βr

· · · γ`βq0
r

· · · γ`(1+q0)β
q2
0

r

...

· · · γ`(1+q0+···+qh−2
0 )β

qh−1
0

r




.
(16)

Bglobal =



eβ1
eβ2

γ(g+1)eβq0

1 γ(g+1) eβq0

2

γ(g+1)(1+q0) eβq2
0

1 γ(g+1)(1+q0)eβq2
0

2
...

...

γ(g+1)(1+q0+···+qh−2
0 ) eβqh−1

0
1 γ(g+1)(1+q0+···+qh−2

0 )eβqh−1
0

2

· · · eβh

· · · γ(g+1)eβq0

h

· · · γ(g+1)(1+q0) eβq2
0

h
...

· · · γ(g+1)(1+q0+···+qh−2
0 ) eβqh−1

0

h




.
(17)

Claim 5: The above construction is an MR LRC over fields
of size q = qh

0 .
Proof Sketch: The proof is very similar to that of Claim 1.

The only difference is that some of the h additional erasures
can happen in the global parities. Since we defined Bglobal

so that it belongs to a conjugacy class distinct from those of
B1, B2, . . . , Bg, the proof follows similarly.

Case 2: Let q0 � max{g+1, r+dh−1
g e} be a prime power.

In this case, we don’t have an extra (non-zero) conjugacy
class to define Bglobal. Therefore, we will partition Bglobal

into g parts and fold in the parts into the existing g conjugacy
classes. Note that we can always include the last column of
Bglobal as [0, 0, . . . , 1]T . Therefore we only need to fold in
h − 1 columns of Bglobal into existing g conjugacy classes.
Let t = dh−1

g e and let n0 = r + t. Let H0 be an (a + h)×n0

MDS matrix over Fq0 of the following form

H0 =

�
Aa×r 0

βh×r
eβh×t

�
. (18)

Note that we can construct an MDS matrix of this form, by first
starting with a Reed-Solomon MDS matrix over Fq0 and doing
row operations to get this form. Moreover, note that the matrix
Aa×r is itself an MDS matrix.

Define A1, A2, . . . , Ag = A. Let β1, β2, . . . , βr ∈ F
h
q0

be
the columns of βh×r, i.e.,

β =
�
β1 β2 · · · βr

�
.

and define eβ1, . . . , eβt ∈ F
h
q0

be the columns of eβh×t. Note that
β1, . . . , βr and eβ1, . . . , eβt can also be thought of as elements
of Fqh

0
by fixing some basis of Fqh

0
as a vector space over Fq0 .

Define for 1 � ` � g, B` as in (16) and

B`
global =




eβ1
eβ2

γ`eβq0

1 γ`eβq0

2

γ`(1+q0) eβq2
0

1 γ`(1+q0) eβq2
0

2
...

...

γ`(1+q0+···+qh−2
0 ) eβqh−1

0
1 γ`(1+q0+···+qh−2

0 ) eβqh−1
0

2

· · · eβt

· · · γ`eβq0

t

· · · γ`(1+q0)eβq2
0

t
...

· · · γ`(1+q0+···+qh−2
0 )eβqh−1

0
t




.
(19)

Define

eBglobal =
�

B1
global B2

global · · · Bg
global eh

�
(20)

where eh ∈ Fh
q0

is the coordinate vector eh = [0, 0, . . . , 0, 1]T .
Note that eBglobal is an h × (gt + 1) matrix and gt + 1 � h.
Finally define Bglobal to be an h×h matrix formed by arbitrary
h columns of eBglobal.

Claim 6: The above construction is an MR LRC over fields
of size q = qh

0 .
Proof Sketch: The proof is very similar to that of Claim 1.

The only difference is that some of the h additional erasures
can happen in the global parities. We will need to crucially
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use the fact the top right corner of the matrix H0 in (18)
used to define A’s and B’s is zero. Therefore using some ‘a’
columns of A to remove the rest of the columns in the upper
half of H0, does not affect the eβ matrix since the top right
corner is already forced to be zero.

B. Construction: Proof of Theorem 6

Let us recall the parity check matrix of an
(n, r, h, a, q)-LRC where the global parities are outside
local groups is of the form given in (15). By Proposition 1, C
is an MR LRC iff (1) any ‘a’ columns of each matrix Ai are
linearly independent and (2) any submatrix of H formed by
selecting a columns in each local group and any h additional
columns is full rank.

Case 1: q0 � g + 2 and n0 = r.
Since we have one extra conjugacy class (note that

q0−1 � g +1), we will use it to define Bglobal. Let C0 be an
[n0, n0−c, d]Fq0

linear code with minimum distance d � h+2.
Let H0 be the parity check matrix of C0 which is a c×r matrix
over Fq0 . By the hypothesis that the dual code of C0 has a full
weight vector, we can assume that the first row of H0 is all
1’s vector (scaling the columns if necessary). Partition H0 as
follows:

H0 =

�
1 1 · · · 1
β1 β2 · · · βr

�
.

Define
A1, A2, . . . , Ag =

�
1 1 · · · 1

�
.

Note that c � h + 1 since any h + 1 columns of H0 are
linearly independent. Therefore we have h � c−1, and so we
can define for 1 � i � h,

eβi = ei

where ei ∈ F
c−1
q0

is the ith coordinate basis vector.
Note that β1, . . . , βr and eβ1, . . . , eβh can also be thought of

as elements of Fqc−1
0

by fixing some basis of Fqc−1
0

as a vector
space over Fq0 .

Define for 1 � ` � g, B` as in (16) and Bglobal as in (17).
Claim 7: The above construction is an MR LRC over fields

of size q = qc−1
0 .

Proof Sketch: The proof is very similar to that of Claim 1.
The only difference is that some of the h additional erasures
can happen in the global parities. Since we defined Bglobal

so that it belongs to a conjugacy class distinct from those of
B1, B2, . . . , Bg, the proof follows similarly. We will also use
the fact that C0 has minimum distance at least h + 2 and so
any h + 1 columns of H0 are linearly independent.

Case 2: q0 � g + 1 and n0 = r + dh−1
g e.

In this case, we don’t have an extra (non-zero) conjugacy
class to define Bglobal. Therefore, we will partition Bglobal

into g parts and fold in the parts into the existing g conjugacy
classes. Note that we can always include the last column of
Bglobal as [0, 0, . . . , 1]T . Therefore we only need to fold in
h − 1 columns of Bglobal into existing g conjugacy classes.
Let t = dh−1

g e and let n0 = r + t.
Let C0 be an [n0, n0 − c, d]Fq0

linear code with minimum
distance d � h + 2. Let H0 be the parity check matrix of

C0 which is a c × n0 matrix over Fq0 . By the hypothesis
that the dual code of C0 has a vector of weight exactly r,
we can assume that the first row of H0 has exactly r ones
and t zeros (after scaling the columns if necessary). Partition
H0 as follows:

H0 =

�
1 1 · · · 1 0 0 · · · 0

β1 β2 · · · βr
eβ1

eβ2 · · · eβt

�
. (21)

Define
A1, A2, . . . , Ag =

�
1 1 · · · 1

�
.

Note that β1, . . . , βr and eβ1, . . . , eβt can also be thought of as
elements of Fqc−1

0
by fixing some basis of Fqc−1

0
as a vector

space over Fq0 . Define for 1 � ` � g, B` as in (16), B`
global

as in (19) and eBglobal as in (20). Note that eBglobal is an h×
(gt + 1) matrix and gt + 1 � h. Finally define Bglobal to be
an h × h matrix formed by arbitrary h columns of eBglobal.

Claim 8: The above construction is an MR LRC over fields
of size q = qc−1

0 .
Proof Sketch: The proof is very similar to that of Claim 1.

The only difference is that some of the h additional erasures
can happen in the global parities. We will need to crucially
use the fact the top right corner of the matrix H0 in (21) is
zero. Therefore using some ‘a’ ones to remove the rest of the
ones in the upper half of H0, does not affect the eβ matrix
since the top right corner is already forced to be zero.

APPENDIX E
SKEW POLYNOMIAL WRONSKIAN AND MOORE MATRICES

In this section, we will discuss generalizations of Wron-
skian and Moore matrices using skew polynomials. The
non-singularity of special cases of these matrices has been
instrumental in works on list decoding [21], [33] and algebraic
pseudorandomness such as constructions of rank condensers
and subspace designs [24]–[26]. We will need the following
simple lemmas.

Lemma 15: Let F(x) be the field of rational functions in
x and let L = F(xr) which is a subfield of F(x).11 Let
g1, g2, . . . , gm ∈ F[x]<r be polynomials of degree strictly less
than r. Then g1, g2, . . . , gm are L-linearly independent iff they
are F-linearly independent.

Proof: One direction is obvious since F is a subfield
of L. To prove the other direction, suppose g1, g2, . . . , gm

are L-linearly dependent, i.e.,
P

i ci(x
r)gi(x) = 0 for some

ci ∈ F(x). WLOG, by clearing denominators and common
factors, we can assume that ci are also polynomials (i.e., ci ∈
F[x]) with no common factor. By comparing the coefficients
of powers of x between 0 and r − 1, we immediately get
that

P
i ci(0)gi(x) = 0. Note that all ci(0) cannot be zero

simultaneously since then x would be a common factor for
all ci. Therefore we get a non-trivial F-linear dependency for
g1, g2, . . . , gm.

Lemma 16: Let K[x; σ, δ] be a skew polynomial ring. For
a ∈ K, define φa : K → K as φa(y) = σ(y)a + δ(y). Then

11
F(xr) is the set of rational functions of the form f(xr) for f ∈ F(x) i.e.

rational functions which only have terms whose powers are multiples of r.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:44:38 UTC from IEEE Xplore.  Restrictions apply. 



GOPI AND GURUSWAMI: IMPROVED MAXIMALLY RECOVERABLE LRCS USING SKEW POLYNOMIALS 7211

1) φi
a(y) = Ni(

ya)y where φi
a is φa composed with itself

i times and
2) φa is a linear map over the subfield Ka.

Proof: (1) This can be proved by induction, it is true for
i = 1.

Ni+1(
ya)y = σ(Ni(

ya))yay + δ(Ni(
ya))y

= σ(Ni(
ya))(σ(y)a + δ(y)) + δ(Ni(

ya))y

= σ(Ni(
ya)y)a + σ(Ni(

ya))δ(y) + δ(Ni(
ya))y

= σ(Ni(
ya)y)a + δ(Ni(

ya)y)

= φa(Ni(
ya)y) = φa(φi

a(y)) = φi+1
a (y).

(2) Ka-linearity follows since ∀c ∈ Ka,

φa(yc) = N1(
yca)yc = N1(

y(ca))yc = N1(
ya)yc = φa(y)c .

Using Lemma 16, one can linearize the evaluation of
skew-polynomials on any conjugacy class. This gives a bijec-
tion between evaluation of skew-polynomials on a particular
conjugacy class and linearized polynomials which found sev-
eral applications in coding theory and linear-algebraic pseudo-
randomness [34]–[36]. In fact this is a ring isomorphism and
the product operation denoted by ⊗ in [34] is equivalent to
the product operation for skew polynomials in the appropriate
skew polynomial ring.

A. Wronskian Matrix

The theory of skew polynomials allows us to calculate rank
of Wronskian matrices. Let K[x; δ] be a skew-polynomial of
derivation type i.e. σ ≡ Id is the identity map.

Definition 10 (Wronskian): Let c1, . . . , cn ∈ K
∗. Define the

Wronskian

Wn(c1, . . . , cn) =




c1 c2 · · · cn

δ(c1) δ(c2) · · · δ(cn)
δ2(c1) δ2(c2) · · · δ2(cn)

...
...

...
δn−1(c1) δn−1(c2) · · · δn−1(cn)




.

Corollary 4: Wn(c1, . . . , cn) is full-rank iff c1, . . . , cn are
linearly independent over F = K0, the centralizer of 0.

Proof: By Lemma 16, δi(c) = Ni(
c0)c. Thus the claim

follows from Lemma 9.
Note that when δ is the formal derivative of polynomials,

the above is the usual Wronskian of polynomials. Applying
the above corollary in this special case, we can relate the
non-singularity of the Wronskian to the linear independence
of the polynomials.

Proposition 5: Let f1, f2, . . . , fs ∈ F[x] be polynomials of
degree at most d. Suppose δj(fi) is the jth derivative of fi.
Define

M =




f1(x) f2(x) . . . fs(x)
...

...
...

δj(f1)(x) δj(f2)(x) . . . δj(fs)(x)
...

...
...

δs−1(f1)(x) δs−1(f2)(x) . . . δs−1(fs)(x)




.

Then the following are true:

1) If char(F) = p then12, det(M) 6= 0 iff f1, f2, . . . , f2 are
linearly independent over F(xp).

2) If char(F) > d or char(F) = 0 then, det(M) 6= 0 iff
f1, f2, . . . , fs are linearly independent over F.

Proof: It is clear that if f1, f2, . . . , fd are linearly depen-
dent over F, then detM = 0. Now we will prove the converse.

Consider the skew polynomial ring defined in Example 2
where K = F(x), σ ≡ Id and δ(f) is the derivative of f .
By Corollary 4, det(M) is zero iff f1, f2, . . . , fs are linearly
independent over K0, the centralizer of 0. We have

K0 = {g : g0 = 0} ∪ {0} = {g : δ(g) = 0}.

If char(F) = 0, then K0 = F and we are done. If char(F) = p
for some prime p, then we claim below that K0 = F(xp),
which finishes the proof using Lemma 15.

Claim 9: If char(F) = p, then K0 = F(xp).
Proof: K0 = {g ∈ F(x) : δ(g) = 0}. If g ∈ F[x], then

it is easy to see that δ(g) = 0 iff g ∈ F[xp]. Now suppose g
is a rational function of the form g = a/b where a, b ∈ F[x]
do not have any common factors. By product rule, δ(g) =
0 ⇐⇒ δ(a)b = aδ(b). Since a, b do not have any common
factors, this implies that a divides δ(a) and b divides δ(b).
Since degree of δ(a) is smaller than a, this is not possible
unless δ(a) = 0 and similarly we can conclude that δ(b) = 0.
Therefore a, b ∈ F[xp] and so g ∈ F(xp).

Using the above, we can now deduce the following result
which is the basis of list-size bound for list decoding univariate
multiplicity codes [33] and the analysis of the associated
subspace design constructed in [25].

Proposition 6: Let char(F) = p. Let δ be the derivative
operator on polynomials in F[x] and δi(·) be the ith deriv-
ative of a polynomial. Let Q(x, y0, y1, . . . , ys−1) = A(x) +Ps−1

i=0 Ai(x)yi where A(x), Ai(x) ∈ F[x] and not all Ai are
zero. The set of all f ∈ F[x] of degree less than p, such that

Q(x, f(x), δ(f)(x), . . . , δs−1(f)(x)) = 0, (22)

form an F-affine subspace of F[x] of dimension at most s−1.
Proof: Equation (22) can be rewritten as

A +
Ps−1

i=0 Aiδ
i(f) = 0. Suppose that the set of solutions

to this equation in F[x]<p form an F-affine subspace of
F[x] of dimension at least s. Then there exist solutions
f0, f1, . . . , fs ∈ F[x]<p where f1 − f0, . . . , fs − f0 are
F-linearly independent. Let gi = fi − f0. Then for j ∈ [s]
we have,

Ps−1
i=0 Aiδ

i(gj) = 0. Therefore the determinant
of the matrix [δi(gj)]ij is zero. Therefore by Proposition 5,
g1, g2, . . . , gs should be F-linearly dependent, which is a
contradiction.

We also remark that solving equation (22) when A = 0
is equivalent to finding roots of a skew polynomial of
degree s − 1 in a conjugacy class. This also intuitively
explains why the set of solutions is an affine subspace of
dimension at most s − 1. Consider the skew polynomial ring
K[t; δ] of derivation type where K = F(x), σ ≡ Id and δ is
the derivative operator. Then by Lemma 16, Ni(

f0)f = δi(f).

12char(F) is the characteristic of F.
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Therefore the Equation (22), when A = 0, can be rewritten
as:

s−1X

i=0

Aiδ
i(f) = 0 ⇐⇒

s−1X

i=0

AiNi(
f0)f = 0.

Define G(t) ∈ K[t; δ] as G(t) =
Ps−1

i=0 Ait
i which is a

skew polynomial of degree at most s − 1. Then G(f0)f =Ps−1
i=0 AiNi(

f0)f. Therefore the solutions of (22) when A = 0
are precisely {0} ∪ {f : G(f0) = 0}.

B. Moore Matrix

The theory of skew polynomials also allows us to calculate
the rank of Moore matrices. Let K[t; σ] be a skew polynomial
ring of endomorphism type i.e. δ ≡ 0. This is completely
analogous to Wronskian matrices (Section E-A) once we use
the skew polynomial framework.

Definition 11 (Moore matrix): Let c1, . . . , cn ∈ K
∗. Define

the Moore matrix

Mn(c1, . . . , cn) =




c1 c2 · · · cn

σ(c1) σ(c2) · · · σ(cn)
σ2(c1) σ2(c2) · · · σ2(cn)

...
...

...
σn−1(c1) σn−1(c2) · · · σn−1(cn)




.

Corollary 5: Mn(c1, . . . , cn) is full-rank iff c1, . . . , cn are
linearly independent over F = K1, the centralizer of 1.

Proof: By Lemma 16, σi(c) = Ni(
c1)c. Thus the claim

follows from Lemma 9.
We now apply the above to the case when K = Fq(x) and σ

is the automorphism which maps f(x) ∈ Fq(x) to f(γx) for
a generator γ of F

∗
q . In this case, the Moore matrix was called

the folded Wronskian in [25]. Analogous Moore matrices for
function fields were studied in [26].

Proposition 7: Let f1, f2, . . . , fs ∈ Fq[x] be polynomials
of degree at most d. Let γ be generator for F

∗
q . Define

M =




f1(x) f2(x) . . . fs(x)
...

...
...

f1(γ
jx) f2(γ

jx) . . . fs(γ
jx)

...
...

...
f1(γ

s−1x) f2(γ
s−1x) . . . fs(γ

s−1x)




.

Then the following are true:

1) det(M) 6= 0 iff f1, f2, . . . , f2 are linearly independent
over Fq(x

q−1).
2) If q − 1 > d then, det(M) 6= 0 iff f1, f2, . . . , fs are

linearly independent over Fq.

Proof: It is clear that if f1, f2, . . . , fd are linearly depen-
dent over Fq, then detM = 0. Now we will prove the
converse.

Consider the skew polynomial ring defined in Example 2
where K = Fq(x), σ(g(x)) = g(γx) and δ ≡ 0.
By Corollary 5, det(M) is zero iff f1, f2, . . . , fs are linearly
independent over K1, the centralizer of 1. We have

K1 = {g : g1 = 1} ∪ {0} = {g : g(γx) = g(x)}.

We now claim that K1 = Fq(x
q−1) and the rest follows from

Lemma 15.
Claim 10: K1 = Fq(x

q−1).
Proof: K1 = {g ∈ Fq(x) : g(γx) = g(x)}. If g ∈ Fq[x],

then it is easy to see that g(γx) = g(x) iff g ∈ Fq[x
q−1].

Now suppose g is a rational function of the form g = a/b
where a, b ∈ Fq[x] do not have any common factors and we
can assume that the constant term of a or b is 1. g(γx) =
g(x) ⇐⇒ a(γx)b(x) = a(x)b(γx). Since a, b do not have
any common factors, this implies that a divides a(γx) and
b divides b(γx). Since degree of a(γx) is the same as that
of a(x) and the degree of b(γx) is the same as that of b(x),
this implies that a(γx) = λa(x) and b(γx) = λb(x) for some
λ ∈ Fq. Since we assumed that a or b has constant term 1,
we can conclude that λ = 1. Therefore a, b ∈ Fq[x

q−1] and
so g ∈ Fq(x

q−1).
Using the above, we can now deduce the following result

which is the basis of list-size bound for list decoding
folded Reed-Solomon codes [21], [37] and the analysis of
the subspace design constructed using folded Reed-Solomon
codes [25].

Lemma 17: Let γ be a generator for F
∗
q . Let

Q(x, y0, y1, . . . , ys−1) = A(x) +
Ps−1

i=0 Ai(x)yi where
A(x), Ai(x) ∈ Fq[x] and not all Ai are zero. The set of all
f ∈ Fq[x] of degree less than q − 1, such that

Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0, (23)

form an Fq-affine subspace of Fq[x] of dimension at most
s − 1.

Proof: Equation (23) can be rewritten as
A +

Ps−1
i=0 Aif(γix) = 0. Suppose that the set of solutions

to this equation in Fq[x]<q−1 form an Fq-affine subspace
of Fq[x] of dimension at least s. Then there exist solutions
f0, f1, . . . , fs ∈ Fq[x]<q−1 where f1 − f0, . . . , fs − f0 are
Fq-linearly independent. Let gi = fi − f0. Then for j ∈ [s]
we have,

Ps−1
i=0 Aigj(γ

ix) = 0. Therefore the determinant of
the matrix [gj(γ

ix)]ij is zero. Therefore by Proposition 7,
g1, g2, . . . , gs should be Fq-linearly dependent, which is a
contradiction.

Just as we did in Section E-A, we remark that solving
Equation (23), when A = 0, is equivalent to finding roots of
the degree s − 1 skew polynomial G(t) =

Ps−1
i=0 Ait

i in the
conjugacy class of 1, where the underlying skew polynomial
ring is K[t; σ] where K = F(x) and σ(f(x)) = f(γx).

APPENDIX F
MAXIMUM SUM RANK DISTANCE CODES

In this section, we will present a construction of Maximum
Sum-Rank Distance (MSRD) codes due to [27] using the skew
polynomial framework. We will first define sum-rank distance
codes.

Fix some basis B for Fqm as vector space over Fq. Given
z = (z1, z2, . . . , zr) ∈ F

r
qm , we can think of z as an m × r

matrix with entries in Fq by expressing each coordinate zi as a
F

m
q vector using basis B; define rankFq

(z) to be the Fq-rank
of that matrix. Let P = A1 t A2 t · · · t As be a partition
of [n] into s parts. Given x ∈ F

n
qm , let x = (x1, x2, . . . , xs)
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be the partition of x according to P where xi ∈ F
Ai

qm . Define
sum-rankP(x) =

Ps
i=1 rankFq

(xi).
Definition 12 (sum-rank distance): Fix some partition P =

A1tA2t· · ·tAs of [n] into s parts. An Fqm-linear subspace
C of F

n
qm is said to have sum-rank distance d (w.r.t. partition

P) if every non-zero codeword c ∈ C, sum-rankP(c) � d.
Note that the sum-rank distance generalizes both Hamming

metric (by choosing P = {1} t {2} t · · · t {n}) and rank
metric (by choosing P = [n]). Moreover for any partition
P and any x ∈ F

n
qm , sum-rankP(x) is most the Hamming

weight of x (as rank is upper bounded by the number of
non-zero columns). Therefore by the Singleton bound, any k-
dimensional code of F

n
qm , can have sum-rank distance at most

n − k + 1. A code achieving this bound is called an MSRD
code. Therefore MSRD codes generalize both MDS codes and
Gabidulin codes. Sum-rank distance was introduced by [38]
for applications in network coding. We will now present the
construction of MSRD codes.

Theorem 7 (Construction of maximum sum rank dis-

tance codes [27]): Let γ be a generator for Fqm and let
β1, . . . , βm ∈ Fqm be linearly independent over Fq. Let
n = (q − 1)m. For k � n, define a k × n matrix M =
[M0|M1| . . . |Mq−2] where

M` =




β1 β2

γ`βq
1 γ`βq

2

γ`(1+q)βq2

1 γ`(1+q)βq2

2
...

...

γ`(1+q+···+qh−2)βqh−1

1 γ`(1+q+···+qh−2)βqh−1

2

· · · βm

· · · γ`βq
m

· · · γ`(1+q)βq2

m
...

· · · γ`(1+q+···+qh−2)βqh−1

m




.

Then M is the generator matrix of a maximum sum rank
distance code, i.e., for every non-zero vector λ ∈ F

k
qm ,Pq−2

`=0 rankFq
(λT M`) � n − k + 1.13

Proof: Suppose λ ∈ F
k
qm is a non-zero vector such

that
Pq−2

`=0 rankFq
(λT M`) � n − k. This is equivalent toPq−2

`=0 dimFq
(kerFq

(λT M`)) � k.
Let K = Fqm , σ(a) = aq and δ ≡ 0. See Example 1 for the

conjugation relation and conjugacy classes in this case. Define
f(t) =

Pk−1
i=0 λit

i which is a non-zero skew polynomial of
degree at most k−1 in Fqm [t; σ]. We will find many roots for
f which would violate Theorem 3 to get a contradiction.

Fix some ` ∈ {0, 1, . . . , q − 2}. Suppose
dimFq

(kerFq
(λT M`)) = d`. Let µ1, . . . , µd`

∈ F
m
q be a

basis for the kernel. Let β = (β1, β2, . . . , βm) ∈ F
m
qm . Now

λT M`µi = 0 implies that βT µi is root of f . Moreover the d`

roots βT µ1, . . . , β
T µd`

∈ Fqm are linearly independent over
Fq since rankFq

(β) = m.

13Here we are interpreting a row vector c ∈ F
r
qm as an m× r matrix over

Fq . rankFq
(c) is the Fq-rank of this matrix. We will also use kerFq

(c) in
the proof to denote the kernel of the matrix.

Thus we get
Pq−2

`=0 d` � k roots for f . And the roots
in each conjugacy class are linearly independent over Fq

(which is the centralizer). Therefore by Theorem 3, we get a
contradiction.

It is easy to see that the above construction can be easily
modified to work for any partition P of [n] into at most (q−1)
parts, where each part has size at most m. In [39], an efficient
decoding algorithm for these codes is given.
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